
E�cient Approximation Algorithms for Tiling and Packing Problems

With Rectangles�

Piotr Bermany Bhaskar DasGuptaz S� Muthukrishnanx Suneeta Ramaswami�

July ��� ����

Abstract

We provide improved approximation algorithms for several rectangle tiling and packing problems

�RTILE� DRTILE and d�RPACK� studied in the literature� Most of our algorithms are highly e�cient

since their running times are near�linear in the sparse input size rather than in the domain size� In

addition� we improve the best known approximation ratios�

� Introduction

In this paper� we study several rectangle tiling and packing problems� These are natural combinatorial

problems that arise in many applications in databases� parallel computing and image processing� We

present new approximation algorithms for these problems� In contrast to the previously known best

results� we meet a crucial demand of most of these applications� namely� most of our algorithms work

on sparse inputs and�or in high dimensions more e�ciently� In addition� our algorithms have better

approximation bounds than the previously known algorithms� Furthermore� the algorithms are simple

to implement� In what follows� we will �rst formally de�ne the problems before presenting our results�

��� The Rectangle Tiling and Packing Problems

We study the two classes of problems as described below� The following de�nitions and notations are

used throughout the rest of the paper�

� For the RTILE�DRTILE problems �as described below�� we will always use bold letters to denote

arrays�rectangles� and respective regular letters to denote their weights� In particular� input array

A has weight A� and Ri� the i
th row of of a two�dimensional array A� has weight Ri�

�A preliminary version of this paper appeared in ��th ACM�SIAM Symposium on Discrete Algorithms� January �����

pp� ������	�
yDepartment of Computer Science� Pennsylvania State University� University Park� PA �	
��� Email�

berman�cse�psu�edu� Supported in part by NSF grant CCR������
� and by NLM grant LM�
����
zDepartment of Computer Science� University of Illinois at Chicago� 

� South Morgan Street �SEO Building� M�C

�
��� Chicago� IL 	�	�����
�� Email� dasgupta�eecs�uic�edu� Supported in part by NSF Grant CCR��
���
	�
xAT� T Labs � Research� �
� Park Avenue� Florham Park� NJ ������ Email� muthu�research�att�com�
�Department of Computer Science� Rutgers University� Camden� NJ �
���� Email� rsuneeta�crab�rutgers�edu�

�



� Given an array A a tile of A is any rectangular subarray of A� and a partition of A into tiles is

one in which each element of the array falls in precisely one tile of A with the tiles being disjoint

�i�e�� sharing no elements��

� An array A is called a f	� �g�array if all of its entries are either 	 or �
 otherwise it is called a

general or arbitrary array�

� All logarithms in this paper are in base � if the base is not mentioned explicitly�

With the above notations and de�nitions� we de�ne the two classes of problems that are of interest in

this paper�

RTILE�DRTILE problems� Given a two dimensional array A of size n�n containing non�negative

integers�� partition A into at most p rectangular tiles so that the maximum weight of any tile is

minimized� where the weight of a tile is the sum of all elements of A that fall in it� Our emphasis is on

the sparse version of the problem� that is� one in which the total number of nonzero entries in A is at

most m which is likely to be smaller than n�� the total number of entries in A�

A natural variant of RTILE is its dual� referred to as the DRTILE problem� in which we are given

a weight bound w and required to minimize the number of tiles needed to partition the given array so

that no tile has weight larger than w� Another natural variant is the straightforward extension of the

RTILE�DRTILE problems to d�dimensions� where A is a d�dimensional array of size n � n � � � � � n

and d�dimensional hyper�rectangles are considered in the tiling��

d�RPACK problem� Given a set of p weighted d�dimensional� axis�parallel hyper�rectangles with

endpoints in f�� �� �� � � � � ng and a parameter k� �nd a collection of at most k disjoint hyper�rectangles

of maximum total weight�� The set of all possible hyper�rectangles in d dimensions is n��d�� but p is

likely to be signi�cantly smaller� that is� the sparse case is of practical interest�

The d�RPACK problem on a set of hyper�rectangles is equivalent to �nding the maximum�weight

independent set in the intersection graph of these hyper�rectangles� where there is an edge between two

nodes representing two distinct hyper�rectangles if and only if they intersect �this problem has been

studied with an alternate de�nition of the interference graph in 
BNR����� The dual of the RPACK

problem is to �nd the minimum cardinality subset of disjoint hyper�rectangles with total weight at least

w� for some given weight�bound w� Since it is NP�hard to even �nd a feasible solution for this dual

problem 
FPT���� it cannot be approximated to within any factor� Hence� we do not consider this dual

problem any further�

�All our results will generalize to n� � n� array� Henceforth� when we refer to arbitrary array A we imply one with

non�negative integers� While our results do extend to the case when the elements are positive reals� we focus on the

non�negative integer case motivated by the applications�
�Obviously� every element of the given array has to be at most w for a solution to the DRTILE problem to exist
�All our results generalize to the case when the endpoints of the ith dimension of the hyper�rectangle lies in f�� �� � � � � nig�

for some positive integers n�� n�� � � � � nd�

�



��� Motivating Applications

Rectangle tiling and packing problems as described in the previous section are natural combinatorial

problems arising in many scenarios� For motivation� we will very brie�y review one example application

scenario for each and leave others to be found in the references�

Equisum Histograms in Databases� Databases such as DB�� SQLServer� Oracle� Sybase� Ingres

etc� routinely keep histograms to optimize query execution �K���� These histograms attempt to capture the

distribution of attribute values in the database� for example� the joint distribution of the frequency of attribute

values �e�g�� age� salary� savings� etc��	 the goal is to do so using limited memory and reliable accuracy� While

the study of histograms is fundamental in areas such as Statistics� the use of multidimensional histograms

in databases was initiated in �MD���� and has been intensely researched since then �see �P
�� for a survey��

The RTILE problem is precisely that of constructing what is known as the Equisum histogram on � �more

generally d� numerical attributes as de�ned in �MD���� In this context� A is de�ned as follows
 A
i� j� is �

if there exist database records with attributes values i and j respectively �e�g�� salary of �		K and savings of

�		K� respectively� and 	 otherwise	 p� the number of tiles� represents the space allocated for the histogram	

and w� the maximum weight of a tile� a�ects the accuracy of estimating the joint distribution� This gives

the RTILE problem where A is a f	� �g�array� More generally� we may let A
i� j� be the number of database

records that have attribute value i and j respectively� and we would obtain the RTILE problem with non�

negative integral elements� Both versions of the problem are of interest in selectivity estimation� �DRTILE

problem is the dual of RTILE� which is equally interesting for building histograms��

An important feature of this application is the sparsity of the input� That is� A
i� j� is nonzero only

for the combination of attribute values that are present in the database� which is typically signi�cantly

smaller than the set of all possible combinations of attribute values� It is imperative to exploit this

sparseness in database applications�

RTILE and DRTILE problems� and their variants� are also of interest in other applications in load

balancing� database compression� data partitioning for parallel computers� image and video processing�

etc� See discussion and references in 
MPS��� KMP����

Database Decision Support� Database mining systems generate association rules � rules of the form

C� � C�� that is� if condition C� is satis�ed in the database� C� follows� Correlation rules of this form need

support and con�dence to be tagged by database mining systems� For numeric attributes� the conditions

on the left take the form of clusters �ranges�� an anecdotal example being
 �Age � 
��� ���� � �Balance �


��K � �	K�� � �CarLoan � Y es�� �Here� there are two numeric attributes� namely� Age and Balance�

In general� there could be many other numeric attributes such as Mutual Fund Investments etc�� Study of

such clustered association rules can be found in �FM�
�a� FM�
�b� RS

�� Database mining systems can

now generate the set of all such rules for a given database� given thresholds on con�dence and support� and

tag each with a weight that shows their gain or value� Following that� database decision systems choose a

subset of these rules for further development� such as marketing� A common formulation of this task is to

choose k disjoint rules of largest total gain or value �for example� see �FM�
�a� RS

� for formulation of this

problem and extensive experimental study�� This is precisely the d�RPACK problem where the d dimensions

correspond to the numeric attributes�

�



Besides the above application� the d�RPACK problem arises in various resource allocation problems�

It is also a natural combinatorial problem when viewed as the maximum�weight independent set problem

on the corresponding intersection graph of the hyper�rectangles� In the above motivating application�

the set of hyper�rectangles that is generated is typically much smaller than the set of all possible hyper�

rectangles� The focus is therefore again on the sparse input case�

��� Summary of Our Results and Related Research

Since the RTILE� DRTILE and d�RPACK problems are known to be NP�Hard 
FPT��� KMP��� in

two or more dimensions�� our goal is to design approximation algorithms with guaranteed performance

bounds� Naturally� our focus is to design approximation algorithms with better performance ratios than

previously known� but additionally� our focus is to design such approximation algorithms whose time

complexity is e�cient as a function of the sparse input size �e�g�� m � n in the RTILE and DRTILE

problems in two dimensions� p in the d�RPACK problem� rather than merely being e�cient in the

universe size �i�e�� n� and nd� respectively�� None of the existing algorithms for these problems fully

meet the latter goal� Table � summarizes our main results and compares them with the previously best

known results�

Problem Our results Previous best

ratio time�O ratio time�O reference

RTILE� A is f	� �g � n�m ��� n� � p log n 
KMP���

RTILE ���� n�m 	�� n� 
S���

DRTILE� A is f	� �g � n�m ��� n� � p log n 
KMP���

� n�
 
KMP���

DRTILE� d�dim �d� � d�m� n� �d nd � pd�d log n 
S��� SS���

d�RPACK �b� � lognc�d�� dp log� p �b� � lognc n�p� np� logn 
KMP���

�dn log n
log log n � pk d � � only

�
b� � log n

c
c
�d��

p��
c���d���� dk

Table �� Summary of our main results and comparisons with previous results� For the RTILE�DRTILE

problems� n is the size of each dimension� m is the number of non�zero entries in the array �m � nd for

a d�dimensional array�� and p � A�w� Unless otherwise noted A has arbitrary entries� For the d�RPACK

problem� p is the total number of hyper�rectangles� n is the size of each dimension� k is the number of

rectangles to be selected� and � � 	 and c � � are any two constants�

We specially note the following points�

� Tiling Problems� Our algorithms for the RTILE�DRTILE problems take time linear in the sparse

�The one dimensional versions of RTILE� DRTILE and d�RPACK problems can be solved in polynomial time by dynamic

programming and greedy approaches �KMP�
��

�



input size� that is O�m� n�� and are simple to implement�

� Packing Problems� The �b� � log nc�d���approximation algorithm for packing problem takes time

almost linear in sparse input size p� No results were previously known for the d dimensional case


straightforward extension of the known result for the two dimensional case 
KMP��� would be

an ��log�d�� n� approximation algorithm taking n��d� time� Hence� our result is a substantial

improvement� We can further improve the approximation ratio of our algorithm at the expense of

increasing the running time as shown in the table above
 the algorithm is now more complicated

but it is of theoretical interest since it follows that the logarithmic approximation barrier� that is

common to many natural combinatorial problems such as the set cover problem� does not hold

for this problem�

��� Brief Technical Overview of Results

Tiling Problems� While previous algorithms used the concept of �thick cuts� or �medium cuts� and

adopted a divide�and�conquer approach� we adopt a �sweep� based technique and develop the concept

of �good rectangles� in the array� i�e�� those rectangles whose total weight is at least g �for some param�

eter g carefully chosen to justify the approximation bounds� and combine these rectangles� whenever

necessary� in a local manner� The bene�t is that while thick or medium cuts are somewhat expensive

to �nd� good rectangles can be found quite simply by sweeping through the input and combining them

is also algorithmically easy� Thus our algorithms have e�cient implementation in the sparse input

size as applications demand� Somewhat surprisingly� such simple approaches in fact yield improved

approximation ratios�

The improvement in the approximation ratio for the DRTILE problem in d dimensions over the

previously best known algorithm uses an alternative lower bound in addition to the usual lower bound

considered in 
KMP��� S��� SS���� The two lower bounds together lead to an improved analysis of the

performance ratio�

Packing problem� The �blog�n���c�d���approximation algorithm that we present uses a divide�and�

conquer technique� The exact solution at each level is found by �translating� the rectangles in the

subproblems at each node in the level so that their �lower dimensional projections� do not interfere�

For the improved result with approximation ratio
�j

� � log n
c

k�d��
we do this at several consecutive

levels of the divide�and�conquer simultaneously� As a result� the algorithm becomes more involved�

��� The Map

In Section �� we present some necessary de�nitions� Our approximation algorithms for the RTILE and

DRTILE problems are in Section �� Section � contains our results on d�RPACK problem� Concluding

remarks are in Section ��

�



� De�nitions and Preliminaries

Unless otherwise stated� all rectangles are axis�parallel and all weights are non�negative� A d�dimensional

hyper�rectangle is 
x��� x����
x��� x����� � ��
xd�� xd�� � �d
i��
xi�� xi��� where each 
xi�� xi�� is an interval

on the real line and � denotes the Cartesian product� A ��dimensional hyper�rectangle is simply called

a rectangle� Two d�dimensional hyper�rectangles �d
i��
xi�� xi�� and �

d
i��
yi�� yi�� intersect if and only if


xi�� xi�� � 
yi�� yi�� 	� 
 for every i� A partition of an array A is a collection of �axis�parallel� mutually

disjoint rectangles �also referred to as tiles� that cover A� The weight of a rectangle in a partition of A

is the sum of all array elements covered by the rectangle�

If a given n�n array is sparse� containing m non�zero entries �n � m � n��� then it can be e�ciently

represented in O�m � n� space using the standard representation as an array of row lists
 the list of

the ith row contains an entry of the form �j� x� for every positive array entry A
i� j� � x and the row

lists are sorted by the column numbers of the entries� A similar standard sparse representation can be

used for a d�dimensional array A � a non�zero entry A
i�� i�� � � � � id� is represented by a �d � ���tuple

�i�� i�� � � � � id 
 A
i�� i�� � � � � id�� and the tuples are lexicographically sorted in their �rst d coordinates��

Hence� we assume that our input sparse arrays are represented this way�

� Approximating the Tiling Problem

First� we describe a general slicing technique that is used by the algorithms in Theorem � and Theorem �

for the RTILE and DRTILE problems �Theorem � uses a slightly di�erent slicing technique for the

DRTILE problem in d dimensions�� Next we focus on the RTILE and DRTILE problems on f	� �g�

arrays and later consider these problems on general arrays�

��� Slicing Arrays

De�nition � A tile �rectangle� is de�ned to be g�good provided it has weight at most g�

The goal of the slicing algorithm is to partition the input array A into slices �rectangles� depending

on the parameter g� Selection of g will depend on the particular algorithm and the particular problem�

Algorithms using this slicing technique have a common beginning� �rst� the value of g is established�

and then the given array A is partitioned into slices depending on g� The general scheme for the slicing

algorithm is shown below� For j � l the rows from Rt
j����� to Rt
j� form the jth slice� denoted by Sj �

The rows with numbers larger than t
l� �� form the remainder slice� Sl� For j � l� we de�ne the top of

the slice Sj as Tj � Rtj � The other rows of this slice form its base� Bj �

t
	� � 	

j � �

slice weight� 	

for i� � to n do

�If them non�zero entries of a d dimensional arrayA are given in some arbitrary order� then they can be lexicographically

sorted using bucket sort in O�d�m� n�� time� This will not increase the overall time complexity of our algorithms

�



slice weight� slice weight �Ri

if slice weight � g then

t
j� � i

j � j � �

slice weight� 	

l� j

It is easy to see that we can partition A into slices and compute all Ri�s� Sj �s� Tj �s and Bj �s easily

in O�n�m� time�

��� The RTILE and DRTILE Problems on f�� �g�arrays

Lemma � If the input array A is a f	� �g�array� we can partition it into d�A�ge g�good rectangles in

