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1.1 INTRODUCTION

LetΣ be a finite alphabet. A string is a concatenation of elements of Σ. The length of
a stringx, denoted by|x|, is the number of the characters that constitute this string.
Let S be a set of strings overΣ. The simplest “binary-valued version” of the string
barcoding problem discussed in this chapter is defined as follows [3, 17]:

Problem name: String barcoding problem (SBΣ (1)).

Definition of a barcode: for a stringsand a set of stringsT = {t0, t1, . . . , tm−1},

barcode (s,T ) is the boolean vector
(

b0,b1,bm−1
)

wherebi =

{

1, if ti is asubstringof s
0, otherwise

.

(Title, Edition).By (Author)
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2 ALGORITHMIC PERSPECTIVES OF THE STRING BARCODING PROBLEMS

Σ =
{

A, C, T, G
}

, T =
{

A, CC, TTT, GT
}

, s=ACC

t0 =A t1 =CC t2 =TTT t3 =GT

s=ACC 1 1 0 0

s is a
substring

of t0

s is not
a substring

of t3

Input: A set of stringsS overΣ.

Valid solutions: A set of stringsT such that (see Fig. 1.1):

∀ s, s′ ∈ S : s, s′ ⇔ barcode (s,T ) , barcode (s′,T )

Objective: minimizethe length of the barcode| T |.

Σ =
{

A, C, T, G
}

, T =
{

A, CC, TTT, GT
}

, S = {S1,S2,S3,S4,S5}

t0 =A t1 =CC t2 =TTT t3 =GT
S1 =AAC 1 0 0 0
S2 =ACC 1 1 0 0
S3 =GGGG 0 0 0 0
S4 =GTGTGG 0 0 0 1
S5 =TTTT 0 0 1 0

Figure 1.1 An example of a valid barcode.

The basic string barcoding problem SBΣ (1) was generalized in [3] to a “grouped”
string barcoding problem SBΣ (κ) in the following manner:

Problem name: grouped string barcoding problem (SBΣ (κ)).

Definition of a κ-string: a κ-string is a collection of at mostκ strings.

Definition of a barcode: for a stringsand a set ofκ-stringsT = {t0, t1, . . . , tm−1},
barcode (s,T ) is the boolean vector

(

b0,b1, . . . ,bm−1
)

where:

bi =

{

1, if there exists at ∈ ti for somei such thatt is asubstringof s
0, otherwise

Input: a setS of strings overΣ.

Valid solutions: a set ofκ-stringsT such that

∀ s, s′ ∈ S : s, s′ ⇔ barcode (s,T ) , barcode (s′,T )

Objective: minimizethe length of the barcode| T |.

Finally, the binary-valued basic version of the string barcoding problem SBΣ (1) is
actually a special case of the more general “integral-valued” version defined as fol-
lows [4]:



INTRODUCTION 3

Problem name: Minimum cost probe set with thresholdr (MCPΣ (r)).

Definition of a rrr-barcode: for a stringsand a set of stringsT = {t0, t1, . . . , tm−1},
r-barcode (s,T ) is the integer vector

(

b0,b1, . . . ,bm−1
)

where

bi = min
{

r, number of occurrences ofti in s
}

Σ =
{

A, C, T, G
}

, T =
{

A, CC, AC, G
}

, s=ACCCCA, r = 2

t0 =A t1 =CC t2 =AC t3 =G

s=ACCCCA 2 2 1 0

min
{

r,2
}

min
{

r,3
}

Input: SetsS andP of strings overΣ and an integerr > 0.

Valid solutions: A set of stringsT ⊆ P such that

∀ s, s′ ∈ S : s, s′ ⇔ r-barcode (s,T ) , r-barcode (s′,T )

Objective: Minimizethe “length” of the barcode| T |.

Note that ifP is the set ofall substrings of all strings inS then MCPΣ(1) is pre-
cisely SBΣ(1). Inclusion relationships among the various barcoding problems de-
fined above is shown in Fig. 1.2.

