
Handbook of Combinatorial Optimization

D.-Z. Du and P.M. Pardalos (Eds.) pp. 35 - 76
c©1998 Kluwer Academic Publishers

Computing Distances between Evolutionary Trees

Bhaskar DasGupta1

Rutgers University. E-mail: bhaskar@crab.rutgers.edu

Xin He2

SUNY at Buffalo. E-mail: xinhe@cs.buffalo.edu

Tao Jiang3

McMaster University. E-mail: jiang@maccs.mcmaster.ca

Ming Li4

City University of Hong Kong and University of Waterloo. E-mail:
mli@math.uwaterloo.ca

John Tromp5

CWI. E-mail: tromp@cwi.nl

Lusheng Wang6

City University of Hong Kong. E-mail: lwang@cs.cityu.edu.hk

Louxin Zhang7

National University of Singapore. E-mail: lxzhang@iss.nus.sg

1Supported in part by a CGAT (Canadian Genome Analysis and Technology) grant.
Work done while the author was at McMaster University and University of Waterloo.
2Supported in part by NSF grant 9205982 and CGAT.
3Supported in part by NSERC Operating Grant OGP0046613 and CGAT.
4Supported in part by the NSERC Operating Grant OGP0046506 and CGAT.
5Supported in part by CGAT and NSERC Internation Fellowship.
6Supported in part by Hong Kong Research Council.
7Supported in part by CGAT.

35

Contents

1 Introduction 2

2 The Nni and Subtree-transfer Distances 4
2.1 The Case of Unweighted Trees . 5
2.2 The Case of Weighted Trees . 6

3 Computing the Nni Distance 7
3.1 Unweighted trees: Computing nni distance exactly 7
3.2 Unweighted trees: Computing nni distance approximately 15
3.3 Weighted trees: generalizing the nni distance 18

4 Computing the Subtree-Transfer Distance 19
4.1 The NP-hardness . 20
4.2 An Approximation Algorithm of Ratio 3 21

5 Linear-Cost Subtree-Transfer Distance on Weighted Phylogenies 23
5.1 An NP-hardness Result . 23
5.2 An Approximation Algorithm . 25

6 The Rotation Distance 31
6.1 Rotation and its equivalences . 31
6.2 Upper and lower bounds for the rotation distance 34
6.3 Approximating the rotation and diagonal flip distances 35
6.4 Miscellaneous remarks . 38

7 Open Questions 38

References

1 Introduction

Comparing objects to find their similarities or, equivalently, dissimilarities,
is a fundamental issue in many fields including pattern recognition, image
analysis, drug design, the study of thermodynamic costs of computing, cog-
nitive science, etc. Various models have been introduced to measure the
degree of similarity or dissimilarity in the literature. In the latter case the
degree of dissimilarity is also often referred to as the distance. While some
distances are straightforward to compute, e.g. the Hamming distance for bi-
nary strings, the Euclidean distance for geometric objects; some others are

36

formulated as combinatorial optimization problems and thus pose nontriv-
ial challenging algorithmic problems, sometimes even uncomputable, such
as the universal information distance between two objects [4].

Distances based on the notion of economic transformation usually fall
in the latter category. In a nutshell, a transform based distance model
assumes a set of transformation operations or moves, each associated with a
fixed cost, which can be applied on the objects in the domain studied. The
set of transformation operations should be complete in the sense that any
object can be transformed into any other object by performing a sequence
of such operations. The distance between two objects is then defined as the
minimum cost of any sequence of operations transforming one object into
the other. 8 The best known transform based distances are perhaps the
edit distances for strings [40], labaled trees [43, 48] and graphs [49] using
operations insertion, deletion, and replacement. The edit distances have
applications in many fields including computational molecular biology and
text processing, and have been studied extensively in both the literature
and practical settings. For example, the UNIX command diff is essentially
based on string edit distance. String edit distance is also a particularly
suitable model for biological molecular sequence comparison because the edit
operations often represent the most common form of evolutionary events.

In this chapter, we survey recent results on some transformation based
distances for evolutionary trees (also called phylogenies). Such a tree is an
unordered tree, it has uniquely labeled leaves and unlabeled interior nodes,
can be unrooted or rooted if the evolutionary origin is known, can be un-
weighted or weighted if the evolutionary length on each edge is known, and
usually has internal nodes of degree 3. Reconstructing the correct evolution-
ary tree for a set of species is one of the fundamental yet difficult problems in
evolutionary genetics. Over the past few decades, many approaches for re-
constructing evolutionary trees have been developed, including (not exhaus-
tively) parsimony [12, 15, 39], compatibility [32], distance [16, 38], maximum
likelihood [12, 13, 3]. The outcomes of these methods usually depend on the
data and the amount of computational resources applied. As a result, in
practice they often lead to different trees on the same set of species [28].
It is thus of interest to compare evolutionary trees produced by different
methods, or by the same method on different data. Several distance models
for evolutionary trees have been proposed in the literature. Among them,

8Usually the operations are reversible so we do not have to specify the direction of a
transformation.

37

the best known is perhaps the nearest neighbor interchange (nni) distance
introduced independently in [37] and [35]. We will focus on nni and a closely
related distance called the subtree-transfer distance introduced in [19, 20] for
dealing with evolutionary histories involving events like recombinations or
gene conversions. Some variants of these distances will also be discussed.
Since computing each such distance is NP-hard, our main interest is in the
design of efficient approximation algorithms with guaranteed performance
ratios.

The rest of the chapter is organized as follows. We first formally define
the nni and subtree-transfer distances as well as a variant of subtree-transfer
distance, called the linear-cost subtree-transfer distance, in Section 2. It is
also demonstrated that the nni distance coincides with the linear-cost sub-
tree distance on unweighted evolutionary trees. Section 3 presents results
concerning the nni distance on both weighted and unweighted evolutionary
trees. In particular, we give some tight upper and lower bounds on the nni
distance, prove that computing the nni distance is NP-hard, which was a
long-standing open problem, and give some logarithmic ratio approximation
algorithms. Section 4 is concerned with the subtree-transfer distance on un-
weighted evolutionary trees. The main results include the NP-hardness of
computing the subtree-transfer distance and an approximation algorithm
with ratio 3. In Section 5, we consider the linear-cost subtree-transfer dis-
tance on weighted evolutionary trees and present a ratio 2 approximation
algorithm. In Section 6, we discuss a variant of the nni distance for rooted,
ordered trees, called the rotation distance, and present a nontrivial approx-
imation algorithm. Some open problems are listed in Section 7.

We assume the reader has the basic knowledge of algorithms and com-
putational complexity (such as NP and P). Consult, e.g., [17] otherwise.
Unless otherwise mentioned, all the trees in this paper are degree-3 trees
with unique labels on leaves. An edge of a tree is external if it is incident on
a leaf, otherwise it is internal.

2 The Nni and Subtree-transfer Distances

In this section, we first define the nni, subtree-transfer, and linear-cost
subtree-transfer distances for unweighted trees. Then we extend the nni
and linear-cost subtree-transfer distances to weighted trees.

38

2.1 The Case of Unweighted Trees

An nni operation swaps two subtrees that are separated by an internal edge
(u, v), as shown in Figure 1. The nni operation is said to operate on this

u v

D

A

u v

CA

B

B

C BD

B C B D

u v

C

D

A

Figure 1: The two possible nni operations on an internal edge (u, v): ex-
change B ↔ C or B ↔ D.

internal edge. The nni distance, Dnni(T1, T2), between two trees T1 and T2 is
defined as the minimum number of nni operations required to transform one
tree into the other. Although the distance has been studied extensively in the
literature [37, 35, 47, 6, 10, 5, 25, 26, 29, 42, 30, 31, 33], the computational
complexity of computing it has puzzled the research community for nearly
25 years until recently [7].