O�n�m� time�

Proof� Note that the remainder slice is always g�good and the other slices are not� To prove the

bound on the number of g�good rectangles� it su�ces� for j � l� to divide slice Sj into aj � �
Sj
g
g�good

rectangles� We consider three cases�

Case �� Tj � g� In this case both Tj and Bj � the top and the base of Sj � are g�good
 so they constitute

our partition of Sj into rectangles� Since Sj � g� we have aj � � � �Sj�g�

Case �� Tj � g and �Sj�g � �� This implies that Bj � g��� Assume that the �rst k entries of Tj

contain g �Bj ��s� Then the rectangle formed from the �rst k columns of Sj must be g�good� because

its weight is at most �g � Bj� � Bj� The remaining part of Sj is also g�good� because its weight is at

most Sj � �g �Bj� � Sj � g�� � g� Again� we have aj � � � �Sj�g�

Case �� Tj � g and �Sj�g � �� We can trivially partition Tj into � � � rectangles Tj���Tj��� � � � �Tj��

�going� say from left to right� columnwise�� in which rectangles Tj���Tj��� � � � �Tj���� have weight exactly

equal to g� and rectangle Tj�� has weight at most g� Then� our partition of Sj consists of the rectangles

Bj and Tj���Tj��� � � � �Tj��� Obviously� all the rectangles are g�good� If this partition contains exactly

� rectangles� then we clearly satisfy aj � � � �Sj�g� If it contains aj � � rectangles� then we have

Sj � �aj � ��g � ajg��� and thus aj � �Sj�g�

Note that after the initial computation of the slices we perform only the linear scans of the tops of

the slices and this can be done easily in O�n�m� time� ❑

Using Lemma �� we can prove the following theorem��

Theorem � The RTILE and DRTILE problems on a f	� �g�array can be approximated to within a

factor of � in O�n�m� time�

�This theorem was also proved independently in a very recent conference paper �LP��� Theorems � and ���

�



Proof� First� we prove the result for the RTILE problem� Assume that a given 	�� array A can be

partitioned into p rectangles� each of weight at most w� Obviously� w � dA�pe� We apply the algorithm

of Lemma � for g � d�A�pe which yields a partition of A into at most d�A�ge � �A���A�p� � p g�good

rectangles� Because g � �dA�pe � �w� our approximation ratio equals ��

Next� we prove the result for the DRTILE problem� Again� assume that a A can be partitioned into

p rectangles� each of weight at most w� Obviously� p � dA�we� We apply the algorithm of Lemma � for

g � w� This yields a partition of A into q � d�A�we g�good rectangles� Now� p � dA�we � �
�d�A�we �

q�� � ❑

��� The RTILE Problem on Arbitrary Arrays

Using the slicing technique in Section ��� with a novel method of combining slices and using more

elaborate accounting of the number of rectangles used� we can prove the following theorem�

Theorem � The RTILE problem on arbitrary arrays can be approximated to within a factor of ���� in

O�n�m� time�

Proof� Assume that the input array A can be partitioned into p rectangles of weight at most w� Our

goal is to �nd a partition into p rectangles of weights at most ��
� w�

Suppose that x � W�p and y is the largest entry of A� To avoid dealing with fractions in our proof�

we rescale the entries of A and w� if necessary� such that � � max�x� y�� It is clear that after the

rescaling we have w � �� In the remaining part of the proof� we can therefore assume than no array

entry exceeds �� Moreover� to achieve an approximation ratio of ���� � it is su�cient to ensure that all

rectangles in our collection are ���good� Therefore it su�ces to �nd a partition of A into at most dA��e

���good rectangles� or� equivalently� a partition of A into q ���good rectangles where �q �A � ��

We �rst partition A into slices �with g � ��� and compute all Ri�s�Sj �s� Tj �s and Bj�s in O�n�m�

time as outlined in Section ���� We next partition each slice separately� If Sj is partitioned into aj

���good rectangles� we say that Sj has a de�cit of dj � �aj�Sj� It su�ces to partition the slices in such

a way that
P

j dj � �� because
P

j dj �
P

j��aj � Sj� � �q � A �where q �
P

j aj is the total number

of rectangles�� To improve readability and provide better insights into the ideas behind our approach�

we provide the proofs of Lemmas �� �� � and � in the appendix�

Lemma � Assume that Tj � �b�� for some positive integer b� Then we can partition Tj into b ���good

rectangles�

Lemma � Assume that Tj � �b � � � y for an integer b � � and a real y � �� Then we can partition

Tj either into b ���good rectangles� or into b� � rectangles each of weight at most � � y�

Lemma � If Sj � �� then we can partition the jth slice Sj into ���good rectangles with a de�cit of

dj � ���

Lemma 	 If Tj � �� then we can partition Sj into ���good rectangles with a de�cit of dj � ���

�



We now describe an algorithm that runs in time O�n�m� and �nds a partition of A into at most

dA��e rectangles �tiles� each of weight at most ���

We �rst partition the input array into slices �with g � ��� as described in Section ��� in O�n�m�

time� The slices satisfying the assumption of Lemma � or Lemma � are partitioned into ���good

rectangles with the de�cit of �� or less in linear time� Below we describe how to handle the remaining

slices �for which Tj � �� and Sj � ����

C

F

D

G

E

H

If Tj � �� and Sj � ��� we make a preliminary partition of Sj into six rectangles�

First� we partition Tj into three rectangles� from left to right C� D and E� so that the

middle rectangle D consists of one entry only� while C � Tj�� and E � Tj��� Next�

we partition Bj into F� G and H so that these rectangles align as shown in the side

�gure� Obviously� these rectangles can be found in linear time�

Before we proceed� we need to observe that rectangle C � F is ���good� and that by a symmetric

argument� E �H is ���good as well� Indeed� C � F � Sj � �D �E� � Sj � Tj�� � ��� ���� � �	�
� �

Easy Case� Sj � �C � F� is ���good� or Sj � �E �H� is ���good� We can then partition Sj into two

���good rectangles� C�F and Sj � �C�F�� or E�H and Sj � �E�H�� respectively� Because Sj � ���

we have a de�cit of dj � �	� Sj � ���

Hard Case� The easy case does not apply� We will show in a moment that D�G is ���good� so we can

partition Sj into three ���good rectangles C�F� E�H and D�G� In this case the de�cit dj � ���Sj

can be positive� so we may be forced to change this initial partition� Therefore we need to characterize

the weights of the six rectangles that are possible in the hard case�

Because the easy case does not apply� we can conclude that

�� � �Sj � C � F � � �Sj �E �H�

� �D �E �G�H� � �C �D � F �G�

� Sj �D �G

� Sj � � �Bj

� Sj � � � �Sj � ���


 �� � �Sj


 Sj � ��

Therefore in the hard case we have Sj � �� � x for some real x� 	 � x � �� and the de�cit is

dj � ��� Sj � �� x� Hence� �� � dj � ��

We can also show that in hard case the following inequalities are true�


a� Bj � F �G�H � � � x



b� C � F � � � x and E �H � � � x



c� F � �x and H � �x�

Inequality 
a� follows from Bj � Sj � Tj � �� � x� Tj � �� � x� ���

Inequalities in 
b� follow since Sj � C � F � �� �because the easy case does not apply� and thus

C � F � Sj � �� � � � x �and� by a symmetric argument E �H � � � x��

�



To prove the inequalities in 
c�� suppose that one of them does not hold� w�l�o�g F � �x
 this and


a� implies G � �� x� thus Sj �C � F � �C �F � �D�G � �� � x� � � � ��� x� � ��� which means

that Sj � C � F is good and the easy case applies� a contradiction�

By substituting �� dj for x� we can rewrite 
a�c� as follows�


a�� Bj � F �G�H � �� dj 



b�� C � F � �� dj and E �H � �� dj 



c�� F � �� �dj and H � �� �dj �

Let l be the number of slices produced by the slicing algorithm in Section ���� with Sl be the

remainder slice �if present�� Now for each j � �� � � � � l � � we consider the accumulated de�cit �j �Pj
k�� dk� Our goal is to keep �j small� even though some terms in this sum� those that correspond

to the hard cases� may be positive� Consider the smallest j such that �j � �� Because each de�cit

contributing to �j is less than �� this implies that dj � 	 and dj � dj�� � 	�

Our strategy is that whenever �j � �� we partition Sj���Sj again� this time into � rectangles rather

than �� This repartition subtracts � from the accumulated de�cit� so it drops below ��� This way we

never let �j stay above � for j � l� To �nish� we will need to account separately for the remainder slice

