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1.1 INTRODUCTION

LetX be afinite alphabet. A string is a concatenation of eleméris dhe length of

a stringx, denoted byx|, is the number of the characters that constitute this string
Let S be a set of strings oval. The simplest “binary-valued version” of the string
barcoding problem discussed in this chapter is defined bsv®[3, 17]:

Problem name: String barcoding problem (S§1)).

Definition of a barcode: for a stringsand a set of string® = {to,11,..., tm1},

barcode (s, 77) is the boolean vectdhby, by, b_1) whereb; ={ é Lf)t:i];vangstnngof s .

(Title, Edition).By (Author) 1
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¥ ={A,C,T,G,7 ={A CC, TTT, GT}, s=ACC
to =A t, =CC  t,=TTT t; =GT

s=ACC @) 1 0 ©)

sisa sis not
substring a substring
of ty of t

Input: A set of stringsS overX.
Valid solutions: A set of strings7™ such that (see Fig. 1.1):

Vs S e€S:s#9 o barcode (s, 7) # barcode (S,7)

Objective: minimizethe length of the barcodég™|.

L={AC,T,G,7 ={A CC, TTT, GT}, S = {S1, Sy, S3, S4, Ss}

to=A 1, =CC t,=TTT t3 =GT
S1 =AAC 1 0 0 0
S; =ACC 1 1 0 0
S3 =GGGG 0 0 0 0
S, =GTGTGG 0 0 0 1
S5 =TTTT 0 0 1 0

Figure 1.1 An example of a valid barcode.

The basic string barcoding problem B@L) was generalized in [3] to a “grouped”
string barcoding problem SB) in the following manner:

Problem name: grouped string barcoding problem (3K)).
Definition of a «-string: ax-string is a collection of at moststrings.

Definition of a barcode: for a stringsand a set of-strings7™ = {to, 1,

oot
barcode (s, 77) is the boolean vectdby, by, . . ., by_1) where:

b — 1, ifthere exists d € t; for somei such that is asubstringof s
"1 0, otherwise

Input: a setS of strings ovei.
Valid solutions: a set ofk-strings7™ such that

Vs S e€8S:s# 95 o barcode (s, 7) # barcode (S,7)

Objective: minimizethe length of the barcodd™|.

Finally, the binary-valued basic version of the string loaing problem SB (1) is

actually a special case of the more general “integral-wilversion defined as fol-
lows [4]:
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Problem name: Minimum cost probe set with threshotdMCP= (r)).

Definition of a r-barcode: for a stringsand a set of stringg = {to, t1, ..., tn1},
r-barcode (s, 7") is the integer vectofbo, by, . . ., by-1) where

bi = min {r, number of occurrences tfin s}

> ={A,C,T,G,7 ={A CC,AC, G, s=ACCCCA,r = 2
tp=A 1, =CC t,=AC t;=G

s=ACCCCA @ @ 1 0

min{r,2} min{r, 3}

Input: SetsS and® of strings oveZ and an integer > 0.

Valid solutions: A set of strings7™ € # such that
¥s S eS:s#S o r-barcode (s, 7 ) # r-barcode (s,7)
Objective: Minimizethe “length” of the barcodgr |.

Note that if® is the set ofall substrings of all strings i5 then MCP (1) is pre-
cisely SB(1). Inclusion relationships among the various barcodirmblems de-
fined above is shown in Fig. 1.2.

—{ B (1) |

most restrictive

most general

Figure 1.2  Inclusion relationships among the various barcoding problems.

