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Abstract

This paper concerns the Lateral Gene Transfer Problem. This minimization problem, defined by
Hallet and Lagergren [6], is that of finding the most parsimonious lateral gene transfer scenario for
a given pair of gene and species trees. Our main results are the following:

(a) We show that it is not possible to approximate the problem in polynomial time within an
approximation ratio of 1 + ε, for some constant ε > 0 unless P=NP. We also provide explicit
values of ε for the above claim.

(b) We provide an upper bound on the cost of any 1-active scenario and prove the tightness of
this bound.
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1 Introduction

A fundamental problem in the field of evolutionary molecular biology is that of inferring information
on the evolutionary relationships between taxa from a given set of gene trees (i.e., an evolutionary
model for a set of gene families). The underlying assumption is that gene families evolve in the
same way as species; therefore a gene tree should determine the species tree. Unfortunately, there
are a number of biological events, such as gene duplications, gene losses and lateral gene transfers
(also called horizontal gene transfers) (e.g., see [5, 9]) that may occur during evolution and that
generate “differences” between a gene and a species tree. For these reasons, a single gene tree is
usually not sufficient to reliably build the species trees, but it is necessary to consider a set a gene
families to perform the construction. Since the gene trees may contain contradictory information,
a natural problem that arises is that of reconciling the different gene trees into a single species
tree. Such a reconciliation process can be naturally formulated as an optimization problem where
the goal is to minimize the number of biological events necessary to explain the “disagreements”
between the gene trees and the species tree.

Several models have been proposed to solve the reconciliation problem. Each of these models is
based on the assumption that only a restricted class of genomic events may occur. Here we focus
on the so-called lateral gene transfer model defined by Hallett and Lagergren [6]. According to
this model, all differences between the gene and the species trees are explained in terms of lateral
gene transfer events. A lateral gene transfer is an event that causes some portion of the evolution
represented by an arc in the gene tree to occur along one arc in the species tree, and the remaining
portion of evolution to occur along another arc of the species tree. We say that the lateral transfer
occurs between these two arcs of the species tree and involves the arc from the gene tree. Given
a gene tree T and a species tree S (which we assume to be correct), an interesting optimization
problem is that of identifying a scenario that is able to explain the differences between the two
trees with the minimum number of lateral transfers. We refer to this problem as the Lateral
Gene Transfer Problem, in short as the LGT Problem.

In this paper we investigate efficient approximability issues of the LGT Problem. We consider
both the special case of activity level one (see section 1.1 for a definition of activity level) and the
general case of activity level some α ≥ 1, and establish hardness of efficient approximation for
both cases. More specifically, we will prove that, unless P=NP, no algorithm can achieve an
approximation ratio smaller than 1 + ε for some constant ε > 0. By easy calculations we also
provide explicit values of ε for the above claim. We also show that an upper bound on the cost of
any 1-active lateral transfer scenario is given by n − 2 where n is the number of leaves in the gene
tree, and show that this upper bound is tight by explicitly giving a pair of species and gene trees
with this cost.

1.1 Basic Definitions and Notations

In the remaining sections we consider just rooted binary trees, i.e., trees where all vertices have
out-degree at most two and all arcs are directed from the root to the leaves. Given a rooted tree T ,
we denote with V(T) the set of vertices and with A(T) the set of arcs. The leaves of T are denoted
by L(T) and the root by r(T). We say that two distinct vertices v, v ′ are sons of u in T if 〈u, v〉,
〈u, v ′〉 ∈ A(T). We denote the left son of a vertex u ∈ V(T) as lsT(u), the right son as rsT(u), and
the parent of u as pT(u). We will consider trees with labeled leaves and we will use the notation
L(T) to denote the set of leaf labels in a rooted tree T .

Let F be a rooted forest, that is, a union of disjoint rooted trees. If two vertices u, v ∈ V(F) are
connected by a directed path from u to v, then v is a descendent of u in F, and we write v ≤F u
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(note that every node is a descendent of itself). If u �= v, then v is a proper descendent of u in F

( <F ). Similarly, we can define ancestors ( ≥F ) and proper ancestors ( >F ). Moreover, let T be
a rooted tree and X ⊂ V(T). Then T [X] denotes the forest of subtrees induced by X, that is, the
graph obtained from T by removing all vertices v ∈ V(T) not belonging to the set X and all arcs
〈v, v ′〉 ∈ A(T) such that v /∈ X or v ′ /∈ X.

Let {ti : 1 ≤ i ≤ n} be a forest of non-empty rooted directed trees over a label set L. We use
the notation T =≺ t1 · t2 · . . . · tn 	 to represent the tree built by connecting the subtrees ti as
shown in Figure 1. As a shorthand, we allow the notation ≺

∏n
i=1 ti 	 to mean ≺ t1 · t2 · . . . · tn 	.

A mixed graph G is a graph where arcs may be both directed and undirected. We denote the
set of directed arcs as A(G) and the undirected arcs, or edges, as E(G). ε(A) indicates the set of
edges underlying A(G). Given a set of arcs A and a mixed graph G, we denote by G∪A the mixed
graph with arcs A(G) ∪A, egdes E(G), and vertices V(G). Similarly is defined G ∪ E, where E is a
set of edges. A directed mixed cycle is a cycle on a mixed graph that may contain both arcs and
edges, and where the cycle can be traversed so that the direction of the arcs that are part of the
cycle is respected. Given a graph G and an arc 〈x, y〉 ∈ A(G), we say that we subdivide arc 〈x, y〉
if we replace it with a path, through new nodes, from x to y, which does not traverse any vertex
in V(G) \ {x, y}. We say that a graph H is a subdivision of a graph G if H is obtained from G by
subdividing some of the arcs in A(G).

Finally, a (1 + ε)-approximate solution (or simply an (1 + ε)-approximation) of a minimization
problem is a solution with an objective value no larger than 1 + ε times the value of the optimum,
and an algorithm achieving such a solution is said to have an approximation ratio of at most 1 + ε.

1.2 Basic Concepts of the Evolutionary Model

In this section we define some basic concepts for the evolutionary model we consider. We will first
briefly introduce the concepts of a gene tree and a species tree. We will then present the concept
of least common ancestor mapping and define a reconciliation model based on lateral gene transfer
events.

Consider a set I of N biological taxa. The model for their evolutionary history is a rooted full
binary tree S, where each of the N leaves is uniquely labeled by one element from I, and each
internal node is unlabeled. Such tree S is called a species tree. An internal node in a species tree is
equivalently treated as a subset (or cluster), which contains the labels of all leaves of the subtree
rooted at that node. Thus, we can express the relation “m is a descendant of n” in set theory
notation by m ⊂ n.

A gene tree T is a model for the evolution of a gene family. It is a rooted full binary tree where
the internal nodes are unlabeled and the leaves are labeled by elements from I. As opposed to a
species tree, labels in a gene tree may not be unique. In this case, an internal node t is represented
by a multiset {xi1

1 , x
i2
2 , . . . , xim

m }, with m ≤ N and xk ∈ I for every index k s.t. 1 ≤ k ≤ m, and
where ij is the number of leaves labeled with xj, among those reachable from t. The cluster of t is
defined as the set Ct = {x1, x2, . . . , xm}.