Sl that can have a de�cit larger than ��

To account for the remainder slice Sl� consider �rst the case when the slice Sl�� is not an example

of the hard case� Then �l�� � �l�� � dl�� � � � � � 	� hence �l � dl � �� On the other hand� if

Sl�� is an example of the hard case� then we can partition it into C�F �a rectangle of weight at most

� � dl�� � ��� E �H �again a rectangle of weight at most � � dl�� � ��� and D �G �a rectangle of

weight at most � � �� � x� � � � � � dl�� � �	�� If Sl � �� then we can extend these three rectangles

vertically up to cover Sl
 if Sl � �� then dl � � � Sl � � and �l � � � � � �� hence we are allowed to

cover Sl itself by one rectangle� Notice that all cases are easily implementable in linear time�

To �nish the proof� we return to the case when �j � � and hence we need to partition Sj�� � Sj

again� Because 	 � dj � � and dj�� � �dj � both the slices Sj�� and Sj are examples of the hard case�

We partition Sj into C� D� E� F� G and Hand Sj�� into C�� D�� E�� F�� G� and H�� in the manner

shown in beginning of the proof�

C�

F�

D�

G�

E�

H�

C

F

D

G

E

H

C�

F�

D�

G�

E�

H�

C

F

D

G

E

H

Because D and D� are single elements �and� consequently

G and G� are each a single column�� we must have one of

the con�gurations shown in the side �gure� or a symmetric

variation of them� In the left con�guration� the right vertical

boundary of C� aligns with the right vertical boundary of C�

and in the right con�guration� the right vertical boundary of

C� aligns or to the right of the right vertical boundary of G�

In the left con�guration� we can use four rectangles� the left columns of four arrays forms one rectangle

C � F � C� � F�� the right columns forming another rectangle E �H � E� �H�� while the remaining

rectangle are D �G and D� �G�� The weights of these arrays can be estimated as follows�

C � F � C � � F � � �� dj � �� dj�� � �� �dj � dj��� � �


E �H �E� �H � � � by a symmetric argument


D �G � � �Bj � � � �� dj � �


�	



D� �G� � � �Bj�� � � � �� dj�� � �	�

In the right con�guration we can use �ve arrays� The �rst is Bj��� The second is C � D of

weight at most � � dj � � � � � dj � �� The third is E� The fourth is C� extended upwards� to

contain F� G and a fragment of H
 its weight is at most � � dj�� � Bj � � � �dj�� � dj� � �� The

last one is D� � E� extended upwards to contain the remaining fragment of H
 its weight is at most

����dj������dj � ��� �dj���dj��dj � ��� In both cases� it is easy to compute the new partition

in linear time� This completes the proof of Theorem �� ❑

��� The DRTILE Problem on Arbitrary Arrays in d Dimensions

In this section� we turn our attention to the DRTILE problem in d�dimensions for d � �� Let A �


ai��i������id� be the d�dimensional input array where � � i�� i�� � � � � id � n� An obvious lower bound on the

number of tiles needed is dA�we� In order to have better approximation ratios� we use another lower

bound for this problem� extending the concept of anti�rectangle sets for the interior cover problem for

rectilinear polygons 
BD����

De�nition � Two elements ai��i������id and aj��j������jd of A form anti�rectangle pair if they cannot be

covered together by one hyper�rectangle with weight at most w� An anti�rectangle set S for the array A

is a set of elements of A such that every two elements of S form an anti�rectangle pair�

Since no two elements of an anti�rectangle set for A can be covered together by a hyper�rectangle

of weight at most w� the following observation is obvious and provides our second lower bound�

Observation � If S is an anti�rectangle set for A� then any solution to the DRTILE problem for A

needs at least jSj hyper�rectangles�

We use the following two de�nitions later in the proofs�

De�nition � An array is x�bounded �for some x � 	� if every element of the array is at most x�

De�nition � Assume that B is a d�dimensional array where the the dth index ranges between � and

nd� The projection of B � 
bi������id���id � is the �d � ���dimensional array B � 
�bi������id��
� de�ned by the

equation�

�bi������id��
�

ndX
id��

bi������id���id

Using a slicing mechanism somewhat di�erent than the one described in Section ��� and a combi�

nation of two above lower bounds� we can prove the following theorem�

Theorem � The DRTILE problem on arbitrary arrays in d dimensions �d � �� can be approximated

to within a factor of �d� � in O�d�m� n�� time�

��



Proof� For simplicity of notation� we will assume� without loss of generality� that w � � �if the weight

limit is di�erent� we simply rescale the entries of A�� This implies that A is ��bounded� Let k� be the

minimum number of rectangles in a partition of the input array A of total weight A such that each

rectangle has weight no more than �� Obviously� k� � A�

For d � �� we solve the DRTILE problem exactly using a simple greedy method inO�n� time 
KMP����

For d � �� our algorithm uses the algorithm for dimension d� � in the following way	�


a� We �nd the largest index k� � n such that the array A� formed from the entries 
ai� � ai� � � � � � aid �

of A with id � �k
 � 	� k�� satis�es the condition that A� is ��bounded
 if k� � nd� we �nd

the largest k� � n such that the array A� formed from entries of 
ai� � ai� � � � � � aid � of A with

id � �k�� k�� satis�es the condition that A� is ��bounded� and so on� In this way we partition A

into s slices A�� � � � �As�


b� For � � r � s apply the �d� ���dimensional algorithm to Ar� the projection of the rth slice �array�

Ar� As a result� we will obtain� for each r� a set of hyper�rectangles forming a partition of Ar�


c� For � � r � s replace each hyper�rectangle B from the partition of Ar with the hyper�rectangle

B � B � 
kr�� � �� kr�� All these hyper�rectangles together form our solution to the DRTILE

problem for A�

Let t be the total number of hyper�rectangles produced by the above algorithm� First we show that

our algorithm produces a correct solution�

Lemma 
 Every hyper�rectangle produced by our algorithm has a total weight of at most ��

Proof� We prove by induction on d� For d � � the claim is obvious� Consider the case when

d � �� The total weight of the partition B in Ar is at most � by inductive hypothesis� since Ar is a

�d� ���dimensional array� Hence�
X

bi������id���id
�B

bi������id���id �
X

�bi������id��
�B

�bi������id��
� �

❑

Next we turn our attention to prove the promised approximation bound of our algorithm�

Lemma � k� � s

Proof� We will show that there is an anti�rectangle set of size at least s for A� Notice that� for

� � r � s� kr is the largest index in �kr��� n� such that Ar is ��bounded� Consequently� for each

� � r � s� we can �nd an index vector �r � ��r��� �r��� � � � � �r�d��� such that the entry �a�r of Ar would

exceed � if we would extend the range of the last index in Ar from �kr��� kr� to �kr��� kr � ��� De�ne

�s as an index vector of an arbitrary entry of As� Now� for � � r � s� we de�ne ar to be the entry of A

with index vector r � ��r� kr�� � ��� The set fbr j � � r � sg of entries of A form an anti�rectangle set

for A� ❑

�The notation �x� y� denotes the set of integers fz j x � z � yg for two integers x and y

��



Lemma � The weight A of A satis�es �dA � t� ��

Proof� By induction on d� First� consider the case when d � �� Then� t � k�� Since the sum of weights

of every two consecutive intervals in any optimal solution must be larger than �� we have k� � �A� ��

Next� we prove the inductive step� Assume that the rth slice Ar was partitioned into tr tiles� By

applying the inductive hypothesis to the projections of the slices of A we obtain

��d � ��A � ��d� ��
sX

r��

Ar �
sX

r��

�tr � �� � t� s

On the other hand� the sum of weights of every consecutive pair of slices exceeds �
 otherwise the

projection of their union would be ��bounded� a contradiction� Thus

�A � s� �

We obtain the claim by adding these two inequalities� ❑

Lemma � t � �dk�

Proof� By applying Lemma � to the to the projections of the slices of A we obtained the inequality

t� s � ��d� ��A � ��d � ��k�� Lemma � yields the inequality s � k�� The claim follows form adding

these two inequalities� ❑

Finally we show the time�complexity of our algorithm� Since after Step 
a� the projections of

di�erent slices are disjoint� it su�ces to show how to �nd the indices k�� k�� � � � � ks and the projections

of all the slices in O�m � n� time� assuming that A is given in its standard sparse representation as

described in Section �� For each index j in the dth dimension of A �� � j � n�� let Lj be the list of