SB{0,1} (1)

most restrictive

SBΣ (1)

MCPΣ(1)MCPΣ(r)

most general

SBΣ (κ)

Figure 1.2 Inclusion relationships among the various barcoding problems.

In the rest of this chapter,OPT (I ) (or simplyOPT when I is clear from the
context) will denote the optimum value of the objective function for the maximiza-
tion or minimization problem under consideration. Aε-approximate solution (or
simply aε-approximation) of a minimization (respectively, maximization) problem
is a solution with an objective value no larger than (respectively, no smaller than)
ε times (respectively,1/ε times) the value of the optimum; an algorithm ofperfor-
manceor approximation ratioε produces anε-approximate solution. A problem
is ε-inapproximable under a certain complexity-theoretic assumption means that the
problem does not admit a polynomial-timeε-approximation algorithm assuming that
the complexity-theoretic assumption is true. We assume that the reader is familiar
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with basic data structures and algorithmic methods found ingraduate level algo-
rithms textbooks such as [5].

••• Motivating biological applications

Applications of barcoding techniques range over a diverse range of applications such
asrapid pathogen identification in epidemic outbreaks, database compression, point-
of-care medical diagnosisandmonitoring of microbial communities in environmen-
tal studies. A generic high-level description of most of these applications involving
identification of microorganisms or similar entities is as follows. The identifica-
tion is performed by synthesizing the Watson-Crick complements of the barcodes
on a DNA microarray and then hybridizing the fluorescent labeled DNA extracted
from the unknown microorganism to the microarray. Assumingperfect hybridiza-
tion, the hybridization pattern can be viewed as a string of zeros and ones, which in
our terminology is the barcode of the microorganism. By definition, the barcodes
corresponding to a set of microorganisms are distinct and thus the barcodes uniquely
identify the organisms. Two specific applications of this nature are discussed below.

Pathogen identification in epidemic outbreaks: In the outbreak of an epidemic,
possibly as a result of biological warfare, there is an urgent need to identify
the pathogen and the family it belongs toas early as possible. SuchFirst
Responder Pathogen Detection Systems(FRPDS) must be able to recognize
pathogens fromminuteamounts of genetic material. To enable reliable de-
tection, one usually first amplifies the collected genetic material using high-
efficiency techniques such as theMultiplex Polymerase Chain Reaction. Clas-
sical approaches to pathogen detection, based on sequencing and direct mi-
croarray hybridization [14, 21], are practically applicable only when the num-
ber of candidate pathogens is small. In a primer-based FRPDS, once the am-
plimers have been extracted, barcoding techniques can be used to efficiently
generateshortrobust signatures (barcodes) via substrings (distinguishers) that
can be detected by DNA or RNA hybridization chips such as DNA tag arrays.
The compact size of the barcodes optimizes cost of designingthe hybridization
array, reduces database size and allows one to perform extremely rapid com-
parisons against large databases using a significantly small amount of memory.
Moreover, robust barcoding can be error tolerant and may work with minute
traces of the unknown sample. This was a main motivation for investigating
various versions of the barcoding problems in publicationssuch as [3, 6, 7, 17].

Monitoring microbial communities: To minimize the number of oligonucleotide
probes needed for analyzing populations of ribosomal RNA gene clones by
hybridization experiments on DNA microarrays, the MCPΣ (r) problem was
formulated and used in [4]; the probes were selected in [4] from a pre-specified
set (P in our notation).

In real applications, the string barcoding problems are further complicated by fac-
tors such as the occurrence of a substring may be approximatedue to several reasons
such as noise and experimental errors. To address these issues, therobustnessof de-
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signed barcodes are improved by using the grouped string barcoding problem SBΣ(k)
integrates the basic barcoding problem with group testing approach for designing
probes [18] by allowing groups of distinguishers to differentiate between strings.