Let Y be a rooted tree with uniquely labeled leaves and let L(Y) be the set of its leaf labels.
The least common ancestor (LCA) of X ⊆ L(Y), denoted by lcaY(X), is defined as the node y ∈ Y

such that X ⊆ y and X �⊆ w for every proper descendent w of y. Given a gene tree T and a species
tree S such that L(T) ⊆ L(S), we define λT,S : V(T) −→ V(S) as a correspondence between nodes of
the gene tree T and nodes of the species trees S. For any node t ∈ T , λT,S(t) is the least common
ancestor of the cluster of t in S, i.e., λT,S(t) = lcaS(Ct). The function λT,S is known as the LCA
mapping from T to S.
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1.2.1 The Lateral Gene Transfer Model

We are now ready to introduce the evolutionary model based on the concept of lateral gene transfers.
This model was developed by Hallet and Lagergren [6]. It assumes a simplified evolutionary process
where the only biological events that can occur are the so-called lateral gene transfers. In this
framework, a natural problem is that of finding the most parsimonious scenario that explains in
a biologically meaningful way how, via these events, the differences between the gene tree and the
species tree arose. The definition of lateral transfer scenario is based on the concept of lateral
transfer scheme.

Definition 1 A lateral transfer scheme for a species tree S is a pair (S ′, A ′) where S ′ is a subdi-
vision of S and A ′ ⊆ {〈x, y〉 : x, y ∈ V(S ′) \ V(S), x �= y} such that:

1. the mixed graph S ′ ∪ ε(A ′) does not contain a directed mixed cycle.

2. the tail of each arc in A ′ has in-degree 1 and out-degree 2 in S ′ ∪ A ′.

3. the head of each arc in A ′ has in-degree 2 and out-degree 1 in S ′ ∪ A ′.

A lateral transfer scheme shows where the lateral transfers have occurred during evolution. The
arcs in A ′ represent the set of lateral transfers. Note that the first condition in Definition 1 ensures
that the scheme for a species tree S respects the partial order of evolution implied by S. Clearly,
this is a required property for the model.

A lateral transfer scheme is meaningful when combined to the notion of scenario. A scenario
is a mapping of a gene tree into a subdivision of a species tree. This mapping describes how the
gene tree has evolved by showing at which point of evolution lateral gene transfers have occurred.
In order for a scenario to be biologically meaningful, it must satisfy the conditions stated in the
definition below.

An important parameter for this model is the activity level α. The parameter α measures the
number of genes that are allowed to be simultaneously active in the genome of a taxa. Roughly
speaking, an α-active scenario permits at most α copies of a gene to be mapped to the same
ancestral taxon. In previous models, the presence of multiple copies of a gene was always assumed
to be caused by a gene duplication event. The notion of acitivity level in a lateral transfer scenario
overcomes this restriction, by postulating that this multiplicity may be generated by lateral transfer
events alone.

We will first give the definition for the special case of 1-activity, and then state the definition
for the general α-active case where α ≥ 1.

Definition 2 A 1-active lateral transfer scenario (or 1-active scenario) for a species tree S and a
gene tree T is a triple (S ′, A ′, g) where (S ′, A ′) is a lateral transfer scheme for S and g : V(S ′) →
V(T) is a function such that:

1. g(r(S ′)) = r(T).

2. if v1 and v2 are distinct children of v0 in T, then there exists x0 with distinct children x1 and
x2 in S ′ ∪A ′ such that g(xi) = vi for i ∈ {0, 1, 2}, and xi is the ≤s′-maximal vertex such that
g(xi) = vi for i ∈ {1, 2}.

3. for each v ∈ V(T), the vertices {x ∈ V(S ′) : g(x) = v} induce a directed path in S ′.

4. g(l) = l, for all l ∈ L(S).
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The cost of a 1-active scenario (S ′, A ′, g) w.r.t. T is given by |A ′|.

Definition 3 A lateral transfer scenario (or scenario) for a species tree S and a gene tree T is a
triple (S ′, A ′, g) where (S ′, A ′) is a lateral transfer scheme for S and g : V(S ′) → 2V(T) is a function
such that:

1. T [g(r(S ′))] is connected and r(T) ∈ g(r(S ′)).

2. if v1 and v2 are distinct children of v0 in T and v1, v2 �∈ g(r(S ′)), then there exists x0 with
distinct children x1 and x2 in S ′ ∪ A ′ such that vi ∈ g(xi) for i ∈ {0, 1, 2}, and xi is the
≤S′-maximal vertex such that vi ∈ g(xi) for i ∈ {1, 2}.

3. if v1 and v2 are children of v0 in T , v1 ∈ g(r(S ′)) and v2 �∈ g(r(S ′)), then there exists a child
x of r(S ′) in S ′ such that v2 ∈ g(x).

4. for each v ∈ V(T), the vertices {x ∈ V(S ′) : v ∈ g(x)} induce a directed path in S ′.

5. for each x ∈ V(S ′) \ {r(S ′)}, if |g(x)| > 1, then every pair of members of g(x) is ≤T-
incomparable, i.e., for any y, y ′ ∈ g(x), neither y ≤T y ′ nor y ′ ≤T y.

6. g(l) = {l}, for all l ∈ L(S).

A scenario (S ′, A ′, g) is α-active iff maxx∈S′ |g(x)| = α. The cost of a α-active scenario (S ′, A ′, g)

w.r.t. T is given by:∑
〈x,y〉∈A′

|{〈u, v〉 ∈ A(T) : u ∈ g(x), v ∈ g(y)}| + |V(T [g(r(S ′))]) \ L(T [g(r(S ′))])|

Let (S ′, A ′, g) be a scenario for S and T . We say that an arc of T is invloved in a lateral transfer if
it belongs to the following set:

F = {〈u, v〉 ∈ A(T) : u ∈ g(x), v ∈ g(y), where 〈x, y〉 ∈ A ′}

1.3 Problem Definitions

In this paper we investigate the following optimization problems:

1-active LGT Problem
Instance: A species tree S and a gene tree T , such that L(T) ⊆ L(S).
Goal : Find a 1-active lateral transfer scenario for S and T with minimum cost.

α-active LGT Problem
Instance: A species tree S and a gene tree T such that L(T) ⊆ L(S), a constant α ≥ 1.
Goal : Find an α-active lateral transfer scenario for S and T with minimum cost.

Note that one can easily convert the above optimization problems into their decision version by
having an extra integer τ as input and requiring the minimum cost to be ≤ τ. We call the
decision versions of these problems the 1-active τ-LGT Problem and α-active τ-LGT Problem
respectively. It was shown in [7] that the α-active τ-LGT Problem is NP-complete.
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1.4 Inapproximability Reductions: Key Concepts and Results

In [10] Papadimitriou and Yannakakis defined the class of MAX-SNP optimization problems and
a special approximation-preserving reduction, the so-called L-reduction, that can be used to show
MAX-SNP-hardness of an optimization problem. The version of the L-reduction that we provide
below is a slightly modified but equivalent version that appeared in [4].

