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Abstract

Multistage computer networks are popular in parallel architectures and com-
munication applications. We consider the message communication problem for
the two types of multistage networks: one popular for parallel architectures
and the other popular for communication networks. A subset of the problem
can be equated to the Steiner tree problem for multistage graphs. Inherent
complexities of the problem is shown and polynomial-time heuristics are devel-
oped. Performance of these heuristics is evaluated using analytical as well as

simulation results.

1 Introduction

Multistage interconnection networks (MINs) are popular among parallel architecture
and/or communication network topologies. An N x loga N element MIN consists of
logo N stages of N elements each. A common pictorial view of an N x logo N MIN
is to collect N elements in a stage (vertically) and arrange loga N + 1 such stages
horizontally one after the other. MINs offer a good balance between network cost
and performance. They are often characterized as intermediate {O(N x logaN)} cost
networks falling within the two extreme cases: fully connected {O(N?) cost} and bus
connected {O(N) cost}. Architectural and other topological properties of MIN may
be found in [8].

!Supported in part by NSF grant CCR-9208913
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1.1 Two Versions of MINs

Let S;; denote the :-th stage j-th row element in an N X log;N MIN, 0 < 1 <
logoN,0 < 57 < N — 1. We consider source-to-source wrap-around MINs only, i.e.,
when Vj : So; = Siog,n,;- These networks can allow multiple passes using the wrap-
around connections. Depending on the role of intermediate stage elements, two types
of MINs are possible as outlined below:

o [ntermediate stages as switches only: This type is popular in parallel archi-
tecture applications. Here the source end (leftmost) and the destination end
(rightmost stage) constitute of processors, while the intermediate elements are
bare switches which interconnect various sources and destinations. Such MINs

are of commercial usage in parallel processors, e.g., the BBN Butterfly machine.
We refer to MINs of this type as type-1 MIN.

o [ntermediate stages as processors: This type is common in communication net-
work applications. Here the intermediate stage elements are identical to the
source or destination stage processors, i.e., they can have their own message
traffic. Example of such MINs can be found in [10]. We refer to MINs of this
type as type-2 MIN.

1.2 Communication in MINs

Depending on the number of destinations involved in a communication in MIN, three
types can be classified: one-to-one, one-to-many and one-to-all. These are commonly
known as routing, multicast and broadcast. In this article we focus ourselves to the
multicast problem for MINs. Note that routing & broadcast are two special instances
of multicast and do not offer any opportunity for traffic reduction.

The multicast problem specifies a source node and a set of k destination nodes.
Without loss of generality we assume the source node to be Sy . Destination nodes
are spread over the MIN, 1 < k& < N (k = 1 = routing, k = N = broadcast).
Objective of the multicast problem is to transmit the message from the source node
to the destination nodes.

Flow-control Mechanism

For multihop networks, various form of switching and flow-control mechanisms have
evolved. Store and forward is a traditional approach to message communication. Vir-
tual cut-through, wormhole, deflection routing etc. have been subsequently proposed.
A survey can be found in [11, 4]. We assume packetized message communication,
where packets are independently flown through the network. Our focus is to estimate
(and possibly reduce) the overall traffic overhead in message communications.
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1.3 Optimality Criteria in MIN Multicast

Two possible criteria to measure the optimality of MIN multicast communication are
to minimize one of the following two objective functions:

e the total traffic generated in the network ( each occupied link of the network
counts as one unit of traffic.

e the hops-distance between the source node and any destination node.

The traffic metric makes the problem equivalent to the Steiner problem for MIN,
while the time metric is a different dimension altogether. These two metrics work in
the dual sense. Reducing one increases the other and vice versa. Thus, we focus on
the traffic metric only. Considerations along the time metric is an open problem.