1.2 SUMMARY OF ALGORITHMIC COMPLEXITY RESULTS FOR

BARCODING PROBLEMS

For the case when the alphabetΣ is allowed to have arbitrarily many symbols, the
NP-hardness of MCPΣ(1) follows from a result in Garey and Johnson [11, pp. 71]
via a reduction from the 3-dimensional matching problem, and heuristics algorithms
for MCPΣ(1) were discussed by Moret and Shapiro in [15].

The (unweighted)Minimum Set Cover(MSC) problem is a well-known combina-
torial problem that is defined as follows:

Input: A universe ofn elementsU = {u1,u2, . . . ,un} and a collection ofm sets
∆U =

{

S1,S2, . . . ,Sm
}

with
⋃m

j=1 S j ⊇ U.

Valid Solutions: A subset of indicesI ⊆
{

1,2, . . . ,m
}

of selected sets such that:

∀ui ∈ U :
∣

∣

∣ j ∈ I : ui ∈ S j

∣

∣

∣ ≥ 1

Objective: Minimizethe number of selected sets
∣

∣

∣ I
∣

∣

∣.

Letα denote the maximum number of elements in any set in∆, i.e., letα = maxi∈{1,2,...,m}

{ ∣

∣

∣Si

∣

∣

∣

}

.
A well-known greedy approach for solving MSC, shown in Fig. 1.3, repeatedly se-
lects a new set that covers a maximum number of “not yet covered” elements. This
algorithm is known to have an approximation ratio of (1+ lnα) [13, 20] and can be
easily implemented to run inO

(

n+mlogm
)

time.

I = ∅, uncovered= U
while uncovered, ∅ do

select an indexj ∈
{

1,2, . . . ,m
}

\ I that maximizes
∣

∣

∣uncovered∩ S j

∣

∣

∣

uncovered= uncovered\ S j ; I = I ∪ { j}
endwhile

Figure 1.3 A greedy algorithm for solving MSC [13].

For three stringsx, y andz, we sayx “distinguishes”y from z if and only if x is a
substring of exactly one of the two stringsy andz. It is not very difficult to translate
an instance of either SBΣ (1) or MCPΣ(r) to an instance of MSC as follows:

• For a given instanceS =
{

s1, s2, . . . , sn
}

of SBΣ (1), the corresponding in-
stance of MSC is defined as:

U =
{

ui, j

∣

∣

∣

∣

i, j ∈ {1,2, . . . ,n } & i < j
}

∆U =



















Sx =

⋃

i, j

{

ui, j

}

∣

∣

∣

∣

∣

∣

∃ ℓ :
(

x is a substring ofsℓ
)

&
(

x distinguishessi from sj

)


















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• For a given instanceS =
{

s1, s2, . . . , sn
}

andP of MCPΣ(r), the corresponding
instance of MSC is defined as:

U =
{

ui, j

∣

∣

∣

∣

i, j ∈ {1,2, . . . ,n } & i < j
}

∆U =



















Sx =

⋃

i, j

{

ui, j

}

∣

∣

∣

∣

∣

∣

(

x ∈ P
)

&
(

x distinguishessi from sj

)



















Thus, we can use the greedy algorithm for MSC to approximate both SBΣ(1) and
MCPΣ(r). For SBΣ(1), |U | =

(

n
2

)

= O
(

n2
)

, |∆U | ≤
∑n
ℓ=1

(

| sℓ |
2

)

= O
(

∑n
ℓ=1 | sℓ |

2
)

and maxSx∈∆U

{ ∣

∣

∣Sx

∣

∣

∣

}

≤
|U |
2 =

n(n−1)
4 , giving an approximation algorithm that runs

in O
( (

∑n
ℓ=1 | sℓ |

2
)

log
(

∑n
ℓ=1 | sℓ |

2
)

+ n2
)

time and has an approximation ratio of 1+

ln n(n−1)
4 ≈ 2 lnn − 0.4. For MCPΣ(r), |U | =

(

n
2

)

= O
(

n2
)

, |∆U | ≤ | P | and

maxSx∈∆U

{ ∣

∣

∣Sx

∣

∣

∣

}

≤
|U |
2 =

n(n−1)
4 , giving an approximation algorithm that runs in

O
(

| P | log | P | + n2
)

time and has an approximation ratio of 1+ln n(n−1)
4 ≈ 2 lnn−0.4.

