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Abstract
We are given a two dimensional arrayA�� � � �n� � � � �n� where
each A�i� j� stores a non�negative number� A �rectan�
gular� tiling of A is a collection of rectangular portions
A�l � � � r� t � � � b�� called tiles� such that no two tiles overlap
and each entry A�i� j� is contained in a tile� The weight of a
tile is the sum of all array entries in it�

In the MAX�MIN problem� we are given a weight bound
W and our goal is to �nd a tiling such that �a� each tile is
of weight at least W �the MIN condition� and �b� the number
of tiles is maximized �the MAX condition�� In the MIN�MAX

problem� we are given a weight bound W again and our goal
is to �nd a tiling such that �a� each tile has weight at most
W and �b� the number of tiles is minimized� These two basic
problems have many variations depending on the weight
functions� whether some areas of A must not be covered�
or whether some portion of A may be discarded� etc� These
problems are not only natural combinatorial problems� but
also arise in a plethora of applications� e�g�� in databases and
data mining� video compression� load balancing� building
index structures� manufacturing and so forth�

Both the above tiling problems �as well as all of their

variations relevant to this paper� are known to be NP�hard�

In this paper� we present approximations algorithms for solv�

ing these problems based on epicurean methods 	 variations

of a basic slice�and�dice technique� Surprisingly� these sim�

ple algorithms yield small constant factor approximations

for all these problems� For some of the problems� our results

are the �rst known approximations
 for others� our results

improve the known algorithms signi�cantly in approxima�

tion bounds and�or running time� Of independent interest

are the tight bounds we show for sizes of the binary space

partition trees for isothetic rectangles�

� Introduction

The problems considered in this paper resemble cutting
a pie� albeit with some idiosyncrasies� The pieces we
cut are rectangles� not wedges or squares� so each piece
resembles a Sicilian Pie� The pie itself is rectilinear in
shape� Furthermore� the pie is not uniformly done �
there are portions of the pie we need to avoid� some
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we do not care about� and some we may carve out
of consideration� As an epicurean instance� this may
be far�fetched but the formal problems we study of
this �avor are quite natural and arise in a plethora of
applications�

The problems we study concern tiling a rectilinear
region to optimize a MAX�MIN or MIN�MAX criteria� These
problems are well�motivated from a number of applica�
tions in� for example� databases and data mining� video
compression and manufacturing� Some of these prob�
lems have a rich history while the others are novel� All
of them are NP�hard�� so our focus is on providing ap�
proximation results� Our main results are e�cient im�
proved algorithms for these problems with small con�
stant factor approximations� We obtain these results
using variations of simple slicing and dicing of the recti�
linear region� In what follows� we present our problems
and results formally�

��� Formal Statement of Problems We start
with two basic problems to focus this discussion� We
are given a two dimensional array A�� � � �n� � � � �n� of
size N 	 n� where each A�i� j� stores a non�negative
number� A 
rectangular� tiling of A is a collection of
rectangular portions A�l � � � r� t � � � b�� called tiles� such
that no two tiles overlap and each entry A�i� j� is
contained in a tile� The weight of a tile is the sum of all
array entries in it��

In the MAX�MIN problem� we are given a weight
bound W and our goal is to �nd a tiling such that 
a�
each tile is of weight at least W 
the MIN condition� and

b� the number of tiles ismaximized 
the MAX condition��
Obviously� there is a feasible solution if and only if sum
of all elements of A is at leastW � the entire array being
a trivial tile� In the MIN�MAX problem� we are again
given a weight bound W and our goal is to �nd a tiling

�In contrast� if one were to cut a french bread� i�e�� one dimen�
sional array� even under similar conditions we have outlined above�
it corresponds to one dimensional versions of our problems all of
which are solvable in polynomial time by dynamic programming
or greedy methods�

�Unless otherwise stated� in our description of the tiling
problems we will use bold letters to denote arrays�rectangles� and
respective regular letters to denote their weights� In particular�
input array A has weight A� and Ri� the ith row of of a two�
dimensional array A� has weight Ri�



such that 
a� each tile has weight at most W � and 
b�
the number of tiles is minimized� Obviously� there is a
feasible solution if and only if each array item is at most
W � the collection of each array element being a trivial
tiling�

Both versions of the basic problem are natural and
have good motivations� However� to our knowledge�
the MAX�MIN version has not been studied in literature
before�� while MIN�MAX problem has been studied many
times within the Algorithms community �
� ��� ��� ���
��� ��� 
see ���� for some background�� Later on� our
main focus in considering applications of these problems
will lead to variations of these tiling problems where�
in general� the weight of a tile is a more complicated
function of the tile elements� Furthermore� there are
novel variations of these problems where 
a� array A
may have holes 
rectilinear regions� that should not
be covered� or 
b� a given number of tiles of A may
be removed� etc� We will show how to modify our
techniques for solving the two basic problems stated
above to address all these variations� We will discuss
those variations and applications in Section � and focus
only on the two basic problems for most part�

��� Our ResultsWe use variations of what we infor�
mally refer to as �slice�and�dice� technique 
or simply
slicing and dicing� to obtain e�cient approximation al�
gorithms for the abovementioned tiling problems� More
speci�cally� our main results are threefold�

�� �Greedy Slice�and�Dice�We present the �rst known
approximation algorithm for the MAX�MIN problem�

it uses at least
�
�
�

�rd
of the maximum number of

rectangles each of weight at least W � if the array
elements can assume only binary values� which is
an important special case� this ratio �

� is improved
to �

� � The algorithm is based on greedily slicing the
array into strips and dicing each slice� the running
time is linear 
in fact� linear in the number of non�
zero elements of the given array� and is very simple
to implement� The technical crux of this result in
the analysis of the slice and dice technique�

Although the MAX�MIN problem appears to be
closely related to the MIN�MAX version� there are
fundamental di�erences� In particular� if we take a
feasible solution for the MIN�MAX problem and fur�
ther divide some of the tiles� the solution remains
a feasible solution� hence a slice that is di�erent
from the optimal one may be ��xed� with a few
additional slices� In contrast� this property does
not hold for the MAX�MIN problem� and as a result

�This problem came up in a personal communication �����

it is crucial that the slices be almost perfect�� Our
greedy slice�and�dice algorithm is similar in �avor
to that for the MIN�MAX problem from �
�� however�
details� analysis and lower bounds used are all quite
di�erent� It is very surprising that a simple greedy
slice�and�dice algorithm works well for the MAX�MIN
version of the tiling problem�

�� �Recursive Slice�and�Dice� Binary Space Parti�
tions� A recursive application of the slice�and�dice
solution to a tiling problem can be thought as a
Binary Space Partition 
BSP� of the tiles 
rectan�
gles�� Therefore� a general approach to solving the
tiling problems is to use BSPs of isothetic rectan�
gles� wherein the size of the BSP a�ects the quality
of approximation of our solution� 
See Section ���
for the de�nition and further details� BSPs for var�
ious objects are of signi�cant independent interest
in general�� For the purpose of our applications� it
is su�cient to consider a special type of BSP� com�
monly called Binary Space Auto�partition� in which
every cut is either a horizontal or a vertical line�

We show that given n isothetic rectangles� there
exists a binary space auto�partition tree 
and�
hence a BSP tree� of size at most �n��� If the given
set of rectangles partition their smallest rectangular
bounding box 
which is of interest to our tiling
applications�� then we prove an improved upper
bound of �n� ��

Paterson and Yao proved an upper bound of ��n
in ���� in their seminal paper� subsequent improve�
ments have led to the previous best upper bound
of �n ���� ��� Our result above improves this by
a factor of ��� in general� and a factor of � in the
tiling case� Lately� there has been a great interest
in BSPs and their applications in general ��� ��� ���
and in BSPs for rectangles in particular ����� Since
we proved this upper bound for the tiling case in
a preliminary writeup ���� Dumitrescu et al� ����
proved a lower bound of �n � o
n�� matching our
upper bound within a lower�order term��

We use our BSP results in two ways for tiling
problems�

�a� We present a bicriteria approximation algo�
rithm for the MAX�MIN problem by which we

�A feasible solution for the MAX�MIN problem will remain
feasible if we combine two or more tiles into one� but this is a
di�cult operation to coordinate because the tiles to be merge
need to be aligned� In contrast� further slicing of a tile is a simple
local operation which helps in the MIN�MAX problem�

�Dumitrescu et al� ���� proved a lower bound of �n � o�n� on
the size of auto�partition trees of n line segments each of which is
either horizontal or vertical�



produce a tiling with at least as many tiles
as in an optimum solution and still guarantee
that the tiling contains a collection of at least
�
� of the optimum number of tiles each having
weight at least �

�W � This is the �rst result
that produces no fewer tiles than the optimum
while still partly meeting the minimumweight
criteria��

�b� We improve running times of approximation
algorithms for the MIN�MAX problem using the
BSP approach� The previously best known
approximation algorithm had a performance
ratio of � but ran inN��� time� Our improved
running time 
with the same approximation

ratio� is O
N
�

� � which is more manageable�

The advantage of our BSP based approach is that
it is a general technique applicable to not only
the basic MIN�MAX and MAX�MIN problems described
before but also to their variations with di�erent
weight functions� with holes� when some parts of
the array may be removed� etc� We will brie�y
comment on this later�

�� �Slice�and�Dice with Dynamic Programming� We
consider the MIN�MAX problem where the tiles are
nearly� but not exactly� uniform 
after all� even
sloppy Sicilian pies may not be too far apart from
each other in size��� Say that the global aspect ratio�
namely� the ratio of largest side of any tile to the
smallest of any tile is bounded by a constant� We
present an O
N���� time algorithm that returns
an � � � approximation for this problem� for any
� � �� It follows from previously known results
that even this version of the problem is NP�hard�
Previous algorithms for this problem returned a ��
approximation in O
N��� time or a � approxima�

tion in O
N
�

� � time�� Here� our techniques involve
dynamic programming 
as is common in designing
PTAS� to pick the appropriate slice�and�dice com�
binations�

We further extend this result to provide a PTAS�
that is� polynomial time 
� � ���approximation for
any constant � � �� However� the running time
of the resulting algorithm� while being polynomial