2 Multistage Interconnection Networks

We consider type 1 MINs with the cube network topology. These class of networks
(e.g., baseline, delta, generalized cube, indirect binary-cube, omega, banyan [8]) have
been proposed as fixed-degree alternative to hypercube architecture. They are pop-
ular in switching and communication applications. They can also emulate the per-
formance of hypercube in most applications (e.g., the CCC architecture [12]). Let
MIN,; denote a d dimensional generalized MIN.

2.1 Formulation of the Traffic Reduction Problem.

We consider multicasting on M 1N, which are unique path networks. Given a set of k
multicast destinations (D;, 1 <¢ < k) and a source node S in M [Ny, the path from
S to any particular D; is fixed. However, it is clear that for a given set of multicast
destinations, the total traffic generated in MIN,; depends on the relative order in
which d different dimensions are arranged. This leads to our problem formulation as
(see Section 2.1.1 for practical applicability):

Given a set of destination nodes, traffic optimum multicasting in M 1INy is
to find a permutation of the d dimensions (each stage of MIN, is allocated
to one particular dimension value) so that the total traffic is minimized.

Unfortunately, this problem is NP-complete as shown by the next theorem. Hence,
we need to investigate the possibility of designing efficient heuristics for this problem.

Theorem 2.1 The traffic optimum multicasting problem is NP-complete.

Proof sketch: The problem is obviously in NP. To show NP-hardness one can reduce
the space minimized full trie problem, which is shown to be NP-complete in [3, 6], to
this problem. Details are available in [1]. O
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2.1.1 Design Issues

Any hardware implementation of a MIN; would assume an ordering among the d
dimensions. In such cases, online dimension ordering (as required by the traffic reduc-
tion criterion in this paper) in a M 1Ny may be argued from the practical viewpoint.
We identify the following situations as practical applications.

(1) Communication networks often use MINs. Traditional hardware implementa-
tion of switches at every intermediate stages have been replaced using Wave-Time
Division Multiplexors (WTDM) over passive stars [5]. The actual interconnection
is formed by wavelength (frequency) or time-slot assignment of different nodes, i.e.,
by firmware control. A firmware controlled design can be changed without changing
the underlying hardware. Thus, it is possible to re-order the dimensions in a MIN,
dynamically. Every stage may have to configure to at most d possible dimensions, for
which the wave/time assignments can be pre-computed and stored.

(2) If the traffic pattern is known and repetitive (as may happen in periodically oc-
curring similar message communications) then from the above optimum dimensional
ordering for each multicasting instance one can derive the most common pattern and
design the M I Ny using the corresponding optimum dimensional ordering. The idea
here is to achieve traffic optimality for most multicasting instances which leads to an
overall traffic reduction.

(3) Hierarchical hypercubes are designed for several practical reasons [9]. Such
hierarchical designs limit the availability of different dimensions at any node. Only a
certain set of dimensions can be availed at each node. This imposes a hierarchy among
dimensions in a routing/ multicasting operation. In some other cases, even with
complete hypercubes routing/ multicasting is done in hierarchical fashion, imposing a
(arbitrary) desired ordering among dimensions [4]. With these applications our results
and optimality ordering among dimensions can be used as a measure whether or not
a particular multicast operation is generating optimal traffic. Note that a hypercube
with hierarchically ordered dimensions can be treated as a M 1N, for analysis purpose
and results from the latter can be used for the former.

2.2 Greedy Heuristic

Let Reach, denote the number of nodes which received a copy of the message at stage
p. Let k; be the dimension between stage p and stage p 4+ 1. We define an expansion

ratio Fy, = %ﬁ%. Intuitively, this fraction Fj, indicate how much the size of the
multicast destination is increasing at every stage. This expansion ratio depends of
the dimension, stage position and on the set of all prior dimensions served already.
For the sake of brevity we treat this all previous information as part of the stage
information and denote compactly using the stage number position. Now, the total

traffic equals
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p=d
ZRGGC}LP = Fk1 X [1—|—Fk2 X [1—|—...—|—de_1 X [1—|—de]]]
p=1
Our objective is to arrive at values of kq, ko, ..., kg, such that the above expression

is minimized. Note that F, (1 < ¢ < d) varies between 1 and 2 and have real values.