In the rest of this chapte®7 (1) (or simply OP7 whenl| is clear from the
context) will denote the optimum value of the objective ftioie for the maximiza-
tion or minimization problem under consideration. gfapproximate solution (or
simply as-approximation) of a minimization (respectively, maxi@ion) problem
is a solution with an objective value no larger than (respelyt no smaller than)
¢ times (respectivelyy/= times) the value of the optimum; an algorithm perfor-
manceor approximation ratioe produces arg-approximate solution. A problem
is e-inapproximable under a certain complexity-theoreticiagstion means that the
problem does not admit a polynomial-timepproximation algorithm assuming that
the complexity-theoretic assumption is true. We assumithigareader is familiar
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with basic data structures and algorithmic methods foundraduate level algo-
rithms textbooks such as [5].

e Motivating biological applications

Applications of barcoding techniques range over a diveaage of applications such
asrapid pathogen identification in epidemic outbreattatabase compressippoint-
of-care medical diagnosiandmonitoring of microbial communities in environmen-
tal studies A generic high-level description of most of these applara involving
identification of microorganisms or similar entities is afldws. The identifica-
tion is performed by synthesizing the Watson-Crick competa of the barcodes
on a DNA microarray and then hybridizing the fluorescent ledbdNA extracted
from the unknown microorganism to the microarray. Assunpegfect hybridiza-
tion, the hybridization pattern can be viewed as a stringeobz and ones, which in
our terminology is the barcode of the microorganism. By dtéin, the barcodes
corresponding to a set of microorganisms are distinct amslttie barcodes uniquely
identify the organisms. Two specific applications of thisuna are discussed below.

Pathogen identification in epidemic outbreaks: In the outbreak of an epidemic,
possibly as a result of biological warfare, there is an urgered to identify
the pathogen and the family it belongs de early as possible Such First
Responder Pathogen Detection SystéRRPDS) must be able to recognize
pathogens fromminuteamounts of genetic material. To enable reliable de-
tection, one usually first amplifies the collected geneti¢emal using high-
efficiency techniques such as thiiltiplex Polymerase Chain Reactio@las-
sical approaches to pathogen detection, based on seqgearindirect mi-
croarray hybridization [14, 21], are practically appli@bnly when the num-
ber of candidate pathogens is small. In a primer-based FRB® the am-
plimers have been extracted, barcoding techniques canduttasficiently
generateshortrobust signatures (barcodes) via substrings (distingusiihat
can be detected by DNA or RNA hybridization chips such as Da@\drrays.
The compact size of the barcodes optimizes cost of desighinlgybridization
array, reduces database size and allows one to perforrmetjreapid com-
parisons against large databases using a significantly amatnt of memory.
Moreover, robust barcoding can be error tolerant and may with minute
traces of the unknown sample. This was a main motivationrfeestigating
various versions of the barcoding problems in publicatersh as [3, 6, 7, 17].

Monitoring microbial communities: To minimize the number of oligonucleotide
probes needed for analyzing populations of ribosomal RNAeggones by
hybridization experiments on DNA microarrays, the MQP) problem was
formulated and used in [4]; the probes were selected in piihfa pre-specified
set (P in our notation).

In real applications, the string barcoding problems aréhfrrcomplicated by fac-
tors such as the occurrence of a substring may be approxduatt® several reasons
such as noise and experimental errors. To address thess,isiserobustnes®f de-



signed barcodes are improved by using the grouped strimgdizag problem SB(K)
integrates the basic barcoding problem with group testimgr@ach for designing
probes [18] by allowing groups of distinguishers tfelientiate between strings.

1.2 SUMMARY OF ALGORITHMIC COMPLEXITY RESULTS FOR
BARCODING PROBLEMS

For the case when the alphalaets allowed to have arbitrarily many symbols, the
NP-hardness of MCP(1) follows from a result in Garey and Johnson [11, pp. 71]
via a reduction from the 3-dimensional matching problend, laeuristics algorithms
for MCP*(1) were discussed by Moret and Shapiro in [15].
The (unweightedMinimum Set CovefMSC) problem is a well-known combina-

torial problem that is defined as follows:

Input: A universe ofn elementdJ) = {u, u,, ..., Uy} and a collection ofn sets

Ay ={S1,Ss,...,Sm} with UT]:]_SJ' 2 U.
Valid Solutions: A subset of indice$ C {1,2, ..., m} of selected sets such that:

VueU:|jel tueSj|>1

Objective: Minimizethe number of selected séts|.