Definition 4 [4, 10] Given two optimization problems Π and Π ′, we say that Π L-reduces to Π ′ if
there are three polynomial-time procedures T1,T2, T3 and two constants a and b > 0 such that the
following two conditions are satisfied:

1. For any instance I of Π, algorithm T1 produces an instance I ′ = f(I) of Π ′ such that the
optima of I and I ′, OPT(I) and OPT(I ′), respectively, satisfy OPT(I ′) ≤ a · OPT(I).

2. For any solution of I ′ with cost c ′, algorithm T2 produces another solution with cost c ′′ no
worse than c ′, and algorithm T3 produces a solution of I of Π with cost c (possibly from the
solution produced by T2) satisfying |c − OPT(I)| ≤ b · |c ′′ − OPT(I ′)|.

An optimization problem is MAX-SNP-hard if any problem in MAX-SNP L-reduces to that prob-
lem. If this problem is also in MAX-SNP, then it is MAX-SNP-complete. The importance of
proving MAX-SNP-hardness results comes from a result proved by Arora et al. [1] which shows
that, assuming P�=NP, for every MAX-SNP-hard problem there exists a constant ε > 0 such that
no polynomial time algorithm can achieve an approximation ratio better than 1 + ε.

1.5 Precise Statements of Our Results

Theorem 1
(a) For some constant ε > 0, it is not possible to approximate in polynomial time the 1-active LGT
PROBLEM within an approximation ratio of 1 + ε unless P=NP.
(b) The constant ε in (a) is at least (3/370024) − κ for any κ > 0.

Theorem 2
(a) For some constant ε > 0, it is not possible to approximate in polynomial time the α-active LGT
PROBLEM within an approximation ratio of 1 + ε, where α ≥ 1, unless P=NP.
(b) The constant ε in (a) is at least (3/378068) − κ for any κ > 0.

Lemma 1 For any pair of gene and species trees, uniquely labeled over the same set of labels L, a
1-active lateral transfer scenario can always be built by using at most n − 2 lateral transfers, where
n = |L|. Moreover, the upper bound n − 2 is tight. That is, there is a procedure to build a 1-active
scenario of cost n − 2 and there exists a pair of a gene tree and a species tree that require at least
n − 2 lateral transfers for any 1-active scenario.

2 Hardness of Approximation of 1-active LGT PROBLEM (Proof
of Theorem 1(a))

In the following we will show that Max-2Sat-B L-reduces to the 1-active LGT Problem. Max-
2Sat-B is the variation of Max-2Sat where the number of occurrences of each variable is bounded
by a constant B. It is known from [2] that Max-2Sat-B is MAX-SNP-complete for B ≥ 3; thus
the existence of an L-reduction will imply the result.
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Let X = {X1, . . . , Xn} be a set of n variables and let Φ = (C1, . . . , Cm) be a formula in 2-CNF,
where each clause Ci is on two variables from X and where the number of occurrences of each
variable is bounded by a constant B. We will refer to the jth variable in the ith clause as literal Ci,j.
The goal of Max-2Sat-B is to find a truth assignment on X that maximizes the number of satisfied
clauses. Given an instance of Max-2Sat-B, we will now exhibit how to build an instance of the
1-active LGT Problem such that Conditions 1 and 2 of Definition 4 are satisfied. In other words,
we will construct a gene tree T and a species tree S from Φ and prove that this transformation is
an L-reduction.

Our construction of T and S from Φ is taken from the NP-completeness proof given in [7]. The
only difference is that in our case the index j in Ci,j ranges between 1 and 2, rather than 1 and 3

(their reduction is from 3Sat). A detailed description of this procedure is here omitted. For the
convenience of readers, we provide this construction procedure at an appendix.

An important parameter used in the following proof is τ, defined as τ = 9m + 6k, where

k =
∣∣{〈i, j, i ′, j ′〉 : Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , 1 ≤ i < i ′ ≤ m,1 ≤ j, j ′ ≤ 2}

∣∣ .

Notice that k ≤ nB(B−1)
2 , since the maximum number of occurrences is bounded by B for each

variable in Φ; hence, τ ≤ γm, where γ = 9 + 6B(B − 1). Also, let τ+ = τ + m + 1. To ease our
presentation, we will adopt the same notation used in [7] throughout the rest of the proof.

Let Ψ be a truth assignment on the variable set X, i.e. Ψ : Xi �−→ {true, false}, for every
i = 1, . . . , n. We show that there is a correspondence between truth assignments on Φ and scenarios
for T and S.

Claim 1 Given a truth assignment Ψ on Φ that satisfies ρ clauses, ρ ≤ m, it is always possible to
build in polynomial time a 1-active lateral transfer scenario for T and S with cost τ + (m − ρ).

Proof. We illustrate how to build a lateral transfer scenario for T and S from the given truth
assignment Ψ. This procedure is mostly the same as that adopted in [7], with minor modifications.
For the scenario to be consistent, we add an additional transfer for each clause Ci which is not
satisfied by the assignment Ψ. The scenario is constructed as described below.

For every subtree R ′
i,j, Ri,j and for each node r ′ ∈ R ′

i,j, r ∈ Ri,j, let g(lcaS(L(R ′
i,j,r′))) = r ′ and

g(lcaS(L(Ri,j,r))) = r, where R ′
i,j,r′ is the subtree of R ′

i,j rooted in r ′ and Ri,j,r is the subtree of Ri,j

rooted in r. Create the lateral transfer:

• from 〈pS(r(RSi,j
)), r(RSi,j

)〉 to 〈pS(lcaS(ri,j,k : 1 ≤ k ≤ τ+)), lcaS(ri,j,k : 1 ≤ k ≤ τ+)〉,

involving arc 〈pT(r(Ri,j)), r(Ri,j)〉. For 1 ≤ i ≤ m, let g(lcaS(RSi,1
,RSi,2

)) = lcaT(Ri,1,Ri,2) and
for 1 ≤ i ≤ m, let g(lcaS(RSi,2

,RSi+1,1
)) = lcaT(Ri,2,Ri+1,1). This creates 2m lateral transfers.