We propose the following greedy algorithm which works stage by stage and se-
lects one dimension in each stage. After d iterations of the algorithm the complete
permutation of d dimensions in M TN, are generated.

Greedy heuristic:

At each stage select dimension ki, where Vj, I, > Fy,. In case of a
tie, anyone of the smallest Iy, dimension may be chosen. A particular
dimension k; used in a preceding stage may not be repeated in a subsequent
stage.

Regarding time and space complexities of the above heuristic, it is easy to prove
the following theorem.

Theorem 2.2 The greedy heuristic runs in O(k.d*) time, performs O(k.d*) bitwise
arithmetic operations and uses O(k.d) space.

The following theorem, whose proof can be found in [1], shows local optimality of
dimension ordering of the greedy heuristic.

Theorem 2.3 The greedy heuristic leads to a locally optimal ordering of the dimen-
sions, i.e., orders the dimensions so that no adjacent pairwise interchange of the
dimensions can minimize the total traffic.

Table 1 compares the time and space complexities of the greedy heuristic with
two other known exponential time optimum strategies[1].

‘ Algorithm ‘ Time (in bit operations) ‘ Space (in bits) ‘
Direct Permutation O(k-d*-d) O(k - d)
Dynamic Programming | O(k - d? - 2%) O(k-d+2%-d)
Heuristic O(k - d*) O(k - d)

Table 1: Multicast in M 1N, with k destinations: Summary of time and space com-
plexity of different solutions.
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2.3 Performance

This section analytically compares the greedy heuristic with “randomly ordered di-
mensions” approach as well as the optimal algorithm. Detailed proofs of all the results
are available in [1]. For our analysis purpose, we characterize the destination node
set into two classes: the “complete subcube multicast” and the “incomplete subcube
multicast”. Each one of these cases are explained below and worst (average) case
performance of the greedy heuristic is compared with that of optimal algorithm as
well as random dimension ordering. Let traffic “overhead” comparison between two
approaches be denoted as the absolute difference in the traffic generated by those two
individual approaches®. For example, Overhead(greedy, optimum) = greedy traffic -
optimum traffic, Overhead(random, greedy) = traffic in “random ordering” - greedy
traffic.

2.3.1 Complete Subcube Multicast

In this case the set of multicast destinations, D;, 1 <1 < k, forms a complete subcube.
Thus, ¢ = 2", for some integer r and the set [D;] can form a r-dimensional subcube.
Let CSM(r) denote this situation.

Theorem 2.4 The greedy heuristic produces optimum traffic for the complete subcube
multicast case. Also, in the worst CSM(r) case,

Overhead(random,optimum)=0Overhead(random,greedy)=(d — r) x (2" — 1).

The next theorem gives the probabilistic traffic overhead of "random dimension
ordering” as opposed to the worst case performance as stated above.

Theorem 2.5 [n the average CSM(r) case, the random dimensions ordering ap-
proach incurs a traffic overhead Overhead(random, optimum) = Overhead(random,

greedy) = 725 Q(p) x (N, — No), where

i=p 1=p
Ny = 20420 x (d—r) 420 x > 2
=1 =1

(;)-(d—r)-(d—l—p—r—l)!-(r—p)!
Qr(p): !

2A random dimension ordering occurs when d dimensions of MIN; are randomly ordered.
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2.3.2 Incomplete Subcube Multicast

In this case not all the 2" destination nodes are present in the set of multicast desti-
nations. Thus, the set of multicast destinations (D;, 1 < < k) forms an incomplete
r-dimensional subcube, where r is the minimum dimension value to include all those
destination nodes. Let ISM(r) denote this situation. The following theorems give
worst case and average case performance ratios of various strategies. First we consider
the case when k is a power of 2.