Let denote the maximum number of elements in any satire,, leta = maXej12...m { | S; | }
A well-known greedy approach for solving MSC, shown in Fig, Yepeatedly se-
lects a new set that covers a maximum number of “not yet cdie&lements. This
algorithm is known to have an approximation ratio of{In @) [13, 20] and can be

easily implemented to run i® (n + mlog m) time.

| =0, uncovered= U

while uncoveredt (0 do
selectan indey € {1,2,...,m} \ | that maximizeguncovered S|
uncovered= uncovered S; ; | =1U{j}

endwhile

Figure 1.3 A greedy algorithm for solving MSC [13].

For three strings, y andz, we sayx “distinguishes™y from zif and only if xis a
substring of exactly one of the two stringsindz. It is not very dificult to translate
an instance of either SB(1) or MCP*(r) to an instance of MSC as follows:

e For a given instancé& = {s, S, ..., S} of SB*(1), the corresponding in-
stance of MSC is defined as:

U={u,lije(r2....n & i<j}

Ay =1!S,= U {ui,j} '35: (x is a substring ofsf)& (x distinguishes from s,-)}
i
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e Foragiveninstancd = {s;, S,..., S } andP of MCPX(r), the corresponding
instance of MSC is defined as:

U={u,lijefr2....n &i<j}

Au =1 8= Jfu.]

ij

(x € SD) & (x distinguishes; from sj)

Thus, we can use the greedy algorithm for MSC to approximate BB-(1) and

MCPX(r). For SB(1), [U| = (3) = O(m?), 1Aul < X7, (%) = O(ZylsP)

and max e, {]SX|} < % = “(“T‘l) giving an approximation algorithm that runs

in O((Z?=1 |'s |2) log (Z?:l |'se |2) + n2) time and has an approximation ratio of-1

X2~ 2Inn - 04. For MCP(r), [U| = (}) = O(), |Au| < || and

maxs, e, {|sx|} < 'UT' = "(”T‘l), giving an approximation algorithm that runs in

O( |P|log|P|+ n2) time and has an approximation ratio aflt “(“T‘l) ~ 2Inn-0.4.

The above-mentioneNP-hardness results and approximation algorithms were
further improved by the authors in [3] and shown in Table 1ld.the next two
sections, we will discuss some of the methodologies usedaepthese improved
results.

n
L= max {|s,|}, .CZZngl, £ ands are constants

e{1,2,...,n}

=1
Approximation hardness Approximation algorithm
Problem -inapproximable minimal runnin -approximation
name FNaPP assumptions nning p-app
forp = time forp =
necessary
log logn
SB*(1) (1-g)inn NP ZDTIME (riedtean) o(mL?) 1+Inn
|1Z]>1,0<e<1
NP ¢ DTIME (nioglosn) ) 1+Inn
MCP=(r) (1-&)inn S1510<e<1 o((m+£) 1P +1n (log, (min{r.n} + 1)

NP #co-RP
SB*(k) Q((n?) [Z]>1,k=n°
O<e<d<¥2

Table 1.1  List of of a subset of approximability results proved in [3].
DTIME (n'°9'°9") denotes the class of problems that can be solved in
deterministic quasi-polynomial time and co-RP denotes the class of decision
problems that admits a randomized polynomial-time algorithm A with the
property that if the answer to the problem is YES then A always outputs YES
but if the answer to the problem is NO then A outputs NO with probability at
least 32 (see [2] for further details).



1.2.1 Average length of optimal barcodes

Via simple information-theoretic argument it follows ttfat SB* (1) we must have
OPT (1) > log, | S| for any instancé of the problem. On the other hand, it is trivial
to see thaDP7 (1) < | S| - 1. Thus, it behooves to investigate the average value of
OP7 when the input strings are generated based on some prdpalisiiribution.
Unfortunately, tight bounds for the average valueddt7 is not currently known.
However, the authors in [7] provide a partial answer via ti¥ving theorem. The
proof of the theorem uses some asymptotic bounds by Odlyakaverage occur-
rences of substrings in random strings via generating iomdi6, Examples 6.4,
6.7, 6.8,9.3 and 10.11],

Theorem 1 [7] Consider a randomly generated instance of thé 8B of n strings
over a fixed finite alphabét in which each string inis= S0S1 ... S¢-1 € Sis of

. . 1
length exactly and is generated independently randomly vﬂr}ﬁsyj = a] = ] for
any je {1,2,...,¢} and any ac X. Also assume thdtis syficiently large compared
to n. Then, for a random string x ov&rof length Qlog¢), the expected number of
the strings inS which contain x as a substring is p n for some consaatp < 1.

1.3 ENTROPY BASED INFORMATION CONTENT TECHNIQUE
FOR DESIGNING APPROXIMATION ALGORITHMS FOR
STRING BARCODING PROBLEMS

This technique, introduced in [3], isreedytechnique based anformation content
(entropy) of a partial solution; the notion of informatioontent is directly related to
the Shannon information complexity [1, 19]. In this apploae seek to select an
augmenting step for a partial solution of our optimizatioalpem that optimizes the
information content of the augmented partial solution amgared to the original
partial solution. A key non-trivial step for applicabilityf this technique is to de-
fine a suitable &iciently computable measure of the information content cdirigl
solution such that the monotonicity of this measure is estbwvith respect to any
subset of an optimal solution. For the case of @B, a high level overview of the
approach is shown below:

Input: A set of stringsS overx.
Output: A set of strings/” suchthaty s,8 € S: s# S & barcode (S, 7") # barcode (S, 7).
Notation for the information content (entropy) of a partial solution:
Hy- for an arbitrary se¥” of strings (partial solution) ovex
Algorithm :
computel'(S) = { s| sis a substring of some string &}
T=0
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while Hr # 0do
selectx € I'(S) \ 7 thatmaximizes I1CX, 7) = Hy — Hrux
T =T U{x}

endwhile

Of course, a key non-trivial step is to figure out a suitableeaf the entropyHs-
such that an execution of the above algorithm produces d galution with the
desired approximation ratio. The authors in [3] define itha following manner.
For an arbitrary seD of strings oveix:

¢ Define arequivalence relatio® on S as (for any tweos, s’ € S):

s2¢ifand only if ¥ x € D: xis a substring of = x is a substring of’

o If the equivalence relatio® hast equivalence classex sizepy, p2, ..., pr >
0, thenHp = log, (Hi‘;l (pi! )).

The above definition of entropy is somewhat similar (but gt $ame) to the one
suggested in [15], namel@—l log, (Hi”:l pip‘), for empirical evaluation purposes.

Note thatH, = 0 implies the equivalence classeé)(ﬁre| S| singleton sets each
containing one distinct string froi§, and if Hp # 0 then there existsae S - D
with IC(x, D) > 0; thus the algorithm terminates in polynomial time with did/a
solution. To prove the desired approximation ratio via arodized analysis, [3]
first proves the following combinatorial properties of thaétionIC(x, D) > 0:

e VX: DCD = IC(x,D) > IC(x, D), and
e VX:IC(x,0) =h<|S].
Thus, if the algorithm selected strings x», . . ., Xq in this order in7", then

q
Z IC(%, {X1, X2, ..., X%-1}) = Hp = h < |S|. The proof shows how to carefully

i=1
distribute the cost 1 of adding each extra sefito the strings in an optimal solution

of SB*(1) using theC(x;, {X1, X2, . . ., Xi_1}) quantities such that each element in this
S 106 (X0, X250 % 1))

optimal solution receives a total cost of at most f dx/x <l+Inh<

1

1+1In|S]|

A very similar proof with appropriate modifications work fMCP*(r) as well.
In this case|C(x,0) = h < |S|log, ( min{r+1,|S| }) and thus each element in this
optimal solution receives a total cost of at mostrih < 1+In|S|+Inlog, ( min{r+

LISI}).