For all i, j, k, where 2 ≤ k ≤ τ+, let g(pS(ti,j,k)) = pT(ti,j,k). For 1 ≤ i ≤ m let g(lcaS(TSi,1
,TSi,2

)) =

lcaT(Ti,1,Ti,2) and for 1 ≤ i < m let g(lcaS(TSi,2
,TSi+1,1

)) = lcaT(Ti,2,Ti+1,1).
For all vertices εi,j,i′,j′,k ∈ ε, let g(pS(εi,j,i′,j′,k)) = pT(εi,j,i′,j′,k) for 2 ≤ k ≤ τ+ and set

g(lcaS(εi,j,i′,j′,1, εi′,j′,i,j,1)) = lcaT(εi,j,i′,j′,1, εi′,j′,i,j,1). Let ε = lcaT(r(εi,j,i′,j′), r(εî,̂j,î′,ĵ′)), where
εi,j,i′,j′ and εî,̂j,î′,ĵ′ are adjacent subtrees in ε, and set g(lcaS(εSi,j,i ′,j ′ , εŜ

i,ĵ,î ′,ĵ ′
)) = ε.

For all vertices f ∈ B, let g(lcaS({fi,j : fi,j ≤T f})) = f. Let g(lcaS(TS,RS)) = lcaT(T ,R), and
g(lcaS(TS,RS, εS)) = lcaT(T ,R, ε). Let g(r(S)) = r(T).

For all literals Ci,j which are true according to the truth assignment Ψ, let g(lcaS(ci,j, di,j)) =

lcaT(ci,j, di,j), and create the two following lateral transfers:

• from arc 〈pS(ci,j), ci,j〉 to arc 〈pS(ai,j), ai,j〉 involving 〈pT(ai,j), ai,j)〉 from T ,
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• from arc 〈pS(di,j), di,j〉 to arc 〈pS(bi,j), bi,j〉 involving 〈pT(bi,j), bi,j)〉 from T .

For all literals Ci,j which are false according to Ψ, let g(lcaS(ai,j, bi,j)) = lcaT(ci,j, di,j), and
create the two following lateral transfers:

• from arc 〈pS(ai,j), ai,j〉 to arc 〈pS(ci,j), ci,j〉 involving 〈pT(ci,j), ci,j)〉 from T ,

• from arc 〈pS(bi,j), bi,j〉 to arc 〈pS(di,j), di,j〉 involving 〈pT(di,j), di,j)〉 from T .

The number of lateral transfers over all 2m literals is 4m.
If the clause Ci is satisfied by Ψ, then let j be the index of the first literal assigned to true.

Let g(lcaS(ei,j, ai,j)) = lcaT(ei,j, ai,j). For j ′ �= j, create a lateral transfer from 〈pS(ei,j′), ei,j′〉 to
〈g−1(lcaT(ci,j′ , di,j′))〉, involving arc 〈pT(ei,j′), lcaT(ci,j′ , di,j′))〉 from T . If Ci is not satisfied by Ψ,
then create this last transfer for j ′ = 1, 2 (see Figure 2). The number of transfers over all m clauses
is m + (m − ρ), where (m − ρ) is the number of unsatisfied clauses.

Consider every pair of literals Ci,j and Ci′,j′ such that Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , and i < i ′. As
a shorthand, denote the index i, j, i ′, j ′ as 1 and the index i ′, j ′, i, j as 2, and let k ′ = (k + 1)mod2,
for k = 1, 2 . If it is the case that Ci,j = Ci′,j′ = true, then create the four lateral transfers:

• from 〈pS(αk), αk〉 to 〈pS(γk′), γk′〉, involving 〈pT(γk′), γk′〉,

• from 〈pS(βk), βk〉 to 〈pS(δk′), δk′〉, involving 〈pT(δk′), δk′〉,

for k = 1, 2. Let g(lcaS(αk, βk)) = lcaT(αk, βk), for k = 1, 2.
If Ci,j = Ci′,j′ = false, then create the four lateral transfers:

• from 〈pS(γk), γk〉 to 〈pS(αk′), αk′〉, involving 〈pT(αk′), αk′〉,

• from 〈pS(δk), δk〉 to 〈pS(βk′), βk′〉, involving 〈pT(βk′), βk′〉,

for k = 1, 2. Let g(lcaS(γk′ , δk′)) = lcaT(αk, βk), for k = 1, 2. On the other hand, if Ci,j = Ci′,j′

and Ci,j = true, create the four transfers:

• from 〈pS(α1), α1〉 to 〈pS(α2), α2〉, involving 〈pT(α2), α2〉,

• from 〈pS(β1), β1〉 to 〈pS(β2), β2〉, involving 〈pT(β2), β2〉,

• from 〈pS(γ2), γ2〉 to 〈pS(γ1), γ1〉, involving 〈pT(γ1), γ1〉,

• from 〈pS(δ2), δ2〉 to 〈pS(δ1), δ1〉, involving 〈pT(δ1), δ1〉,

Let g(lcaS(α1, β1)) = lcaT(α1, β1) and g(lcaS(α2, β2)) = lcaT(α2, β2).
As a last case, if Ci,j = Ci′,j′ and Ci,j = false, create the four transfers:

• from 〈pS(α2), α2〉 to 〈pS(α1), α1〉, involving 〈pT(α1), α1〉,

• from 〈pS(β2), β2〉 to 〈pS(β1), β1〉, involving 〈pT(β1), β1〉,

• from 〈pS(γ1), γ1〉 to 〈pS(γ2), γ2〉, involving 〈pT(γ2), γ2〉,

• from 〈pS(δ1), δ1〉 to 〈pS(δ2), δ2〉, involving 〈pT(δ2), δ2〉,
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Let g(lcaS(α2, β2)) = lcaT(α2, β2) and g(lcaS(α1, β1)) = lcaT(α1, β1). Each case creates four
transfers, hence the number of transfers over all pairs is 4k.

Finally, for every vertex εi,j,i′,j′,1 ∈ ε, create a lateral transfer from arc 〈pS(εi,j,i′,j′,1), εi,j,i′,j′,1〉
to arc 〈pS(g−1(r(ε ′

i,j,i′,j′))), g
−1(r(ε ′

i,j,i′,j′))〉, involving 〈pT(r(ε ′
i,j,i′,j′)), r(ε

′
i,j,i′,j′)〉 from T . The

number of lateral transfers is 2k.
It can be verified that this is a valid 1-active scenario, which requires 9m + 6k + (m − ρ) =

τ + (m − ρ) lateral transfers. ❑

It is now easy to show that the first condition of Definition 4 is satisfied. Starting from an
optimal truth assignment ΨOPT that satisfies OPTΦ clauses from Φ, by Claim 1 we can build a
1-active scenario of cost τ + (m − OPTΦ). If we denote by OPTT,S the cost of the optimal scenario
on T and S, then OPTT,S ≤ τ + (m − OPTΦ) ≤ (γ + 1)m. Moreover, it is not hard to see that
a random truth assignment satisfies each clause with probability 3/4, and hence it is not hard to
find (even deterministically) an assignment OPTΦ that satisfies 3m/4 clause (e.g., see [8]). Thus,
without loss of generality we may assume that OPTΦ ≥ 3m/4. By combining the two inequalities
we have OPTT,S ≤ a · OPTΦ, where a =

4(γ+1)
3 . This completes the first part of the proof.

Let’s now verify the second condition. Suppose we are given a 1-active lateral transfer scenario
for T and S of cost c ′. We can assume without loss of generality that c ′ ≤ τ + m, otherwise we
could choose any scenario built from an arbitrary assignment to replace the given one. Observe
that Claims 1-8 in [7] are true for the given scenario, while Claim 9 in [7] must be slightly modified
to fit our construction. This is the modified result:

Claim 2 [7] In any 1-active scenario for T and S, at least one element of Xi = {r(Ti,j) : 1 ≤ j ≤ 2}

is the tail of an arc involved in a lateral transfer, for every i. This requires ≥ m lateral transfers.

Proof. Follows from the observation that, by the 1-activity conditions, only one element from Xi

may be mapped to r(BSi
). ❑

Note that Claims 1-8 in [7] together with Claim 2 imply that a lower bound on the cost of
any lateral transfer scenario for T and S is equal to τ. We now show that, starting from the given
scenario, it is always possible to build in polynomial time a new scenario of cost ≤ c ′, which induces
a consistent truth assignment on Φ. That is, we are able, by looking at the new scenario, to assign
a truth value to every literal of Φ in a consistent way, i.e. all literals referring to the same variable
will be assigned the same truth value. This new scenario and its induced truth assignment will
satisfy Condition 2 of Definition 4 with b = 1.

Let Xv be a variable from the variable set X and Ωv = {Ci,j : Xv appears in Ci,j}, ωv = |Ωv|.
Let T̃i,j =≺≺ ai,j · ci,j 	 · ≺ bi,j · di,j 		 and Fv be a forest of subtrees of T defined as Fv =

{T̃i,j : Ci,j ∈ Ωv} ∪ {ε ′
i,j,i′,j′ : Ci,j, Ci′,j′ ∈ Ωv}. Moreover, let kv = |{〈i, j, i ′, j ′〉 : Ci,j, Ci′,j′ ∈

Ωv and i < i ′}| and define τ̃v = 2ωv + 4kv.
We say that a literal Ci,j is well-assigned if the corresponding gene subtree T̃i,j has exactly two

arcs involved in lateral transfers. This implies that either g(lcaS(ci,j, di,j)) = lcaT(ci,j, di,j) (the
literal Ci,j is assigned true) or g(lcaS(ai,j, bi,j)) = lcaT(ci,j, di,j) (the literal Ci,j is assigned false).

We also say that literal Ci,j is inconsistent with respect to Ci′,j′ if one of the two following
conditions holds:

• Ci,j = Ci′,j′ , and i) g(lcaS(ci,j, di,j) = lcaT(ci,j, di,j) and g(lcaS(ci′,j′ , di′,j′) �= lcaT(ci′,j′ , di′,j′)

or ii) g(lcaS(ai,j, bi,j) = lcaT(ci,j, di,j) and g(lcaS(ai′,j′ , bi′,j′) �= lcaT(ci′,j′ , di′,j′).

• Ci,j = Ci′,j′ , and i) g(lcaS(ci,j, di,j) = lcaT(ci,j, di,j) and g(lcaS(ai′,j′ , bi′,j′) �= lcaT(ci′,j′ , di′,j′)

or ii) g(lcaS(ai,j, bi,j) = lcaT(ci,j, di,j) and g(lcaS(ci′,j′ , di′,j′) �= lcaT(ci′,j′ , di′,j′).
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Let Ii,j be the set of all literals that are inconsistent w.r.t. Ci,j and ii,j = |II,J|.

Claim 3 If no Ci,j ∈ Ωv is well-assigned, then at least τ̃v + ωv arcs in Fv are involved in lateral
transfers. If there exists a well-assigned Ci,j ∈ Ωv, then at least τ̃v + ii,j arcs in Fv are involved in
transfers.

Proof. By Claims 7 and 8 in [7], τ̃ is a lower bound on the number of arcs in Fv that are involved
in lateral transfers. The first part of the claim follows immediately from the fact that for each non
well-assigned literal Ci,j at least three transfers are required for T̃i,j, that is an additional transfer
for every literal w.r.t. the minimum scenario.

Now suppose that Ci,j ∈ Ωv is well-assigned, and assume that g(lcaS(ci,j, di,j)) = lcaT(ci,j, di,j),
i.e. Ci,j is true. Consider a second literal Ci′,j′ ∈ Ωv that is inconsistent w.r.t. Ci,j, and assume for
example that Ci,j = Ci′,j′ . If Ci′,j′ is not well-assigned, then T̃i′,j′ has at least three arcs involved in
lateral transfers. Conversely, if Ci′,j′ is inconsistent and well-assigned, it is straightforward to verify
that g(lcaS(ai′,j′ , bi′,j′)) = lcaT(ci′,j′ , di′,j′), since any different mapping would require more than
two arcs from T̃i,j involved in transfers. Moreover, the path from pT(bi′,j′) to ai′,j′ in T blocks the
path from pS(βi′,j′,i,j) to αi′,j′,i,j in S, where by blocks we mean that at least one vertex belonging
to the path on T is mapped to a vertex from the path on S. Equally, the path from pT(di,j) to
ci,j in T blocks the path from pS(δi,j,i′,j′) to γi,j,i′,j′ in S. Now, since both paths are blocked, for
any valid scenario built under these assumptions at least three arcs in the subtree ε ′

i′,j′,i,j must be
involved in lateral transfers. An example of this case is given in figure 4 (i).

For the symmetric case where g(lcaS(ai,j, bi,j)) = lcaT(ci,j, di,j) and g(lcaS(ci′,j′ , di′,j′)) =

lcaT(ci′,j′ , di′,j′), i.e. Ci,j is false and Ci′,j′ is true, a similar argument shows that T̃i′,j′ or ε ′
i,j,i′,j′

require at least three lateral transfers.
We can therefore conclude that in both cases at least seven arcs from the subtrees T̃i′,j′ , ε ′

i,j,i′,j′
and ε ′

i′,j′,i,j are involved in lateral transfers; that is, the given scenario requires on these subtrees at
least one transfer more than the minimum scenario, which reaches the lower bound of six implied by
Claims 7-8 in [7]. A similar reasoning establishes the same result for the cases where Ci,j = Ci′,j′ .

Hence, for every literal not consistently assigned w.r.t Ci,j, at least one additional lateral transfer
is required. Thus, ≥ τ̃v + ii,j arcs of Fv are involved in transfers.

❑

We will now describe a simple procedure to build a new scenario of cost ≤ c ′ that is based
on the given scenario as a starting point. Construct a truth assignment Ψ : X −→ {true, false}
on Φ in the following way. For each variable Xv, v = 1, . . . , n, check if there exists (can be done
in linear time) some literal Ci,j ∈ Ωv which is well-assigned. If this is the case, assign to Xv the
truth value read from Ci,j, i.e. Ψ(Xv) = true if g(lcaS(ci,j, di,j)) = lcaT(ci,j, di,j) and Ψ(Xv) = false
if g(lcaS(ai,j, bi,j)) = lcaT(ci,j, di,j). If no literal in Ωv is well-assigned, then assign to Xv an
arbitrary truth value. Now follow the procedure described in Claim 1 and build a scenario from Ψ.
An example of this procedure is given in figure 4. As a shorthand, call LTSI the given scenario and
LTSF the new scenario built from Ψ.