Theorem 2.6 In the case of incomplete r-subcube multicast with k = 27 destinations,

Overhead(greedy, optimum) < ((r—j) x (k—1))
Overhead(random, greedy) < [(d — 2r + logak) x (k —1)]
Since j = logzk, Overhead(greedy,optimum)=z (r — logz2k) x k. For a given r, this
value is maximized when k = 2771, Thus, the worst case performance degradation

suffered by the greedy heuristic equals 2771,
Next we generalize the value of £ to a non-power of 2.

Lemma 2.7 In [SM(r), with k = 27 + 1 nodes (0 <1 < 2/ — 1), Overhead(greedy,
optimum) = A(dk,rj), where

A(d, kyryj) = [(d=r)+ S22 4+ (r—j — 1) x k]-
[(d—7)+ (r—j) + 212 2]
A P 4 (r— g — 1) x (k—1)

and, Overhead(random,greedy) = B(d,k,r,j), where

B(dvkvrvj) = [(T—J)‘FZE{JT‘F(d_T)Xk]_
[(d—r) + 267 20 4+ (r = j = 1) x K]
~ (d+j+1—2r) x(k—1)— 20+

The following lemma gives estimates for the average performance. Let

o () ()=(3)
)

We reuse notations of the previous lemma for brevity.

Lemma 2.8 In ISM(r), with k =2/ 4+ 1 nodes (0 <1< 2/ -1), on an average case:
Overhead(greedy, optimum) = Y'=4"" Peon(r) X A(d, k, 7, p)

p=0

Overhead(random, greedy) = Y '=4 " Pe—on(r) x B(d, k,r,p)

p=0

The above result for the average case is based on equal distribution of destination
nodes among the given nodes.
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2.4 Simulation Performance

Often a M TNy design implicitly assumes ascending or descending order among its d
dimensions. For example, in a M N3 an increasing order would be [0,1,2], while a de-
creasing order would be [2,1,0]. Such is also the usual practice in hierarchical routing
in hypercube, where dimensions are treated one after another alike distinct stages of
MIN,. Clearly, these linearly ordered dimensions approaches cannot generate traffic
optimal multicasting in MIN.

We compare performance of the greedy heuristic with the linearly ordered dimen-
stons heuristic approach and demonstrate the advantages. We show for randomly
generated M multicast destinations how much traffic can be reduced (on an average)
if the locally optimal greedy dimension ordering approach proposed in this paper is
followed. We present simulation results towards this.

Our simulation implemented four situations: the exhaustive optimum traffic gener-
ation approach, greedy approach, linearly increasing and linearly decreasing (hereafter
referred as ‘increasing’ and ‘decreasing’ respectively). Performance of the “increasing”
and “decreasing” cases are found similar, and hence we report only the “increasing”
case. We consider three different dimension values 4, 5 and 6 (i.e., MI Ny, MIN;s and
M1INg). Number of multicast destinations are varied as 1%, 2%, 5%, 10%, 20%, 50%,
80%), 90%, 95% and 99% of the total number of nodes in the cube. For each multicast
set size 30 random distributions were generated and averages taken to introduce the
effect of large numbers. Thus, each algorithm is run 300 times with every dimension
- leading to a total of 3600 experiments.

The proposed greedy algorithm produces optimal multicast traffic in most (&
90%) of the cases. Thus the greedy heuristic is “almost always” optimum. We
present simulation results showing the miss-rate, i.e., the percentage of test runs in
which the proposed greedy algorithm does not coincide with the optimum multicast
algorithm. Even in cases where the greedy algorithm deviates from optimum solution,
the deviation is found to be small. This section also shows the relationship of optimal
traffic cost (T') to the number of multicast destinations (M ). We present simulation
results to show variation of T for different values of M.

Let To, Te; and T denote the traffic generated using the optimum (exhaustively
generated), greedy and linearly ordered increasing approaches respectively. Thus, the
traffic overhead using greedy and increasing approaches equal (T —Tp) and (T7—To)
respectively. Fig.la shows the average value of these parameters for M 1N, with d=4,
5, 6.