�d � ���tuples �i�� i�� � � � � id��� j 
 A
i�� i�� � � � � id��� j�� in any arbitrary order� The lists L�� L�� � � � � Ln

can be computed in a total of O�m � n� time simply by traversing each of the m �d � ���tuples of A

and inserting these tuples in the appropriate Lj based on their dth coordinate� Since the �d� ���tuples

of A are given in a lexicographically sorted order on their �rst d coordinates� it is easy to �nd in O�m�

time the at most m �d � ���tuples �i�� i�� � � � � id���� where for every such tuple there is some j and

x such that �i�� i�� � � � � id��� j 
 x� is a �d � ���tuple of A� Next� we maintain an m�element array B

corresponding to these at most m �d� ���tuples� where a tuple �i�� i�� � � � � id��� correspond to the array

element B
i�� i�� � � � � id���� Every element of B also has an auxiliary �eld� which is either uninitialized

or initialized by a positive integer� Initially� the auxiliary �eld of B
i�� i�� � � � � id��� is set to uninitialized

for every tuple �i�� i�� � � � � id���� and obviously this takes O�m� time� We also set a variable i to � �this

will indicate that we are currently trying to �nd the value of ki�� and a variable bound to ��� Now� we

do the following to �nd the index k��

� We examine the lists L�� L�� L�� � � � in this order and for each entry �i�� i�� � � � � id��� j 
 x� in Lj�

� if the auxiliary �eld ofB
i�� i�� � � � � id��� is uninitialized or less than i� then we setB
i�� i�� � � � � id���

to x� set the auxiliary �eld of B
i�� i�� � � � � id��� to i� and set bound to be maxf bound� x g�

��



� otherwise� we increment B
i�� i�� � � � � id��� by x and set bound to be

maxf bound�B
i�� i�� � � � � id��� g�

� We stop as soon as we arrive at an index j such that� while the corresponding list Lj is being

processed� bound exceeds �� Then� k� � j � ��

We increase i by �� reset bound to ��� and continue the same procedure starting from the �rst entry in

list Lj to �nd k�� and so on� This takes a total of O�n�m� time� Using a similar approach� we can also

compute the projections of each slice Ar in O�n�m� time� This completes the proof of Theorem �� ❑

� Approximating d�RPACK

In this section we �rst give a simple approximation algorithm for d�RPACK with approximation ratio

dlog�n� ��ed��� and then show how to further improve the performance ratio of the algorithm at the

expense of increasing the running time� We assume� without loss of generality� that p � ��n��

��� �b� � lognc�d��
�approximation algorithm for d�RPACK

The main result of this section is the following theorem�

Theorem � The d�RPACK problem can be approximated to within a factor of �b� � lognc�d�� of the

optimum in O�dp log� p� dn log n
log log n � pk� time �for any constant � � 	��

In the remaining part of this section� we prove Theorem �� We will use the following notations in

the description of our algorithm and proof� For any d�dimensional hyper�rectangle D � �d
i��
ai� bi��

let D � � denote the d�dimensional hyper�rectangle �d
j��
ai � �� bi � ��� and if d � �� let D� termed

as the projection of D� denote the �d � ���dimensional hyper�rectangle �d��
j��
ai� bi�� We extend these

notations to an arbitrary set X of d�dimensional hyper�rectangles by de�ning X � � � fx� � jx � Xg

and X � fx jx � Xg� For a set of hyper�rectangles X� let jXj denote the number of hyper�rectangles

in X�

LetD�� D�� � � � �Dp be the set of p weighted d�dimensional input rectangles� whereDi � �d
j��
bi�j � ei�j �

with bi�j� ei�j � f�� �� � � � � ng for all i and j� We note that the ��RPACK problem� which we call as

the Interval Packing �IPACK� problem� is easily solvable in O�pk� time via dynamic programming

technique 
KMP����� For notational convenience� let q � b� � log nc� We will prove the result by

induction on d� For d � �� the result follows directly via solution of IPACK� Inductively� assume that

we have an algorithm for �d � ���RPACK with the time and approximation bounds as stated in the

theorem� and consider the d�RAPCK problem on the set of hyper�rectangles R for d � �� Our approach

will be as follows�

� We will divide R� in O�p log� p � n log n
log log n� time� into at most q disjoint collections of hyper�

rectangles R�� R�� � � � � Rq such that an optimum solution of the d�RPACK problem on each set Ri

is also an optimum solution of the �d� ���RPACK problem on Ri�

�Since the endpoints of the p intervals are in f�� �� � � � � ng� they can be sorted in O�p� n� � O�p� time

��



� By inductive hypothesis� we can approximate the �d� ���RPACK problem on each Ri separately

within a factor of �b� � log nc�d�� of the optimum for each Ri�

� By pigeonhole principle� the best of all these solutions is within a factor of q�b� � log nic�
d�� �

�b� � lognic�
d of the optimum solution�

� The set of various ��RPACK problems at the base level of recursion �corresponding to d � �� can

be solved in a total of O�pk� time since there are in all p intervals none of which appear in more

than one set and the endpoints of all these p intervals divided into at most minfp� �b� � lognic�
d��g

groups can be sorted in a total of O�p�n� � O�p� time� Hence� the total time taken our algorithm

will be

O
�Pq

i�� jRij�d� �� log� jRij� �d� ��n log n
log log n �

Pk
i�� jRijk � p log� p� n log n

log log n

�

� O
�
p�d� �� log� p� �d� ��n log n

log log n � pk � p log� p� n log n
log log n

�

� O
�
dp log� p� dn log n

log log n � pk
�

Now� we show how to construct the sets R�� R�� � � � � Rq� First� we need the following de�nitions and

results�

De�nition 	 
a�overlap� A set X of d�dimensional hyper�rectangles is called a�overlapping if and

only if there is an integer a � f�� �� � � � � ng such that for any rectangle Xi � �d
���
bi��� ei��� in X� we have

bi�d � a � ei�d�

A set of a�overlapping hyper�rectangles allows us to reduce the dimension of the d�RPACK problem

by �� as shown by the two lemmas below�

Lemma �� Let X be any collection of d�dimensional a�overlapping hyper�rectangles� Then� any two

rectangles Xi�Xj � X intersect if and only if their projections Xi and Xj intersect�

Proof� Obviously� if Xi and Xj intersect� then Xi and Xj intersect also� Conversely� suppose that Xi

and Xj intersect and let x � 
�� n�d�� be a �d � ���dimensional point in their intersection� Then� the

d�dimensional point �x� a� belongs to both Xi and Xj � thus Xi and Xj intersect also� ❑

Lemma �� Let X be any collection of d�dimensional a�overlapping hyper�rectangles� Then� an optimal

solution of the d�RPACK problem for X is also an optimal solution of the �d� ���RPACK problem for

X and vice versa�

Proof� By Lemma �	� the solution to the d�RPACK problem on X is identical to the solution of the

�d� ���RPACK problem on X � ❑

Corollary � An instance X of the ��RPACK problem in which rectangles in X are a�overlapping can

be solved exactly in O�pk� time�

��



Proof� By Lemma �	� an optimal solution to the ��RPACK problem on X is identical to a corre�

sponding optimal solution of the IPACK problem on the intervals in X � which can be solved in O�pk�

time 
KMP���� ❑

De�nition 
 
�	�� 	�� � � � � 	m����separation� Let X��X�� � � � � Xm bem disjoint groups of d�dimensional

hyper�rectangles� Then� X�� X�� � � � �Xm are �	�� 	�� � � � � 	m����separated if and only if there exists real

numbers 	�� 	�� � � � � 	m�� such that for any m hyper�rectangles r�� r�� � � � � rm� with ri � �d
j��
bi�j� ei�j � �

Xi for � � i � m� the following inequalities hold�

e��d � 	�

	m�� � bm�d

	j � bj���d � ej���d � 	j�� for all � � j � m� �

The following observation is easy�

Observation � Let X�� X�� � � � �Xm be m disjoint groups of d�dimensional hyper�rectangles� For any

two hyper�rectangles x � Xi and y � Xj� x and y do not intersect if i 	� j�

The de�nition of �	�� 	�� � � � � 	m����separation allows us to compute the solution of the d�RPACK

problem for each group Xi by appropriately �translating� their dth coordinate� as stated more precisely

in the lemma below�

Lemma �� Let X��X�� � � � �Xm be m disjoint groups of d�dimensional hyper�rectangles satisfying the

following properties�


a� X�� X�� � � � �Xm are �	�� 	�� � � � � 	m����separated�


b� hyper�rectangles in each group Xi are ai�overlapping for some ai�


c� the endpoints of the dth dimension of all the hyper�rectangles in all groups are from the set f�� �� � � � � ng�

Then� an optimum solution of the d�RPACK problem for �m
i��Xi is also an optimum solution of the

�d� ���RPACK problem for �m
i��Xi � i�n� �� and vice versa�

Proof� It is su�cient to show that the intersection properties of the hyper�rectangles do not change

by the above transformation� Let x � �d
���
bi��� ei��� � Xi and y � �d

���
bj��� ej��� � Xj be two hyper�

rectangles from two distinct groups Xi and Xj � Assume� without loss of generality� that i � j� Then�

by Observation �� x and y do not intersect� Because X��X�� � � � � Xm are �	�� 	�� � � � � 	m����separated�

ei�d � 	i � bj�d� This implies that x� i�n� �� and y � j�n� �� do not intersect either� since in

particular�

bj�d � j�n� ��� ei�d � i�n� �� � �bj�d � ei�d� � �n� ���j � i� � 	

where the last inequality follows from �bj�d � ei�d� � n�

On the other hand� consider two hyper�rectangles x� y � Xi for some i� Since x and y are a�

overlapping� x� i�n� �� and y � i�n� �� are a� i�n� ���overlapping� Hence� by Lemma �	� x and y

��



intersect if and only if x� i�n� �� and y � i�n� �� intersect� As a result� �m
i��Xi � i�n� �� preserves

the intersection property of �m
i��Xi and the result follows� ❑

For future usage� for a set X of d�dimensional hyper�rectangles and a real number a� let us de�ne

the following disjoint subsets of X�

INT �a�X� � fr j r � �d
j��
bj � ej � � X and bd � a � edg

ABOVE�a�X� � fr j r � �d
j��
bj � ej � � X and a � bdg

BELOW �a�X� � fr j r � �d
j��
bj � ej � � X and ed � ag

The following observations are obvious�

�
� Hyper�rectangles in Int�a�X� are a�overlapping�

�

� For any two subsets S� � Above�a�X� and S� � Below�a�X�� S� and S� are a�separated�

Let T be a rooted complete binary tree of height q� � �the root is at height 	�� Let ��x�� r�x� and p�x�

denote the left child� the right child and the parent of a node x in T � respectively� if they are present� To

facilitate further discussion� we also identify each node of T with a string in f	� �g� recursively starting

from the root in the following manner�

� the root is the empty string ��

� for a node x � f	� �g� of T � ��x� and r�x� are the strings x	 and x�� respectively�

Note that� for any node x � f	� �g� in T � 	 � jxj � q� For two strings x� y � f	� �g�� we will write x � y

to denote the fact that value of binary string x is less than the value of the binary string y� and let

jxj denote the length �i�e�� number of zeroes and ones� of x� Each node x of T has also the following

attributes�

� Sx� Cx � R� two subsets of the given set of hyper�rectangles R�

� Ix � 
ax� bx� � 
�� n�� an interval� and

� Hx � dax�bx
� e� a real number between � and n�

The above attributes are computed� going level�by�level in T starting at the root� for each node x in

the following manner�

� for the root� S� � INT �d��n
� e� R�� C� � R� S�� I� � 
�� n�� and H� � dn��

� e�

� let x be a node for which Sx� Cx� Ix � 
ax� bx� and Hx has already been computed� Then� if Sx � 
�

then Sx
 and Sx� are both set to be 
� Otherwise� set �for the left child of x� Ix
 � 
ax�Hx � ���

Hx
 � dax�Hx��
� e� Sx
 � INT �BELOW �Sx�Hx��Hx
�� Cx
 � BELOW �Sx�Hx
� � Sx� and �for

the right child of x� Ix� � 
Hx � �� bx�� Hx� � dHx���bx
� e� Sx� � INT �ABOV E�Sx�Hx��Hx���

Cx
 � BELOW �Sx�Hx��� Sx�

��



Our sets R�� R�� � � � � Rq are now de�ned by Ri � �x�f
��g��jxj�i��Sx� In other words� Ri consists of the

union of all the Sx�s at the i
th level of T � The following assertions hold�


a� �xHx � f�� �� � � � � ng� Consider any i � f�� �� � � � � ng� We start at the root of T � If i � d��n
� e� then

H� is i� Otherwise� if i � d��n
� e� we recursively search for i in the left subtree of the root� else we

recursively search for i in the right subtree of the root� Since the range for Ix
 and Ix� are less

than half the range of Ix for any node x and the height of T is q� �� we can �nd i to be equal to

some Hx�


b� For any two nodes x and y of T � Sx�Sy � 
� As a results� the sets R�� R�� � � � � Rq are also mutually

disjoint�


c� By �a� above� and the de�nition of Sx for any node x� �x�TSx � R� As a result� �q
i��Ri � R�


d� For any node x� hyper�rectangles in Sx are Hx�overlapping �by de�nition of Sx and observation �
�

above�� By Lemma ��� a direct consequence of this is that an optimal solution of the d�RPACK

problem for R� is also an optimal solution of the �d� ���RPACK problem for R� and vice versa�


e� For i � �� let Sx� � Sx� � � � � � Sx�i��
be the �i�� sets of hyper�rectangles whose union is Ri� where

xj � f	� �g� and jxj j � i � � for all j� and x� � x� � x� � � � � � x�i�� � Then� the sets

Sx� � Sx� � � � � � Sx�i��
are �	�� 	�� � � � � 	m����separated for some 	�� 	�� � � � � 	m���

Let xj and xj�� be any two consecutive strings �in the above order� over f	� �g� of length exactly

i � �� Considering the �rst place from left where the two strings di�er� let xj � y	z and xj�� �

y�z�� where jzj � jz�j� Then� the sets Sxj and Sxj��
are Hy�separated� Finally� note that if

xj � xj�� � xj�� are three consecutive strings over f	� �g� of length exactly i � �� and xj and

xj�� �respectively� xj�� and xj��� are Hy��separated �respectively� Hy��separated�� then �i� either

jy�j � jy�j� or �ii� jy�j � jy�j and y� � y��

By 
d� above� an optimal solution of the d�RPACK problem for R� is also an optimal solution of the

�d����RPACK problem for R� and vice versa� By 
d� and 
e� above� for i � �� the set Ri us the union

of the sets Sx� � Sx� � � � � � Sx�i��
� where Sx� � Sx� � � � � � Sx�i��

are �	�� 	�� � � � � 	m����separated and each Sxj
is Hj�overlapping� Hence� by Lemma ��� an optimum solution of the d�RPACK problem for Ri is also

an optimum solution of the �d� ���RPACK problem for Ri and vice versa�

It only remains to show how to �nd the sets R�� R�� � � � � Rq in O�p log� p�n log n
log log n� time� Note that

there is no need to maintain explicitly the Cx sets for all nodes� since each Ri can be fully recovered

from the corresponding Sx sets� It is trivial to compute the Ix and Hx sets for all nodes x in a total of

O�p� time� To compute the Sx sets for various nodes x� we �rst solve the following problem� given a

set I of at most p intervals with endpoints of intervals in f�� �� � � � � ng� design a data structure D which

will support the following operation �stabbing query with deletion��

given a query number x� �nd �report� the set of intervals I� � f
y� z� � D j y � x � zg� and

delete these intervals in I� from D�

We use the interval trie data structure for D as described in 
O��� Section ��� Interval trie supports a

stabbing query �without deletion� in time O�k � log n
log log n� where k is the number of reported answers�

��



and supports update �insertion or deletion a single interval� in time O�log� p�� where � � 	 is a constant�

Now� we perform the following�

� Initialize D to be empty� Then� for each r � �d
i��
ai� bi� � R� insert the interval 
ad� bd� in D� This

takes a total of O�p log� p� time�

� Let L be an ordering of the nodes in T in which we start at the root� visit T level by level and

in each level visit the nodes in left to right order� It is easy to compute the ordering L in O�p�

time� Now� we examine the nodes in L in left to right order� and for every node x� we perform a

stabbing query with deletion in D with query number Hx� The answer to this query is the set Sx�

let kx be the number of reported answers for x� Then� the total time taken for all the stabbing

queries with deletion is O�
P

x kx � n log n
log log n �

P
x kx log

� p� � O�p log� p� n log n
log log n��

This completes the proof of Theorem ��

��� Further Improved Approximation Ratio for d�RPACK

We assume� without loss of generality� that p � k � � since if k � � then the problem can be trivially

solved in O�p� time�

Theorem 	 For every L � �� the d�RPACK problem can be approximated to within a factor of

�b� � logL nc�
d�� of the optimum in O�p�L���d���� dk� time�

Setting L � �c in the above theorem� we obtain�

Corollary � For every c � �� there is an approximation algorithm for d�RPACK that runs in

O�p��
c���d���� dk� time with an approximation ratio of

�j
� � log n

c

k�d��
�

Proof of Theorem 	� In the following discussions� each hyper�rectangle r has the following attributes�

weight w�r� and� for coordinate i � 
�� d�� starting and terminating values si�r� and ti�r� �i�e�� r �

�d
i��
si�r�� ti�r����

To formulate our approximation algorithm� we will �rst de�ne a very special subproblem of d�RPACK

which has a polynomial time solution� Analogous to the de�nition of a�overlap of hyper�rectangles

�De�nition � in the previous section� we de�ne an instance of the d�RPACK problem to be A�restricted

for some A � �d
i��fai� � ai� � � � � � aini g � �d

i��
�� n� if each given d�dimensional hyper�rectangle intersects

the set 
�� n� � A� Abusing notation slightly� we will say that a �d � ���dimensional integer vector

�y�� y�� � � � � yd� is in A if yi � fai� � ai� � � � � � aini g for all i� and jAj �
Qd

i�� ni will denote the maximum

number of distinct integer vectors in A� We will show an exact algorithm for the A�restricted d�RPACK

problem that runs in O�pjAj�� dk� time�

We �rst order the given hyper�rectangles in such a way that if r � r� then s��r� � s��r
��� breaking ties

arbitrarily� Consider a legal solution S of the d�RPACK problem� that is the hyper�rectangles in S are

disjoint and jSj � k� We de�ne the jth element of S to be r � S such that jfr� � S � r� � rgj � j� Next�

if r is the jth element of S than the jth cut of S is the following subset� fr� � S � r� � r � t��r
�� � s��r�g�

If j � jSj� then the jth element of S is also called the terminal element of S� We de�ne the terminal

cut of S similarly�

��



Lemma �� If S is a legal solution with at least j hyper�rectangles� then the jth cut of S has at most

jAj elements�

Proof� Let us order the vectors in the set A� For a d�dimensional input hyper�rectangle r� the �rst

a � A such that r � �
�� n� � fag� 	� ∅ will be denoted ��r�� Because our input is A�restricted� ��r� is

de�ned for every input hyper�rectangle r�

Now assume that r is the jth element of S� s � s��r� and T is the jth cut of S� Consider r� � T �

Because r� � r we have s��r
�� � s� Because r� � T � we have t��r

�� � s� Thus s � 
s��r
��� t��r

����

Now consider r�� r�� � T such that ��r�� � ��r��� � a� Then s�a � r�� r��� Because hyper�rectangles

in T are disjoint� we can conclude that r� � r��� Thus � is a mapping that maps distinct elements of T

to distinct elements �vectors� in A� Hence� jT j � jAj� ❑

Lemma �� Assume that S is a legal solution� jSj � k� r is the terminal element of S and r � r�� Then

S � fr�g is a legal solution if and only if r� does not intersect any rectangles from the terminal cut of S�

Proof� Let T be the terminal cut of S� Obviously� if S�fr�g is a legal solution then r� does not intersect

T � Conversely� assume that r� does not intersect T � For S � fr�g to be a legal solution� it su�ces to

show that r� does not intersect any hyper�rectangles from S � T � Because every hyper�rectangle s � S

satis�es s � r� r�� � S � T only if t��r
��� � s��r�� Because r � r�� s��r� � s��r

��� Thus t��r
��� � s��r

���

which implies that r� � r�� � ∅ � ❑

Lemma �	 There exists an exact algorithm for the A�restricted d�RPACK problem that runs in O�pjAj�� dk�

time�

Proof� We de�ne a plausible jth cut of a legal solution as a set of hyper�rectangles C such that jCj � j

and C is its own terminal cut� We also say that ∅ is a plausible 	th cut of a legal solution� We de�ne

the following weighted directed acyclic graph� The nodes of the graph are all pairs �j� S� such that S

is a plausible jth cut of a legal solution for j � f�� �� � � � � kg� If p � jAj then �p � O�p
jAj

jAj �� otherwise�
p
jAj

�
� pjAj

jAj� � O�p
jAj

jAj �� Hence� by Lemma ��� jSj � jAj and we have at most O�p
jAj

jAj k� nodes in this

graph� An ordered pair ��j� S�� �j � �� S��� forms a directed edge if it is plausible that for some legal

solution S is the jth cut and S� is the �j � ��st cut� More formally� S is a plausible jth cut� for every

r � S we have r � r� and S� is the terminal cut of S � fr�g� The weight of this edge is equal to w�r���

Since there are at most p� � choices for r�� the out�degree of any node is less than p� Hence� the total

number of edges in this graph is at most O�p
jAj��

jAj k�� For any ordered pair ��j� S�� �j � �� S���� whether

there should be a directed edge between them can be checked in O�d jAj� time� Hence� building this

weighted graph takes at most O�d jAj pjAj��

jAj k� � O�pjAj�� dk� time� One can see that there is ���

correspondence between legal solutions and the directed paths in this graph that start at �	� ∅ �� The

optimum solution corresponds to the longest path� Because this is a directed acyclic graph� we can �nd

the longest path in time proportional to the sum of the number of nodes and the number of edges in

the graph 
CLR�	�� ❑

�	



Our approximation algorithm for the d�RPACK problem has the following idea� We partition the

input set into �b� � logL nc�
d�� subsets� and then we �nd an exact solution for each subset�

We start from partitioning the range 
�� n� into b� � logL nc subsets� For j � 	� we say that the jth

lattice is the set of integers in f�� �� � � � � ng that are divisible by Lj but are not divisible by Lj���

Next� we say that an interval 
s� t� with s� t � f�� �� � � � � ng is of class j �denoted by class�s� t� � j�

if it contains numbers from the jth lattice� but it does not contain any number from �j � ��st lattice�

We show that class�s� t� � logL t� If class�s� t� � 	� then obviously� class�s� t� � logL t� Otherwise� if

class�s� t� � j � 	� then Lj � t� hence j � class�s� t� � logL t�

We partition our set of input hyper�rectangles into equivalence classes of the following relation �
�

r �
 r� if an only if class�si�r�� ti�r�� � class�si�r
��� ti�r

��� for all i � f�� �� � � � � dg�

Because ti�r� � n� there are at most �b� � logL nc�
d�� equivalence classes of hyper�rectangles� The total

time to partition the given set of p hyper�rectangles into these equivalence classes can be trivially done

in O�pd�b� � logL nc�
d��� � O�d p�L���d����� time� It remains to show how to solve the d�RPACK

problem for each class� Consider an equivalence class C such that r � C 

Vd

i�� class�si�r�� ti�r�� � ji�

First we �nd the connected components of C such that two hyper�rectangles r� r� belong to the same

component if r � r� 	� ∅ � The total time taken to �nd all these connected components for all �non�

empty� equivalence classes is at most O�dp��� Observe for each connected component D� and r� r� � D

the following holds for i � f�� �� �� � � � � dg

�si�r�� ti�r��� �si�r
��� ti�r�� � ∅ � �si�r� mod Lji��� ti�r� mod Lji���� �si�r

�� mod Lji��� ti�r� mod Lji��� � ∅

Therefore the d�RPACK problem on D remains same if we transform every hyper�rectangle using the

mod operations as describe above� and then translate each component along the x� axis to assure

that the hyper�rectangles from di�erent components are still disjoint� More precisely� �rst for every r �

�d
i��
si�r�� ti�r�� � D� we transform r to r� � �d

i��
si�r
��� ti�r

���� where s��r
�� � s��r�� t��r

�� � t��r�� and

sk�r
�� � sk�r� mod Lji�� and tk�r

�� � tk�r� mod Lji�� for k � f�� �� � � � � dg� Then� if D��D�� � � � � Dm

are the connected components of C� then every transformed rectangle r� � �d
i��
si�r

��� ti�r
��� � Di is

replaced by r�� � 
s��r
�� � �i� ��n� t��r

�� � �i� ��n�� ��d
i��
si�r

��� ti�r
����� If r� and r� are two original

hyper�rectangles in C and r��� and r��� are these two hyper�rectangles after the above transformation� then

it follows that r� � r� � ∅ 
 r��� � r��� � ∅ �

We de�ne Ai � faLji � a � f�� �� �� � � � � L� �gg and let A � �d
i��Ai� Obviously� jAj � �L� ��d���

After the last transformation each set D � C and hence C becomes A�restricted� Let p�� p�� � � � be the

number of hyper�rectangles in di�erent equivalence classes� The total time taken to solve the d�RPACK

problem for all equivalence classes is then O�dk
P

i p
�L���d����
i � � O�p�L���d���� dk�� ❑

� Concluding Remarks

A general open issue is whether the approximation bounds in this paper can be further improved� It is

known that it is NP�hard to approximate the RTILE problem to within an approximation ratio better

than ��� 
KMP���� hence a gap still remains� Our algorithm for the RTILE problem for the f	� �g�

��



arrays� in fact shows that there is a hierarchical partition of the given array in which the maximum

weight of a tile is at most �dA�pe since we used dA�pe as a �trivial� lower bound on the optimum� It is

easy to generate examples such that no tiling exists with the maximum tile of weight at most ���dW�pe�

Hence� our approach for tiling on f	� �g�arrays will not yield better than ��� approximation unless new

lower bound techniques are used� We used one such new lower bound for the DRTILE problem in the

proof of Theorem � �in Lemma �� to get the improved approximation ratio of �d� ��

Initially� we suspected that �b� � log nc�d�� is a lower bound on the approximation ratio that is

attainable for the d�RPACK problem� However� to our surprise� we were able to obtain an approximation

ratio which can be better than the logarithmic approximation bound by any arbitrary constant factor

in Section ���� It remains open to understand the limits on the approximability of this problem� in

particular� in d � � dimensions� Also� whether the ideas here will prove useful in applications domains

remains to be seen�

References


BNR��� V� Bafna� B� Narayanan and R� Ravi� Nonoverlapping local alignments �weighted indepen�

dent sets of axis parallel rectangles�� Discrete Applied Mathematics� �� ��� �����


BD��� P� Berman and B� DasGupta� On the Complexities of E�cient Solutions of the Rectilinear

Polygon Cover Problems� Algorithmica� ��� �������� �����


CLR�	� T� H� Cormen� C� E� Leiserson and R�L�Rivest� Introduction to Algorithms� The MIT Press�

���	�


FM���a� T� Fukuda� Y� Morimoto� S� Morishita and T� Tokuyama� Data mining using two�dimensional

optimized association rules� Scheme� Algorithms and Visualization� Proc� ACM SIGMOD� �����


FM���b� T� Fukuda� Y� Morimoto� S� Morishita and T� Tokuyama� Mining optimized association

rules for numerical attributes� Journal of Computer and Systems Sciences� ��� � ��� �����


FPT��� R� Fowler� M� Paterson� and S� Tanimoto� Optimal packing and covering in the plane are

np�complete� Information Proc� Letters� ��� ��� ���� �����


KMP��� S� Khanna� S� Muthukrishnan� and M� Paterson� Approximating rectangle tiling and packing�

Proc Symp� on Discrete Algorithms �SODA�� pages ��� ���� �����


K�	� R� P� Kooi� The optimization of queries in relational databases� PhD thesis� Case Western

Reserve University� Sept ���	�


LP		� K� Lorys and K� Paluch� Rectangle Tiling� Third International Workshop on Approximation Al�

gorithms for Combinatorial Optimization �APPROX �			�� Lecture Notes in Computer Science

����� �	� ���� Sept� �			�

	The same e�ect happens with arbitrary arrays as well�

��




MD��� M� Muralikrishna and David J Dewitt� Equi�depth histograms for estimating selectivity factors

for multi�dimensional queries� Proc� of ACM SIGMOD Conf� pages �� ��� �����


MPS��� S� Muthukrishnan� V� Poosala and T� Suel� On rectangular partitions in two dimensions�

Algorithms� complexity and applications� Intl� Conf� Database Theory �ICDT�� �������� �����


O��� M� H Overmars� Computational geometry on a grid� an overview� Theoretical Foundations of

Computer Graphics and CAD� NATO ASI Series F�	� Edited by R� A� Earnshaw� Springer�Verlag

Berlin Heidelberg� �������� �����


P��� V� Poosala� Histogram�based estimation techniques in databases� PhD thesis� Univ� of Wisconsin�

Madison� �����


RS��� R� Rastogi and K� Shim Mining optimized support rules for numerical attributes� Proc� Intl

Conf� Data Engineering� �����


S��� J� P� Sharp� Tiling Multi�Dimensional Arrays� Foundations of Computing Theory� �����


SS��� A� Smith and S� Suri� Rectangular tiling in multi�dimensional arrays� Proc� ACM�SIAM Symp

on Discrete Algorithms �SODA�� �����

APPENDIX 
proofs of Lemmas �� �� � and 	�

Proof of Lemma �� By induction on b� If b � �� then Tj � �� and the claim is obvious� Otherwise�

�nd the longest initial ���good part �pre�x� of row Tj � Note that the weight of this part exceeds ��

otherwise we would extend it by one more element� thereby increasing its weight to at most � � �� The

remaining part of Tj has weight at most �b� ��� � � and by the inductive hypothesis we can partition

it into b� � ���good rectangles� ❑

Proof of Lemma �� By induction on b� If b � �� �nd the longest initial ���good part �pre�x� of Tj� If

its weight is at least ��y� then the remaining part of Tj has weight at most ������y� ���y� � ���

and we succeeded in partitioning Tj into � ���good rectangles� If this weight is lower than � � y� try

the same with the longest �nal ���good part �su�x� of Tj� If we fail both times� then both ���good

parts of Tj that we obtained have weights between � and � � y� Consequently� the remaining middle

part has a weight of at most � � y�

For the inductive step� �nd the longest initial ���good part �pre�x� of Tj � If its weights is at least

� � y� then the remaining part of Tj �of total weight at most ��b� �� � �� can be partitioned into b� �

good parts by Lemma �� Otherwise� its weight is between � and � � y and the weight of the remaining

part of Tj is at most ��b � �� � � � y� so it can be partitioned in the desired fashion by the inductive

hypothesis� ❑

Proof of Lemma �� Let Sj � �a���x for some integer a � � and a real x� 	 � x � �� It is su�cient

to partition Sj into a ���good rectangles� since then the de�cit is dj � �a���a���x� � ��a�x � ���

��



If Tj � �a�� then for b � a�� we have Tj � ��b����� � �b��� Using Lemma � we can partition

Tj into a� � ���good rectangles� and Bj provides the ath ���good rectangle�

Otherwise� for some real y �	 � y � ��� Tj � �a���y� and Bj � Sj�Tj � �a���x���a���y� �

x� y � �� For b � a� � we have Tj � �b � � � y� thus we can partition Tj according to Lemma �� If

this partition contains a� � good rectangles� we can add Bj as the ath good rectangle� If this partition

contains a rectangles� each with weight at most � � y� then we can extend these rectangles vertically to

cover Bj � The weight of an extended rectangle is at most � � y�Bj � �� y� x� y� � � � � x � ���

hence each extended rectangle is ���good� ❑

Proof of Lemma 	� We partition Sj into Tj and Bj � Bj is always ���good� and Tj is good by the

assumption� The de�cit is dj � �	� Sj � ��� ❑

��


