Slice and Dice : A Simple, Improved Approximate Tiling Recipe

Piotr Berman*

Abstract

We are given a two dimensional array A[l---n,1---n] where
each AJi,j] stores a non-negative number. A (rectan-
gular) tiling of A is a collection of rectangular portions
Afl---r,t---b], called tiles, such that no two tiles overlap
and each entry A[z, 5] is contained in a tile. The weight of a
tile is the sum of all array entries in it.

In the MAX-MIN problem, we are given a weight bound
W and our goal is to find a tiling such that (a) each tile is
of weight at least W (the MIN condition) and (b) the number
of tiles is mazimized (the MAX condition). In the MIN-MAX
problem, we are given a weight bound W again and our goal
is to find a tiling such that (a) each tile has weight at most
W and (b) the number of tiles is minimized. These two basic
problems have many variations depending on the weight
functions, whether some areas of A must not be covered,
or whether some portion of A may be discarded, etc. These
problems are not only natural combinatorial problems, but
also arise in a plethora of applications, e.g., in databases and
data mining, video compression, load balancing, building
index structures, manufacturing and so forth.

Both the above tiling problems (as well as all of their
variations relevant to this paper) are known to be NP-hard.
In this paper, we present approximations algorithms for solv-
ing these problems based on epicurean methods : variations
of a basic slice-and-dice technique. Surprisingly, these sim-
ple algorithms yield small constant factor approximations
for all these problems. For some of the problems, our results
are the first known approximations; for others, our results
improve the known algorithms significantly in approxima-
tion bounds and/or running time. Of independent interest
are the tight bounds we show for sizes of the binary space

partition trees for isothetic rectangles.

1 Introduction

The problems considered in this paper resemble cutting
a pie, albeit with some idiosyncrasies. The pieces we
cut are rectangles, not wedges or squares, so each piece
resembles a Sicilian Pie. The pie itself is rectilinear in
shape. Furthermore, the pie is not uniformly done :
there are portions of the pie we need to avoid, some

" *Department of Computer Science, Pennsylvania State Uni-
versity, University Park, PA 16802. Email: berman@cse.psu.edu.
Supported in part by NSF grant CCR-9700053 and NLM grant
LMO05110.

tDepartment of Computer Science, University of Illinois at
Chicago, Chicago, IL 60607. Email: dasgupta@cs.uic.edu.
Supported in part by NSF Grant CCR-9800086.

tAT&T Labs — Research, 180 Park Avenue, Florham Park, NJ
07932. Email: muthu@research.att.com

Bhaskar DasGupta'

S. Muthukrishnan?

we do not care about, and some we may carve out
of consideration. As an epicurean instance, this may
be far-fetched but the formal problems we study of
this flavor are quite natural and arise in a plethora of
applications.

The problems we study concern tiling a rectilinear
region to optimize a MAX/MIN or MIN/MAX criteria. These
problems are well-motivated from a number of applica-
tions in, for example, databases and data mining, video
compression and manufacturing. Some of these prob-
lems have a rich history while the others are novel. All
of them are NP-hard!, so our focus is on providing ap-
proximation results. Our main results are efficient im-
proved algorithms for these problems with small con-
stant factor approximations. We obtain these results
using variations of simple slicing and dicing of the recti-
linear region. In what follows, we present our problems
and results formally.

1.1 Formal Statement of Problems We start
with two basic problems to focus this discussion. We
are given a two dimensional array A[l---n,1---n] of
size N = n? where each A[i,j] stores a non-negative
number. A (rectangular) tiling of A is a collection of
rectangular portions A[l---r,¢t---b], called tiles, such
that no two tiles overlap and each entry A[i,j] is
contained in a tile. The weight of a tile is the sum of all
array entries in it2.

In the MAX-MIN problem, we are given a weight
bound W and our goal is to find a tiling such that (a)
each tile is of weight at least W (the MIN condition) and
(b) the number of tiles is mazimized (the MAX condition).
Obviously, there is a feasible solution if and only if sum
of all elements of A is at least W, the entire array being
a trivial tile. In the MIN-MAX problem, we are again
given a weight bound W and our goal is to find a tiling

TIn contrast, if one were to cut a french bread, i.e., one dimen-

sional array, even under similar conditions we have outlined above,
it corresponds to one dimensional versions of our problems all of
which are solvable in polynomial time by dynamic programming
or greedy methods.

2Unless otherwise stated, in our description of the tiling
problems we will use bold letters to denote arrays/rectangles, and
respective regular letters to denote their weights. In particular,
input array A has weight A, and R;, the i*® row of of a two-
dimensional array A, has weight R;.

such that (a) each tile has weight at most W, and (b)
the number of tiles is minimized. Obviously, there is a
feasible solution if and only if each array item is at most
W, the collection of each array element being a trivial
tiling.

Both versions of the basic problem are natural and
have good motivations. However, to our knowledge,
the MAX-MIN version has not been studied in literature
before3, while MIN-MAX problem has been studied many
times within the Algorithms community [5, 17, 20, 24,
33, 34] (see [20] for some background). Later on, our
main focus in considering applications of these problems
will lead to variations of these tiling problems where,
in general, the weight of a tile is a more complicated
function of the tile elements. Furthermore, there are
novel variations of these problems where (a) array A
may have holes (rectilinear regions) that should not
be covered, or (b) a given number of tiles of A may
be removed, etc. We will show how to modify our
techniques for solving the two basic problems stated
above to address all these variations. We will discuss
those variations and applications in Section 6 and focus
only on the two basic problems for most part.