The above-mentionedNP-hardness results and approximation algorithms were
further improved by the authors in [3] and shown in Table 1.1.In the next two
sections, we will discuss some of the methodologies used to prove these improved
results.

L = max
ℓ∈{1,2,...,n}

{

| sℓ |
}

, L =
n
∑

ℓ=1

| sℓ |, ε andδ are constants

Problem
name

Approximation hardness Approximation algorithm

ρ-inapproximable
for ρ =

minimal
assumptions
necessary

running
time

ρ-approximation
for ρ =

SBΣ(1) (1− ε) ln n
NP 1DTIME

(

nlog logn
)

|Σ | > 1, 0< ε < 1
O
(

n3L2
)

1+ ln n

MCPΣ(r) (1− ε) ln n
NP 1DTIME

(

nlog logn
)

|Σ | > 1, 0< ε < 1
O
( (

n2| +L
)

| P |
) 1+ ln n

+ ln
(

log2

(

min
{

r,n
}

+ 1
)

)

SBΣ(κ) Ω (nε )
NP , co-RP
|Σ | > 1, κ = nδ

0 < ε < δ < 1/2

Table 1.1 List of of a subset of approximability results proved in [3].
DTIME (nlog logn) denotes the class of problems that can be solved in
deterministic quasi-polynomial time and co-RP denotes the class of decision
problems that admits a randomized polynomial-time algorithm A with the
property that if the answer to the problem is YES then A always outputs YES
but if the answer to the problem is NO then A outputs NO with probability at
least 1/2 (see [2] for further details).
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1.2.1 Average length of optimal barcodes

Via simple information-theoretic argument it follows thatfor SBΣ (1) we must have
OPT (I ) ≥ log2 | S | for any instanceI of the problem. On the other hand, it is trivial
to see thatOPT (I ) ≤ | S | − 1. Thus, it behooves to investigate the average value of
OPT when the input strings are generated based on some probability distribution.
Unfortunately, tight bounds for the average value ofOPT is not currently known.
However, the authors in [7] provide a partial answer via the following theorem. The
proof of the theorem uses some asymptotic bounds by Odlyzko on average occur-
rences of substrings in random strings via generating function [16, Examples 6.4,
6.7, 6.8, 9.3 and 10.11],

Theorem 1 [7] Consider a randomly generated instance of the SBΣ (1) of n strings
over a fixed finite alphabetΣ in which each string in si = si,0 si,1 . . . si,ℓ−1 ∈ S is of

length exactlyℓ and is generated independently randomly withPr
[

si, j = a
]

=
1
|Σ |

for

any j ∈ {1,2, . . . , ℓ} and any a∈ Σ. Also assume thatℓ is sufficiently large compared
to n. Then, for a random string x overΣ of length O

(

logℓ
)

, the expected number of
the strings inS which contain x as a substring is p n for some constant0 < p < 1.

1.3 ENTROPY BASED INFORMATION CONTENT TECHNIQUE

FOR DESIGNING APPROXIMATION ALGORITHMS FOR

STRING BARCODING PROBLEMS

This technique, introduced in [3], is agreedytechnique based oninformation content
(entropy) of a partial solution; the notion of information content is directly related to
the Shannon information complexity [1, 19]. In this approach we seek to select an
augmenting step for a partial solution of our optimization problem that optimizes the
information content of the augmented partial solution as compared to the original
partial solution. A key non-trivial step for applicabilityof this technique is to de-
fine a suitable efficiently computable measure of the information content of a partial
solution such that the monotonicity of this measure is ensured with respect to any
subset of an optimal solution. For the case of SBΣ(1), a high level overview of the
approach is shown below:

Input : A set of stringsS overΣ.

Output : A set of stringsT such that∀ s, s′ ∈ S : s, s′ ⇔ barcode (s,T ) , barcode (s′,T ).