An nni operation can also be viewed as moving a subtree past a neigh-
boring internal node. A more general operation is to transfer a subtree from
one place to another arbitrary place. Figure 2 shows such a subtree-transfer
operation. The subtree-transfer distance, Dst(T1, T2), between two trees T1

s5

s1 s2 s3 s4 s1 s2 s4

one subtree transfer

s3

s5

Figure 2: An example of subtree-transfer.

and T2 is the minimum number of subtrees we need to move to transform
T1 into T2 [19, 20, 22, 8, 7].

39

It is sometimes appropriate in practice to discriminate among subtree-
transfer operations as they occur with different frequencies. In this case, we
can charge each subtree-transfer operation a cost equal to the distance (the
number of nodes passed) that the subtree has moved in the current tree.
The linear-cost subtree-transfer distance, Dlcst(T1, T2), between two trees
T1 and T2 is then the minimum total cost required to transform T1 into
T2 by subtree-transfer operations [8, 7]. Clearly, both subtree-transfer and
linear-cost subtree-transfer models can also be used as alternative measures
for comparing evolutionary trees generated by different tree reconstruction
methods.

It is easy to demonstrate that the linear-cost subtree-transfer and nni
distances in fact coincide. As mentioned before, an nni move is just a re-
stricted subtree-transfer where a subtree is only moved across a single node.
(In Figure 1, the first exchange can alternatively be seen as moving node v
together with subtree C past node u towards subtree A, or vice-versa.) On
the other hand, a subtree-transfer over a distance d can always be simulated
by a series of d nni moves. Hence the linear-cost subtree transfer-distance
is in fact identical to the nni distance. However, it will soon become clear
that the two models are different on weighted trees.

2.2 The Case of Weighted Trees

An evolutionary may also have weights on its edges, where an edge weight
(more popularly known as branch length in genetics) could represent the evo-
lutionary distance along the edge. Many evolutionary tree reconstruction
methods, including the distance and maximum likelihood methods, actually
produce weighted evolutionary trees. Comparison of weighted evolutionary
trees has recently been studied in [28]. The distance measure adopted is
based on the difference in the partitions of the leaves induced by the edges
in both trees, and has the drawback of being somewhat insensitive to the
tree topologies [14]. Both the linear-cost subtree-transfer and nni mod-
els can be naturally extended to weighted trees. The extension for nni is
straightforward: An nni is simply charged a cost equal to the weight of the
edge it operates on. In the case of linear-cost subtree-transfer, although the
idea is immediate, i.e. a moving subtree should be charged for the weighted
distance it travels, the formal definition needs some care and is given below.

Consider (unrooted) trees in which each edge e has a weight w(e) ≥ 0. To
ensure feasibility of transforming a tree into another, we require the total
weight of all edges to equal one. A subtree-transfer is defined as follows.

40

Select a subtree S of T at a given node u and select an edge e �∈ S. Split the
edge e into two edges e1 and e2 with weights w(e1) and w(e2) (w(e1), w(e2) ≥
0, w(e1) + w(e2) = w(e)), and move S to the common end-point of e1 and
e2. Finally, merge the two remaining edges e′ and e′′ adjacent to u into one
edge with weight w(e′)+w(e′′). The cost of this subtree-transfer is the total
weight of all the edges over which S is moved. Figure 2.2 gives an example.
The edge-weights of the given tree are normalized so that their total sum is
1. The subtree S is transferred to split the edge e4 to e6 and e7 such that
w(e6), w(e7) ≥ 0 and w(e6)+w(e7) = w(e4); finally, the two edges e1 and e2

are merged to e5 such that w(e5) = w(e1) + w(e2). The cost of transferring
S is w(e2) + w(e3) + w(e6).

1
e
2

e
3

e
4

e
3e5

e
6 e

7
e

(b)

S
S

(a)

Figure 3: Subtree-transfer on weighted phylogenies. Tree (b) is ob-
tained from tree (a) with one subtree-transfer.

Note that for weighted trees, the linear-cost subtree-transfer model is
more general than the nni model in the sense that we can slide a subtree
along an edge with subtree-transfers. Such an operation is not realizable
with nni moves. Intuitively both these measures, especially the nni distance,
are more sensitive to the tree topologies than the one in [28].

3 Computing the Nni Distance

In this section, we discuss the complexity of computing the nni distance
between labeled or unlabeled trees, either exactly or approximately. We first
discuss the case of unweighted trees, and then consider the more general case
of weighted trees.

3.1 Unweighted trees: Computing nni distance exactly

The nearest neighbor interchange (nni) distance was introduced indepen-
dently in [37] and [35]. The complexity of computing the nni distance has

41

been open for 25 years (since [37]). The problem is surprisingly subtle given
the history of many erroneous results, disproved conjectures, and a faulty
NP-completeness proof [47, 5, 25, 26, 29, 30, 33]9

K. Culik II and D. Wood [6] (improved later by [33]) proved that n log n+
O(n) nni moves are sufficient to transform a tree of n leaves to any other
tree with the same set of leaves. D. Sleator, R. Tarjan, and W. Thurston [42]
proved an Ω(n logn) lower bound for most pair of trees. A restricted version
of the nni operation, known as the tree rotation operation (discussed in
Section 6), was considered in [41] and a trivial approximation algorithm
with approximation ratio of 2 was given. But given two individual pair
of trees, computing the nni distance between them (either for labeled or
unlabeled trees) has been a long standing open question until recently when
this problem was settled (for both labeled and unlabeled trees) in [7, 9].

Theorem 1 Computing the nni distance (between two labeled or unlabeled
trees) is NP-complete.

We provide a rough sketch of the proof of Theorem 1 for labeled trees
(which is the more difficult case). The proof is by a reduction from Exact
Cover by 3-Sets (X3C), which is known to be NP-complete [17], to our
problem. Recall that, given an instance S = {s1, . . . , sm}, where m = 3q,
and C1, . . . , Cn, where Ci = {si1 , si2, si3}, the X3C problem is to find disjoint
sets Ci1 , . . . , Ciq such that ∪q

j=1Cij = S. We will construct two trees T1 and
T2 with unique leaf labels, such that transforming from T1 into T2 requires
at most N (to be specified later) nni moves iff an exact cover of S exists.

Here is an outline of our reduction. We can perform sorting with nni
moves and thus view nni as a special sorting problem. A sequence x1 . . .xk

can be represented as a linear tree as in Figure 4. For convenience, such
a linear tree will be simply called a sequence of length k. Sorting such a
sequence means to transform it by nni operations to a linear tree whose
leaves are in ascending order.

2
x
1

x
k-1

x
k

x ...

Figure 4: A linear tree with k leaves.

9In [29], the author reduced the Partition problem to nni by constructing a tree of i
nodes for a number i, in an attempt to prove the NP-hardness of computing nni distance
between unlabeled trees.

42

To construct the first tree T1, for each si ∈ S, we create a sequence Si

of leaves that takes a “large” number of nni moves to sort. We will make
sure that Si and Sj are “very different” permutations for each pair i �= j, in
the sense that we cannot hope to have the sequence Si sorted for free while
sorting the sequence Sj by nni moves and vice versa. Then for each set
Ci = {si1 , si2, si3}, we create three sequences with the same permutations
as the sequences Si1, Si2, Si3, respectively, but with distinct labels. Such n
groups of sequences for C1, . . . , Cn, each consisting of three sequences, will
be placed “far away” from each other and from the m sequences S1, . . . , Sm

in tree T1. Tree T2 has the same structure as T1 except that all sequences
are sorted.