1.2 Our Results We use variations of what we infor-
mally refer to as “slice-and-dice” technique (or simply
slicing and dicing) to obtain efficient approximation al-
gorithms for the abovementioned tiling problems. More
specifically, our main results are threefold:

1. (Greedy Slice-and-Dice) We present the first known

approximation algorithm for the MAX-MIN problem:
it uses at least (%)rd of the maximum number of
rectangles each of weight at least W; if the array
elements can assume only binary values, which is
an important special case, this ratio % is improved
to % The algorithm is based on greedily slicing the
array into strips and dicing each slice; the running
time is linear (in fact, linear in the number of non-
zero elements of the given array) and is very simple
to implement. The technical crux of this result in
the analysis of the slice and dice technique.

Although the MAX-MIN problem appears to be
closely related to the MIN-MAX version, there are
fundamental differences. In particular, if we take a
feasible solution for the MIN-MAX problem and fur-
ther divide some of the tiles, the solution remains
a feasible solution; hence a slice that is different
from the optimal one may be “fixed” with a few
additional slices. In contrast, this property does
not hold for the MAX-MIN problem, and as a result

3This problem came up in a personal communication [30].

it is crucial that the slices be almost perfect.* Our
greedy slice-and-dice algorithm is similar in flavor
to that for the MIN-MAX problem from [5], however,
details, analysis and lower bounds used are all quite
different. It is very surprising that a simple greedy
slice-and-dice algorithm works well for the MAX-MIN
version of the tiling problem.

2. (Recursive Slice-and-Dice: Binary Space Parti-
tions) A recursive application of the slice-and-dice
solution to a tiling problem can be thought as a
Binary Space Partition (BSP) of the tiles (rectan-
gles). Therefore, a general approach to solving the
tiling problems is to use BSPs of isothetic rectan-
gles, wherein the size of the BSP affects the quality
of approximation of our solution. (See Section 4.2
for the definition and further details; BSPs for var-
ious objects are of significant independent interest
in general.) For the purpose of our applications, it
is sufficient to consider a special type of BSP, com-
monly called Binary Space Auto-partition, in which
every cut is either a horizontal or a vertical line.

We show that given n isothetic rectangles, there
exists a binary space auto-partition tree (and,
hence a BSP tree) of size at most 3n—2. If the given
set of rectangles partition their smallest rectangular
bounding box (which is of interest to our tiling
applications), then we prove an improved upper
bound of 2n — 1.

Paterson and Yao proved an upper bound of 12n
in [29] in their seminal paper; subsequent improve-
ments have led to the previous best upper bound
of 4n [13, 8]. Our result above improves this by
a factor of 4/3 in general, and a factor of 2 in the
tiling case. Lately, there has been a great interest
in BSPs and their applications in general [1, 10, 11]
and in BSPs for rectangles in particular [11]. Since
we proved this upper bound for the tiling case in
a preliminary writeup [4], Dumitrescu et al. [11]
proved a lower bound of 2n — o(n), matching our

upper bound within a lower-order term5.

We use our BSP results in two ways for tiling
problems:

(a) We present a bicriteria approximation algo-
rithm for the MAX-MIN problem by which we

2A feasible solution for the MAX-MIN problem will remain
feasible if we combine two or more tiles into one, but this is a
difficult operation to coordinate because the tiles to be merge
need to be aligned. In contrast, further slicing of a tile is a simple
local operation which helps in the MIN-MAX problem.

SDumitrescu et al. [11] proved a lower bound of 2n — o(n) on
the size of auto-partition trees of n line segments each of which is
either horizontal or vertical.

produce a tiling with at least as many tiles
as in an optimum solution and still guarantee
that the tiling contains a collection of at least
% of the optimum number of tiles each having
weight at least %W. This is the first result
that produces no fewer tiles than the optimum
while still partly meeting the minimum weight

criteria®.

(b) We improve running times of approximation
algorithms for the MIN-MAX problem using the
BSP approach. The previously best known
approximation algorithm had a performance
ratio of 2 but ran in N=° time. Our improved
running time (with the same approximation
ratio) is O(N2) which is more manageable.

The advantage of our BSP based approach is that
it is a general technique applicable to not only
the basic MIN-MAX and MAX-MIN problems described
before but also to their variations with different
weight functions, with holes, when some parts of
the array may be removed, etc. We will briefly
comment on this later.

3. (Slice-and-Dice with Dynamic Programming) We
consider the MIN-MAX problem where the tiles are
nearly, but not exactly, uniform (after all, even
sloppy Sicilian pies may not be too far apart from
each other in size!). Say that the global aspect ratio,
namely, the ratio of largest side of any tile to the
smallest of any tile is bounded by a constant. We
present an O(N/§°) time algorithm that returns
an 2 + ¢ approximation for this problem, for any
0 > 0. It follows from previously known results
that even this version of the problem is NP-hard.
Previous algorithms for this problem returned a 2-
approximation in O(N>?) time or a 4 approxima-
tion in O(N'%) time”. Here, our techniques involve
dynamic programming (as is common in designing
PTAS) to pick the appropriate slice-and-dice com-
binations.

We further extend this result to provide a PTAS,
that is, polynomial time (1 + £)-approximation for
any constant € > 0. However, the running time
of the resulting algorithm, while being polynomial

8Tradeoff between the constants % and % is also possible; see
Theorem 4.4 for details.

"There has been a considerable amount of work of late in
proving efficient solutions for geometric problems where the
objects are uniform in some local sense only (e.g., see [1, 9]).
However, it is easy to see that our technique will not provide
any better solutions if we instead assume that the aspect ratios
of individual tiles are bounded.

in N, is too prohibitive to be practical for small
values of €. This result however is of theoretical
significance: the “dual” of this problem — namely
that given an upper bound B on the number of
tiles, minimize the maximum weight of the tiles —
cannot be approximated to better than a factor of
2 (see [17]). Hence this problem is provably simpler
than its dual, the first such instance known for any
rectangular tiling problem.

As mentioned above, we use the slice-and-dice tech-
nique in a unified way to solve the tiling problems. In
general, an informal description of this culinary tech-
nique consists of the following steps:

o We slice the array, that is, partition the input array
into a number of slices (rectangles) satisfying cer-
tain optimization criterion depending on the prob-
lem. Such a partitioning scheme can be obtained
by either greedy slicing (Section 3), binary space
partitions (Section 4.3) or dynamic programming
on slices generated using shifting technique (Sec-
tion 5).

e Depending on the problem, we may need to adjust
the slices locally. A local adjustment or dicing step
may typically consist of looking at a few (typically a
small constant) number of nearby slices and repar-
titioning the entries of the input array spanned by
them to obtain satisfactory approximation results.

Some previous results have used variations or spe-
cific implementations of the slice-and-dice techniques
to obtain approximation algorithms for specific tiling
problems [17, 33, 34, 5]. Our paper uses it as a uni-
fied framework to obtain improved approximation algo-
rithms for the MIN-MAX tiling problems as well as the
obtaining the first nontrivial approximation algorithms
for the MAX-MIN tiling problems. Why the slice-and-dice
technique by itself is conceptually and algorithmically
simple, the crux of our technical work is in the analy-
ses. We expect slice-and-dice to be useful elsewhere in
tiling problems in the future.

1.3 The Map We present our approximation algo-
rithms for the MAX-MIN problem in Section 3 using the
greedy slice-and-dice technique, our approximation al-
gorithms for the MIN-MAX and MAX-MIN problems us-
ing generalized slice-and-dice (involving BSPs) in Sec-
tion 4.3 and our approximation algorithms for the gen-
eral MIN-MAX tiling problems with shifted slice-and-dice
technique in Section 5. In Section 6, we present a
selection of applications of our results. In Section 7
we present some concluding remarks with possible fu-
ture research directions. Due to space limitation, many

proofs are omitted; they are available in the full version
of the paper.

2 Basic Definitions and Notations

For a set of rectangles Ri,Rs,...,R,, with R; =
[ai,bi] X [ci,d;] where x denotes the Cartesian
product, let the global aspect ratio be defined as
maxi <i<ni(bi — ai), (di — ci)}
min <;<n{(bi — ai), (di — i)}
a simple polygon with its sides parallel to the coordinate
axes; such a polygon may or may not have holes but if
the holes are present then they are also rectilinear (de-
generate (point) holes are allowed). An array A is called
a binary array if all of its entries are either 0 or 1, oth-
erwise it is called an arbitrary array; unless otherwise
stated, an array is an arbitrary array. A polynomial-
time approximation scheme (PTAS) for a minimization
problem is an algorithm that takes as input an instance
of the problem of size n and a constant € > 0 and pro-
duces a solution whose value is at most (1 + ¢) times
that of the optimum solution in time polynomial in n.

. A rectilinear polygon is

3 MAX-MIN Problem Via Greedy Slicing and
Dicing

In this section, we consider MAX-MIN tiling problem
in which the input is a two dimensional array A of
size n X n containing non-negative numbers and the
weight of a tile (subarray) is the sum of all elements
of A that fall inside it. If A is sparse, containing
m mnon-zero entries (n < m < N = n?), then it can
be efficiently represented in O(m + n) space using the
standard representation as an array of row lists; the list
of the i*" row contains an entry of the form (j,z) for
every positive array entry A[i,j] = z and the row lists
are sorted by the column numbers of the entries. We
assume that our input arrays are represented this way.
The MAX-MIN tiling problem is defined as follows.

MAX-MIN tiling problem. Given a two dimensional
array A of size n X n containing non-negative numbers
and a positive integer W, partition A (if possible) into
a mazimum number of tiles so that the minimum weight
of any tile is at least W.

We may assume that W = 1 by scaling all the
entries of A, if necessary. Now, a feasible solution for
the MAX-MIN problem is a tiling of A in which every tile
has a weight of at least 1. Obviously, we may assume
that A > 1, since otherwise the MAX-MIN problem has
no feasible solution. Let b = maxi<; j<n Afi,j]. We
may assume that b < 1 by using the following crucial
observation.

OBSERVATION 1. Given an instance array A of the

MAX-MIN problem, let A' be the array obtained from
A in which every element larger than 1 is replaced by
1. Then, any feasible solution for A is also a feasible
solution for A’ and vice versa.

The main result of this section is as follows.

THEOREM 3.1. There exists an approzimation algo-
rithm for the MAX-MIN tiling problem that runs in O(n+
m) time and produces a tiling using at least (p* — 2)
tiles, where p* is the (maximum) number of tiles used by
54 if A is binary

an optimal algorithm and r = { 3 otherwise

Proof. First, we describe a basic slicing algorithm that
is used by the algorithm. The slicing algorithm parti-
tions the input array A into slices; this algorithm is used
as a routine in our approximation algorithm. A slice is
a tile that consists of complete rows. The slicing algo-
rithms starts from the bottom and proceeds upwards,
finding minimal slices that have weight at least 1; the
last slice (possibly empty) may have a weight less than 1
and is called a remainder slice. More precisely, the algo-
rithm computes [and array entries ¢[0] = 0, ¢[1], ..., t[{],
so that slice S; consists of rows Ry[;_1711 to Ryj;), while
the topmost remainder slice starts at row Rypjqq. It
is easy to see that the slicing algorithm can be imple-
mented in O(n + m) time.

Define a tile to be good if its total weight is at least
1. We present an algorithm that always finds a solution
with ¢ good tiles such that A < rt + 2. We begin
our algorithm by slicing A using our slicing algorithms
as described above. Our dicing step will then consist
of partitioning the union of non-remainder slices into
good tiles and covering the remainder slice with the
extensions of adjacent tiles of that slice.

We now describe our dicing step more precisely.
First, we consider the case when A is arbitrary. We
partition each slice S; using the same slicing algorithm
as described before, except that we consider columns
of S; rather than the rows. This produces vertical
slices, V-slices for short. We denote the number of
regular V-slices obtained from S; with (i), so the V-
slices V;1,...Vy; are regular and Vj)y1) is the
remainder V-slice. To obtain our preliminary partition,
we combine each remainder V-slice with its preceeding
regular V-slice.