Notation for the information content (entropy) of a partial solution:

HT for an arbitrary setT of strings (partial solution) overΣ

Algorithm :

computeΓ(S) =
{

s| s is a substring of some string inS
}

T = ∅
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whileHT , 0 do

selectx ∈ Γ(S) \ T thatmaximizes IC(x,T ) = HT −HT∪{ x }

T = T ∪ { x }

endwhile

Of course, a key non-trivial step is to figure out a suitable value of the entropyHT
such that an execution of the above algorithm produces a valid solution with the
desired approximation ratio. The authors in [3] define it in the following manner.
For an arbitrary setD of strings overΣ:

• Define anequivalence relation
D
≡ onS as (for any twos, s′ ∈ S):

s
D
≡ s′ if and only if ∀ x ∈ D : x is a substring ofs≡ x is a substring ofs′

• If the equivalence relation
D
≡ hasℓ equivalence classesof sizep1, p2, . . . , pℓ >

0, thenHD = log2

(

Π
ℓ
i=1 ( pi ! )

)

.

The above definition of entropy is somewhat similar (but not the same) to the one
suggested in [15], namely1

| S |
log2

(

Π
ℓ
i=1ppi

i

)

, for empirical evaluation purposes.

Note thatHD = 0 implies the equivalence classes of
D
≡ are| S | singleton sets each

containing one distinct string fromS, and ifHD , 0 then there exists ax ∈ S − D
with IC(x,D) > 0; thus the algorithm terminates in polynomial time with a valid
solution. To prove the desired approximation ratio via an amortized analysis, [3]
first proves the following combinatorial properties of the functionIC(x,D) > 0:

• ∀ x: D ⊂ D′ ⇒ IC(x,D) ≥ IC(x,D′), and

• ∀ x: IC(x, ∅) = h < | S |.

Thus, if the algorithm selected stringsx1, x2, . . . , xq in this order inT , then
q
∑

i=1

IC
(

xi , {x1, x2, . . . , xi−1}
)

= H∅ = h < | S |. The proof shows how to carefully

distribute the cost 1 of adding each extra set inT to the strings in an optimal solution
of SBΣ(1) using theIC

(

xi , {x1, x2, . . . , xi−1}
)

quantities such that each element in this

optimal solution receives a total cost of at most 1+
∫

∑q
i=1 IC(xi ,{x1,x2,...,xi−1})

1

dx/x < 1+ ln h <

1+ ln | S |
A very similar proof with appropriate modifications work forMCPΣ(r) as well.

In this case,IC(x, ∅) = h < | S | log2

(

min
{

r +1, | S |
}

)

and thus each element in this

optimal solution receives a total cost of at most 1+ln h < 1+ln | S |+ln log2

(

min
{

r+

1, | S |
}

)

.
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1.4 TECHNIQUES FOR PROVING INAPPROXIMABILITY RESULTS

FOR STRING BARCODING PROBLEMS

In this section, we review a few techniques from structural complexity theory that
were used to prove inapproximability results for various string barcoding problems.

1.4.1 Reductions from set covering problem

An usual starting point for this technique is the following well-known inapproxima-
bility result for MSC.

Theorem 2 [9] AssumingNP 1DTIME
(

nlog logn
)

, instances of the MSC problem

whose solution requires at least
(

log2 n
)2 sets cannot be approximated to within an

approximation ratio of(1− ε) ln n for any constantε > 0 in polynomial time.

It seems difficult to transform the above inapproximability result for MSC to an
inapproximability bound for SB{0,1}(1) of a similar quality because of the special re-
strictive nature of SB{0,1}, and thus the techniques used by the authors in [8, 12] does
not seem to apply. To overcome this issue, the authors in [3] introduced an interme-
diate problem, calledtest set with order with parameter m problemand denoted by
TSOm, which could be transformed to SB{0,1}. TSOm is a non-trivial generalization of
the well-knownNP-hardminimum test collection problemin diagnostic testing [11,
pp. 71] and is defined as follows:

Problem name: Test set with order with parameterm (TSOm).