Let “miss-rate” be defined as the percentage of simulation runs in which a partic-
ular heuristic approach (e.g., the greedy approach or the increasing approach) differs
from the optimum approach. This percentage shows the frequency by which the
heuristic deviates from the optimum solutions. A low value of miss-rate indicates
that the corresponding heuristic is ‘almost always’ optimum. Fig.1b shows the miss-
rate greedy, increasing heuristics for different dimensions.

Observation 1: The greedy approach misses the optimum solution rarely (e.g.,
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Figure 1: Greedy (solid line) and Increasing (dashed line) heuristic performance: a)
Traffic overhead (=traffic in heuristic - optimal traffic), b) Miss-rate.
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Figure 3: a) Traffic overhead of Greedy heuristic, b) Scaled traffic overhead (soild
line for dimension=4, dashed for 5, dotted for 6).

1 out of 30 cases or at most 2 out of 30 cases). Thus it is an ‘almost always optimum’
algorithm. The number of mismatches increases as the dimension increases. However,
the existing dimension ordering approaches (e.g., increasing or decreasing) have high
miss-rate.

Observation 2: For small (or large) number of multicast destinations all three
heuristics yield optimum (or near optimum) traffic solutions. This is because, for
small number of destinations expansion ratio (refer Section 2.2) is almost always 1 and
regardless of the actual heuristic used, a near-optimum strategy is effected. Similarly,
with large fraction of nodes as destinations, the expansion ratio is almost always 2
and regardless of the actual heuristic used, a near-optimum strategy is effected.

Observation 3: Traffic overhead of greedy approach is superior to “increasing”
approach.

Observation 4: Traffic overhead of greedy approach increases with dimension
(Fig. 3a). This is expected since at higher dimensions, each source-destination mul-
ticast involves larger traffic amount. At the same time it can also be attributed to
the inherent characteristic of the greedy approach, i.e., the greedy approach deviates
from optimality more with increasing dimension.

These two factors are distinguished by scaling the traffic overhead using dimen-
sion value. The idea is to normalize the traffic overhead using the corresponding
dimension value. The scaled traffic overhead (Fig. 3b) using the greedy heuristic for
different dimensions also show that traffic overhead of greedy approach increases with
dimension.

Fig.2 shows the optimum traffic load variation for different multicast sizes. The
idea is to explore relationship (if any) between the total amount of traffic (T') required
for a M destination multicast. We show the average traffic (i.e., traffic per destination
node) reported from our simulations for cube sizes 4, 5 and 6. Then, we scale the
traffic requirement using the corresponding dimension value. This plot also shows
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similar trend as the absolute traffic plot.

Observation 5: Optimum multicast traffic decreases with increasing multicast
destination size. Initially, with small M, every destination requires nearly one unit
of traffic per stage. This is because the destinations nodes are sparse and on an
average no common message traffic can be shared by two destinations. However, with
increasing M this ratio decreases until M reaches 50% of the cube size. Beyond this
range of M the value of ‘optimum traffic’ per multicast destination becomes almost
a constant indicating high availability of destination nodes and frequent ability to
share message links most efficiently.

3 Multistage Communication Networks

We consider type 2 MINs in this section. Among several topologies we choose the
shuffle connection and the multistage binary cube connection. Without loss of gen-
erality we assume that Spgo is the source node, while the k destinations nodes are
spread over the (loga N + 1) stages and N rows.

Type-1 MINs are unique path networks. This required us to re-order dimensions
in order to have traffic reduction. The online dimension re-ordering led to practical
feasibility questions (which is addressed in Section 2.1.1) and related issues. However,
type-2 MINs are not unique path networks. They allow multiple paths between source
and any destination. Hence, traffic reduction can be achieved even without any online
topological reconfiguration.