�Tradeo� between the constants �

�
and �

�
is also possible� see

Theorem ��� for details�
�There has been a considerable amount of work of late in

proving e�cient solutions for geometric problems where the
objects are uniform in some local sense only �e�g�� see ��� 	���
However� it is easy to see that our technique will not provide
any better solutions if we instead assume that the aspect ratios
of individual tiles are bounded�

in N � is too prohibitive to be practical for small
values of �� This result however is of theoretical
signi�cance� the �dual� of this problem � namely
that given an upper bound B on the number of
tiles� minimize the maximum weight of the tiles �
cannot be approximated to better than a factor of
�
� 
see ������ Hence this problem is provably simpler
than its dual� the �rst such instance known for any
rectangular tiling problem�

As mentioned above� we use the slice�and�dice tech�
nique in a uni�ed way to solve the tiling problems� In
general� an informal description of this culinary tech�
nique consists of the following steps�

� We slice the array� that is� partition the input array
into a number of slices 
rectangles� satisfying cer�
tain optimization criterion depending on the prob�
lem� Such a partitioning scheme can be obtained
by either greedy slicing 
Section ��� binary space
partitions 
Section ���� or dynamic programming
on slices generated using shifting technique 
Sec�
tion 
��

� Depending on the problem� we may need to adjust
the slices locally� A local adjustment or dicing step
may typically consist of looking at a few 
typically a
small constant� number of nearby slices and repar�
titioning the entries of the input array spanned by
them to obtain satisfactory approximation results�

Some previous results have used variations or spe�
ci�c implementations of the slice�and�dice techniques
to obtain approximation algorithms for speci�c tiling
problems ���� ��� ��� 
�� Our paper uses it as a uni�
�ed framework to obtain improved approximation algo�
rithms for the MIN�MAX tiling problems as well as the
obtaining the �rst nontrivial approximation algorithms
for the MAX�MIN tiling problems� Why the slice�and�dice
technique by itself is conceptually and algorithmically
simple� the crux of our technical work is in the analy�
ses� We expect slice�and�dice to be useful elsewhere in
tiling problems in the future�

��� The Map We present our approximation algo�
rithms for the MAX�MIN problem in Section � using the
greedy slice�and�dice technique� our approximation al�
gorithms for the MIN�MAX and MAX�MIN problems us�
ing generalized slice�and�dice 
involving BSPs� in Sec�
tion ��� and our approximation algorithms for the gen�
eral MIN�MAX tiling problems with shifted slice�and�dice
technique in Section 
� In Section �� we present a
selection of applications of our results� In Section �
we present some concluding remarks with possible fu�
ture research directions� Due to space limitation� many



proofs are omitted� they are available in the full version
of the paper�

� Basic De�nitions and Notations

For a set of rectangles R�� R�� � � � � Rn� with Ri 	
�ai� bi� � �ci� di� where � denotes the Cartesian
product� let the global aspect ratio be de�ned as
max��i�nf
bi � ai�� 
di � ci�g

min��i�nf
bi � ai�� 
di � ci�g
� A rectilinear polygon is

a simple polygon with its sides parallel to the coordinate
axes� such a polygon may or may not have holes but if
the holes are present then they are also rectilinear 
de�
generate 
point� holes are allowed�� An arrayA is called
a binary array if all of its entries are either � or �� oth�
erwise it is called an arbitrary array� unless otherwise
stated� an array is an arbitrary array� A polynomial�
time approximation scheme 
PTAS� for a minimization
problem is an algorithm that takes as input an instance
of the problem of size n and a constant � � � and pro�
duces a solution whose value is at most 
� � �� times
that of the optimum solution in time polynomial in n�

� MAX�MIN Problem Via Greedy Slicing and
Dicing

In this section� we consider MAX�MIN tiling problem
in which the input is a two dimensional array A of
size n � n containing non�negative numbers and the
weight of a tile 
subarray� is the sum of all elements
of A that fall inside it� If A is sparse� containing
m non�zero entries 
n � m � N 	 n��� then it can
be e�ciently represented in O
m � n� space using the
standard representation as an array of row lists� the list
of the ith row contains an entry of the form 
j� x� for
every positive array entry A�i� j� 	 x and the row lists
are sorted by the column numbers of the entries� We
assume that our input arrays are represented this way�
The MAX�MIN tiling problem is de�ned as follows�

MAX�MIN tiling problem� Given a two dimensional
array A of size n� n containing non�negative numbers
and a positive integer W � partition A �if possible� into
a maximum number of tiles so that the minimum weight
of any tile is at least W �

We may assume that W 	 � by scaling all the
entries of A� if necessary� Now� a feasible solution for
the MAX�MIN problem is a tiling of A in which every tile
has a weight of at least �� Obviously� we may assume
that A � �� since otherwise the MAX�MIN problem has
no feasible solution� Let b 	 max��i�j�nA�i� j�� We
may assume that b � � by using the following crucial
observation�

Observation �� Given an instance array A of the

MAX�MIN problem� let A� be the array obtained from
A in which every element larger than � is replaced by
�� Then� any feasible solution for A is also a feasible
solution for A� and vice versa�

The main result of this section is as follows�

Theorem ���� There exists an approximation algo�
rithm for the MAX�MIN tiling problem that runs in O
n�
m� time and produces a tiling using at least �

r

p� � ��

tiles� where p� is the �maximum� number of tiles used by

an optimal algorithm and r 	

�
��� if A is binary
� otherwise

Proof� First� we describe a basic slicing algorithm that
is used by the algorithm� The slicing algorithm parti�
tions the input arrayA into slices� this algorithm is used
as a routine in our approximation algorithm� A slice is
a tile that consists of complete rows� The slicing algo�
rithms starts from the bottom and proceeds upwards�
�nding minimal slices that have weight at least �� the
last slice 
possibly empty� may have a weight less than �
and is called a remainder slice� More precisely� the algo�
rithm computes l and array entries t��� 	 �� t���� � � � � t�l��
so that slice Si consists of rows Rt�i��	
� to Rt�i	� while
the topmost remainder slice starts at row Rt�l	
�� It
is easy to see that the slicing algorithm can be imple�
mented in O
n �m� time�

De�ne a tile to be good if its total weight is at least
�� We present an algorithm that always �nds a solution
with t good tiles such that A � rt � �� We begin
our algorithm by slicing A using our slicing algorithms
as described above� Our dicing step will then consist
of partitioning the union of non�remainder slices into
good tiles and covering the remainder slice with the
extensions of adjacent tiles of that slice�

We now describe our dicing step more precisely�
First� we consider the case when A is arbitrary� We
partition each slice Si using the same slicing algorithm
as described before� except that we consider columns
of Si rather than the rows� This produces vertical
slices� V�slices for short� We denote the number of
regular V�slices obtained from Si with l
i�� so the V�
slices Vi��� � � �Vi�l�i� are regular and Vi�l�i�
�� is the
remainder V�slice� To obtain our preliminary partition�
we combine each remainder V�slice with its preceeding
regular V�slice�

VC
i�j

VR
i�j

VL
i�j



Later� we split each regular V�sliceVi�j into three parts�

VL
i�j that consists of all columns except the last

VR
i�j that consists of the last column except its top

VC
i�j that consists of the the top of last column

We can estimate the weights of these parts as follows�

because VL
i�j did not make a complete V�slice�

V L
i�j � ��

becauseVR
i�j together did not make a complete

slice�
Pl�i�

j
� V
R
i�j � ��

because no entry exceeds �� V C
i�j � ��

Consequently� Si 	 Vl�i�
� �
Pl�i�

j
�
V
L
i�j � V R

i�j � V C
i�j� �

� � �l
i��
Before we continue� we can observe that we can

already guarantee to get at least bAc�� tiles� Note that

Si � � � �l
i� � �l
i� and A � � �
Pl

i
� Si� while

we got t 	
Pl

i
� l
i� tiles� Therefore �t � A � � and
�l � bAc� Thus at the moment we have an algorithm
with approximation ratio ��

To improve this ratio� we do the following additional
dicing�

for i� � to l� � do
if slice Si was not modi�ed�

l
i� 	 � and l
i� �� � � then
if possible� partition Si � Si
�

into l
i� � l
i� �� � � good tiles

To show that we we will obtain a number t of
good tiles such that t � b
A � ����c� it su�ces to
show that A � �t � �� This in turn will follow fromPl

i
� Si � �t� ��
We de�ne �
i� to be � if our �nal for loop increased

the number of tiles while processing Si�� � Si� and
� otherwise� Clearly� our algorithm produces t 	Pl

i
� l
i���
i� tiles� so we need to show that
Pl

i
��Si�
�l
i�� ��
i�� � ��

We do it by induction on l� Our inductive claim is
the following�

if �
k� 	
Pk

i
��Si � �l
i�� ��
i�� � �� then
l
k� 	 �� Si � V L

k�� � � and

�
k� � V L
k�� � Vk�� � �

Recall that both V L
k�� and Vk�� are smaller than

�� so our inductive claim implies �
k� � �� We can
put �
�� 	 � and the inductive basis is trivial� For
the inductive step� we assume that the claim holds for
�
k � �� and then we consider several cases�

Case� l
k� � �� then �
k� � �
k � �� � Sk � �l
k� �
� � � � �l
i�� �l
i� 	 �� l
i� � ��

Case� �
k��� � � and l
k� 	 �� then �
k� � Sk��l
k�
� � � �� ��

Case� �
k��� � � and l
k� 	 �� then �
k� � Sk��l
k�
� V L

k�� � V C
k�� � V R

k�� � Vk�� � � � V L
k�� � Vk�� � ��

Case� �
k� 	 �� then �
k� � �
k � �� � Sk � �l
k�� �
� � � � � �l
i�� �l
i�� � 	 �l
i��

In further cases we can assume that �
k � �� � ��
�
k� 	 � and l
k� equals � or �� First we consider
cases for l
k� 	 �� We will use the following notation�
VL
k���� 	 C� VC

k���� � VR
k���� 	 D� Vk���� 	 E�

VL
k�� 	 C�� VC

k���V
R
k�� 	 D�� Vk�� 	 E�� The inductive

hypothesis is �
k � �� � C �E � � and Sk�� � C � ��

Case� Sk � C � � �� then Sk � � and �
k� � � � �� ��

Case� D and D� are in the same column� One attempt
to partition Sk���Sk is C�C�� Sk���C� and Sk�C