Input: A universeU = {u1,u2, . . . ,un} of n elements, a collectionS of sub-
sets ofU (tests) that includes the 2n − 1 special setsS1 =

{

u1
}

,S2 =
{

u1,u2
}

,S3 =
{

u1,u2,u3
}

, . . . ,Sn =
{

u1,u2, u3, . . . ,un
}

, Sn+1 =
{

u2
}

,Sn+2 =
{

u3
}

, . . . ,S2n−1 =
{

un
}

, and a positive integerm.

Valid solutions: A collectionT ⊆ S of subsets fromS such that

∀ui ,uj ∈ U : i , j ⇒ ∃T ∈ T such that
∣

∣

∣

{

ui ,uj
}

∩ T
∣

∣

∣ = 1

Objective: Minimizecost(T ) =
∣

∣

∣T \
{

S1,S2, . . . ,S2n−1
}

∣

∣

∣+
1
m

∣

∣

∣T ∩
{

S1,S2, . . . ,S2n−1
}

∣

∣

∣.

The proof is completed by having a transformation between these problems such
that the corresponding optimal solutions are closely related as shown schematically
below whereOPTMSC andOPTSB{0,1} denote the objective values of an optimal so-
lution of the generated instances of MSC and SB{0,1}, respectively. This provides an
(1− ε)-inapproximability result for SB{0,1}.

MSC

n elements,q sets
OPTMSC ≥

(

log2 n
)2

TSOm

2mnelements
O
(

mq+mnlog2(mn)
)

sets

SB{0,1}

2mnstrings over the alphabet{0,1}
OPTMSC

1+ 1
m

≤ OPTSB{0,1} ≤ OPTMSC + log2(mn)
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A formal description of the transformations of the input instances among the prob-
lems are complicated, so here we just illustrate the transformation with the following
simple example form= 1:

Input instance of MSC:

U =
{

u1,u2,u3,u4
}

,∆U =
{

S1,S2,S3
}

,S1 = {u1,u2,u4},S2 = {u2,u3},S1 = {u2,u3,u4}

Tranformed input instance of TSO1 from input instance of MSC:

U =
{

u1,u2,u3,u4,u5,u6,u7,u8
}

S contains the following sets:
B1B1B1 =

{

u1,u3,u7
}

, B2B2B2 =
{

u3,u5
}

, B3B3B3 =
{

u3,u5,u7
}

(corresponding toS1,S2,S3 in MSC)

B4B4B4 =
{

u3,u4,u7,u8
}

, B5B5B5 =
{

u5,u6,u7,u8
}

(additional sets)

S1 =
{

u1
}

, S2 =
{

u1,u2
}

, S3 =
{

u1,u2,u3
}

, S4 =
{

u1,u2,u3,u4
}

S5 =
{

u1,u2,u3,u4,u5
}

, S6 =
{

u1,u2,u3,u4,u5,u6
}

S7 =
{

u1,u2,u3,u4,u5,u6,u7
}

, S8 = B6B6B6 =
{

u1,u2,u3,u4,u5,u6,u7,u8
}

S9 =
{

u2
}

, S10 =
{

u3
}

, S11 =
{

u4
}

, S12 =
{

u5
}

, S13 =
{

u6
}

, S14 =
{

u7
}

, S15 =
{

u8
}















































(special sets)

Tranformed input instance of SB{0,1} from input instance of TSO1: the 8 strings
overΣ = {0,1} are as follows where 0i and 1i indicates a string ofi zeroes or
ones, respectively (e.g., 03

= 000):

S111 = 000 1111 000 1666 000 = 0 1 0 111111 0 (sinceu1 ∈ B1, B6)

S222 = 020202 1666 020202
= 00 111111 00 (sinceu2 ∈ B6)

S333 = 030303 1111 030303 1222 030303 1333 030303 1444 030303 1666 030303

= 000 1 000 11 000 111 000 1111 000 111111 000 (sinceu3 ∈ B1, B2, B3, B4, B6)