Here is the connection between exactly covering S and transforming T1

into T2 by nni moves. To transform T1 into T2, all we need is to sort the
sequences defined above. If there is an exact cover Ci1 , . . . , Ciq of S, we can
partition the m sequences S1, . . . , Sm into m

3 = q groups, according to the
cover. For each Cj (j = i1, . . . , iq) in the cover, we send the corresponding
group of sequences Sj1 , Sj2, Sj3 to their counterparts, merge the three pairs of
sequences with identical permutations, sort the three permutations, and then
split the pairs and transport the three sorted versions of Sj1 , Sj2, Sj3 back
to their original locations in the tree. Thus, instead of sorting six sequences
separately, we do three merges, three sortings, three splits, and a round trip
transportation of three sequences. Our construction will guarantee that the
latter is significantly cheaper. If there is no exact cover of S, then either
some sequence Si will be sorted separately or we will have to send at least
q + 1 groups of sequences back and forth. The construction guarantees that
both cases will cost significantly more than the previous case.

We now give more details. Apparently many difficult questions have to
be answered: How can we find these m sequences S1, . . . , Sm that are hard
to sort by nni moves? How do we make sure that sorting one such sequence
will never help to sort others? How can we ensure that it is most beneficial
to bring the sequences Sj1, Sj2, Sj3 to their counterparts defined for Cj to
get sorted, and not the other way?

We begin with the construction of the sequences S1, . . . , Sm. Recall that
each such sequence is actually a linear tree, as in Figure 4. Intuitively, it
would be a good idea to take a long and difficult-to-sort sequence and break
it into m pieces of equal length. But this simple idea does not work for
two reasons. First, such a sequence probably cannot be found in polynomial
time. Second, even we find such a sequence, because the upper bound
in [6, 33] and the lower bound in [42] (see [33]) do not match, these pieces may

43

still help each other in sorting possibly by merging, sorting together, and
then splitting. The following lemma states that there exists two sequences
of constant size that are hard to sort and do not help each other in sorting.
We will build our m sequences using these two sequences.

Lemma 2 For any positive constant ε > 0, there exists infinitely many k
for which there is a constant c and two sequences x and y of length k such
that (i) each of them takes at least (c− ε)k log k nni moves to sort, (ii) each
of them takes at most ck log k nni moves to sort, and (iii) it takes at least
(1−ε)c(2k) log(2k) nni moves to sort both of them together, i.e. the sequence
xy.

Proof. Note that for any c, k, x, y, statements (ii) and (iii) imply statement
(i). So it suffices to prove the existence of a constant c and an infinite
number of k’s that satisfy conditions (ii) and (iii).

From the results in [6, 33, 42], we know that for each k, there exists a se-
quence of k leaves such that sorting the sequence takes at most k log k+O(k)
nni moves and at least 1

4k log k − O(k) nni moves. Let us define ck, for any
k, as the maximum number of nni steps to sort any sequence of length k,
divided by k log k. Since 1

4 − o(1) ≤ ck ≤ 1 + o(1) there must be infinitely
many k satisfy c2k ≥ ck − ε

2 . Taking x and y to be the two halves of a
hardest sequence of length 2k, for large enough such k, and taking c = ck,
one can see that conditions (ii) and (iii) are satisfied. �

Let ε = 1/2, k a sufficiently large integer satisfying Lemma 2 and c, x, y
the corresponding constant and sequences. Next we use x and y, each of
length k, to construct m long sequences S1, . . . , Sm. Choose m distinct
binary sequences in {0, 1}�logm�. Replace each letter 0 with the sequence
xm3

and each letter 1 with the sequence ym3
. Give each occurrence of x and

y unique labels. Insert in front of every x and y block a delimiter sequence of
length k2 with unique labels. This results in sequences S1, . . . , Sm, all with
distinct labels. We can show that these sequences have the desired properties
concerning sorting. The m sequences will have specific orientations in the
tree; let’s refer to one end as head and the other end as tail.

We are now ready to do the reduction. From sets S = {s1, . . . , sm},
and C1, C2, . . . , Cn, we construct the two trees T1 and T2 as follows. For
each element si, T1 has a sequence Si as defined above. For each set
Ci = {si1 , si2, si3}, we create three sequences Si,i1, Si,i2, Si,i3, with the same
permutations as Si1, Si2, Si3, respectively, but with different and unique la-
bels (we are not allowed to repeat labels).

44

Figure 5 outlines the structure of tree T1. Here a thick solid line rep-
resents a sequence Si or Si,j with the circled end as head; a dotted line
represents a toll sequence of m2 uniquely labeled leaves; a small black rect-
angle represents a one-way circuit as illustrated in Figure 6(i). The heads

1

C 2

C n

C

connection

....

S
...

doubly tree

Figure 5: Structure of tree T1

of m sequences at the left of Figure 5 are connected by two full binary trees
connected root-to-root of depth logm + log n to the n toll sequences, each
leading to the entrance of a one-way circuit. The exit of each such one-way
circuit is connected to the entrances of three one-way circuits leading finally
to the three sequences corresponding to some set Ci.

.

..

z1 z2

z1
ur

r-1u

r-2u

ur
rvr-1v

rv 1u

z r

z

(ii)

r

...

 . . .

ba

ba

2
1u

u
.
..

3
2

1

v
v

v

1v

(i)

Figure 6: One-way circuit

A one-way circuit is designed for the purpose of giving free rides to
subtrees moving first from ‘a’ to ‘b’ and then later from ‘b’ to ‘a’, while
imposing a large extra cost for subtrees first moving from ‘b’ to ‘a’ and
then from ‘a’ to ‘b’. We will choose r so large (i.e. r = m4) that it is not
worthwhile to move any sequence Si,j, corresponding to some Ci, to the left
through the one-way circuits to sort and then move it back to its original
location in T1. This can be seen as follows. The counterpart of the one-way
circuit in T2 is as shown in Figure 6(ii).

In any optimal transformation of circuit (i) to (ii), the u’s are paired
up with the z’s first and then the v’s are paired with the u-z pairs. This
requires ur and v1 to move up and out of the way. The pairing of the u’s
essentially provides a shortcut for ur to reach zr in half as many steps, and

45

similarly for v1.
In the following sorting a sequence Si or Si,j means to have each of its

x/y blocks sorted and then the whole sequence flipped. The tree T2 has the
same structure as T1 except that

• all sequences Si and Si,j are sorted.

• each circuit in Figure 6(i) is changed to (ii).

Let M be the cost for sorting a sequence Si,j optimally (M can be
computed easily). The following lemma completes the reduction and thus
the proof of Theorem 1.

Lemma 3 The set S has no exact cover iff Dnni(T1, T2) ≥ N +m2/2, where
N = q(logm+log n)+qm2+28nm4−28n+O(q)+3nM+(k2+6k)m3 logm+
O(1).

We provide an informal sketch of the proof of Lemma 3; the reader is
referred to [7, 9] for more formal proofs. Assume that we have an exact cover
for S. First, we show that the one-way circuit in Figure 6 behaves as was
claimed. This can be seen as follows. The counterpart of the one-way circuit
in T2 is as shown in Figure 6(ii). Consider any optimal transformation of
circuit (i) to (ii). A precise breakdown of the cost is as follows: (r − 3)/2
steps to move ur up, then r−1

2 times 6 steps to move each u pair down
between the proper z’s and pair them up, and one final step to pair ur.
The exact same number of steps is needed for the symmetric pairing of v’s.
Hence,assuming r is odd, in total we need 2(r−3

2 + 6 r−1
2 + 1) = 7r − 7 nni

moves. Note that a subtree situated at ‘a’ can initially pair up with ur in
2 steps and move together with it, spending 3 more steps to pop off just
before ur pairs with zr, to end up at ‘b’. It can later spend another 5 steps
to move together with v1 ending up back at ‘a’. Going first from ‘b’ to ‘a’
and then back to ‘b’ could only be done ‘for free’ by pairing with v1 first
and with ur later, since these are the only leaves to move away from ‘b’ and
‘a’ respectively in an optimal transformation. But for v1 to reach ‘a’ with
minimum cost requires collapsing all the v’s which imposes an extra cost on
pairing u’s with z’s later. The least penalty for moving from ‘b’ to ‘a’ back
to ‘b’ is thus for v1 not to take the shortcut which costs an extra r

2 steps.
In the following sorting a sequence Si or Si,j means to have each of its x/y

blocks sorted and then the whole sequence flipped. In order to transform T1

into T2, we need to sort the sequences Si and Si,j and convert each one-way

46

circuit to the structure shown in Figure 6(ii). If the set S has an exact cover
Ci1 , . . . , Ciq , we can do the transformation efficiently as follows. For each Cj ,
j = i1, . . . , iq, in the cover, we send the three sequences Sj1 , Sj2, Sj3 to their
counterparts Sj,j1, Sj,j2, Sj,j3, merge each pair and sort them together, then
move the sorted Sj1, Sj2, Sj3 sequences back. During this process we also
get each one-way circuit involved into the correct shape. We then sort the
other sequences Si,j and get their leading one-way circuits into the correct
shape.