We say that a clause Ci is satisfied by a lateral transfer scenario on T and S if exactly one
element from the set {r(Ti,j) : 1 ≤ j ≤ 2} is the tail of an arc involved in a lateral transfer. Clearly,
this is true only if ∃j s.t. g(lcaS(ci,j, di,j)) = lcaT(ci,j, di,j).

LTSF has cost ca = τ + (m − ρ), where ρ is the number of clauses that Ψ satisfies. In other
words, LTSF has a minimum number of transfers on all subtrees of S, except on the subtrees BSi

corresponding to those clauses Ci that are not satisfied by Ψ, where an additional lateral transfer
(w.r.t. the minimum cost scenario on this tree) is required. Claims 1-8 in [7] and Claim 2 establish
that τ is a lower bound for any valid scenario, hence c ′ ≥ τ. Moreover, a clause that is not satisfied
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in LTSF can be satisfied by LTSI only by a non well-assigned literal Ci,j (in the case where Ci,j ∈ Ωv

and Xv is arbitrarily assigned) or by a literal which is inconsistent w.r.t. the chosen assignment
Ψ(Xv). By Claim 3, this implies that LTSI has at least one lateral transfer more than the minimum
scenario for each clause that is true in LTSI and false in LTSF. Hence, c ′ ≥ τ + (m − ρ).

Therefore, given any scenario on S and T , we are able to build in polynomial time a new scenario
of cost τ+(m−ρ) ≤ c ′ which corresponds to a valid truth assignment on Φ that satisfies ρ clauses.
Hence, condition 2 of Definition 4 holds with b = 1. The theorem follows.

3 Hardness of Approximation of the α-active LGT PROBLEM

(Proof of Theorem 2(a))

Once again, we L-reduce from Max-2Sat-B. Let T∗ and S∗ respectively be the gene and species
tree of the α-active LGT Problem instance. Build T∗ and S∗ by following the procedure given
in [7]. The details on this construction are here omitted. Starting from an optimal truth assignment
ΨOPT that satisfies OPTΦ clauses from Φ, first create a 1-active scenario on T and S by applying the
construction described in Claim 1. Use this scenario to construct an α-active scenario for T∗ and
S∗ as shown in [7]. The cost of this scenario is τ∗ + (m− OPTΦ), where τ∗ = τ + (α − 1), and hence
OPTT∗,S∗ ≤ τ∗ + (m − OPTΦ). From Theorem 1, we know that τ ≤ γm, where γ = 9 + 6B(B − 1).
For all sufficiently large values of m, we have τ∗ ≤ (γ + 1)m and OPTT∗,S∗ ≤ (γ + 2)m. Thus, the
the first condition from Definition 4 is satisfied, with a =

4(γ+2)
3 .

Consider now an α-active scenario for T∗ and S∗ of cost c∗. We can assume w.l.o.g. that
c∗ ≤ τ∗ + m; if this were not the case, any scenario built from an arbitrary truth assignment would
do better, and we could use this scenario as a starting point. Notice that any α-active scenario
requires at least α − 1 lateral transfers for subtrees T1, . . . , Tα−1 and S∗. Therefore, at most τ + m

transfers are involved in the partial scenario for T and S∗. By Claim 11 of [7], the α-active scenario
for T and S∗ induces a 1-active scenario for T and S of cost ≤ τ + m. It has been shown that any
1-active scenario for T and S of cost c ′ induces a truth assignment on Φ that satisfies ρ clauses,
where ρ is s.t. c ′ ≥ τ + (m − ρ). It follows that c∗ = c ′ + (α − 1) ≥ τ∗ + (m − ρ). Thus, the the
second condition of Definition 4 is satisfied with b = 1. This concludes our proof.

4 Hard Inapproximability Bounds (Proofs of Theorem 1(b) and

Theorem 2(b))

Berman and Karpinski [3] proved that it is NP-hard to approximate Max-2Sat-3 to within a factor
2012/2011 − κ, for every κ > 0. The following result from [10] allows us to compute approximation
ratios that are NP-hard to achieve for the 1-active and α-active LGT Problem from that of
Max-2Sat-3.

Proposition 1 [10] Let Π and Π ′ be two optimization problems. If Π L-reduces to Π ′ , and there is
a polynomial time approximation algorithm for Π ′ with worst-case error ε, then there is a polynomial
time approximation algorithm for Π with worst-case error abε, where a and b are the constants of
the L-reduction.

Proposition 1 can be stated equivalently as follows: if approximating Π to within an approxi-
mation ratio smaller than 1 + ε is NP-hard, then achieving an approximation ratio for Π ′ smaller
than 1 + ε/(ab) is also NP-hard.
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Consider the L-reduction for the 1-active case. We have a =
40+24B(B−1)

3 , which implies a =

184/3 for B = 3, and b = 1. It follows that, for the 1-active LGT Problem it is NP-hard to
achieve an approximation ratio of 370027/370024 − κ, for every κ > 0.

Similarly, for the α-active case, a =
44+24B(B−1)

3 , which implies a = 188/3 for B = 3, and b = 1.
This shows that it is NP-hard to approximate the α-active LGT Problem to within a factor of
378071/378068 − κ, for every κ > 0.

5 Upper Bound of Cost of 1-active Scenario (Proof of Lemma 1)

We first describe a procedure to build a 1-active scenario of cost n − 2 for any given gene and
species trees. Let T be a gene tree and S be a species tree that satisfy L(T) = L(S). We order the
internal vertices (i.e. all vertices except the leaves) of T , by imposing the ordering produced by a
post-order traversal on the subtree of T containing the internal nodes only. Recall that a post-order
traversal processes all vertices of a tree by recursively visiting all subtrees, then finally processing
the root. Let {a1, a2, . . . , an−1} be the ordered sequence of internal vertices, where an−1 is the root
of T .

In the following description we will slightly abuse of notation, by applying the concepts of parent
and children to nodes of S ′. In this context, pS′(v), where v ∈ V(S ′) has in-degree one, denotes the
tail of v’s unique incoming arc; lsS′(v) and rsS′(v), where v ∈ V(S ′) ∩ V(S), respectively refer to
the nodes of S ′ that are first in the paths from v to lsS(v) and from v to rsS(v). We will now give
a procedure to build a scenario (S ′, A ′, g) for T and S. Let g(l) = l for all l ∈ L(S) and, for every i

from 1 to n − 2, create the following lateral transfer:

• from arc 〈pS′(g−1(lsT(ai))), g
−1(lsT(ai))〉 to arc 〈pS′(g−1(rsT(ai))), g

−1(rsT(ai))〉, involving
〈ai, rsT(ai)〉 from T ,

Note that the post-ordering ensures that both children of ai have been processed when vertex
ai is considered, hence g−1(rsT(ai)) and g−1(rsT(ai)) are defined. Also, observe that all lateral
transfers in this scenario are incident on arcs of S that connect parents to leaves. Now, let b =

lcaS′(g−1(lsT(r(T)), g−1(rsT(r(T))), and for all vertices vi belonging to the path connecting lsS′(b)

to g−1(lsT(r(T)), let g(vi) = lsT(r(T). Similarly, for all vertices ui belonging to the path connecting
rsS′(b) to g−1(rsT(r(T)), let g(ui) = rsT(r(T). Finally, map all vertices in the path from the root
of S to b, to the root of T . An example of this procedure is shown in Figure 3.