C
0]

VL.
i, R
Vi

Later, we split each regular V-slice V; ; into three parts:

ViLJ. that consists of all columns except the last

ij that consists of the last column except its top

ij that consists of the the top of last column
We can estimate the weights of these parts as follows:

because V{jj did not make a complete V-slice,

Vi <L

because ij together did not make a complete
. 1

slice, Zj(i)l Vf? < 1

because no entry exceeds 1, VlC] <1

Consequently, S; = Vi1 + Zé(i)l(VlL] + Viﬁ + VZC;) <
2 + 21(i).

Before we continue, we can observe that we can
already guarantee to get at least | A|/4 tiles. Note that
Si < 2423) < 4l(i) and A < 1+ X', S, while
we got ¢ = 22:1 [(é) tiles. Therefore 4¢ > A — 1 and
4] > |A|. Thus at the moment we have an algorithm
with approximation ratio 4.

To improve this ratio, we do the following additional
dicing:

fori+— 1tol—1do
if slice S; was not modified,
l(i) =1 and (i + 1) < 2 then
if possible, partition S; U S;11
into {(7) +[(i + 1) + 1 good tiles

To show that we we will obtain a number ¢ of
good tiles such that ¢ > [(A + 1)/3], it suffices to
show that A < 3t + 2. This in turn will follow from
S8 <3t+1.

We define (i) to be 1 if our final for loop increased
the number of tiles while processing S; ; U S;, and
0 otherwise. Clearly, our algorithm produces t =
22:1 [(i)+o(i) tiles, so we need to show that Zizl[Si -
3l(i) — 30 (2)] < 1.

We do it by induction on [. Our inductive claim is
the following:

if C(k) = ¥, [Si — 31(i) — 30(3)] > 0, then
I(k)=1,8; -V}, > 1 and
(k) <V +Via =1

Recall that both V'; and Vi are smaller than
1, so our inductive claim implies ((k) < 1. We can
put {(0) = 0 and the inductive basis is trivial. For
the inductive step, we assume that the claim holds for
¢(k — 1) and then we consider several cases.

Case: [(k) > 2, then ((k) < ((k — 1)+ S — 3l(k) <
142+ 20(6) — 31(3) = 3 — i(3) < 0.

Case: ((k—1) <0and (k) = 2, then {(k) < S —3l(k)
<2+4-6.

Case: ((k—1) <0and (k) =1, then ((k) < S —3I(k)
< Vkl:l + ch,’l + Vk{zl + Vk,Z -3< Vkl:l + Vk,Z —1.

Case: o(k) =1, then ((k) < {(k—1)+ Sr — 3l(k) — 3
<1424+23) —31¢) — 3 = —1(3).

In further cases we can assume that ((k — 1) > 0,
o(k) = 0 and I(k) equals 1 or 2. First we consider
cases for [(k) = 1. We will use the following notation:
Vé—m = G, V190—1,1 U VkR—1,1 = D, V12 = E,
V£,1 =C, ch,l UV,Ij’l = D', Vi 2 = E'. The inductive
hypothesis is ((k —1) <C+E —1and Sy_; —C > 1.

Case: S, — (' < 1,then S <2 and (k) <1+2-3.

Case: D and D' are in the same column. One attempt
to partition Sy_1US; is CUC’, Sy_1 —C, and S;, — C'.
The latter two tiles are good and since o (k) = 0 we have
C + C' < 1. For a symmetric reason F + E’ < 1. Thus
() <C+E-1+C"+D'+E' -3<(C'"-2<0.

For the further cases we use notation VkC,1 =D,
and V,{fl =D,

Case: D' is in a column of C. One attempt to
partition Sy 1 + S is to extend C upward to cover
D/, use the top row of S; and the rest. The latter
two tiles must be good (if the top row of S; is not
good, S; < 2 and we covered that before). Because
the first tile is not good, we have C + D), < 1, and
thus ((k) < C+E-1+C'"+D,+D,+E -3 <
E+C'+D,+E -3<C'+E —-1.

Case: D’ is in a column of E. Symmetric to the last
case.

In the remaining cases we assume that [(k) = 2, so
we have to show ((k) < 0. We use the same notation as
above, except that now Vﬁz =F.

Case: Sy < 5; same as [(k) = 1 and Sy < 2.

Case: D and D’ are in the same column. One attempt
to partition S, _; US; is CUC’, S;_; — C, and two
tiles made of S; — C'. If we cannot make two tiles of
S; — C'" then S;, — C' < 4 and thus S; < 5, a case
already covered. Thus this attempt fails only because
C + C' < 1. Note also that S — C" < 5, thus ((k) <

C+E—-145,-6=(C+C")+E—-14+(S,—C")—-6<
141-14+5-6=0.

Case: D and F/, are in the same column. Symmetric
to the last case.

Case: whatever remains. Now neither D’ nor F' is
in the same column as D. To make analysis more
succinct, we introduce a bit more notation. First,
X = S, — D), — EJ,. By our estimates on the weights of
pieces of vertical slices, X < 5. Second, Y is the sum
of weights of those among D/, and F/, that are in the
columns of C, and Z of those that are in the columns
of E. In our case we have S, = X +Y + Z.

One attempt to partition Sg_; + Sy is to extend C
upward to cover D/, use the top row of S; to form
two tiles and the rest. Because this attempt failed,
C+Y < 1. Similarly, E + Z < 1. Thus ((k) <
C+E-1+5,-6=(C+Y)+(FE+2)+X -7<0.
It is easy to implement the dicing part of our algorithm
in O(n + m) time, so the overall time is still O(n + m).

This ends the analysis of the algorithm for the
case when A is arbitrary. If A was binary, then after
rescaling the entries such that W = 1, we may assume
that each non-zero element of A is equal to % where
W is an integer. We will prove that A < 2.5t + 2. The
proof that A < 2.5t + 1.5 is similar to the previous, so
we will list the differences.

L VE Vi <1-1Yw, VG < Yw, Zé@l VE <

e i,j =
1-— 1/w, thllS Sl S l('L) + 2 — 2/w.

2. We will show that the number ¢ of tiles produced
by our algorithm satisfies A < 5/5 + 3/, by showing that

C(k) = 25 [Si = 3/21(0) = 520 ()] < 1.

3. Our inductive claim is: if (k) > 0 then I(k) =1
and ((k) < § — 5. Note that this means that

((k) <t/ —2w.

4. The basis is as trivial as before. New case analysis
for the inductive step:

Case: I(k) > 1 then ((k) < 1o+ Sk —5/2 <1(i) +2 —
5/l(1) <2—1(i) <0.

Case: I(k) =1 and {(k — 1) <0, the claim is obvious.

Case: Remaining case, [(k) = 1 and {(k—1) > 0, hence
I(k—1)=1and ((k—1) < S;p_1 —3/5. Suppose that
C(k—1)+ S —3/5 >0, then S;_; + Sr > 5. Because
the weight of all the rows of a slice, except the top, is

at most 1 — 1/y, this means that the sum of weights of
the top rows of Si_; and Sy, is at least 3 + 2/y,. Apply
the vertical slicing algorithm to Sj_1 U Si. The last
column in a vertical slice has at most 2 non-zeroes from
the top rows, and the previous columns have at most
W — 1 non-zeroes, thus the weight of the intersection of
a vertical slice with the two top rows is at most 1+1/y.
Thus after creating the first 2 vertical slices we still have
weight 1 available in the two top rows. Consequently, we
get a success of the attempt to get more tiles, o(k) =1
and (k) < Si—1 + Sk — 15/ < 0.

Remark: In the proof of the above theorem, we used
the total weight A of the input array A as an (ob-
vious) upper bound on the number of tiles in an op-
timum solution. The following example shows that
an alternative lower bound is necessary to prove bet-
ter performance ratios for arbitrary arrays. For ev-
ery t > 0, we can construct a corresponding ar-
ray A such that ¢ is the maximum number of good
tiles in the partition and [A] = 3t + 2. Our A
is a (t +2) x (t + 2) array where every mnon-zero
entry equals 1— J; there are 3t+2 non-zeros
distributed in three diagonals in a manner
shown in the adjacent diagram (where e
indicates a non-zero). One can see that a
good tile must contain at least two non-zeros. A brief
inspection shows that every good tile must contain a
non-zero from the central diagonal. Consequently, there
cannot be more than ¢ disjoint good tiles.

4 Recursive Slice-and-Dice: Binary Space

Partitions

In this section, we will define general versions of the
MAX-MIN and MIN-MAX tiling problems. We will also
prove improved upper bounds for the size of Binary
Space Partitions for a set of isothetic rectangles. Finally,
we will show how we can obtain improved approxima-
tion algorithms for the general tiling problems using the
bounds on the BSP size and a recursive version of the
slice-and-dice technique.

4.1 General Versions of Tiling Problems First,
we define a general version of the MIN-MAX problem as
follows. We are given an n x n array A of N = n?
positive numbers, a parameter W > 0 and a weight
function f mapping any subarray R of A to a positive
real number such that f is non-decreasing [24], that is,
for any two rectangles T; and Ts forming a partition of
atile T of A, f(T) > max{f(T:), f(T2)}3. The goal of

8The basic MIN-MAX problem is simply a special case of this
problem when the weight of any tile is the sum of the entries in
it.

the general MIN-MAX problem is to partition A with the
minimum number tiles such that the maximum weight
of any tile is at most W. Some of the commonly used
weight functions are the sum squared error of each entry
from the average of the entries in that tile, or simply the
maximum of all entries in the tile; see [24] for details.
Assume that, given the values of f(T;) and f(T2) for
a partition T; and T of a tile T of A, we can compute
f(T) in time «. For example, « = O(1) if the weight
function is the maximum of all entries in the tile or for
the MIN-MAX problem.

A general version of the MAX-MIN problem can also
be defined in a similar manner. The weight function f is
again non-decreasing, but the goal now is to partition A
with the maximum number of tiles such that the weight
of each tile is at least W.

4.2 BSP: Definitions and Bounds Given a rect-
angular region R containing a set of n disjoint isothetic
rectangles, a BSP of R consists of recursively partition-
ing R by a horizontal or vertical line into two subre-
gions and continuing in this manner for each of the two
subregions until each obtained region contains at most
one rectangle. If a rectangle is intersected by a cutting
line, it is split into disjoint rectangles whose union is the
intersected rectangle. Thus, naturally, BSP is a slice-
and-dice procedure since each “cut” separates a region
into two subregions. The size of a BSP is the number
of regions produced. Equivalently, a BSP of a set of
rectangles contained in a rectangular region R can be
visualized as a binary tree, where each node is a rect-
angular subregion of R, each internal node is the union
of its two children, the intersection of each leaf with the
rectangles in our collection has at most one rectangle,
and the root is the rectangular region R. The partition
of R that corresponds to a BSP is the collection of the
leaves of this tree and the size of the BSP is the number
of leaves in the tree. A set of rectangles form a tiling
if they partition some rectangular region R. It is shown
in [17, 24] that a BSP of R with the minimum number
of leaves can be computed using dynamic programming
technique in O(n®) time.

Our improved results for the sizes of BSPs for
isothetic rectangles are summarized in the following
two theorems below. The amortization schemes in the
proofs of these two theorems are somewhat different.

THEOREM 4.1. We can compute a BSP of R containing
at most 3n—[3] regions in O(nlogn) time, whereb > 2
is the total number of rectangles adjacent to (having one
side common) one of the four sides of R.

THEOREM 4.2. Assume that the rectangles in our col-
lection form a partition of R. Then, we can compute

a BSP of R containing at most 2n — [%”] regions in

O(nlogn) time, where b > 3 is the total number of rect-
angles adjacent to (having one side common) one of the
four sides of R.

4.3 Approximate Tiling via BSP based Slice-
and-Dice We show how the bounds in Theo-
rems 4.1 and 4.2 can be used to provide improved
approximation algorithms for general MIN-MAX and
MAX-MIN tiling problems as defined in Section 4.1. Our
new improved approximation results are as follows. The
previously best known algorithm for this problem also
used no more than twice as many tiles as needed, but
its running time was O(NZ%a) [17].

THEOREM 4.3. Let p* is the minimum number of tiles
in an optimal solution of the general MIN-MAX problem.
Then, there is an O(N%a) time algorithm to find a tiling
that uses at most 2p* — 2 tiles.

The lower bound of 2n — o(n) on the size of
BSPs forming a partition of their bounding box [11]
indicates that alternate approach is needed in order to
get significantly better approximations for this problem.

Our BSP techniques can also be applied to the
general version of the MAX-MIN problem to obtain the
following bicriteria approximation. Define a (v, 3)-
approximation of the MAX-MIN tiling problem to be one
which produces a tiling of A such that there are at
least yp* tiles of weight at least W or more, where
p* is the maximum number of tiles used in an optimum
solution. In this terminology, our result from Section 3
(Theorem 3.1) is an (%, 1)-approximation in general and
(%, 1)-approximation for the case when the given array
A is binary (for the specific weight function considered
there).

THEOREM 4.4. There exists a polynomial time (v, 3)-
approzimation algorithm for the MAX-MIN tiling problem
for the following values of v and (3: (a) y=1%,8=

(b)y=74,B8=735and (c)y=73,
5 Shifted Slice and Dice with Dynamic
Programming

In this section, we consider the general MIN-MAX tiling
problem when the global aspect ratio of the rectangles
in some optimum solution is bounded by b for some
constant b > 1. The MIN-MAX problem is known to
be NP-hard even when the global aspect ratio of the
set of tiles in an optimal solution is at most 3 [24].
We use a slice-and-dice technique in which generation
of the slices is inspired by the shifting technique used
in [14, 15]; we call such an approach as a shifted slice-
and-dice technique. Our results are summarized in the

theorem stated below. Notice that part (a) of the
following theorem provides a 2 + o(1) approximation
to the MIN-MAX tiling problem in almost linear time for
this case.

THEOREM 5.1. Assume that the global aspect ratio of
the rectangles in some optimum solution is bounded by
b for some constant b > 1. Then, the following results
hold for the general MIN-MAX tiling problem:

(a) There ezists an algorithm that runs in O(aN/§)
time and returns a solution in which the total
number of tiles used is at most (2 + 8) times that

of the optimum, for any § > 0.
(b) There exists a PTAS.

Proof. We use the shifted slice-and-dice technique for
both parts. First, we describe how to generate the
slices. For any subarray B of A, let OPTp denote
the minimum number of tiles needed for the general
MIN-MAX problem on B. Let X be the set of rectangles
in an optimal solution such that the global aspect ratio
of the rectangles in X is at most b. For notational
simplicity, assume that b is an integer and the smallest
side of any rectangle in X is 1; hence the largest side
of any rectangle in X is at most b. Since X forms a
partition of an n xn array A, all coordinates of all corner
points of rectangles in X are from the set {1,2,...,n}.

Let ¢ be the constant involved in the PTAS, i.
e., we are looking for a solution in which we use at
most (1 + €) times the number of tiles in an optimum
solution. Let 8 = [%] Consider the following [
families L1, Lo, ..., Lg of vertical lines where L; is the
set of vertical lines {y = 1+ (j —1)b+cbB|c € N}. The
following observations are true:

(a) Since the separation of any two linesin L; is at least
bs, no rectangle in X can cross two such lines.

(b) For any two vertical lines £ € L; and ¢' € Lj, with
j # k, the separation between them is at least b
and hence no rectangle in X can cross both ¢ and
2.

Let n; be the number of rectangles in X crossing some
vertical line in L;. Observations (a) and (b) imply
that Z?:l n; < OPT4. Hence, there exists a Ly such
that ny, < OPTy4. Our slices consist of the partition
of A formed by the vertical lines in Lj. Assuming
that for each slice we can solve the general MAX-MIN
problem ezxactly, the union of these solutions uses at

most OPT4 + ny < (1 + %) OPT4 rectangles.
Now, we can take take each of the above slices of

size at most n x b3 and apply the same technique in
the horizontal directions by considering § families of

horizontal lines such that at most OPTy4 rectangles
of X cross at least one such family. Hence, after this,
we have 32 families of slices of A each of size at most
b3 x b3, such that if we can compute the solution to the
general MAX-MIN problem for each slice in each family
exactly then the union of the best solution over these

families of slices will use at most (1 + %) OPT4 <

(14 €)OPT4 rectangles.

Notice that there are O(NN/b?3?) slices in each fam-
ily. Since each slice is of size b3 x b3, there are at
most O(b*3*) rectangles to consider for an exact solu-
tion and any exact solution of the slice can use no more
than %232 rectangles. Hence, an exhaustive search for
the best solution for each slice takes O((b*3%)"*5° ab?3?)
time. Hence, the total time taken by our algorithm is
at most O((6*B*)"’#*aN?), which is O(aN) if b and 3
are constants. This proves part (b) of the theorem.

For part (a) of the theorem, we use the same
technique as before, but we only approximately compute
the solution within each slice of size b8 x b3 using the
sparse and rounded dynamic programming techniques
in [24] to reduce the running time at the expense of
increasing the number of tiles. As a result, we use at
most (2 4+ 2e)OPTy rectangles, which is (2 + 6)OPT4
by choosing § = 2¢. The time taken for each subarray
is O(b°B°a) and hence the total time taken is at most
O(b555ab2"\ézﬂ2) = O(aNb*3%) = O(aN/8%).