The total cost N for this process is calculated as follows. Recall that we
send precisely q groups of sequences to the right.

1. The overhead for these q groups to cross the tree connection network:
q(logm + log n) + O(1) nni moves.

2. The cost of crossing the q toll sequences of length m2 before the first
batch of one-way circuits: qm2 nni moves.

3. Converting each one-way circuit to the structure in Figure 6(ii) costs
7r − 7 nni’s. Since we select r = m4 and there are in all 4n one-way
circuits, the total cost is 28nm4 − 28n.

4. Moving a group of sequences across a one-way circuit and back costs
O(1) extra nni moves, for each of the q groups. The total cost is
therefore O(q).

5. Let M be the cost for sorting a sequence Si,j optimally. M can be
computed easily, given optimal ways to sort an x block and an y block.
Observe that the k2 delimiter sequences inserted in front of each x/y
block prevent the folding of any sequence Si,j in an optimal sorting
procedure, i.e. it will not be beneficial for two blocks on the same
sequence to be merged and sorted together because it costs at most
ck log k nni moves to sort a block and k2 nni moves to bring a block
across a delimiter sequence. Similarly, shrinking any sequence Si,j

does not help either. So totally we need 3nM nni moves to sort the
3n sequences defined for C1, . . .Cn.

6. The extra cost of merging each sequence Si with its counterpart Sj,i

while sorting the latter, and splitting it out when the sorting is done.
The process is as follows. We sort Sj,i block by block from head to
tail. Before processing each block, we first merge this block with the
corresponding block of Si. After sorting this pair of blocks, we split out

47

the sorted block of Si, and move down to the next block of Si, passing
a delimiter path of length k2 length. So the extra cost to sorting Sj,i

is (k2 + 6k)m3 log m. Observe that the above process automatically
reverses Sj,i and Si.

Conversely, suppose that S has no exact cover. Then to transform T1

into T2, either we have to send q + 1 groups to the right crossing the one-
way circuits or some sequence Si is sorted separately from Sj,i’s or some
sequence Si is sorted together with a “wrong” sequence Sj,h, where h �= i.
In the first case, the cost will be increased by m2 nni moves, which is the
cost of moving an extra group past a delimiter sequence of length m2. In the
last case, at least one segment of m3 x’s is sorted together with a segment
of y’s. By Lemma 2 and the choice ε = 0.5, this is not much better than
sorting the two segments separately and costs at least 0.5cm3k log k − m3k
more nni moves than sorting one such segment, which is larger than m2

for sufficiently large k and m. The second case introduces an extra cost of
(0.5cm3k log k logm) − m3k log m − m2 by Lemma 2, which is again larger
than m2 for sufficiently large k and m.

Notice that in the above definition of N , the bounds in items 2,3,5,6 are
all optimal. The bounds in items 1 and 4 are the worst case overheads and
may not be optimal. But these two items only account for O(m(logm +
logn)) nni moves, which is not sufficient to compensate for the extra cost
m2 given above. This completes the sketch of proof of Lemma 3.

In practice, however, the trees to be compared usually have small nni
distances between them and it is of interest to devise efficient algorithms
for computing the optimal nni sequence when the nni distance is small, say
d. An nO(d) algorithm for this problem is trivial. With careful inspection,
one can derive an algorithm that runs in O(nO(1) · dO(d2)) time. It turns out
that by using the results in [42, 33], we could improve this asymptotically to
O(n2 log n + n · 223d/2) time. To be precise, the following result was proved
in [7, 8].

Theorem 4 Suppose that the nni distance between T1 and T2 is at most d.
Then, an optimal sequence of nni operations transforming T1 into T2 can be
computed in O(n2 logn + n · 223d/2) time.

A sketch of proof of Theorem 4 is as follows. Let T1 and T2 be the two
trees being compared. An edge e1 ∈ T1 is good if there is another edge
e2 ∈ T2 such that e1 and e2 partition the leaf labels of T1 and T2 identically;
e1 is bad otherwise. It is easy to see that T1 contains at least 1 and at

48

most d bad edges. Moreover, assume that these bad edges form t connected
components B1, . . . , Bt (1 ≤ t ≤ d). As observed in [33], for an optimal nni
transformation, sometimes one or more nni operations are needed across a
good internal edge of T1. Consider the set of at most d − 1 good edges in
T1 across which at least one nni operation is performed in an optimal nni
sequence. This set of good edges form at most d− 1 connected components
in T1. Consider any one such connected component S. Since good edges in
T1 and T2 partition the trees in similar manner, it is very easy to see that
there must be at least one connected component Bi sharing a vertex with
S.

Using these observations, one can devise the algorithm shown in the
next page. Figure 7 illustrates how the algorithm works. Figure 7(a) shows
two bad edges α, β in T1 (shown by thick lines) forming two connected
components (t = 2). In Figure 7(b) we show one choice of two subtrees
containing k1 and k2 edges, and including the edges α and β, respectively.
For each subtree, algorithm NNI-d computes all possible nni sequences such
that at most 3 nni are performed across edges of each subtree.

How fast does the algorithm run? There are at most
(d+t−1

d

)
< 25d/2

choices for the integers k1, . . . , kt (using the fact that
(n
j

)
≤ (2.8n/j)j). Note

that any subtree of k edges including a fixed edge can be represented by a
rooted binary tree on k + 2 nodes (the root corresponding to the middle of
the fixed edge), hence there are at most Ck+2 = 1

k+3

(2k+4
k+2

)
≤ 22k such trees.

It follows that the total number of choices for the subtrees A1, . . . , At (for
any particular value of k1, . . . , kt) is at most 2

∑t

i=1
((2ki+1)) ≤ 23d. For each

tree Ai, the number of sequences of ki nni operations to consider is at most
3ki−124ki < 26ki by Lemma 1 of [33]. Combining everything, the number
of trees we have to examine is at most 25d/2 · 23d · 26d < 223d/2. The set of
all good edges of T1 can be found in O(n2 logn) time and this time bound
is also sufficient to find the connected components of good edges. Using
the adjacency-list representation of trees, updating a tree during a single
nni operation can easily be done in O(1) time, and whether two trees are
isomorphic can be easily checked in O(n) time. Hence, this algorithm finds
an optimal nni sequence in O(n2 logn + n · 223d/2) time.

3.2 Unweighted trees: Computing nni distance approximately

Since computing the nni distance is NP-hard, the next obvious question
is: can we get a good approximation of the distance? The following result
appeared in [33].

49

For every choice of integers k1, . . . , kt ≥ 1,
∑t

i=1 ki ≤ d do
For every choice of subtrees A1, . . . , At of T1 such that
Ai has at most ki edges and contains the component Bi do

Examine all sequence of nni transformations across edges
of all Ai’s such that no more than ki nni operations
are performed across the edges of Ai

Among all sequences examined, select the one of shortest length that
transforms T1 to T2

Algorithm NNI-d for the case when nni distance is bounded

φ

(a) (b)

α
α

β

γ

δ
ε

φ γ

δ β
ε

Figure 7: Illustration of how Algorithm NNI-d works (d = 6, k1 = k2 = 3,
t = 2).