S444 = 040404 1444 040404 1666 040404
= 0000 1111 0000 111111 0000 (sinceu4 ∈ B4, B6)

S555 = 050505 1222 050505 1333 050505 1555 050505 1666 050505

= 00000 11 00000 111 00000 11111 00000 111111 000000 (sinceu5 ∈ B2, B3, B5, B6)

S666 = 060606 1555 060606 1666 060606
= 000000 11111 000000 111111 000000 (sinceu6 ∈ B5, B6)

S777 = 070707 1111 070707 1333 070707 1444 070707 1555 070707 1666 070707

= 00000000 1 00000000 111 00000000 1111 00000000 11111 00000000 1111111 00000000

(sinceu7 ∈ B1, B3, B4, B5, B6)

S888 = 080808 1444 080808 1555 080808 1666 080808

= 00000000 1111 00000000 11111 00000000 111111 00000000(sinceu8 ∈ B4, B5, B6)

For further details see [3].
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1.4.2 Reduction from graph coloring problem

TheΩ (nε )-inapproximability result for SB{0,1}
(

nδ
)

under the assumption of 0< ε <
δ < 1/2 andNP , co-RP is proved in [3] by providing an approximation-preserving
reduction from a strong inapproximability result for the graph coloring problem. The
graph coloring problem is a well-known combinatorial optimization problem defined
as follows [11]:

Problem name: Graph coloring.

Input: An undirected unweighted graphG = (V,E).

Valid solutions: An assignment of colors to nodes such that no two adjacent
nodes have the same color.

Objective: Minimizethe number of colors used.

Let OPTcolor(G) denote the minimum number of colors used in a valid coloringof
G. A set of nodes inG are said to beindependentif no two of them are connected
by an edge. LetOPTind(G) denote themaximumnumber of independent nodes in
G. The following strong inapproximability result for computingOPTcolor(G) can be
found in [10].

Theorem 3 [10] AssumingNP ,co-RP, there is no polynomial-time algorithm that
computesOPTcolor(G) with an approximation ratio of|V|ρ even ifOPTind(G) ≤ |V|δ

for any two constants0 < ρ < δ < 1,

As in the case of reduction from the set covering problem in the previous section,
the authors in [3] used an intermediate problem, namely the grouped test set (TSκ)
problem, that helps in the reduction from graph coloring to SB{0,1}. The TSκ problem
can be thought as a generalization of the TSOm problem defined in the previous
section without the order property and the parameterm; formally the problem is as
follows.

Problem name: Grouped test set (TSκ).

Input: A universeU = {u1,u2, . . . ,un} of n elements, a collectionS of subsets
ofU (tests).

Definition of a κ-test: A κ-testis a union of at mostk sets fromS.

Valid solutions: A collectionT ⊆ S of κ-tests such that

∀ui ,uj ∈ U : i , j ⇒ ∃T ∈ T such that
∣

∣

∣

{

ui ,uj
}

∩ T
∣

∣

∣ = 1

Objective: Minimizecost(T ) = | T |.

As before, one can defined a version of TSκ “with order” in the following manner:

Problem name: Grouped test set with order (TSκ with order).

Input: A universeU = {u1,u2, . . . ,un} of n elements, a collectionS of subsets
ofU (tests) such that
{

{

u1
}

,
{

u1,u2
}

,
{

u1,u2,u3
}

, . . . ,
{

u1,u2,u3, . . . ,un
}

,
{

u2
}

,
{

u3
}

, . . . ,
{

un
}

}

⊆ S
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Valid solutions: A collectionT ⊆ S of κ-tests such that

∀ui ,uj ∈ U : i , j ⇒ ∃T ∈ T such that
∣

∣

∣

{

ui ,uj
}

∩ T
∣

∣

∣ = 1

Objective: Minimizecost(T ) = | T |.