6 Applications of Tiling Results

As mentioned before, the tiling problems arise in nu-
merous application areas. See [17, 24] for more details
on these applications and overview of several others.
Rather than repeating those application scenarios, here
we list a set of applications that show variations of tiling
problems that arise. We only provide sketchy details of
the applications in this extended abstract due to lack of
space.

Two Dimensional Histograms in Databases.
Databases use histograms to approximate data distribu-
tion; this is used to estimate size of intermediate results
under different query plans, and thereby choose efficient
query execution plans. All commercial databases rely on
histograms for this purpose, and this is a well-studied
topic in database research (e.g., see [31]). We consider
the case of two dimensional histograms where the input
is a two dimensional array A representing two numer-
ical attributes in the database, say, salary and age of
employees. The entry A[i, j] is the number of employ-
ees in the database who have age 7 and salary j. The
histogram is a tiling of A. Two specific histograms of in-
terest are the equi-sum [23] and V-Opt [31] histograms.
In an equi-sum histogram, the weight of a tile is the

sum of all items in it and in a V-OPT, it is the sum
of the squared difference between each item in the tile
and the average of the items in the tile (denoted SSD).
The goal in both is to minimize the number of tiles
given a bound on either the maximum weight (in equi-
sum histogram) or total weight (in V-OPT) of the tiles;
this bound represents the error the database designer
is willing to tolerate in estimation of the sizes of the
result. It is easy to see that our techniques for solving
the MIN-MAX problem apply directly for equi-sum his-
tograms or can be shown to apply simply for V-OPT
histograms. As a result, two dimensional equi-sum and
V-OPT histograms can be approzimated in O(N3) time
within a factor of 2. This substantially improves the
previously best known results for this problem [24].
Two Dimensional Deviants. Suppose that we are
given a two dimensional array A. The goal is again to
tile A as in two dimensional histogram construction.
However, a crucial difference is that one is allowed
to remove a subtile (a subtile is an isothetic rectangle
contained in a tile). Each such subtile is called a deviant.
The weight of a deviant is the sum of the squared
difference between each item in the tile and the average
of the items in the tile (denoted SSD). The weight of
a tile that is not a deviant is now computed as in SSD
except that now it is the sum of squared differences
between each of the remaining tile elements and their
average spread over the total number of elements in the
tile (including the deviants, if any, removed from the
tile). Formally, the problem is as follows: given d, a
bound on the number of deviants and the total weight
W of tiles, find a tiling of A with a minimum number
of tiles.” Using our techniques for the MIN-MAX tiling
problem, we can show the following.

THEOREM 6.1. There ezists an O(N3d?) time algo-
rithm to solve the two dimensional deviant mining prob-
lem that returns a solution using at most 4d deviants
and at most twice the optimum number of tiles.

This is the first known efficient algorithm for the
multidimensional deviants problem, and we are cur-
rently performing experiments on this problem using

9This is a technical definition that follows from [16]. The mo-
tivating observation there was that sometimes small islands of
excessively large (or small) values adversely affect the approxi-
mation of a region. Therefore, it would be beneficial to consider
them separately. The authors formalized that notion in terms of
the deviants above, and showed that finding deviants not only
led to better approximations but also served as an indication of
certain interesting trends in the data and therefore was of mining
value. They considered the one dimensional version of the prob-
lem and left two and higher dimensional problems open. Here,
we have formalized the problem in two dimensions and obtained
approximation results.

our result. Similar results can be obtained for another
variation of this problem: constructing two dimensional
histograms with “holes” called STHoles [6], but we omit
the details here.

Covering Rectilinear Polygons with Holes and
Don’t Care Regions. Formally, this problem, which
we abbreviate as the RECT-DECOMP problem, is as fol-
lows. We are given a rectilinear polygon P of n vertices
(possibly with holes). The interior of P may contain a
set of special disjoint rectilinear regions, which we term
as the don’t care regions. Our goal is to partition the in-
terior of P, excluding the don’t care regions, into a mini-
mum number of rectangles. A rectangle in the partition
must be included inside the given polygon, must not
contain any holes and may or may not overlap any don’t
care region. The RECT-DECOMP problem without any
don’t care region can be solved in O(n%) time provided
no degenerate (point) holes are allowed [26, 27]. How-
ever, if degenerate holes are allowed, then the problem
was shown to be NP-complete [18]. The RECT-DECOMP
problem and its variations has applications in storing
graphical images and in the manufacture of integrated
circuits [14, 15, 21] and is also a natural combinatorial
problem of independent interest. We present the first
known approximation algorithm for this problem in its
full generality, ie., including holes as well as don’t care
regions. The proof of the following theorem is similar
to other results in Section 4 and is omitted from this
extended abstract.

THEOREM 6.2. Let k is the minimum number of rect-
angles in an optimal solution of the RECT-DECOMP prob-
lem for a rectilinear polygon P with n vertices. Then,
there is an O(n®) time algorithm to find a solution to
the RECT-DECOMP problem that uses at most 3k — 2 rect-
angles.

7 Concluding Remarks

We have studied two general rectangular tiling prob-
lems, namely the MAX-MIN and the MIN-MAX problem.
Using the slice-and-dice approach in several ways such
as in a greedy manner, with Binary Space Partitions
or with dynamic programming atop, we have obtained
small constant factor approximations for these prob-
lems. For the MAX-MIN versions, our results are the
first known; for the MIN-MAX versions, our results im-
prove the running time and/or approximations of best
known previous results. Even though a connoisseur may
not truly appreciate the concept of cutting a higher-
dimensional Sicilian pie, it would be of significant inter-
est to study efficient approximation algorithms for these
problems in higher dimensions. References [5, 33, 34] re-
port some approximation results for the MIN-MAX prob-

lem in higher dimensions, but unfortunately the approx-
imation quality deteriorates linearly with an increase in
the dimension.

References

[1]

P. Agarwal, E. Grove, T. Murali and J. Vitter. Binary
space partitions for fat rectangles. Proc. Symp. Found.
of Comp. Sci. (FOCS), 1996.

P. Agarwal and S. Suri. Surface approximation and
geometric partitions. Proc. 5th ACM-SIAM Discrete
Algorithms, 24-33, 1994.

C. Ballieux. Motion planning using binary space parti-
tions. Technical Report, Utrecht University, 1993.

P. Berman, B. DasGupta and S. Muthukrishnan. On
the Exact Size of the Binary Space Partitioning of Sets
of Isothetic Rectangles with Applications. Technical
Report # 2000-26, DIMACS Center, Rutgers Univer-
sity, 2000.

P. Berman, B. DasGupta, S. Muthukrishnan and S.
Ramaswami. Improved Approximation Algorithms for
Rectangle Tiling and Packing. 12th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), January 2001,
pp. 427-436.

N. Bruno, S. Chaudhuri and L. Gravano. STHoles:
A Multidimensional Workload-Aware Histogram. Proc.
SIG on Management of Data (SIGMOD), 2001.

S. Chin and S. Feiner. Near real-time shadow gener-
ation using BSP trees. Computer graphics, 23:99-106,
1989.

F. d’Amore and P. G. Franciosa. On the optimal
binary plane partition for sets of isothetic rectangles.
Information Proc. Letters, 44, 255-259, 1992.

M. de Berg. Linear size binary space partitions for
fat objects. Proc. 3rd Annual FEuropean Symp. on
Algorithms, LNCS 979, 252-263, 1995.

M. de Berg, M. de Groot and M. Overmars. New
results on binary space partitions in the plane. Proc.
4th Scand. Workshop Algo. Theory, Vol 824, LNCS,
61-72, 1994.

A. Dumitrescu, J. Mitchell and M. Sharir. Binary
Space Partitions for Axis-Parallel Segments, Rectan-
gles and Hyperrectangles, to appear in 17th Annual
ACM Symposium on Computational Geometry, June
2001.

H. Fuchs, Z. Kedem and B. Naylor. On visible surface
generation by a priori tree structures. Comput. Graph.,
14(3), 124-133, 1980.

V. Hai Nguyen and P. Widmayer. Binary space parti-
tions for sets of hyperrectangles. LNCS, 1023, 1995.
D. Hochbaum. Approximation algorithms for NP-hard
problems. PWS Publishing Company, Chapter 9, 1997.
D. Hochbaum and W. Maass. Approximation schemes
for covering and packing problems in image processing
and VLSI. Journal of ACM, 130-136, 1985.

H. Jagadish, N. Koudas and S. Muthukrishnan. Mining
Deviants in a Time Series Database. Proc. Very Large
Databases (VLDB), 1999, 102-113.

[17]

18]

[19]

[26]

[27]

S. Khanna, S. Muthukrishnan, and M. Paterson. Ap-
proximating rectangle tiling and packing. Proc Symp.
on Discrete Algorithms (SODA), 384-393, 1998.

A. Lingas. The power of non-rectilinear holes. Prof. 9th
Intl. Collog. Autom. Lang. Prog., (ICALP), 369-383,
1982.

K. Lorys and K. Paluch. Rectangle Tiling. Third Inter-
national Workshop on Approzimation Algorithms for
Combinatorial Optimization (APPROX 2000), Lecture
Notes in Computer Science 1913, 206-213, Sept. 2000.
F. Manne. Load Balancing in Parallel Sparse Matrix
Computation. Ph.D. Thesis, Department of Informat-
ics, University of Bergen, Norway, 1993.

C. Mead and L. Conway. Introduction to VLSI Sys-
tems. Addison-Wesley, Reading, MA., 1980.

J. Mitchell. On maximum flows in polyhedral domains,
J. Comput. Syst. Sci., 40, 88-123, 1990.

M. Muralikrishna and D. DeWitt. Equi-depth his-
tograms for estimating selectivity factors for multi-
dimensional queries. Proc. ACM SIGMOD, 1988, 28—
36.

S. Muthukrishnan, V. Poosala and T. Suel. Rectangu-
lar Partitionings: Algorithms, Complexity and Appli-
cations. Proc. Intl. Conf. on Database Theory, 1999.
B. Naylor and W. Thibault. Application of BSP trees
to ray-tracing and CSG evaluation. Technical Report
GIT-ICS 86/03, Georgia Tech., Feb 1986.

T. Ohtsuki. Minimum Dissection of Rectilinear Poly-
gons. Proc. IEEE Symp. on Circuits and Systems
(1982), 1210-1213.

L. Pagli, E. Lodi, F. Luccio, C. Mugnai and W.
Lipski. On Two Dimensional Data Organization 2.
Fund. Inform., 2 (1979), 211-226.

M. Paterson and F. Yao. Efficient binary space par-
titions for hidden-surface removal and solid modeling.
Discrete Comput. Geom., 5, 485-503, 1990.

M. Paterson and F. Yao. Optimal binary space parti-
tions for orthogonal objects. J. Algorithms, 13, 99-113,
1992.

C. H. Papadimtriou, personal communication.

V. Poosala. Histogram-based estimation techniques in
databases. PhD thesis, Univ. of Wisconsin-Madison,
1997.

H. Samet. Applications of spatial data structures: com-
puter graphics, image processing and GIS, Addison-
Wesley, 1990.

J. Sharp. Tiling Multi-dimensional Arrays. Founda-
tions of Computing Theory (FCT), 1999, 500-511.

A. Smith and S. Suri. Rectangular tiling in multi-
dimensional arrays. Proc. ACM-SIAM Symp on Dis-
crete Algorithms (SODA), 1999.

P. van Oosterom. A modified binary space partition
for geographic information systems. Int. J. GIS, 4(2),
133-146, 1990.