��
The latter two tiles are good and since �
k� 	 � we have
C � C � � �� For a symmetric reason E �E� � �� Thus
�
k� � C �E � � � C � �D� �E� � � � C � � � � ��

For the further cases we use notation VC
k�� 	 D�

u

and VR
k�� 	 D�

d�

Case� D� is in a column of C� One attempt to
partition Sk�� � Sk is to extend C upward to cover
D�
d� use the top row of Sk and the rest� The latter

two tiles must be good 
if the top row of Sk is not
good� Sk � � and we covered that before�� Because
the �rst tile is not good� we have C � D�

d � �� and
thus �
k� � C � E � � � C � � D�

d � D�
u � E� � � �

E � C � �D�
u �E� � � � C � �E� � ��

Case� D� is in a column of E� Symmetric to the last
case�

In the remaining cases we assume that l
k� 	 �� so
we have to show �
k� � �� We use the same notation as
above� except that now VR

l�� 	 F�d�

Case� Sk � 
� same as l
k� 	 � and Sk � ��

Case� D and D� are in the same column� One attempt
to partition Sk�� � Sk is C � C�� Sk�� � C� and two
tiles made of Sk � C �� If we cannot make two tiles of
Sk � C � then Sk � C � � � and thus Sk � 
� a case
already covered� Thus this attempt fails only because
C � C � � �� Note also that Sk � C � � 
� thus �
k� �



C�E���Sk�� 	 
C�C ���E���
Sk�C ���� �
� � �� � � 
� � 	 ��

Case� D and F�d are in the same column� Symmetric
to the last case�

Case� whatever remains� Now neither D� nor F� is
in the same column as D� To make analysis more
succinct� we introduce a bit more notation� First�
X 	 Sk �D�

d �E�
d� By our estimates on the weights of

pieces of vertical slices� X � 
� Second� Y is the sum
of weights of those among D�

d and F�d that are in the
columns of C� and Z of those that are in the columns
of E� In our case we have Sk 	 X � Y � Z�

One attempt to partition Sk�� �Sk is to extend C
upward to cover D�

d� use the top row of Sk to form
two tiles and the rest� Because this attempt failed�
C � Y � �� Similarly� E � Z � �� Thus �
k� �
C �E � � � Sk � � 	 
C � Y � � 
E �Z� �X � � � ��
It is easy to implement the dicing part of our algorithm
in O
n�m� time� so the overall time is still O
n�m��

This ends the analysis of the algorithm for the
case when A is arbitrary� If A was binary� then after
rescaling the entries such that W 	 �� we may assume
that each non�zero element of A is equal to �

W
where

W is an integer� We will prove that A � ��
t� �� The
proof that A � ��
t� ��
 is similar to the previous� so
we will list the di�erences�

�� V R
i�j � Vi�l�i�
� � � � ��W � V C

i�j � ��W �
Pl�i�

j
� V
R
i�j �

�� ��W � thus Si � l
i� � �� ��W �

�� We will show that the number t of tiles produced
by our algorithm satis�es A � ���� ��� by showing that

�
k� 	
Pk

i
��Si � ���l
i�� ����
i�� � ����

�� Our inductive claim is� if �
k� � � then l
k� 	 �
and �
k� � xk � ���� Note that this means that
�
k� � ��� � ��W �

�� The basis is as trivial as before� New case analysis
for the inductive step�
Case� l
k� � � then �
k� � ��� � Sk � ��� � l
i� � ��
���l
i� � �� l
i� � ��

Case� l
k� 	 � and �
k � �� � �� the claim is obvious�

Case� Remaining case� l
k� 	 � and �
k��� � �� hence
l
k � �� 	 � and �
k � �� � Sk�� � ���� Suppose that
�
k � �� � Sk � ��� � �� then Sk�� � Sk � 
� Because
the weight of all the rows of a slice� except the top� is

at most �� ��W � this means that the sum of weights of
the top rows of Sk�� and Sk is at least � � ��W � Apply
the vertical slicing algorithm to Sk�� � Sk� The last
column in a vertical slice has at most � non�zeroes from
the top rows� and the previous columns have at most
W � � non�zeroes� thus the weight of the intersection of
a vertical slice with the two top rows is at most �� ��W �
Thus after creating the �rst � vertical slices we still have
weight � available in the two top rows� Consequently� we
get a success of the attempt to get more tiles� �
k� 	 �
and �
k� � Sk�� � Sk � ���� � ��

Remark� In the proof of the above theorem� we used
the total weight A of the input array A as an 
ob�
vious� upper bound on the number of tiles in an op�
timum solution� The following example shows that
an alternative lower bound is necessary to prove bet�
ter performance ratios for arbitrary arrays� For ev�
ery t � �� we can construct a corresponding ar�
ray A such that t is the maximum number of good
tiles in the partition and dAe 	 �t � �� Our A
is a 
t � �� � 
t � �� array where every non�zero