Optimality Criterion

Given an N x logaN type-2 multistage communication network (connected using a
particular topology T') with a source node S and k destination nodes D; (1 <i < k),
the objective is to find a path from the source node to each one of the destinations
such that one of the following objective functions is minimized:

o Total traffic.

e Time (in hops) between source and each destination.

The first objective equates the problem to the Steiner tree problem for the topology
T'. The second objective has not been investigated so far.

3.1 Multistage Shuflle Network

We consider a shuffle network with N x log, N PEs, arranged as logs N stages of N
PEs each. Let such a network be called a log; N-shuffle, Let PE;; be the ¢-th row
PE in the j-th stage, 0 <¢: < N —1, 0 < j <logosN — 1. logo N-Shuffle is a cyclical
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Figure 4: NP-completeness: a) Example 3-stage shuffle network, b) Restricted in-
stance of the shuffle graph - dotted lines indicate zero-cost edges - nodes which are
grouped together are tagged with identical integer, ¢) Equivalence to a 3-cube multi-
cast.

wrap around network, with logs N-th stage = stage 0. Formally, the binary shuffle
connectivity is defined as (N = 2") [10]

PFE; ; has outgoing links to P E(3i4p) mod N,(j+1) mod n, Where p € {0,1}

Theorem 3.1 The problem of traffic optimal shuffle multicast tree generation is NP-
complete.

Proof sketch: 1t can be shown that a special case of this problem is the problem of
optimal traffic multicast for hypercube (which is known as NP-complete[7]) by setting
the costs of some edges to zero and thereby identifying some nodes together. Details
can be found in [2]. Fig. 4 pictorially depicts the idea. O

3.2 Multistage Cube Network

We consider a multistage cube network with N xlogs N PEs, arranged as logz N stages
of N PEs each. Let such a network be called a log; N-stage cube. Let PE;; be the
t-th row PE in the j-th stage, 0 <: < N —1,0 < j <logaN — 1. logy N-stage cube is
a cyclical wrap around network, with logy N-th stage = stage 0. Formally, the binary
multistage connectivity is defined as (N = 27)[§]

PFE;; has oulgoing links to  PFE; (j41)modrn and
PEii(1—2:)x2i (j41) mod n Where r =i-th bit in j

Note that this multistage cube network is a particular instance of the generalized
M 1INy considered in Section 2, where the dimensions are increasing from left to right.
Also, intermediate stage nodes are active PEs here, unlike in the M IN; of Section 2
(which are bare switches).
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define Dist(D,a) = MIN { H(D;,a): D; € D }
Vn,(n¢ DYN(ID; € D:H(D;,n)=1) Do
count(n) = |{dy € DL : Dist(D U {n},dy) < Dist(D,d)}|

select n such that count(n) is maximum;

Figure 5: Greedy algorithm for type-2 MINs: selection of the next step message
recipient node.

The proof of the following theorem is essentially similar to theorem 3.1. Details
can be found in [2].

Theorem 3.2 The optimal traffic multicast problem is NP-complete.

3.3 Greedy Heuristic

We developed a greedy heuristic for type-2 MINs. This heuristic is applied to both the
type-2 shuffle MIN as well as type-2 multistage cube MIN. We describe this greedy
heuristic first and then demonstrate its performance using simulation results.

The greedy heuristic is an iterative process selecting one node in each iteration.
Every time a node is selected it is included in a set D (representing the set of nodes
which received a copy of the message so far). Initially D set only includes S, i.e., the
source node. The algorithm stops when Vi 1 < < k D; € D. Let DL denote the
set of k destinations, and H(a,b) equal the shortest distance between nodes a and b.
Let Dist(D,a) be a function indicating the shortest distance from any node in D to
a. Fach step of the greedy iteration chooses a node n as in Fig. 5.