1.4 TECHNIQUES FOR PROVING INAPPROXIMABILITY RESULTS
FOR STRING BARCODING PROBLEMS

In this section, we review a few techniques from structutahplexity theory that
were used to prove inapproximability results for varioutgtbarcoding problems.

1.4.1 Reductions from set covering problem

An usual starting point for this technique is the followinglisknown inapproxima-
bility result for MSC.

Theorem 2 [9] AssumingNP ¢DTIME (n°9°9"), instances of the MSC problem

whose solution requires at leadbg, n)2 sets cannot be approximated to within an
approximation ratio of1 — &) In n for any constantg > 0 in polynomial time.

It seems diicult to transform the above inapproximability result for @1% an
inapproximability bound for SB8%(1) of a similar quality because of the special re-
strictive nature of SB, and thus the techniques used by the authors in [8, 12] does
not seem to apply. To overcome this issue, the authors im{R}duced an interme-
diate problem, calletest set with order with parameter m problemd denoted by
TSO™, which could be transformed to $8'. TSO"is a non-trivial generalization of
the well-knownNP-hardminimum test collection problein diagnostic testing [11,
pp. 71] and is defined as follows:

Problem name: Test set with order with parameter(TSQO").

Input: A universel = {u,Uy,...,Uy} Of n elements, a collectio®® of sub-
sets of U (tests) that includes then2- 1 special set$S; = {u1}, S, =
{U1, W}, S3 = {ug, Uz, Ug}, ..., Sy = {Ug, Up, Us, .. ., Un}, Spe1 = {Up), Spuz =
{us}, ..., Son-1 = {un}, and a positive integam.

Valid solutions: A collection7 C S of subsets fronS such that
Vu,uje Ui # j = 3T €7 such that]{u,u}nT|=1

Objective: Minimizecost(") = |7\ {S1.Sz...., Son1} [+ 2 |7 N {S1. Sz, Sana}|.

The proof is completed by having a transformation betweesdhproblems such
that the corresponding optimal solutions are closely e€las shown schematically
below whereOP7 usc andOPT zon denote the objective values of an optimal so-
lution of the generated instances of MSC and°3Brespectively. This provides an
(1 - &)-inapproximability result for SBY.

MSC TSO" sgoy I

n elementsq sets 2mnelements 2mnstrings over the alphabéd, 1

2 oPrT
OPTwsc = (log, ) O(mg+ mnlog,(mn) ) sets wac < OPT ggon < OPTwusc + log,(mn)




10 ALGORITHMIC PERSPECTIVES OF THE STRING BARCODING PROBLEMS

A formal description of the transformations of the inputarseces among the prob-
lems are complicated, so here we just illustrate the tramsftion with the following
simple example fom = 1:

Input instance of MSC:

U = {uz, Uz, U3, Us}, Ay = {S1,S2, S3}, S1 = {U1, U2, Us}, So = {U2, Us}, S1 = {U2, U3, Ug}

Tranformed input instance of TSO* from input instance of MSC:

U = {uy, U, Us, Us, Us, Ug, U7, Ug}

S contains the following sets:
By = {ug, Uz, Uz}, Ba = {us, Us}, Bg = {us, Us, U7} (corresponding t&;, Sy, Sz in MSC)

B4 = {us, U4, Uy, Ug}, Bs = {Us, Ug, U7, Ug} (additional sets)

S1 ={u}, Sz = {ug, Up}, Sz = {u1, Uy, Uz}, Sa = {uy, Uy, Ug, Us}

Ss = {U1, U2, U3, Us, Us}, Sg = {Uy, Up, U3, U, Us, Ug} .
(special sets)

S7 = {ug, Up, Uz, Us, Us, U, U7}, Sg = Bg = {U1, Up, U3, U, Us, Ug, Uy, Ug}

= {Up}, S10 = {u3}, S11 = {Us}, S12 = {us}, S13 = {Us}, S14 = {U7}, S15 = {Ug}

Tranformed input instance of SB* from input instance of TSO*: the 8 strings
overX = {0, 1} are as follows where'@nd 1 indicates a string of zeroes or
ones, respectivelye(g, 0° = 000):

s;=0110100=0101111110 (sinceu; € By, Bg)
Sy = 0? 16 02 = 00 111111 00 (sinceu, € Bg)
s3=01ld 12?13 143160
=000 1 000 11 000 111 000 1111 000 111111 000 (sinceus € By, By, B, B, Bs)
Sq =014 0* 16 0* = 0000 1111 0000 111111 0000 (sinceu, € By, Bg)

Sg=0°120° 130° 15 05 16 0°
= 00000 11 00000 111 00000 11111 00000 111111 000000 (sinceus € By, Bs, Bs, Bg)
Sg =0° 19 ¢® 18 0° = 000000 11111 000000 111111 000000 (sinceus € Bs, Bs)
s;=0110 8071401507 160
= 00000000 1 00000000 111 00000000 1111 00000000 11111 000GAM 1111 00000000
(sinceu; € By, B3, B4, Bs, Bs)

sg=0 1403150 16 ¢®
= 00000000 1111 00000000 11111 00000000 111111 0000000gsiNCeUs € By, Bs, Bo)

For further details see [3].
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1.4.2 Reduction from graph coloring problem

TheQ (n®)-inapproximability result for SB nf’) under the assumption of 8¢ <

¢ < Y2andNP #co-RP is proved in [3] by providing an approximation-preseg
reduction from a strong inapproximability result for thegh coloring problem. The
graph coloring problem is a well-known combinatorial optiation problem defined
as follows [11]:

Problem name: Graph coloring.
Input: An undirected unweighted grajh= (V, E).

Valid solutions: An assignment of colors to nodes such that no two adjacent
nodes have the same color.

Objective: Minimizethe number of colors used.
Let OPT coior(G) denote the minimum number of colors used in a valid coloohg
G. A set of nodes irG are said to béndependenif no two of them are connected
by an edge. LeOPTind(G) denote thamaximumnumber of independent nodes in

G. The following strong inapproximability result for comjmug OP7 coio(G) can be
found in [10].

Theorem 3 [10] Assuming\NP #co-RP, there is no polynomial-time algorithm that
computeP7 «io(G) With an approximation ratio ofV|? even ifOPTinq(G) < [V|°
for any two constant® < p < 6 < 1,

As in the case of reduction from the set covering problem éyttevious section,
the authors in [3] used an intermediate problem, namely tbhaepgd test set (T$
problem, that helps in the reduction from graph coloringB®$. The TS problem
can be thought as a generalization of the T'S@oblem defined in the previous
section without the order property and the parametefiormally the problem is as
follows.

Problem name: Grouped test set (T%

Input: A universeU = {uy, Uy, ..., Uy} Of nelements, a collectio§ of subsets
of U (tests).

Definition of a k-test: A k-testis a union of at mosk sets fromsS.
Valid solutions: A collection7 C S of k-tests such that

Vu,uje Ui+ j = 3T €7 such that]{u,u}nT|=1
Objective: Minimizecost(y") = |7 |.
As before, one can defined a version of T®ith order” in the following manner:

Problem name: Grouped test set with order (T®ith order).

Input: A universel = {uy, Uy, ..., Uy} Of n elements, a collectio§ of subsets
of U (tests) such that

{{ul}, {ug, Uz}, {uz, Uz, U}, ..., {Ug, Uz, Us, ... Un ), {u2), {us), . {un}} cS
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Valid solutions: A collection7 C S of «-tests such that

Vu,uj € Ui+ j = 3T €7 such that]{u,u}nT|=1

Objective: Minimizecost() = |7 |.

The proof is completed by having a transformation betweesdhproblems such
that the corresponding optimal solutions are closely edlats shown schematically
below whereOP7y, for a problem®, denotes the objective values of an optimal
solution of the generated instances of the probfem This provides a2 (nf)-
inapproximability result for S8 (n?); for further details, see [3].

graph SB° ()
coloring 2n? strings over the alphabéd, 1}
nnodesmedges - OPT g
Y N with
OPTina <1 I I TS " < OPT sgosi(w) < OPT, o
2n elementsn + log, n sets with 2 with
order

OP(Tcolor < Om}sqé < OPTcok)r + |092 n Order
\ 2n elementsn + 2log, n + 2r? sets
OP‘TT

—log, n
<
B — _OP7TNSI$_OSD‘TS”>+2Iogzn

order

1.5 HEURISTIC ALGORITHMS FOR STRING BARCODING
PROBLEMS

In addition to designingféicient algorithms with provable bounds on approximation
ratio, one can also consider designing heuristic algostifion barcoding problems
that may not admit a proof of their approximation bounds lmrtatheless work well

in practice. For the basic binary-valued string barcodirapfem SB- (1), we outline

a few possible heuristic approaches below.

Entropy based method with different measure for information content

The greedy approach described in Section 1.3 used a verifisghfinition of the
measure of information content (entropy), nanly = log, (Hi‘;l (pi!) ) In prin-
ciple, the approach can be used with other entropy meadaési¢crease mono-
tonically as partial solutions progress towards a competation. An appealing
candidate isHy, = % log, (Hf:l pi”‘) suggested in [15] as this version of the measure
follows the standard entropy definition more closely.
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Input distinguisher
{ AAC, ACC, GGGG, GTGTGG, TTTT

A
{ AAC, ACC } { GGGG, GTGTGG, TTTT
cc
{ AAC } {ACC) { GGGG, GTGTGG, TTTT
{ AAC } {ACC) { GGGG, GTGTGG (TTTT)

A o

{ AAC } { ACC} {GGGG} {GTGTGG} ({TTTT}

Figure 1.4  Greedy selection of strings in our solution generates a tree partition of
the set of input sequences such that each leaf node has exactly one sequence.

Balanced partitioning approach

TheZ equivalence relation used in Section 1.3 suggests an aléeeway of looking

at greedy selection of strings to form a barcoding. At evéep sthe selected string
(distinguisher) in the solutionfiects each equivalence set either by keeping it same
or by partitioning the set into two parts. Equivalently, aran view the successive
selection of strings in the solution as generating a treétjpsing the given set of
input sequences (see Fig. 1.4). Note that the height of the tree is precidedy t
number of strings in our solution. Thus, one possible gresrhtegy is to select a
distinguisher greedily at each step that increases théthefghe current partition
tree by thdeastamount.

1.6  CONCLUSION

In this chapter, we have described a few versions of thegsbircoding problems
and have reviewed some algorithmic and inapproximabiégjuction tools to ana-
lyze algorithmic complexity questions about these prolslefihere are other aspects
of these problems, such as robustness of barcodes agaisess rthat arise in practi-
cal applications of barcoding in pathogen detections Mlegtave not discussed here;
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the reader can find further information about them in thedcieferences. A soft-
ware incorporating some of the algorithmic methodologissussed in this review
was reported in [6] and can be found at the webkitep://dna.engr.uconn.
edu/?page_id=23.

From an algorithmic and computational complexity persipectthe following
research questions may be worthy of further investigation:

o Ifthe set of strings are generated via a biologically redéyaon-uniform) dis-
tribution over the alphabet, what is the expected lengtmad@imal barcode
and what is the computational complexity of finding such abde ?

e Is there an flicient approximation algorithm for SBx) whenx > 1 grows
slowly with n (e.g, x = O(logn)) ?
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