�
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�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

entry equals �� �
�t � there are �t�� non�zeros

distributed in three diagonals in a manner
shown in the adjacent diagram 
where �
indicates a non�zero�� One can see that a
good tile must contain at least two non�zeros� A brief
inspection shows that every good tile must contain a
non�zero from the central diagonal� Consequently� there
cannot be more than t disjoint good tiles�

� Recursive Slice	and	Dice� Binary Space
Partitions

In this section� we will de�ne general versions of the
MAX�MIN and MIN�MAX tiling problems� We will also
prove improved upper bounds for the size of Binary
Space Partitions for a set of isothetic rectangles� Finally�
we will show how we can obtain improved approxima�
tion algorithms for the general tiling problems using the
bounds on the BSP size and a recursive version of the
slice�and�dice technique�

��� General Versions of Tiling Problems First�
we de�ne a general version of the MIN�MAX problem as
follows� We are given an n � n array A of N 	 n�

positive numbers� a parameter W � � and a weight
function f mapping any subarray R of A to a positive
real number such that f is non�decreasing ����� that is�
for any two rectangles T� and T� forming a partition of
a tile T of A� f
T� � maxff
T��� f
T��g

�� The goal of

�The basic MIN�MAX problem is simply a special case of this
problem when the weight of any tile is the sum of the entries in
it�



the general MIN�MAX problem is to partition A with the
minimum number tiles such that the maximum weight
of any tile is at most W � Some of the commonly used
weight functions are the sum squared error of each entry
from the average of the entries in that tile� or simply the
maximum of all entries in the tile� see ���� for details�
Assume that� given the values of f
T�� and f
T�� for
a partition T� and T� of a tile T of A� we can compute
f
T� in time 	� For example� 	 	 O
�� if the weight
function is the maximum of all entries in the tile or for
the MIN�MAX problem�

A general version of the MAX�MIN problem can also
be de�ned in a similar manner� The weight function f is
again non�decreasing� but the goal now is to partitionA
with the maximum number of tiles such that the weight
of each tile is at least W �

��� BSP� De�nitions and Bounds Given a rect�
angular region R containing a set of n disjoint isothetic
rectangles� a BSP of R consists of recursively partition�
ing R by a horizontal or vertical line into two subre�
gions and continuing in this manner for each of the two
subregions until each obtained region contains at most
one rectangle� If a rectangle is intersected by a cutting
line� it is split into disjoint rectangles whose union is the
intersected rectangle� Thus� naturally� BSP is a slice�
and�dice procedure since each �cut� separates a region
into two subregions� The size of a BSP is the number
of regions produced� Equivalently� a BSP of a set of
rectangles contained in a rectangular region R can be
visualized as a binary tree� where each node is a rect�
angular subregion of R� each internal node is the union
of its two children� the intersection of each leaf with the
rectangles in our collection has at most one rectangle�
and the root is the rectangular region R� The partition
of R that corresponds to a BSP is the collection of the
leaves of this tree and the size of the BSP is the number
of leaves in the tree� A set of rectangles form a tiling
if they partition some rectangular region R� It is shown
in ���� ��� that a BSP of R with the minimum number
of leaves can be computed using dynamic programming
technique in O
n�� time�

Our improved results for the sizes of BSPs for
isothetic rectangles are summarized in the following
two theorems below� The amortization schemes in the
proofs of these two theorems are somewhat di�erent�

Theorem ���� We can compute a BSP of R containing
at most �n�

�
�b
�

�
regions in O
n logn� time� where b � �

is the total number of rectangles adjacent to �having one
side common� one of the four sides of R�

Theorem ���� Assume that the rectangles in our col�
lection form a partition of R� Then� we can compute

a BSP of R containing at most �n �
�
�b
�

�
regions in

O
n logn� time� where b � � is the total number of rect�
angles adjacent to �having one side common� one of the
four sides of R�

��� Approximate Tiling via BSP based Slice	
and	Dice We show how the bounds in Theo�
rems ��� and ��� can be used to provide improved
approximation algorithms for general MIN�MAX and
MAX�MIN tiling problems as de�ned in Section ���� Our
new improved approximation results are as follows� The
previously best known algorithm for this problem also
used no more than twice as many tiles as needed� but
its running time was O
N��	� �����

Theorem ���� Let p� is the minimum number of tiles
in an optimal solution of the general MIN�MAX problem�
Then� there is an O
N

�

�	� time algorithm to �nd a tiling
that uses at most �p� � � tiles�

The lower bound of �n � o
n� on the size of
BSPs forming a partition of their bounding box ����
indicates that alternate approach is needed in order to
get signi�cantly better approximations for this problem�

Our BSP techniques can also be applied to the
general version of the MAX�MIN problem to obtain the
following bicriteria approximation� De�ne a 

� ���
approximation of the MAX�MIN tiling problem to be one
which produces a tiling of A such that there are at
least 
p� tiles of weight at least �W or more� where
p� is the maximum number of tiles used in an optimum
solution� In this terminology� our result from Section �

Theorem ���� is an 
 �� � ���approximation in general and

 �� � ���approximation for the case when the given array
A is binary 
for the speci�c weight function considered
there��

Theorem ���� There exists a polynomial time 

� ���
approximation algorithm for the MAX�MIN tiling problem
for the following values of 
 and �� �a� 
 	 �

� � � 	 �
� �

�b� 
 	 �
� � � 	 �

� and �c� 
 	 �
� � � 	 �

� �


 Shifted Slice and Dice with Dynamic
Programming

In this section� we consider the general MIN�MAX tiling
problem when the global aspect ratio of the rectangles
in some optimum solution is bounded by b for some
constant b � �� The MIN�MAX problem is known to
be NP�hard even when the global aspect ratio of the
set of tiles in an optimal solution is at most � �����
We use a slice�and�dice technique in which generation
of the slices is inspired by the shifting technique used
in ���� �
�� we call such an approach as a shifted slice�
and�dice technique� Our results are summarized in the



theorem stated below� Notice that part 
a� of the
following theorem provides a � � o
�� approximation
to the MIN�MAX tiling problem in almost linear time for
this case�

Theorem ���� Assume that the global aspect ratio of
the rectangles in some optimum solution is bounded by
b for some constant b � �� Then� the following results
hold for the general MIN�MAX tiling problem�

�a� There exists an algorithm that runs in O
	N����
time and returns a solution in which the total
number of tiles used is at most 
� � �� times that
of the optimum� for any � � ��

�b� There exists a PTAS�

Proof� We use the shifted slice�and�dice technique for
both parts� First� we describe how to generate the
slices� For any subarray B of A� let OPTB denote
the minimum number of tiles needed for the general
MIN�MAX problem on B� Let X be the set of rectangles
in an optimal solution such that the global aspect ratio
of the rectangles in X is at most b� For notational
simplicity� assume that b is an integer and the smallest
side of any rectangle in X is �� hence the largest side
of any rectangle in X is at most b� Since X forms a
partition of an n�n arrayA� all coordinates of all corner
points of rectangles in X are from the set f�� �� � � � � ng�

Let � be the constant involved in the PTAS� i�
e�� we are looking for a solution in which we use at
most 
� � �� times the number of tiles in an optimum
solution� Let � 	

�
�
��

�
� Consider the following �

families L�� L�� � � � � L� of vertical lines where Lj is the
set of vertical lines fy 	 ��
j� ��b� cb� j c � Ng� The
following observations are true�

�a� Since the separation of any two lines in Lj is at least
b�� no rectangle in X can cross two such lines�

�b� For any two vertical lines � � Lj and �� � Lk with
j 		 k� the separation between them is at least b
and hence no rectangle in X can cross both � and
���

Let nj be the number of rectangles in X crossing some
vertical line in Lj � Observations 
a� and 
b� imply

that
P�

j
� nj � OPTA� Hence� there exists a Lk such

that nk � �
�
OPTA� Our slices consist of the partition

of A formed by the vertical lines in Lk� Assuming
that for each slice we can solve the general MAX�MIN
problem exactly� the union of these solutions uses at

most OPTA � nk �
�
� � �

�

�
OPTA rectangles�

Now� we can take take each of the above slices of
size at most n � b� and apply the same technique in
the horizontal directions by considering � families of

horizontal lines such that at most �
�
OPTA rectangles

of X cross at least one such family� Hence� after this�
we have �� families of slices of A each of size at most
b�� b�� such that if we can compute the solution to the
general MAX�MIN problem for each slice in each family
exactly then the union of the best solution over these

families of slices will use at most
�
� � �

�

�
OPTA �


� � ��OPTA rectangles�
Notice that there are O
N�b���� slices in each fam�

ily� Since each slice is of size b� � b�� there are at
most O
b���� rectangles to consider for an exact solu�
tion and any exact solution of the slice can use no more
than b��� rectangles� Hence� an exhaustive search for
the best solution for each slice takes O

b����b

���	b����
time� Hence� the total time taken by our algorithm is
at most O

b����b

���	N���� which is O
	N� if b and �
are constants� This proves part 
b� of the theorem�

For part 
a� of the theorem� we use the same
technique as before� but we only approximately compute
the solution within each slice of size b� � b� using the
sparse and rounded dynamic programming techniques
in ���� to reduce the running time at the expense of
increasing the number of tiles� As a result� we use at
most 
� � ���OPTA rectangles� which is 
� � ��OPTA
by choosing � 	 ��� The time taken for each subarray
is O
b���	� and hence the total time taken is at most
O
b���	 N

b���
��� 	 O
	Nb���� 	 O
	N�����

� Applications of Tiling Results

As mentioned before� the tiling problems arise in nu�
merous application areas� See ���� ��� for more details
on these applications and overview of several others�
Rather than repeating those application scenarios� here
we list a set of applications that show variations of tiling
problems that arise� We only provide sketchy details of
the applications in this extended abstract due to lack of
space�
Two Dimensional Histograms in Databases�
Databases use histograms to approximate data distribu�
tion� this is used to estimate size of intermediate results
under di�erent query plans� and thereby choose e�cient
query execution plans� All commercial databases rely on
histograms for this purpose� and this is a well�studied
topic in database research 
e�g�� see ������ We consider
the case of two dimensional histograms where the input
is a two dimensional array A representing two numer�
ical attributes in the database� say� salary and age of
employees� The entry A�i� j� is the number of employ�
ees in the database who have age i and salary j� The
histogram is a tiling of A� Two speci�c histograms of in�
terest are the equi�sum ���� and V�Opt ���� histograms�
In an equi�sum histogram� the weight of a tile is the



sum of all items in it and in a V�OPT� it is the sum
of the squared di�erence between each item in the tile
and the average of the items in the tile 
denoted SSD��
The goal in both is to minimize the number of tiles
given a bound on either the maximum weight 
in equi�
sum histogram� or total weight 
in V�OPT� of the tiles�
this bound represents the error the database designer
is willing to tolerate in estimation of the sizes of the
result� It is easy to see that our techniques for solving
the MIN�MAX problem apply directly for equi�sum his�
tograms or can be shown to apply simply for V�OPT
histograms� As a result� two dimensional equi�sum and
V�OPT histograms can be approximated in O
N

�

� � time
within a factor of �� This substantially improves the
previously best known results for this problem �����
Two Dimensional Deviants� Suppose that we are
given a two dimensional array A� The goal is again to
tile A as in two dimensional histogram construction�
However� a crucial di�erence is that one is allowed
to remove a subtile 
a subtile is an isothetic rectangle
contained in a tile�� Each such subtile is called a deviant�
The weight of a deviant is the sum of the squared
di�erence between each item in the tile and the average
of the items in the tile 
denoted SSD�� The weight of
a tile that is not a deviant is now computed as in SSD
except that now it is the sum of squared di�erences
between each of the remaining tile elements and their
average spread over the total number of elements in the
tile 
including the deviants� if any� removed from the
tile�� Formally� the problem is as follows� given d� a
bound on the number of deviants and the total weight
W of tiles� �nd a tiling of A with a minimum number
of tiles�� Using our techniques for the MIN�MAX tiling
problem� we can show the following�

Theorem ���� There exists an O
N
�

� d�� time algo�
rithm to solve the two dimensional deviant mining prob�
lem that returns a solution using at most �d deviants
and at most twice the optimum number of tiles�

This is the �rst known e�cient algorithm for the
multidimensional deviants problem� and we are cur�
rently performing experiments on this problem using

�This is a technical de�nition that follows from ����� The mo�
tivating observation there was that sometimes small islands of
excessively large �or small� values adversely a�ect the approxi�
mation of a region� Therefore� it would be bene�cial to consider
them separately� The authors formalized that notion in terms of
the deviants above� and showed that �nding deviants not only
led to better approximations but also served as an indication of
certain interesting trends in the data and therefore was of mining
value� They considered the one dimensional version of the prob�
lem and left two and higher dimensional problems open� Here�
we have formalized the problem in two dimensions and obtained
approximation results�

our result� Similar results can be obtained for another
variation of this problem� constructing two dimensional
histograms with �holes� called STHoles ���� but we omit
the details here�
Covering Rectilinear Polygons with Holes and
Don�t Care Regions� Formally� this problem� which
we abbreviate as the RECT�DECOMP problem� is as fol�
lows� We are given a rectilinear polygon P of n vertices

possibly with holes�� The interior of P may contain a
set of special disjoint rectilinear regions� which we term
as the don�t care regions� Our goal is to partition the in�
terior of P � excluding the don�t care regions� into a mini�
mum number of rectangles� A rectangle in the partition
must be included inside the given polygon� must not
contain any holes and may or may not overlap any don�t
care region� The RECT�DECOMP problem without any
don�t care region can be solved in O
n

�

� � time provided
no degenerate 
point� holes are allowed ���� ���� How�
ever� if degenerate holes are allowed� then the problem
was shown to be NP�complete ����� The RECT�DECOMP

problem and its variations has applications in storing
graphical images and in the manufacture of integrated
circuits ���� �
� ��� and is also a natural combinatorial
problem of independent interest� We present the �rst
known approximation algorithm for this problem in its
full generality� ie�� including holes as well as don�t care
regions� The proof of the following theorem is similar
to other results in Section � and is omitted from this
extended abstract�

Theorem ���� Let k is the minimum number of rect�
angles in an optimal solution of the RECT�DECOMP prob�
lem for a rectilinear polygon P with n vertices� Then�
there is an O
n�� time algorithm to �nd a solution to
the RECT�DECOMP problem that uses at most �k� � rect�
angles�


 Concluding Remarks

We have studied two general rectangular tiling prob�
lems� namely the MAX�MIN and the MIN�MAX problem�
Using the slice�and�dice approach in several ways such
as in a greedy manner� with Binary Space Partitions
or with dynamic programming atop� we have obtained
small constant factor approximations for these prob�
lems� For the MAX�MIN versions� our results are the
�rst known� for the MIN�MAX versions� our results im�
prove the running time and�or approximations of best
known previous results� Even though a connoisseur may
not truly appreciate the concept of cutting a higher�
dimensional Sicilian pie� it would be of signi�cant inter�
est to study e�cient approximation algorithms for these
problems in higher dimensions� References �
� ��� ��� re�
port some approximation results for the MIN�MAX prob�



lem in higher dimensions� but unfortunately the approx�
imation quality deteriorates linearly with an increase in
the dimension�
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