Theorem 5 The nni distance can be polynomial time approximated within
a factor of logn + O(1).

Proof. Given two trees, T0, T1, we first identify the bad edges in T0 with
respect to T1. These edges induce a subgraph of T0 consisting of one or more
components, each of which is a subtree of T0. Each bad-edge component
links up the same set of neighboring shared-edge-components in T0 and T1,
but it does so in different ways.

The algorithm transforms T0 into T1 by transforming each non-shared
edge component separately. Consider a component consisting of k non-
shared edges in T0. This links up k + 3 shared-edge-components, which we
can consider as leaves for the purpose of linking them up differently. So we
want to transform C0 into C1, where Ci is the (k + 3)-tree corresponding
to the component in Ti. By the ‘compression’-method of [6], the distance
between C0 and C1 is at most 4(k + 3) log(k + 3) + (4 − log 3)(k + 3) − 12.

50

On the other hand, it is clear that any transformation from T0 into T1 must
use at least one nni operation on every non-shared edge.

The approximation factor of this algorithm is at most
∑

4(k + 3) log(k + 3) + (4− log 3)(k + 3)− 12∑
k

≤ 4n logn + O(n)
n − 3

,

since
∑

k is at most the number of internal edges, which is n − 3. �

As is apparent from the previous two sections, the question of the com-
putability of the nni distance measure, which we will denote by d, has gen-
erated a lot of interest. Of course, a brute force method can be employed
which searches all (or a significant fraction of) trees in exponential time and
space ([33] implemented a C program that uses O(n) space to find the dis-
tance of any tree to a given one using a brute-force approach and could run it
for trees up to size 11). In an attempt to improve efficiency, Waterman and
Smith in [47] propose another distance measure, “closest partition” which
they conjecture is actually equal to d. The closest partition distance c(T, S)
for trees sharing a partition is defined recursively as the sum of the two
distances between the corresponding smaller parts resulting from splitting
each tree into two. For trees T, S not sharing a partition it is defined as
k + c(R, S), where k is the minimum number of nni operations required
to transform a tree T into a tree R that shares a partition with tree S.
Note that the nondeterminism in choosing R makes this measure somewhat
ill-defined. They base their conjecture on what [10] aptly calls a decom-
posability property (DP) of nni. Informally, DP says that if two trees can
each be split at some internal edge into identical subsets of leaves, then an
optimal transformation of one into the other can be found in which no nni
operation affects that internal edge. This claim appears in [47] as Theo-
rem 4. It’s proof however appeals to their Theorem 3, which was shown
invalid in [26] with a 6-node counterexample. Consequently, [26] concludes
that the status of Theorem 4 is unresolved, and observes that Theorem 5
of [47] is a single step version of the Waterman and Smith’s conjecture that
c = d. This conjecture was shown to fail in [26] and [5] in a weak sense (for
some choices that c allows), and shortly thereafter in [25] in a strong sense
(for all choices in defining c). These papers also point out that computation
of c appears to require exponential time as well, since there is no obvious
bound on k in the definition of c. The work in [30] shows a logarithmic gap
between measures c and d. Their example is a pair of trees, each on n = 2k

nodes equidistant from the central internal edge. In one tree, the leaves can

51

be drawn in normal order, while in the other, the leaves can be drawn in
bit-reverse order (e.g. 0,4,2,6,1,5,2,7). For this pair of trees one can show
d = Θ(n), whereas c = Θ(n log n) (in the weak sense at least). Finally, the
following result was proved in [33], serving as a counterexample to all three
theorems 3, 4, and 5 of [47].

Lemma 6 There are trees T0, T1 sharing a partition which is not shared by
any intermediate tree on a shortest path from T0 to T1.

3.3 Weighted trees: generalizing the nni distance

In this section we discuss how to generalize the nni distance between two
trees T1 and T2 when both T1 and T2 are weighted. The cost of an nni
operation is now the weight of the edge across which two subtrees are
swapped. As mentioned before, many phylogeny reconstruction methods
produce weighted phylogenies. Hence the weighted nni distance problem is
also very important in computational molecular biology. NP-completeness
of the (unweighted) nni distance problem (in Section 3.1) implies the NP-
completeness of the weighted nni distance problem also.

The authors in [7, 9] present a polynomial time algorithm with logarith-
mic approximation ratio for computing the nni distance on weighted phy-
logenies, generalizing the logarithmic ratio approximation algorithm in [33]
(discussed in Section 3.2). The approximation for the weighted case is con-
siderably more complicated. Note that nni operations can be performed
only across internal edges. For feasibility of weighted nni transformation
between two given weighted trees T1 and T2, we require in this section that
the following conditions are satisfied: (1) for each leaf label a, the weight
of the edge in T1 incident on a is the same as the weight of the edge in T2

incident on a, (2) the multisets of weights of internal edges of T1 and T2 are
the same.

Theorem 7 Let T1 and T2 be two weighted phylogenies, each with n leaves.
Then, Dnni(T1, T2) can be approximated to within a factor of 6 + 6 logn in
O(n2 log n) time.

Note that the approximation ratio does not depend on the weights. In-
tuitively, the idea of the algorithm is as follows. We first identify “bad”
components in the tree that need a lot of nni moves in transformation pro-
cess. Then, for each bad component, we put things in correct order by first
converting them into balanced shapes. But notice that we cannot afford

52

to perform nni operations many times on heavy edges. Furthermore, not
only the leaf nodes need to be moved to the right places, so do the weighted
edges. The main difficulty of our algorithm is the careful coordination of
the transformations so that at most O(logn) nni operations are performed
on each heavy edge.

4 Computing the Subtree-Transfer Distance

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

����

�
��

�
��
�
�
����

�
�
����

�
�
����

�
�
����

��

��

��

�
�
���� �

�
���� ��

�
�
�

�
�
�
�
�
�

��
��

T1 T2 T3 T4

T1
T3

T2 T4

Figure 8: The operations.

In this section, we show that computing the subtree-transfer distance
between two evolutionary trees is NP-hard and give an approximation al-
gorithm with performance ratio 3. Before we prove the results, it is again
convenient to reformulate the problem. Let T1 and T2 be two evolutionary
trees on set S. An agreement forest of T1 and T2 is any forest which can be
obtained from both T1 and T2 by cutting k edges (in each tree) for some k
and applying forced contractions in each resulting component trees. Define
the size of a forest as the number of components it contains. Then the max-
imum agreement forest (MAF) problem is to find an agreement forest with
the smallest size. The following lemma shows that MAF is really equivalent
to computing the subtree-transfer distance.

Lemma 8 The size of a MAF of T1 and T2 is one more than their subtree-
transfer distance.

The lemma can be proven by a simple induction on the number of leaves.
Intuitively, the lemma says that the transfer operations can be broken down

53

r
r
r

r
r
r

�
�
�

�� ��

��
��
����
�

�
�

���

��

��

��
��

�
�
�
�
��
�
�
�
�
��

�
�
�

�
�
� �

�
�

�
�
� �

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�
�

�
�
�

�� ��
��
����
��
����

��

��

��

A1

A2

x1

ui,1

ui,2

ui,3 ai,3

ai,1

ai,2
vi,3

vi,2

vi,1

An

y2m

y1

x2n

x2n−1

y2m−1

(a) (b)

x2

x3

x4

Figure 9: (a) The tree T1. (b) The subtree Ai.

into two stages: first we cut off the subtrees to be transferred from the rest in
T1 (not worrying where to put them), then we assemble them appropriately
to obtain T2. This separation will simplify the proofs.

4.1 The NP-hardness

Theorem 9 It is NP-hard to compute the subtree-transfer distance between
two binary trees.