It is straightforward to verify that the resulting scenario does not contain mixed cycles, since
all transfers are non-intersecting by construction. In addition, all conditions from Definition 2 are
satisfied, hence the procedure yields a valid 1-active scenario. It is also easy to see that the running
time of this algorithm is linear in the size of the trees.

We now show that this upper bound is tight by giving a simple example of a gene tree and a
species tree that require at least n − 2 lateral transfers for any 1-active scenario.

Let L be the set of labels {ai : 1 ≤ i ≤ n}, where n is a positive constant. Consider the gene
tree T and species tree S shown in figure 5, both over the same set of labels L:

T =≺
n∏

i=1

ai 	

S =≺
1∏

i=n

ai 	
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We will show that any 1-active scenario for T and S requires at least n − 2 lateral transfers. The
result follows from the following Claim.

Claim 4 Let X = {pT(ai) : 1 < i < n}, that is, X is the set all internal nodes of T except the root.
In any 1-active lateral transfer scenario for T and S, every element of X is tail of an arc involved
in a lateral transfer.

Proof. Assume that a node x ∈ X is not tail of an arc of T involved in a lateral transfer. This
means that x �∈ g(v), for all nodes v ∈ V(S ′) \ V(S), which implies that there exists a node y ∈ S

such that x ∈ g(y), where y ≥S lcaS(x). But lcaS(x) = r(S) for all x ∈ X, hence y = r(S). This is
a contradiction, since r(T) ∈ g(r(S)), by Condition 1 of Definition 2, and x �= r(T). It follows that
x must be involved in a lateral transfer. ❑

Therefore, any 1-active scenario for T and S has at least |X| = n − 2 lateral transfers.
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APPENDIX

Our construction of T and S from Φ is taken from the NP-completeness proof given in [7]. The
only difference is that in our case the index j in Ci,j ranges between 1 and 2, rather than 1 and 3

(their reduction is from 3Sat). For the convenience of readers, we review this construction here.

5.1 Construction of T

The gene tree T consists of four subtrees:

• the twister gadgets T used to assign the variables,

• the road block gadgets R used to control the variable selection,

• the enforcement gadgets ε used to force consistency of a truth assignment,

• the backbone gadgets B used to constrain the shape of the scenario.

Twister T Subtree. For every literal Ci,j in Φ, construct, over the set of leaves {ai,j, bi,j, ci,j, di,j, ei,j},
the subtree:

Ti,j =≺≺ ai,j, ci,j 	 · ≺ bi,j, di,j 	 ·ei,j 	 .

The subtree T is built from all subtrees Ti,j and an additional set of leaves {ti,j,k : 1 ≤ k ≤ τ+} as:

T =≺
m∏

i=1

2∏
j=1


≺ Ti,j ·

τ+∏
k=1

ti,j,k 	


 	 .

Road Block R Subtree. For each literal Ci,j in Φ, create the set of leaves {ri,j,k : 1 ≤ k ≤ τ+}∪ {r ′i,j,k :

1 ≤ k ≤ τ+}. Let R be the subtree:

R =≺
m∏

i=1

2∏
j=1

≺ R ′
i,j · Ri,j 		, R ′

i,j =≺
τ+∏
k=1

r ′i,j,k 	, Ri,j =≺
τ+∏
k=1

ri,j,k 	 .

Enforcer ε Subtree. For each pair of literals Ci,j and Ci′,j′ in Φ, i < i ′, such that Ci,j = Ci′,j′ or
Ci,j = Ci′,j′ , create two subtrees on the following set of leaves:

{αi,j,i′,j′ , αi′,j′,i,j, βi,j,i′,j′ , βi′,j′,i,j, γi,j,i′,j′ , γi′,j′,i,j, δi,j,i′,j′ , δi′,j′,i,j}

∪ {εi,j,i′,j′,k : 1 ≤ k ≤ τ+} ∪ {εi′,j′,i,j,k : 1 ≤ k ≤ τ+}.

If Ci,j = Ci′,j′ (either literals both positive or both negative in Φ), create the subtree:

ε ′
i,j,i′,j′ =≺≺ αi,j,i′,j′ · γi′,j′,i,j 	 · ≺ βi,j,i′,j′ · δi′,j′,i,j 		,

ε ′
i′,j′,i,j =≺≺ αi′,j′,i,j · γi,j,i′,j′ 	 · ≺ βi′,j′,i,j · δi,j,i′,j′ 		,

εi,j,i′,j′ =≺≺ ε ′
i,j,i′,j′ ·

τ+∏
k=1

εi,j,i′,j′,k 	 · ≺ ε ′
i′,j′,i,j ·

τ+∏
k=1

εi′,j′,i,j,k 		 .

If Ci,j = Ci′,j′ (one literal positive and the other negative in Φ), create the subtree:

ε ′
i,j,i′,j′ =≺≺ αi,j,i′,j′ · αi′,j′,i,j 	 · ≺ βi,j,i′,j′ · βi′,j′,i,j 		,
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ε ′
i′,j′,i,j =≺≺ γi′,j′,i,j · γi,j,i′,j′ 	 · ≺ δi′,j′,i,j · δi,j,i′,j′ 		,

εi,j,i′,j′ =≺≺ ε ′
i,j,i′,j′ ·

τ+∏
k=1

εi,j,i′,j′,k 	 · ≺ ε ′
i′,j′,i,j ·

τ+∏
k=1

εi′,j′,i,j,k 		 .

Finally, construct the ε subtree as follows:

ε =≺
m−1∏
i=1

2∏
j=1

m∏
i′=i+1

2∏
j′=1

{
εi,j,i′,j′ if Ci,j = Ci′,j′ or Ci,j = Ci′,j′ and i �= i ′

� otherwise

}
	 .

Backbone B Subtree. Construct, over the set of leaves {fi,k : 1 ≤ i ≤ m,1 ≤ k ≤ τ+}, the subtree:

B =≺
m∏

i=1

≺
τ+∏
k=1

fi,k 		 .

Finally, let the gene tree T be equal to: T =≺ T · R · ε · B 	 .

5.2 Construction of S

The species tree S is composed of four subtrees, TS,RS, εS,BS, which ”complement” those of T .

Twister Support TS Subtree. Construct, for each literal Ci,j in Φ, a subtree TSi,j
over the set

of labels {ti,j,k : 1 ≤ k ≤ τ+}:

TSi,j
=≺

τ+∏
k=1

ti,j,k 	 .