The proof is completed by having a transformation between these problems such
that the corresponding optimal solutions are closely related as shown schematically
below whereOPTP, for a problemP, denotes the objective values of an optimal
solution of the generated instances of the problemP. This provides anΩ (nε )-
inapproximability result for SB{0,1}

(

nδ
)

; for further details, see [3].

graph
coloring

n nodes,m edges
OPTind ≤ nδ TSnδ

2n elements,n+ log2 n sets
OPTcolor ≤ OPTTSnδ ≤ OPTcolor + log2 n

TSnδ

with
order

2n elements,n+ 2 log2 n+ 2n2 sets
OPT

TSnδ − log2 n

1+ nδ−1
≤ OPT

TSnδ

with
order

≤ OPT
TSnδ + 2 log2 n

SB{0,1}
(

nδ
)

2n2 strings over the alphabet{0,1}
OPT

TSnδ

with
order

2
≤ OPTSB{0,1}(nδ) ≤ OPTTSnδ

with
order

1.5 HEURISTIC ALGORITHMS FOR STRING BARCODING

PROBLEMS

In addition to designing efficient algorithms with provable bounds on approximation
ratio, one can also consider designing heuristic algorithms for barcoding problems
that may not admit a proof of their approximation bounds but nonetheless work well
in practice. For the basic binary-valued string barcoding problem SBΣ (1), we outline
a few possible heuristic approaches below.

Entropy based method with different measure for information content

The greedy approach described in Section 1.3 used a very specific definition of the
measure of information content (entropy), namelyHD = log2

(

Π
ℓ
i=1 ( pi ! )

)

. In prin-
ciple, the approach can be used with other entropy measures that decrease mono-
tonically as partial solutions progress towards a completesolution. An appealing
candidate isHD = 1

| S |
log2

(

Π
ℓ
i=1ppi

i

)

suggested in [15] as this version of the measure
follows the standard entropy definition more closely.
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{ AAC, ACC, GGGG, GTGTGG, TTTT}
Input distinguisher

{ AAC, ACC } { GGGG, GTGTGG, TTTT}

A

{ AAC } { ACC } { GGGG, GTGTGG, TTTT}

CC

{ AAC } { ACC } { GGGG, GTGTGG} { TTTT }

TTT

{ AAC } { ACC } { GGGG} { GTGTGG} { TTTT }

GT

Figure 1.4 Greedy selection of strings in our solution generates a tree partition of
the set of input sequences such that each leaf node has exactly one sequence.

Balanced partitioning approach

The
T
≡ equivalence relation used in Section 1.3 suggests an alternate way of looking

at greedy selection of strings to form a barcoding. At every step, the selected string
(distinguisher) in the solution affects each equivalence set either by keeping it same
or by partitioning the set into two parts. Equivalently, onecan view the successive
selection of strings in the solution as generating a tree partitioning the given set of
input sequencesS (see Fig. 1.4). Note that the height of the tree is precisely the
number of strings in our solution. Thus, one possible greedystrategy is to select a
distinguisher greedily at each step that increases the height of the current partition
tree by theleastamount.

1.6 CONCLUSION

In this chapter, we have described a few versions of the string barcoding problems
and have reviewed some algorithmic and inapproximability reduction tools to ana-
lyze algorithmic complexity questions about these problems. There are other aspects
of these problems, such as robustness of barcodes against noises, that arise in practi-
cal applications of barcoding in pathogen detections, thatwe have not discussed here;



14 ALGORITHMIC PERSPECTIVES OF THE STRING BARCODING PROBLEMS

the reader can find further information about them in the cited references. A soft-
ware incorporating some of the algorithmic methodologies discussed in this review
was reported in [6] and can be found at the websitehttp://dna.engr.uconn.
edu/?page_id=23.

From an algorithmic and computational complexity perspective, the following
research questions may be worthy of further investigation:

• If the set of strings are generated via a biologically relevant (non-uniform) dis-
tribution over the alphabet, what is the expected length of an optimal barcode
and what is the computational complexity of finding such a barcode ?

• Is there an efficient approximation algorithm for SBΣ (κ) whenκ > 1 grows
slowly with n (e.g., κ = O(logn) ) ?
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