Proof. (Sketch) The reduction is from Exact Cover by 3-Sets. Let S =
{s1, s2, . . . sm} be a set and C1, . . . , Cn be an instance of this problem. As-
sume m = 3q.

The tree T1 is formed by inserting n subtrees A1, . . . , An into a chain con-
taining 2n +2m leaves x1, . . . , x2n, y1, . . . , y2m uniformly. (See Figure 9(a).)
Each Ai corresponds to Ci = {ci,1, ci,2, ci,3}, and has 9 leaves as shown in
Figure 9(b). Suppose that cj,j′ , ck,k′ and cl,l′ are the three occurrences of
an si ∈ S in C. Then in T2, we have a subtree Bi as shown in Figure 10(a).
For each Ci, we also have a subtree Di in T2 as shown in Figure 10(b). The
subtrees are arranged as a linear chain as shown in Figure 10(c).

Note that, each adjacent pair of subtrees Ai and Ai+1 in T1 is sepa-
rated by a chain of length 2 which also appears in T2. Thus, to form a

54

q
q
q

q
q
q

q
q
q

�
�� �
�� �
�� �
�� �
��

�
�
�
�
�
��

�
��

�
�
�
��

�
��

�
��

��
�

�� �
��

��
�

��

��

��AA
��

�
�

��
��AA

�
��
�

��

�
�� ��

�
�

��
��AA

�
��
��AA

�
��
��AA

�
��

vk,k′ vl,l′

ai,2 ai,3

ai,1
x1

x2n

B1

y1
y2

Bm y2m

y2m−1

D1 Dn−1 Dn

(c)(a) (b)

uj,j′
uk,k′
ul,l′

vj,j′

Figure 10: (a) The subtree Bi. (b) The subtree Di. (c) The tree T2.

MAF of T1 and T2, our best strategy is clearly to cut off A1, A2, . . . , An

in T1 and similarly cut off B1, B2, . . . , Bm in T2. This then forces us to
cut off D1, D2, . . . , Dn in T2. Now in each Ai, we can either cut off the
leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 to form a subtree containing three leaves
ai,1, ai,2, ai,3 (yielding 6 + 1 = 7 components totally), or we can cut off ai,1,
ai,2, and ai,3. In the second case, we will be forced to also cut links between
the three subtrees containing leaves {ui,1, vi,1}, {ui,2, vi,2} and {ui,3, vi,3} re-
spectively, as the Bi’s are already separated. Hence in this case the best we
can hope for is 3+3 = 6 components (if we can keep all three 2-leaf subtrees
in the agreement forest).

It can be shown that C has an exact cover of S if and only if T1 and T2

have an agreement forest of size 1 + 6q + 7(n− q) = 7n − q + 1. �

4.2 An Approximation Algorithm of Ratio 3

Our basic idea is to deal with a pair of sibling leaves a, b in the first tree T1

at a time. If the pair a and b are siblings in the second tree T2, we replace
this pair with a new leaf labeled by (a, b) in both trees. Otherwise, we will
cut T2 until a and b become siblings or separated. Eventually both trees
will be cut into the same forest. Five cases need be considered. Figure 11
illustrate the first four cases. The last case (Case (v)) is that a and b are

55

q

q

q

q

q

q

q
q q q

�
�

�
��

�
�
�
��

�
��
��AA

�
�
�
���

�
�
��

�
��
��AA

�
�

�
��

�
�
�
����

��AA

�
�
��
��AA

�
�

�
���

�
�

����
��AA

��
��AA

�
�
�
�
���

�
�
��

�
�

�
�� ��
��AA ��AA

�
���

��
�
���

��
�� ��

�
���

��
��

a b
A

OR

a b
A

(i)

a b
A1 Ak

a b
A1 Ak

a b
A1 Ak

a b

(iii)

a b

(iv)

(ii)

OR OR

Figure 11: The first four cases of a and b in T2.

also siblings in T2.

The approximation algorithm is given in Figure 12. The variable N
records the number of components (or the number of cuts plus 1).

Theorem 10 The approximation ratio of the algorithm in Figure 12 is 3,
i.e., it always produces an agreement forest of size at most three times the
size of a MAF for T1 and T2.

The NP-hardness proof can be easily strengthened to work for MAX
SNP-hardness. Thus there is no hope for a polynomial-time approxima-
tion scheme for this problem. Moreover, the small distance exact algorithm
described in section 3 for nni also works here.

56

Input: T1 and T2.
0. N := 1;
1. For a pair of sibling leaves a, b in T1,
consider how they appear in T2 and cut the trees:
Case (i): Cut off the middle subtree A in T2; N := N + 1;
Case (ii): Cut off a and b in both T1 and T2; N := N + 2;
Case (iii): Cut off a and b in both T1 and T2; N := N + 2;
Case (iv): Cut off b in T1;
Case (v): Replace this pair with a new leaf labeled (a, b) in both T1 and T2;
2. If some component in the forest for T1 has size larger than 1, repeat Step 1.
Output: The forest and N .

Figure 12: The approximation algorithm of ratio 3.

5 Linear-Cost Subtree-Transfer Distance on Weighted
Phylogenies

In this section we investigate the linear-cost subtree-transfer model on weighted
phylogenies.

5.1 An NP-hardness Result

It is open whether the linear-cost subtree-transfer problem is NP-hard for
weighted phylogenies. However, we can show that the problem is NP-hard
for weighted trees with non-uniquely labeled leaves.

Theorem 11 Let T1 and T2 be two weighted trees with (not necessarily
uniquely) labeled leaves. Then, computing Dst(T1, T2) is NP-hard.

Proof. Our proof is by a reduction from the following Exact Cover by 3-Sets
(X3C) problem.

INSTANCE: S = {s1, . . . , sm}, where m = 3q, and C1, . . . , Cn, where Ci =
{si1 , si2, si3} ⊆ S.

QUESTION: Are there q disjoint sets Ci1 , . . . , Ciq such that ∪q
j=1Cij = S ?

57

X3C is known to be NP-complete [17]. Given an instance of the X3C
problem, we will construct two trees T1 and T2 with leaf labels (not neces-
sarily unique) as shown in Figure 5.1, such that transforming from T1 into
T2 requires subtree-transfers of total cost exactly 1 iff an exact cover of S
exists.

12
ss

11

1s
3 s23

s21
s22

s
3

n

s
1

n s
2

n

s1 sms2

T1

eα1
eα2

eαn

eγ1
eγ2

eγm

e
β1

eβ n-q

x x

x ...

n long arms

...

...

...

xx

all the
remaining

labels

m short arms

x x

x xx

n-q long arms

T2

x
x

x
x

x
x
x

x
x
x x

x

Figure 13: Trees T1 and T2 used in the proof of Theorem 11. The leaf labels
are shown beside the corresponding leaves. The notations for some of the
internal edges are shown beside the corresponding edges. The edge weights
are as follows: w(eα1) = w(eα2) = · · · = w(eαn) = w(eβ1) = w(eβ2) = · · · =
w(eβn−q) = 1

n , w(eγ1) = w(eγ2) = · · · = w(eγm) = 1
3n , and all other edges

have zero weights.

T1 has n long arms, α1, . . . , αn. T2 has n − q long arms, β1, . . . , βn−q,
and m short arms, γ1, . . . , γm. Each long (resp. short) arm consists of an
edge of weight 1

n (resp. 1
3n), with three leaves (resp. one leaf) labeled by the

same label x (x �∈ S), connected to it as shown in Figure 5.1. For notational
convenience, let eαi (resp. eβi , eγi) denote the edge of non-zero weight in
the long arm αi (resp. in the long arm βi, in the short arm γi). In T1, at
the bottom of the ith long arm αi, we attach a subtree ti consisting of three
leaves, as shown in Figure 5.1, labeled by the three elements si1, si2 and si3

of Ci. At the bottom of each long arm of T2, there are no additional subtrees
attached. The labeling of the remaining leaves of T2 is as follows:

58

• At the bottom of the ith short arm γi, we attach a leaf labeled by si.

• The remaining 3n − m leaf labels (each leaf label is an element of S)
are associated (in any order) with the 3n − m leaves in the middle of
T2 between the long and the short arms.

Note that the trees T1 and T2 are not uniquely labeled. The following
claim proves the correctness of the NP-hardness reduction.

Dst(T1, T2) = 1 iff there is a solution of the X3C problem.

A proof of the above claim can be found in [8]. �

5.2 An Approximation Algorithm

In this section, we present an approximation algorithm for computing the
linear-cost subtree-transfer distance on weighted trees. First, we introduce
some notations and a lower bound on the subtree-transfer distance which will
be useful in subsequent proofs. For any tree T , let E(T) (resp. V (T)) denote
the edge set (resp. node set) of T and L(T) denote the set of leaf nodes
of T . An external edge of T incident on a leaf node a is denoted by eT (a).
Let Eint(T) and Eext(T) denote the set of internal and external edges of T ,
respectively. For a subset E ′ ⊆ E(T), define w(E ′) =

∑
e∈E′ w(e). Define

Wint(T) = w(Eint(T)) and Wext(T) = w(Eext(T)). Partition Eext(T1) into
three subsets as follows:

Eext,T1>T2(T1) = {eT1(a) | w(eT1(a)) > w(eT2(a))}
Eext,T1=T2(T1) = {eT1(a) | w(eT1(a)) = w(eT2(a))}
Eext,T1<T2(T1) = {eT1(a) | w(eT1(a)) < w(eT2(a))}
Wext,T1>T2(T1) =

∑

eT1
(a)∈Eext,T1>T2

(T1)

w(eT1(a))− w(eT2(a))

Similarly, Eext(T2) can be partitioned into: Eext,T1>T2(T2), Eext,T1=T2(T2),
and Eext,T1<T2(T2). Wext,T1<T2(T2) is defined analogously. The following
lemma is easy to prove.

Lemma 12 Wint(T1) + Wext,T1>T2(T1) = Wint(T2) + Wext,T1<T2(T2).

59

We next define the notion of good edge pairs as follows:

Definition 13 Let e1 ∈ Eint(T1) and e2 ∈ Eint(T2). Let T ′
1 and T ′′

1 be the
two subtrees of T1 partitioned by e1. Let T ′

2 and T ′′
2 be the two subtrees of

T2 partitioned by e2. e1 and e2 are called a good pair of T1 and T2 iff the
following two conditions hold:

1. L(T ′
1) = L(T ′

2) and L(T ′′
1) = L(T ′′

2).

2. One of the following two conditions holds:

(a) w(E(T ′
1)) ≤ w(E(T ′

2)) < w(E(T ′
1)) + w(e1); or

(b) w(E(T ′
2)) ≤ w(E(T ′

1)) < w(E(T ′
2)) + w(e2).

Lemma 14 If T1 and T2 share no good edge pairs, then:
(1) Dst(T1, T2) ≥ Wint(T1) + Wext,T1>T2(T1);
(2) Dst(T1, T2) ≥ Wint(T2) + Wext,T1<T2(T2).

Proof. We only prove (1). The proof of (2) follows from (1) and Lemma 12.
For each edge e ∈ E(T1), we determine the minimum portion of e over which
some subtrees of T1 must be transferred in order to transform T1 to T2. First,
consider an edge e1 ∈ Eint(T1). By the assumption of the lemma, there is
no edge e2 in T2 such that e1 and e2 are a good pair. There are two cases:

Case 1. The partition of L(T1) induced by e1 is different from the partition
of L(T2) induced by any edge in T2. Then, in order to transform T1 to T2,
some leaf nodes of T1 must be transferred across the entire length of e1.

Case 2. The partition of L(T1) induced by e1 is the same as the partition of
L(T2) induced by an edge e2 in T2. Let T ′

1 and T ′′
1 be the two subtrees of

T1 partitioned by e1. Let T ′
2 and T ′′

2 be the two subtrees of T2 partitioned
by e2, where L(T ′

1) = L(T ′
2) and L(T ′′

1) = L(T ′′
2).

Case 2.1. w(E(T ′
2)) ≥ w(E(T ′

1))+w(e1). In this case, in order to transform
T ′

1 to T ′
2, some subtree in T ′

1 must be transferred across entire length of
e1.

Case 2.2. w(E(T ′
1)) ≥ w(E(T ′

2))+w(e2). This implies: w(E(T ′′
1))+w(e1) ≤

w(E(T ′′
2)). In order to transform T ′′

1 to T ′′
2 , some subtree in T ′′

1 must be
transferred across the entire length of e1.

60

In either case, some subtree of T1 must be transferred across the entire
length of e1 with cost w(e1).

Next consider an edge eT1(a) ∈ Eext,T1>T2(T1). In order to transform
eT1(a) to eT2(a), a subtree of T1 must be transferred across a portion of
eT1(a) of length w(eT1(a))− w(eT2(a)). Thus:

Dst(T1, T2) ≥ ∑
e∈Eint(T1)

w(e) +
∑

e∈Eext,T1>T2
(T1)

[w(eT1(a))− w(eT2(a))]

= Wint(T1) + Wext,T1>T2(T1)
�

We say that nodes connected by 0-weight edges are equivalent and call
the resulting equivalence classes super-nodes. Let e1, . . . , ek be all positive
weight edges incident to a super-node o. With 0 cost, we can re-connect the
edges e1, . . . , ek by any subtree, consisting of only 0 weight edges. In partic-
ular, the following observation will be useful in our subsequent descriptions.

Observation. Let o be a super-node of T . Let e1, . . . , ek be all posi-
tive weight edges incident on o. Pick any ei and ej . We can assemble
{e1, . . . , ek} − {ei, ej} into a single subtree S with 0 cost; and then transfer
S along ei by a distance d ≤ w(ei). The effect of this operation is that
the edges e1, . . . , ek are still incident on a super-node, and a portion of ei

of length d is moved into ej. The total cost of this operation is d. We de-
note this operation by move(ei, d, ej). This operation can be implemented
in O(k) time using the adjacency-list representation of the tree (where the
weight of the edge is also stored in the adjacency list).

e1

⇒
e2

e3

e4

e5

0.4 0.3

(1)

e1

⇒

e2

e3

e4

e5

0.4
0.3

(2)

e1

e2

e3

e4

e5

0.2 0.5

Figure 14: The operation move(e1, 0.2, e3). (1) e2, e4, e5 are assembled into
a tree S; (2) S is moved along e1 by a length of 0.2.

Figure 5.2 shows an example of this operation. In the figure, the thin
lines denote 0 weight edges and heavy lines denote positive weight edges.

61

A tree T is called a super-star if all of its internal edges have 0 weight.
In other words, all external edges of a super-star T are incident to a single
super-node.

In the rest of this section, we prove the following theorem.

Theorem 15 For any two weighted phylogenies T1 and T2, Dst(T1, T2) can
be approximated to within a factor of 2 in O(n2 logn) time.

First, we describe the algorithm DST which approximates Dst(T1, T2) to
within a factor of 2 for the special case when T1 and T2 do not have any good
edge pairs. Then we will show how to apply the algorithm to the general
case.

The algorithm transforms T1 into a super-star T ′
1 (by moving the weight

of internal edges into external edges). Similarly, the algorithm transforms
T2 into a super-star T ′

2. The transformations are chosen to make T ′
1 coincide

with T ′
2. To transform T1 to T2, we first transform T1 to T ′

1(= T ′
2) and

then transform this to T2. Let T ′
1 (resp. T ′

2) denote the tree during the
transformation of T1 (resp. T2). T ′

1 (resp. T ′
2) is initialized to be T1 (resp.

T2).

