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Abstract

Tensors are natural and powerful generalizations of vectors and matrices to higher dimensions and
play a fundamental role in physics, mathematics and many other areas. Tensor analysis methods can be
used to provide the foundations of systematic approaches to distinguish significant higher order corre-
lations among the elements of a complex systems via finding ensembles of a small number of reduced
systems that provide a concise and representative summary of these correlations. Since biological sys-
tems are complex and often involve multiple types of genomic relationships, tensor analysis methods
can be utilized to elucidate these hidden complex relationships. There is a pressing need for this, as the
interpretation of the results of high-throughput experiments has advanced at a much slower pace than the
accumulation of data. In this review article we provide an overview of some tensor analysis methods for
biological systems.

1 Introduction

The biological functioning and life of a cellular system is controlled by signaling and energy transfer in-
teractions among its numerous constituents such as proteins, RNAs, DNAs, and other small molecules, and
usually involve a cascade of biochemical reactions or other physical interactions among these constituents.
An investigation of such interactions is usually done by selecting, implicitly or explicitly, one or more mod-
els to characterize the interactions (physical, chemical, or statistical dependencies) between components
of the cellular environment. Naturally, the selection of the model depends on several factors such as the
level of details desired, the characteristics of the particular interactions studied, and the overall goal of the
investigation. Often, biologists describe the model by presenting the interaction data in the form of a di-
agram (e.g., some type of graph), optionally along with some mathematical formulation of its dynamics.
Most mathematical formulation of the dynamics typically assumes that each node in the diagram has an
associated (discrete or continuous) “state” variable (representing, for example, concentration of the corre-
sponding protein) that is a function of the time variable t, and describes how the value of this variable at a
node (“state” of the node) depends on the state of the nodes interacting with it. Examples of some common
models of the above type relevant for our article include protein-protein interaction networks represented
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by undirected graphs without any explicit state variables for nodes and signal transduction networks rep-
resented by edge-labeled directed graphs optionally with state variables for nodes. In contrast, the more
general (ordinary or partial) differential equation models omit the network diagram altogether and describe
the behavior of the state variables via (ordinary or partial) differential equations. These representations may
have inter-dependencies, e.g., under certain technical assumptions one can construct a signal transduction
network diagram from the differential equation model (see [17, Chap. 5] for details).

A major drawback of using graph-theoretic tools on a single network diagram lies in ignoring the time
or ignoring the higher-order correlations of the interactions which may lead to inaccurate or incomplete
analysis. For example, a network diagram only encodes pairwise correlations of node state variables, and
thus cannot represent a joint k-way correlation among k state variables for any k > 2. If precise equations of
time evolutions of state variables are given then we could of course completely ignore the network diagrams
and work with the given equations, but then we lose the advantage of employing graph-theoretic tools and
instead fall back on analysis techniques which are often hard to employ effectively because of difficulties of
estimating precise equations and the non-trivial non-linear natures of these equations.

In this review article we provide an overview of some tensor analysis methods for biological systems.
For this type of analysis, one usually models a given biological system as a k-dimensional matrix X def

=

[xi1,...,ik ] of size I1 × · · · × Ik (formally an order k tensor X def
= X I1×···×Ik , see Section 2) encoding

higher-order correlation of a biological system with or without time evolution. Tensor analysis methods
have already been successfully used in specific contexts of pathway reconstructions in cellular systems and
microarray data integration from several sources [3, 18, 28, 54, 66]. Outside bioinformatics, tensor analysis
methods have been very successfully applied to many other application areas such as neuroscience [23, 47–
49], psychology [11, 23, 33, 50] and chemometrics [6]. Even though at first glance one is tempted to think that
involving more dimensions as compared to vectors or matrices would further complicate the computational
aspects of the relevant problems, this is not necessarily the case. There are many advantages of using higher
mode tensors as opposed to matrices and vectors for analysis; see Section 2.2.1 for one such example.

2 Standard concepts and definitions related to tensor analysis

Tensors are natural and powerful generalizations of vectors and matrices to higher dimensions and play a
fundamental role in physics, mathematics and other areas. In this section we briefly review some standard
concepts and definitions associated with tensor analysis; see excellent survey articles or books such as [31,
33, 48] for further information.