Now build TS from the set TSi,j
as:

TS =≺
m∏

i=1

2∏
j=1

TSi,j
	 .

Road Block Support RS Subtree. Repeat the construction for TS changing the leaf set to {r ′i,j,k : 1 ≤
k ≤ τ+}:

RSi,j
=≺

τ+∏
k=1

r ′i,j,k 	 .

Let RS be equal to:

RS =≺
m∏

i=1

2∏
j=1

RSi,j
	 .

Enforcer Support εS Subtree. For each pair of literals Ci,j and Ci′,j′ in Φ, i < i ′, such that
Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , create a subtree εSi,j,i ′,j ′ on the following set of leaves:

{εi,j,i′,j′,k : 1 ≤ k ≤ τ+} ∪ {εi′,j′,i,j,k : 1 ≤ k ≤ τ+}.

εSi,j,i ′,j ′ =≺
τ+∏
k=1

εi,j,i′,j′,k· ≺
τ+∏
k=1

εi′,j′,i,j,k 		 .

15



Then construct the subtree εS from the set of εSi,j,i ′,j ′ :

εS =≺
m−1∏
i=1

2∏
j=1

m∏
i′=i+1

2∏
j′=1

{
εSi,j,i ′,j ′ if Ci,j = Ci′,j′ or Ci,j = Ci′,j′ and i �= i ′

� otherwise

}
	 .

Backbone Support BS Subtree. For every literal Ci,j in Φ, create the subtree BSi,j
over the following

set of leaves:
{ai,j, bi,j, ci,j, di,j} ∪ {ri,j,k : 1 ≤ k ≤ τ+} ∪

{αi,j,i′,j′ : Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′} ∪ {βi,j,i′,j′ : Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′} ∪

{γi,j,i′,j′ : Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′} ∪ {δi,j,i′,j′ : Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′}.

The subtree BSi,j
is equal to:

BSi,j
=≺ ai,j ·




m∏
i ′=1
i′ �=i

2∏
j′=1

{
αi,j,i′,j′ · βi,j,i′,j′ if Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′

� otherwise

}
 ·

bi,j ·




τ+∏
k=1

ri,j,k


 ·ci,j ·




m∏
i ′=1
i′ �=i

2∏
j′=1

{
γi,j,i′,j′ · δi,j,i′,j′ if Ci,j = Ci′,j′ or Ci,j = Ci′,j′ , i �= i ′

� otherwise

}
 ·di,j 	

For each clause Ci create the set of leaves {ei,j : 1 ≤ j ≤ 2} and build the subtree ei =≺ ei,1 · ei,2 	 .

Create the subtree BSi
=≺ BSi,1

· BSi,2
· ei 	. Lastly, create the additional set of leaves {fi,j : 1 ≤

i ≤ m,1 ≤ j ≤ τ+}, and construct BS as follows:

BS =≺
m∏

i=1


≺ BSi

·
τ+∏
k=1

fi,k 	


 	 .

Finally, let the species tree S be equal to: S =≺ TS · RS · εS · BS 	 .
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t1
t2

tn-1

tn

T

Figure 1: The tree T =≺ t1 · t2 · . . . · tn 	.

ei

ei,1 ei,2

Bsi

ai,2 bi,2

ci,2

di,2

ri,2,1
ri,2,τ+

ai,1
bi,1

ci,1

di,1

ri,1,1
ri,1,τ+

Bsi,1
Bsi,2

(i)

ei

ei,1 ei,2

Bsi

ai,2 bi,2

ci,2

di,2

ri,2,1
ri,2,τ+

ai,1
bi,1

ci,1

di,1

ri,1,1
ri,1,τ+

Bsi,1
Bsi,2

(ii)

Figure 2: Lateral transfer scenario for subtree BSi
when the corresponding clause Ci is (i) satisfied

and (ii) not satisfied. Notice that the scenario requires one transfer more for non satisfied clauses.

T:

b1 b2 b3 b4 b5 b1 b2 b3b4 b5

x1 x2

x3
x4 x5

x6

x7S:

(i) (ii)

Figure 3: An example of scenario built from the construction procedure illustrated below. (i)
is the gene tree and (ii) the scenario built on the species tree. The dashed arcs are the lateral
transfers. Here, g(x1) = {b1b2}, g(x2) = {b3b4}, g(x3) = g(x4) = {b1b2b3b4}, g(x5) = g(x6) = {b5},
g(r(S)) = r(T). Note that this isn’t the minimum scenario.
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 f(v) = c1,1, a1,1
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a1,1 b1,1c1,1 d1,1 e1,1

T1,1
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d1,1

a1,1

b1,1

c1,1

r1,1,τ+

r1,1,1

α1,1,

2,1

β1,1,
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2,1

δ1,1,

2,1

Bs2,1
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r2,1,τ+

r2,1,1

α2,1,

1,1

β2,1,

1,1

γ2,1,

1,1

δ2,1,

1,1

Figure 4: Consider the formula Φ= (X1 ∨ X2)(X1 ∨ X2). (i) represents a partial scenario where
literals C1,1 and C2,1 are well-assigned and inconsistent (C1,1 is assigned true and C2,1 false). The
figure on the left depicts the twister gadgets (T1,1,T2,1) and enforcement gadgets (ε ′

1,1,2,1, ε
′
2,1,1,1)

corresponding to the literals (C1,1, C2,1) which are instances of X1. The dashed arcs are involved
in lateral transfers. The dashed arrows in the figure on the right represent the lateral transfers.
Notice that both paths from pS(δ1,1,2,1) to γ1,1,2,1 and from pS(β2,1,1,1) to α2,1,1,1 are blocked re-
spectively by {c1,1, a1,1} ,{a2,1, c2,1} ∈ T . Thus, an additional transfer from arc 〈pS(δ1,1,2,1), δ1,1,2,1〉
to 〈pS(γ1,1,2,1), γ1,1,2,1〉 is necessary. (ii) represents the new partial scenario obtained by applying
the procedure described below to the scenario depicted in (i). Here we are assuming that the pro-
cedure assigns to X1 the value read from the well-assigned literal C2,1 (false). Notice that this new
scenario has one transfer less (it is a minimal partial scenario for these subtrees).
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a1
a2

a3

a4

a5

a6 a1

a2

a3

a4

a5a6

T: S:

{a1a2a3a4a5a6} ∈ g(xi), i = 5,6,7,8,9
{a1a2a3a4a5} ∈ g(x4)

{a1a2a3a4} ∈ g(x3)
{a1a2a3} ∈ g(x2) 

{a1a2} ∈ g(x1)  

x1

x2

x3

x4

x5

x6

x7

x8

x9

(i) (ii)

Figure 5: An example of gene tree T (i) and the species tree S (ii) with n = 6. The dashed arcs in
(ii) represent the lateral transfers. Note that 4 transfers are necessary for any scenario.
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