3.4 Simulation Performance

We simulated the greedy algorithm in the multistage shuffle MIN as well as in the
multistage cube MIN. Its performance is compared with the exhaustively generated
optimum algorithm in the respective architectures. The number of destinations is
varied as 1%, 2%, 5%, 10%, 20%, 50%, 80%, 90%, 95% and 99% of the total system
size. In each case 50 random set of destinations were generated; both the greedy &
optimum algorithms are run and their results compared.

Two metrics are used to characterize performance of the greedy heuristic: the
number of miss and the average overhead. The former denote how often (out of the
50 runs) the greedy algorithm fails to produce optimal result, while the latter indicates
average deviation of the greedy result when a miss occurs. A low miss rate indicates
that the greedy algorithm is almost always optimum, while a low average overhead
indicates that the greedy algorithm almost always produces a near-optimum solution.
Let T (To) denote the traffic produced by the greedy (optimum) algorithm.
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o Number of miss = [T # To].

o Average overhead = 3 TGT_OTO, where T # To.

Table 2 shows the performance of the greedy algorithm in multistage shuffle MIN,
while Table 3 shows the same for multistage cube MIN. As can be observed from these
two tables, the greedy algorithm has low miss rate (particularly for the multistage

cube MIN) and low traffic overhead.

Destinations

Systems Metrlcs 0.01 | 0.02 | 0.05 | 0.1 0.2 | 05 | 0.8 | 0.9 | 0.95 | 0.99
3-stage Number of miss 1 3 6 8 11 24 16 14 12 9
Shuffle Average overhead 1.01 1.03 1.23 1.4 1.52 1.6 1.56 1.31 1.19 1.06
4-stage [ Numberofmiss [ 1 [ 4 [ 9 [ 11 [ 16 [ 32 [ 27 [ 19 [ 12 [ 10 |
Shuffle | Average overhead | 1.12 [ 1.15 [ 1.33 | 1.47 [ 1.63 [ 1.82 | 1.58 [ 1.39 [ 1.28 | 1.17 |
5-stage [ Numberofmiss [ 2 [ 5 [ 10 [ 14 [ 21 [ 37 [ 29 [ 23 [ 17 [ 11 |
Shuffle | Average overhead | 1.14 [ 1.23 [ 1.41 | 1.3 [ 1.71 [ 2.09 | 1.69 [ 1.45 [ 1.32 | 1.21 |

Table 2: Multistage Shuffle Multicast: Performance of the Greedy heuristic over the
optimal solution.

Destinations

Systems Metrics 0.01 | 002 | 005 | 0.1 | 0.2 | 0.5 | 0.8 | 0.9 | 0.95 | 0.90
3-stage Number of miss 1 2 3 3 4 7 5 3 1 1
Cube Average overhead 1.01 1.01 1.01 1.01 1.04 1.1 1.04 1.01 1.01 1.01
4-stage [ Number of miss [ 2 [ 2 [ 3 [ 4 [ 6 [ 10 [ 5 [ 4 [ 3 | 1 |
Cube [ Average overhead [ 1.01 [ 1.01 [ 1.01 | 1.03 [ 1.1 [ 1.18 | 1.09 [ 1.03 | 1.01 [ 1.01 |
5-stage [ Number of miss [ 2 [ 3 [ 6 [ 7 ] 9 [ 12 [ &8 [ 6 [ 3 [ 2 |
Cube | Average overhead | 1.01 [ 1.01 [ 1.02 | 1.04 [ 1.14 [ 1.23 | 1.12 [ 1.03 [ 1.01 [ 1.01 |

Table 3: Multistage Cube Multicast: Performance of the Greedy heuristic over the
optimal solution.

4 Conclusion

Multistage networks are popular for parallel architecture and/or communication net-
work applications. We formulate the traffic optimum multicasting problem for mul-
tistage networks. Optimum traffic multicasting problem is NP-complete. Several
greedy heuristics are proposed and their performances are shown using analytical as
well as simulation methods. This work considered just traffic optimality in MIN mul-
ticasting. Optimality issues of time metric in MIN multicasting is left as an interesting
open problem.
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