2.1 Basic definitions and notations

A tensor X I1×···×Ik (or, simply X ) of mode (also called order) k is a k-dimensional array X of size I1 ×
· · · × Ik. Thus, a tensor of order 1 is a vector and a tensor of order 2 is a matrix; for k > 2 a tensor of order
k is also known as a “higher-order” tensor. Following widely used conventions, we will denote tensors,
matrices and column vectors by calligraphic uppercase (e.g., X ), boldface uppercase (e.g., X) and boldface
lowercase (e.g., x) letters, respectively. Individual elements will be denoted by the corresponding (non-bold)
lowercase letter with appropriate indices, e.g., xi,j for matrix X. A sequence of vectors/matrices/tensors
will be indicated by using parenthesized numbers as superscripts, e.g., X (1),X (2), . . . ,X (m) will denote a
sequence of m tensors. Table 1 succinctly summarizes some tensor operations and related notations. Many
softwares such as MATLAB, Mathematica and Maple as well as packages in languages such as FORTRAN
and C++ provide support for basic and advanced tensor operations. The following definitions are standard:

Simple tensor: A tensor T of order k is a simple tensor if and only if there are vectors v(1), . . . ,v(k) such
that T = v(1) ◦ · · · ◦v(k). If the tensor T represents statistical correlations among k variables then T
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is simple exactly when the variables are mutually independent.

Symmetric tensor: A tensor T n×···×n of order k is symmetric if Ti1,...,ik = Tσi1 ,...,σik for every permuta-

tion σ def
= = {σi1 , . . . , σik} of {i1, . . . , ik}.

In the sequel, we will use || to indicate a suitable tensor norm (e.g., Frobenius norm, spectral norm or some
other appropriate tensor norm).

Nomenclature Notation Mathematical details

sum of tensors Z = X + Y ∀ i1, . . . , ik : zi1,...,ik = xi1,...,ik + yi1,...,ik

tensor-scalar product Y = αX ∀ i1, . . . , ik : yi1,...,ik = α yi1,...,ik

tensor inner product 〈X ,Y〉 〈X ,Y〉 =
I1∑
i1=1
· · ·

Ik∑
ik=1

xi1,...,ikyi1,...,ik

Frobenius norm
of a tensor

‖ X ‖F ‖ X ‖F=
√
〈X ,X〉

spectral norm
of a tensor

‖ X I1×···×Ik ‖s sup
y(1)∈RI1 ,...,y(k)∈RIk
||y(1)||=···=||y(k)||=1

I1∑
i1=1
· · ·

Ik∑
ik=1

xi1,...,iky
(1)
i1
. . . y

(k)
ik

vector outer product Y = x(1) ◦ · · · ◦ x(n) ∀ i1, . . . , in : yi1,...,in = x
(1)
i1
. . . x

(n)
in

mode-r matricization
of X I1×···×Ik X

Ir×(
∏
j 6=r Ij)

(r)

x(r)
ir, 1+

k∑
`=1, ` 6=r

(i`−1) (
∏k
p=1, p 6=r Ip)

= xi1,...,ir,...,ik

mode-j product of
X I1×···×Ik and YR×Ij

ZI1×···×Ij−1×R×Ij+1×···×Ik

= X ×j Y Z(j) = YX(j)

κ-rank of matrix X κX largest j such that every set of j
columns of X are linearly independent

Table 1: Some basic tensor operations and related notations.

2.2 Basic tensor decomposition methods and corresponding ranks

Philosophically, this step is similar to a type of principal component analysis for matrix data. In other words,
we “factor” the input tensor into a combination of simpler tensors (e.g., rank one tensors, tensor of small
column rank etc.). For concreteness, we mention the following two factoring methods, but other factoring
methods are also often considered based on specific applications and data types, such as the multi-linear SVD

factorizations [38], higher-order eigenvalue decompositions [3, 54], and Boolean tensor factorizations [46].

2.2.1 CANDECOMP / PARAFAC (CP) decomposition [11, 23, 30]

Intuitively, this is a generalization to higher-order tensors of the standard SVD (singular value decomposi-
tion) of an m× n matrix A [21]:

A = UΣΣΣVT =

min{m,n}∑
j=1

σj uj ◦ vj
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where σj’s are the diagonal entries of the diagonal matrix Σ and vectors uj and vj are the jth columns of the
matrices U and V, respectively. Likewise, in CP decomposition, one expresses the input tensor X as a sum
(with minimum number of terms) of outer products of 1-rank tensors, i.e., one finds λr,a(r,1), . . . ,a(r,k), for
k = 1, 2, . . . , RCP , that solves the problem:

minimize RCP subject to X I1×···×Ik =

RCP∑
r=1

λr a
(r,1) ◦ · · · ◦ a(r,k) (1)

where a(r,j) is a vector of dimension Ij and λr’s are scalars to bound the norms of a(r,j)’s (see Fig. 1 for

a pictorial illustration). The matrix Â(j) =
[
a(1,j) . . .a(RCP ,j)

]
formed the taking a(1,j) . . .a(RCP ,j) as

columns is called the jth factor matrix of this factoring. We call this minimum possible value of RCP as the
CP-rank of the tensor X and denote it by rankCP (X ).

=== λ1 ×λ1 ×λ1 × a
(1
,3
)

◦◦◦
a(1,1)

a(1,2)

+++ λ2 ×λ2 ×λ2 × a
(2
,3
)

◦◦◦
a(2,1)

a(2,2)

+++ λR
CP

×λR
CP

×λR
CP

×

a
(R

C
P
,3
)

◦◦◦
a(RCP

,1)

a(RCP
,2)

1 2 3 4

1

2

3

4

X 4×4×5

1
2
3
4
5

Figure 1: A pictorial representation of the CP decomposition in Equation (1) for k = 3.

A special case of CP decomposition of considerable interest to research communities is the orthogo-
nal tensor decomposition. An orthogonal decomposition of a symmetric tensor X n×···×n of order k is a
decomposition

X n×···×n =

RCP∑
r=1

λr a
(r) ◦ · · · ◦ a(r)︸ ︷︷ ︸

k times

(2)

such that the vectors a(1), . . . ,a(RCP ) ∈ Rn form an orthonormal family of vectors. A tensor is called or-
thogonally decomposable if it has an orthogonal decomposition. Note that for an orthogonal decomposition
RCP ≤ n.

The following point is worth mentioning about the CP decomposition and the CP-rank. Consider the
matrix factoring A = XYT of a matrix A that plays a crucial role in many matrix analysis methods.
Using the standard SVD of matrix A, we can easily write A = UΣΣΣVT = XYT where X = UΣΣΣ and
Y = V. However, the factoring is hardly unique since we can also take X = UΣΣΣZ and Y = VZ for any
orthogonal matrix Z. In contrast, the CP factoring of a higher mode tensor X is unique under less stringent
conditions. For example, in [23] it is shown that there is any symmetric tensor of order 3 has a unique CP

decomposition provided we only allows the case when all the vectors in the decomposition are mutually
linearly independent, and such a decomposition can in fact be found in polynomial time. The reader is
referred to [23, 35, 36] for further results in this direction.

2.2.2 TUCKER decomposition [41, 63–65]

This can be intuitively thought of as a generalization to higher-order tensors of a generic matrix factoring
A = XYT of a matrix A. In TUCKER factoring one expressesX as a core tensorKJ1×···×Jk of minimal size
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transformed by a matrix Y(`) of size I` × J` along each mode `, i.e., one finds KJ1×···×Jk ,Y(1), . . . ,Y(k),
for arbitrary k that solves the minimization problem:

minimize size
(
KJ1×···×Jk

)
subject to X = K ×1 Y

(1) · · · ×k Y(k) (3)

It is sometimes more convenient to interpret the tensor equalityX = K×1Y
(1) · · ·×kY(k) via the following

equivalent element-wise equality:

xi1,i2,...,in =

J1∑
j1=1

J2∑
j2=1

· · ·
Jn∑
jn=1

kj1,j2,...,jn yi1,j1 yi2,j2 . . . yin,jn

In (3), size
(
KJ1×···×Jk

)
is a suitable measure of the complexity of the tensorKJ1×···×Jk (e.g., size

(
KJ1×···×Jk

)
=( ∏k

i=1 Ji
)1/k). We call the minimum possible value of size

(
KJ1×···×Jk

)
as the TUCKER-rank of X and de-

note it by rankTucker(X ).

2.2.3 Algorithmic and computational complexity aspects

A well-known algorithmic method to compute tensor decomposition while minimizing the corresponding
rank is the alternating least square approach (see [11, 23] for CP factoring and [34] for TUCKER factor-
ing), but unfortunately no known non-trivial provable accuracy guarantees are known for these heuristic
approaches (except worst-case NP-hardness [24, 26] results which are mostly of theoretical interest only).

Very recently, there has been a a surge in interest in the algorithmic community in in applying the
sum-of-squares (SOS) approach for special cases of CP decomposition of symmetric tensors to obtain prov-
able guarantees with high probability [7, 8, 19, 27, 43, 56]. The SOS approach is a powerful mathematical
technique that deals with determining the emptiness of a given semialgebraic set. Unfortunately, the mathe-
matical details of full generalities of algorithmic applications of SOS appraoch for tensor decomposition is
beyond the scope of this review paper, but we give some informal intuition about the approach; see [9, 39] for
excellent surveys on the SOS approach and its applications. Consider the CP decomposition framework in
Equation (1) for a symmetric “square” tensor (i.e., I1 = · · · = Ik = q and a(r,1) = · · · = a(r,k) = a(r)). Us-
ing a binary search scheme similar to that used in transforming a linear-programming optimization problem
to a problem of determining the feasibility of a system of linear inequalities (see [55, p. 172]), we assume
that we know the value of RCP up to any desired accuracy, and thus for some p ≈ RCP we need to compute
λr’s and a(r)’s such that 1

pX ≈ 1
p

∑p
r=1 b

(r)◦k =M(k), where b(r)◦k denotes (λ
1/k
r a(r))◦· · ·◦(λ1/k

r a(r)) (k
times). Note thatM(k) can be thought of as the kth-moment of all possible b(r) ∈ Rq over some unknown
distribution D : Rq 7→ [0, 1], and under this same (unknown) distributionM(j) = 1

p

∑p
r=1 b

(r)◦j can also
be thought of as the jth-moment of all possible b(r) ∈ Rq for any j. Since finding D is in general NP-hard,
the SOS approach pursues the following alternate route:

(I) (lifting moments higher) Select a suitable ` ≥ k and relax the distribution D appropriately to another
“almost distribution” D̃ : Rq 7→ R such that (a) D̃ can be computed efficiently and (b) the “jth-moment”
under D̃ is very close to the jth-moment under D for all j = 1, . . . , ` (in SOS terminology D̃ is called a
degree-` pseudo-distribution [7–9]).

(II) (extracting factors from higher moments) Use a “postprocessing” step to “approximately” infer the
b(r)’s from the pseudo-distribution D̃.
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3 Representing biological systems as tensors

An order k tensor X I1×···×Ik can easily model higher-order correlation of a biological system of n compo-
nents with or without time evolution in the following manner:

(tensors for static system) For a static model where time evolution is ignored (such as the ones modelled
by fixed interaction maps), I1 = · · · = Ik and xi1,...,ik may denote the joint k-wise correlation value
of the i1th, . . . , ikth components of the system. For k = 2, this corresponds to a fixed edge-weighted
graph in which an undirected edge between two nodes represents a pairwise correlation with the edge
weight representing a quantitative estimate of the correlation; for k > 2 it properly generalizes such
graph-theoretic models.

(tensors for dynamic systems) For a (discrete) time-varying dynamical model, I1 = · · · = Ik−1 the last
dimension Ik corresponds to discrete time steps and xi1,...,in denotes the joint (k−1)-wise correlation
value of the i1th, . . . , ik−1th components of the system at time t = in. For k = 2, this corresponds
to time-series data models generated by experimental methods such as those using DNA microarrays.
For k > 2, such a model is popular in representing dynamic social networks of various types in the
context of data mining (e.g., see [62]).

Thus, we are led to the following natural questions

. How do we represent known real biological systems or models as order k tensors for some k > 2?

. How do we generate large number of simulated biological system tensors which are critical in provid-
ing statistical validity of tensor analysis methods?

Answers to these questions are discussed in the next few subsections.

3.1 Raw data sources for real biological systems

Interaction maps with node dynamics Curated repositories of published systems biology models include a
large number of such systems that are freely accessible. For example, the BioModels Database [13] contains
1640 dynamic models (640 are manually curated and encoded in the Systems Biology Markup Language).
Discrete dynamic models are available in the Cell Collective [25] and the GINsim model repository [12].

Time Series Data Published research works and large-scale repositories such as ArrayExpress [32] report
a large amount of freely-accessible data, generated by various experimental methods (e.g., using DNA mi-
croarrays or RNA-seq), in the form of a matrix Yq×T , where yi,t is the value of the expression level of
the ith component (e.g., gene) at the tth time step. For example, Chou et al. [14] provide yeast cell cycle
time-series gene expression data for a number of time points with relatively small time intervals.

3.2 Generating data for simulated biological systems

We can generate simulated biological systems that faithfully reproduce various types of real biological sys-
tems using a variety of approaches as discussed next.

Interaction maps with node dynamics To generate simulated tensors for a specific type of biological
systems, we will start with the known interaction map (with node dynamics) of a system of the same type (for
example, for plant signal transduction system, we may use the light and drought signal transduction system
in plants from [42, 61]). For the case of order 3 dynamic tensors, we then use the method in Section 3.3
to generate a tensor X q×q×T . Using the mode 3 matricization of X , we can view X q×q×T as a sequence
of q × q interaction/correlation maps, say Yq×q1 , . . . ,Yq×qT . Independently for each map Yq×qj , we can use
several known methods, such as the following, to generate a new simulated correlation map:
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. We may generate random maps using the Markov-chain algorithm in [29] by repeatedly swapping
randomly chosen compatible pairs of entries inYq×qj . This approach is widely used in systems biology
context, e.g., see the textbook [17] and the references therein.

. If all the entries inYq×q1 , . . . ,Yq×qT are from the set {−1, 0, 1}, we can treat eachYq×qj as a graph (with
activation and inhibition edge labels) and thus may generate random maps from the degree-distribution
of nodes in Yq×qj using the method pioneered by Newman and others in several publications [20,
40, 51–53] that preserves in expectation the degree distribution of each node, and label the edges
independently randomly with appropriate probabilities as either activation or inhibition such that their
percentages match those in Yq×qj in expectation.

Simulated order k dynamic tensors for k > 3 can also be generated by a straightforward recursive gen-
eralization of the above procedures, e.g., generate higher-order time-varying correlations using the matrix
algebra in [44] and then use a recursive matricization.

Time-series data One can make use of already existing algorithmic implementations for generating time-
series data, such as the software package in [45] that can generate gene regulatory networks with external
perturbations from differential equation models.

Finally, as in many simulation methods that use random distribution generators, if necessary the bias of
our random distributions can be corrected using standard statistical techniques used in statistical data min-
ing [37]. For example, given sample values x1, . . . , xm with average µ and standard deviation σ, one such
method is to first calculate the standardized value si = (xi − µ) /σ of xi, then calculate the standardized
range α = max1≤i≤n {si} −min1≤i≤n {si}, and finally replace each original xi by si/α.

3.3 Biological systems to tensors

Interaction maps with node dynamics For such biological systems, we can start with an initial choice of
states of nodes of the system as follows. If there is a preferred choice of initial non-steady state assignments,
we can start with this choice (e.g., if our goal is to study apoptosis in a disease network starting from
expressions of specific genes then our initial choice of states will assign the expression levels of these gene
nodes to a higher value and the rest of the nodes to a lower value). Otherwise, we may start with a suitable
random choice of initial states of nodes. We then run the system up to a suitably large time step T . Our
simulation outputs can be summarized in the form of a matrix Mq×T , where q is the number of nodes whose
expression levels are measures over times t = 1, 2, . . . , T and mi,t is the value of the expression level of
the ith gene at the tth time step. From this data, we can, for example, construct an order 3 tensor X q×q×T
representing the second-order time-evolving correlations among the nodes in the following manner:

. Let M(t) be the sub-matrix obtained by taking the first t columns of M. Ensure that the mean of
the observed data for each gene in M(t) is zero by subtracting

∑t
j=1m

(t)
i,j/t from each m

(t)
i,j for

i = 1, 2, . . . , q and j = 1, 2, . . . , t.

. Compute Z(t) = M(t)M(t)T and set xi,j,t = z
(t)
i,j .

Higher-order time-varying correlations can also be constructed by generalizing the above approach; for the
relevant matrix algebra, see, for example, [44].

Time series data These data types can be handled in the same manner as done for interaction maps with
node dynamics, except that we do not need to run any model to generate the time series.

Time snapshots of interaction maps For input data consisting of explicit time snapshots of a given biolog-
ical system, the corresponding tensor representation is straightforward.
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4 System analysis via tensor decomposition

There are a few reasons why finding an “exact” tensor decomposition (cf. Equations (1)–(3)) could be
unrealistic for real or simulated biological tensors. Firstly, as noted before, most tensor decompositions are
NP-hard to compute in the worst case [24, 26]. Secondly, the input tensor data may be slightly noisy and
therefore a computationally efficient inexact but almost accurate tensor decomposition may suffice. Finally,
an exact decomposition may involve numbers (such as

√
2) that have no finite-precision representations.

Thus, in practice, for tensor decompositions one usually uses an “suitably approximate” version of tensor
decomposition. For example, for a (sufficiently small) real number ε > 0 and a suitable tensor norm ||,
Equations (1)–(3) can be modified to their approximate versions (1)′–(3)′ as follows:

X I1×···×Ik ≈ε AI1×···×Ik def
=
∣∣∣∣X I1×···×Ik − RCP(ε)∑

r=1

λr a
(r,1) ◦ · · · ◦ a(r,k)︸ ︷︷ ︸
=A(r)I1×···×Ik

∣∣∣∣ ≤ ε (1)′

X n×···×n ≈ε An×···×n def
=
∣∣∣∣X n×···×n − RCP(ε)∑

r=1

λr a
(r) ◦ · · · ◦ a(r)︸ ︷︷ ︸
=A(r)n×···×n

∣∣∣∣ ≤ ε (2)′

∣∣∣∣X − K(ε)×1 Y
(1) · · · ×k Y(k)

∣∣∣∣ ≤ ε (3)′

Informally, system analysis via tensor decomposition aims to address research questions on extracting an
ensemble of a small number of reduced subsystems (i.e., subsystems that have less complexity, such as fewer
correlations, than the original one) out of a given system to provide a concise and representative summary of
the important correlations between components of the system such that non-trivial system analysis methods
can operate on these reduced subsystems. For concreteness, our remaining discussion in this section assumes
the tensor decomposition as found in Equation (1)′ with I1 = · · · = Ik = n, but similar discussions
hold for other tensor decompositions as well. Assume, without loss of generality, that we have re-scaled
and re-indexed the values of λr’s such that λ1 ≥ λ2 ≥ · · · ≥ λRCP(ε)

> 0, and ||a(r,j)||F = 1 for all
r = 1, 2, . . . , RCP(ε) and j = 1, 2, . . . , k. Let λ′j = λj/(λ1 + λ2 + · · · + λRCP(ε)

). Note that the value

of A(r)
i1,...,ik

∈ [−1, 1] for any r and any i1, . . . , ik ∈ {1, . . . , n} can be interpreted as the value of a k-way
correlation between the k variables, say xi1 , . . . , xik , corresponding to the k indices in the k dimensions,
and each λ′r can be thought of the significance probability of the corresponding rth factor A(r). Based on
such interpretations, one can retrieve significant correlations from the factors in various ways. For example,
one such method could be the following.

I First, select the significant factors in an appropriate way. Some possibilities could be as follows:

. For a suitable threshold (real number) 0 < Θ < 1, select all factors A(j) satisfying λj ≥ Θ.

. Select factors probabilistically where the jth factor A(j) is selected with probability λ′j . The
randomized strategy may be more suitable when the λ′j values are not sufficiently spread out
(e.g., their standard deviation is small).

. In some applications that require strong statistical decoupling, it may be desirable to select
factors such that vectors corresponding to the same variable in different factors are mutually
linearly independent (or close to being mutually linearly independent). For such situations,
strategies such as the following could be used. Recall that Â(j) denotes the jth factor matrix of
the tensor A. For a suitable τ ∈

[
minkj=1

{
κ
Â(j)

}
≤ maxkj=1

{
κ
Â(j)

}]
, select τ indices, say

`1, . . . , `τ , such that for each j the vectors a(`1,j), . . . ,a(`τ ,j) form a mutually orthogonal family
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of vectors. We can then select the τ factorsA(`1), . . . ,A(`τ ). The selection can be further refined
using one or more rules discussed before.

I Once a factor is selected, we can retrieve significant correlations encoded by it by using an appropriate
threshold, i.e., for a suitable threshold (real number) Φ ∈ [−1, 1], for a selected factor A(j) consider
the correlation among the variables xi1 , . . . , xik as statistically significant if A(r)

i1,...,ik
≥ Φ. Other

more complex application-specific strategies can also be designed.

One could interpret the value of the rank RCP(ε) itself as some measure of “complexity” of the input tensor
X . For other applications, it is possible to interpret the factors and the components of the factors in different
ways (i.e., not necessarily as correlations between variables); for example see [3, 4, 18, 54, 66].

5 Statistical and biological validations of tensor analysis methods

Validations of our tensor analysis can be classified into three categories:

Methodological validation: How do we estimate the “quality” of our tensor decomposition methods?

Statistical validation: How do we compute the “statistical significance” for our tensor analysis results?

Biological validation: Do our tensor decomposition methods recover reported correlations or pathways for
known (published) biological systems?

For subsequent discussion purposes, assume that our tensor decomposition at the completion of final steps
in Section 4 generated a collection of m significant tensor factors A(1), . . . ,A(m) and the combined single
tensor A′ = ∑m

r=1A(r) for the input tensor X .

5.1 Methodological validation

The parameter ε in the optimization framework for tensor decomposition (cf. Equations (1)–(3)) controls the
initial accuracy of the decomposition and varying ε we can obtain decompositions of different accuracies.
However, we need also to have control on the accuracy after the reduction steps in Section 4. One possible
way to do this is via calculation of the relative error ξ = ||X − A′|| / ||X ||.

5.2 Statistical validation

Noise sensitivity and robustness of the decompositions in (1)–(3)

We can use the theoretical framework in [10, 22] inspired by the famous smoothed-analysis results in [59,
60]. We illustrate the framework for the rank measure for CP decomposition (Equation (1)); adoptions for
other decompositions are very similar. We perturb each vector a(r,j) suitably1 to obtain a new vector â(r,j),

build the new tensor Â =
∑RCP(ε)

r=1 λr â
(r,1) ◦ · · · ◦ â(r,k), use the same CP decomposition algorithm on

Â to compute the new rank R̂CP(ε), and finally measure the sensitivity by the relative error ( |RCP(ε) −
R̂CP(ε)| )/RCP(ε).

1The authors in [10, 22] add independent Gaussian noise to each coordinate of a(r,j), but other distributions may be used.
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ppp-value calculation

There are many ways to do this; we illustrate one such approach. We can use the method used in [1, 2] to
calculate the p-values for the rank or individual significant correlations that we found at the completion of
final steps in Section 4. We illustrate the method for the rank. Suppose that we wish to calculate the p-value
of a particular evaluation of the rank R(X ) of a biological system (tensor) X . We will generate a large
number q of simulated systems X (1), . . . ,X (q) of the same type as X using the Markov-chain algorithm
of Section 3.2, compute the corresponding ranks R(X (1), . . . , R(X (q)) of these simulated systems, and
then use an appropriate statistical test, such as a (unpaired) one-sample student’s t-test, to determine the
probability that R(X ) can be generated by a distribution that fits the data points R(X (1), . . . , R(X (q)).

5.3 Biological validation

Here we determine how close our tensor analysis is in preserving important properties of a known sys-
tem. These validations are conceptually straightforward and can check a variety of properties of a known
biological system in its corresponding reduced system. For example:

I We can check the known presence or absence of a significant correlation of a known (published)
system in most significant tensors factors produced after Section 4. Based on the number of true
positives, false positives, true negatives and false negatives, we may compute the four standard metrics
true positive rate, false positive rate, accuracy rate and precision to assess the validity of our methods.
For fine tuning a specific parameter of our method, such as the ε parameter in Equation (1), we may
use the ROC (receiver operating characteristic) plot over the ranges of ε.

I For dynamical tensors, we may check if our significant tensors produce a system that preserve known
significant dynamical properties (such as limit cycles, attractors, monotonicity, controllability and
observability) of a known (published) system.

As a concrete illustration, letX be a order 3 tensor generated from the Boolean dynamic model for the guard
cell ABA signaling as obtained in [42] using the method described in Section 3.3, and suppose that our CP

decomposition together with the optimizations in Section 4 produces q most significant tensors A(1) =
a(1,1) ◦ a(1,2) ◦ a(1,3), . . . ,A(q) = a(q,1) ◦ a(q,2) ◦ a(q,3) for X . The double and triple knockout experiments
in [42] suggest that the states of CaIM (Ca2+ influx through the plasma membrane) and AnionEM (anion
efflux at the plasma membrane) are jointly correlated to the state of Closure (ABA signalling). Assuming
this to be the ground truth, we may check if this correlation also exists in at least one of A(1), . . . ,A(q).

6 Specific illustrations of tensor analysis

In this section we provide two specific illustrations of tensor analysis for biological systems. The first one is
an artificial toy example. The second illustration summarizes tensor analysis results for a specific research
result.

6.1 A toy example of tensor analysis insights of an artificial biological system

Consider the following mode 3 tensor X def
= X t×b×c that describes time-evolving cross-correlations be-

tween two sets of four components b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) of a biological system over
discrete time t = (1, 2, 3, 4) (modified from an example in [15, 16]):
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BBB

b1b1b1 b2b2b2 b3b3b3 b4b4b4CCC

c1c1c1
c2c2c2
c3c3c3
c4c4c4

TTT

111
222
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−1 0 0 0
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0 0 1 0
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0 −1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

Consider the following CP decomposition with appropriate normalization of the inter-modal factors (c.f.
Section 2.2.1):

λ1 t(1) b(1) c(1)

2
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)
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Assuming that this tensor decomposition has been statistically validated, a simplest predictive algorithm will

identify
(−1
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0

)
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(−1

0
0
0

)
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0
0
0

)
and

(
0
−1
0
0

)
◦
(

0
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0
0

)
◦
(

0
−1
0
0

)
(shown by dotted boxes) as the two most

significant factors, and they can be traced back to the correlations between b1 and c1 at t = 1 and between
b2 and c2 at t = 2 (circled in gray color).

6.2 A review of specific tensor analysis in two research papers

In this section, we briefly review the tensor analysis methods and the biological conclusions drawn therefrom
in the two research papers [3, 54]. The application of tensor decomposition methods in these two papers to
yeast (S. cerevisiae) time course expression data illustrates the biological insights that can be gained from
this type of analysis. All the measurements were made in S. cerevisiae cell cultures under the influence of
the pheromone α-factor (to synchronize their cell cycles).

Alter and Golub [3] use matrix eigenvalue decomposition to decompose a matrix of pairwise gene cor-
relations into rank-1 sub-matrices. They then construct a tensor that integrates information about gene
expression and the binding of select transcription factors to the promoter regions to each gene. By applying
tensor higher order eigenvalue decomposition, they identify decorrelated rank-1 sub-networks that can be
associated with independent biological pathways. They apply this methodology to a time-course of mRNA
expression data for more than 4000 S. cerevisiae genes, integrated with binding data on 12 cell cycle related
transcription factors and 12 developmental transcription factors. The analysis uncovers three significant
sub-networks that capture 40%, 15%, and 9%, respectively, of the expression correlation among genes. The
first subnetwork is associated with the α-factor signal transduction pathway, and expresses the correlations
among genes that are up-regulated (or down-regulated, respectively) in response to pheromone. The second
and third sub-networks are associated with the two known pathways of antipodal (opposite) cell cycle ex-
pression oscillations. The coupling between the first sub-network and the second sub-network expresses the
exit from pheromone-induced cell cycle arrest and entry into cell cycle progression.
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Omberg et al. [54] use higher-order singular value decomposition to decompose a data tensor of genes
versus experimental settings into rank-1 sub-tensors. They apply this methodology to mRNA expression
data for more than 4000 S. cerevisiae genes, measured over 13 time points, for three conditions, namely
oxidative stress due to exposure to hydrogen peroxide or menadione, respectively, and oxidative-stress-free
control. They find that the significant sub-tensors represent independent biological programs. The first and
most significant sub-tensor, which captures 70% of the expression information, represents the steady state
of mRNA expression in response to hydrogen peroxide, menadione, or α-factor, averaged over time and
conditions. Three sub-tensors that follow in significance (explaining 1% to 6% of the information) represent
change in expression in response to oxidative stress. The three following sub-tensors, each explaining
around 1% of the expression information, represent pheromone responses and pheromone-induced oxidative
stress responses. The three following sub-tensors (explaining 0.6% to 0.9% of the information) reflect the
differences in the responses to hydrogen peroxide and to menadione.

7 Conclusion

In this article we have reviewed some basic aspects of powerful tensor analysis methods that provide the
foundations of systematic approaches to determine significant higher order correlations among elements of
biological systems by finding ensembles of small number of reduced systems that provide a concise and
representative summary of these correlations.

Admittedly, a short review article such as this one can cover only some aspects of tensor analysis of
biological systems, leaving other aspects in the references. For example, following are some of the topics
that are not covered in this article but may be of significance to some researchers:

Learning models via tensor decompositions: References such as [4, 5] discuss algorithms for learning
hidden Markov models or other types of models using tensor decompositions.

Eigenvalues and eigenvectors of tensors: Eigenvalues and eigenvectors of matrices (i.e., tensors of order
2) play a crucial role in spectral analysis of network algorithms and processes, and in principal com-
ponent analysis for matrix data. One can extend the these definitions to higher-order tensors (e.g.,
see [57]) but the full potential of these generalizations to higher-order tensor analysis is still not clear.

Although tensor analysis methods have been used in specific contexts of computational biology before, their
usage in bioinformatics is not as widespread as matrix-based or linear algebraic methods. In our opinion,
there is a pressing need for more research on applying tensor analysis methods for biological systems, as
interpretations of results of high-throughput experiments have advanced at a much slower pace than the data
accumulation. The state of the art in gene expression data analysis is still to focus on a small group of
key genes (e.g., those that are most highly correlated, or most differentially expressed when comparing two
contexts) and discard the rest of the information. This is partly because of the computational complexity of
all types of follow-up analyses, and partly because of the noise and uncertainty affecting all biological mea-
surements. Tensor-based analysis provides a principled way of using all available information to achieve
a clearer understanding. In addition, by identifying reduced systems, a smaller set of most-supported cor-
relations naturally emerges that are optimal for all follow-up analyses without making potentially limiting
assumptions. The tensor analysis framework does not have the limitations and specific requirements of
methods, such as the bi-clustering approach [58], that are used to determine clusters of genes correlated
over a set of conditions but not in conditions outside of this set. The tensor framework is also naturally
suited to incorporate and study the effect of additional variables (e.g., variable environmental influences),
thus allowing integrated studies of genetic and environmental factors. It is our hope that this article will
catalyze and motivate further research in the fascinating inter-disciplinary interplay between biology and
tensor analysis methods.
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