Algorithm DST:

Step 0. Initialize T ′
1 = T1 and T ′

2 = T2.

Step 1. While T ′
1 is not a super-star yet and there is an external edge

eT ′
1
(a) = (a, u) in T ′

1 such that w(eT ′
1
(a)) < w(eT ′

2
(a)), do:

• Let e1 be any positive weight internal edge of T ′
1 incident on

the super-node containing u. Let d = min{w(e1), [w(eT ′
2
(a)) −

w(eT ′
1
(a))]}.

• Perform the operation move(e1, d, eT ′
1
(a)) in T ′

1. (Note: after
this move operation, either the entire length of e1 is moved into
eT ′

1
(a) or w(eT ′

1
(a)) = w(eT ′

2
(a))).

(Note: after the loop terminates, either T ′
1 is a super-star or w(eT ′

1
(a)) ≥

w(eT ′
2
(a)) for all leaf nodes a. Also we perform subtree-transfer only

on internal edges of T1).

Step 2. Similar to Step 1, with the roles of T ′
1 and T ′

2 swapped.

Step 3. We transform T ′
1 and T ′

2 into two super-stars such that w(eT ′
1
(a)) =

w(eT ′
2
(a)) for all leaf nodes a. There are two possible cases as follows.

62

Case 3.1. w(eT ′
1
(a)) = w(eT ′

2
(a)) for all leaf nodes a. Perform the fol-

lowing loop to transform both T ′
1 and T ′

2 into super-stars. During
the execution of the loop, we maintain the condition w(eT ′

1
(a)) =

w(eT ′
2
(a)) for all leaf nodes a (this condition implies that T ′

1 is a
super-star iff T ′

2 is a super-star).

Repeat
Pick any edge eT ′

1
(a) = (a, u1) in T ′

1. Suppose that the cor-
responding edge eT ′

2
(a) in T ′

2 is (a, u2). Let e1 be any pos-
itive weight internal edge of T ′

1 incident on the super-node
containing u1. Let e2 be any positive weight internal edge
of T ′

2 incident on the super-node containing u2. Let d =
min{w(e1), w(e2)}. In T ′

1, perform the operation
move(e1, d, eT ′

1
(a)). In T ′

2, perform the operation
move(e2, d, eT ′

2
(a)). (After this, we have moved the entire

length of either e1 or e2 into external edges.)
Until both T ′

1 and T ′
2 are super-stars.

(Note: during this step, we perform subtree-transfer only on internal
edges of T1 and T2).

Case 3.2. There exists a leaf node a such that w(eT ′
1
(a)) �= w(eT ′

2
(a)).

This can happen only if both T ′
1 and T ′

2 are super-stars already. We
need to make w(eT ′

1
(a)) = w(eT ′

2
(a)) for all leaf nodes a. This is

done as follows. Partition L(T ′
1) into three subsets A, B, and C as

follows: A (resp. B, C) is the set of leaf nodes a (resp. b, c) such that
w(eT ′

1
(a)) = w(eT ′

2
(a)) (resp. w(eT ′

1
(b)) < w(eT ′

2
(b)), w(eT ′

1
(c)) >

w(eT ′
2
(c))).

Repeat
Pick any edge eT ′

1
(b) with b ∈ B and eT ′

1
(c) with c ∈ C. Let

d = min{[w(eT ′
1
(c))−w(eT ′

2
(c))], [w(eT ′

2
(b))−w(eT ′

1
(b))]. In T ′

1,
perform move(eT ′

1
(c), d, eT ′

1
(b)). Then:

• If d = w(eT ′
2
(b)) − w(eT ′

1
(b)), remove b from B and put b

into A.
• If d = w(eT ′

1
(c)) − w(eT ′

2
(c)), remove c from C and put c

into A.
• If d = w(eT ′

1
(c)) − w(eT ′

2
(c)) = w(eT ′

2
(b)) − w(eT ′

1
(b)), re-

move b from B; remove c from C; put both b and c into
A.

63

Until B = C = ∅.

Step 4. Now both T ′
1 and T ′

2 are super-stars and w(eT ′
1
(a)) = w(eT ′

1
(a))

for all leaf nodes a. We adjust the topology of the super-nodes of T ′
1

and T ′
2 so that T ′

1 and T ′
2 are identical.

Lemma 16 Assume that T1 and T2 do not share any good edge pairs. Then,
algorithm DST approximates Dst(T1, T2) to within a factor of 2 in O(n2)
time.

Proof. We analyze the cost and running time of each step of the algorithm.
We use the adjacency-list representation of a tree. Steps 0 and 4 incur no
costs and can easily be implemented in O(n) time. During Steps 1, 2 and
3.1, we only transfer subtrees across internal edges of T1 and T2. Over any
portion of such an edge e, at most one subtree-transfer operation occurs.
So the total cost of these steps is bounded above by Wint(T1) + Wint(T2).
Moreover, it is easy to see that at most O(n) moves are performed during
Steps 1,2, and 3.1, and since each move operation can be implemented in
O(n) time, the total time for all these steps is at most O(n2).

Next, consider Step 3.2. Before the repeat loop is entered, for any c ∈ C,
we have:

• w(eT ′
1
(c)) = w(eT1(c)). (This is because no additional weight is moved

to the edge eT ′
1
(c) during Steps 1 and 2).

• w(eT ′
2
(c)) ≥ w(eT2(c)).

During Step 3.2, we only transfer subtrees across the edges eT ′
1
(c) for c ∈ C.

Fix such an edge. Note that any portion of eT ′
1
(c) is traversed at most

once during Step 3.2. Once the length of eT ′
1
(c) is reduced to w(eT ′

2
(c)),

c is removed from C. So the portion of eT ′
1
(c) traversed during Step 3.2

is w(eT ′
1
(c)) − w(eT ′

2
(c)) = w(eT1(c)) − w(eT ′

2
(c)) ≤ w(eT1(c)) − w(eT2(c)).

So the total cost of Step 3.2 is at most
∑

c∈C [w(eT ′
1
(c)) − w(eT ′

2
(c))] ≤∑

c∈C[w(eT1(c)) − w(eT2(c))] ≤ Wext,T1>T2(T1). Also, we perform at most
O(n) move operations during Step 3.2, and hence this step can also be
implemented in O(n2) time.

Thus the total cost of the algorithm is bounded above by Wint(T1) +
Wint(T2) + Wext,T1>T2(T1), which is at most 2Dst(T1, T2) by Lemma 14. �

64

Next, we show how to apply algorithm DST to achieve an approximation
ratio of 2 when T1 and T2 may share some good edge pairs. We concentrate
on the algorithm and omit implementation details. Let K be the number
of good edge pairs in T1 and T2. Our algorithm is by induction on K.
If K = 0, algorithm DST works by Lemma 16. Suppose K > 0. Let
e1 = (u1, v1) ∈ E(T1) and e2 = (u2, v2) ∈ E(T2) be a good pair. Let T ′

1 and
T ′′

1 be the two subtrees of T1 partitioned by e1. Let T ′
2 and T ′′

2 be the two
subtrees of T2 partitioned by e2, where L(T ′

1) = L(T ′
2) and L(T ′′

1) = L(T ′′
2) .

Assume w(E(T ′
1)) ≤ w(E(T ′

2)) < w(E(T ′
1)) + w(e1). (The other case

can be handled in a similar way). Add a new edge (u1, x) to T ′
1 and assign

w((u1, x)) = w(E(T ′
2))−w(E(T ′

1)). Add a new edge (x, v1) to T ′′
1 and assign

w((x, v1)) = w(e1) − w((u1, x)). Add a new edge (u2, x) to T ′
2 and assign

w((u2, x)) = 0. Add a new edge (x, v2) to T ′′
2 and assign w((x, v2)) = w(e2).

(See Figure 15). Note that the weights of all new edges are non-negative.

e1

⇒

T1

e2

T2

0

T’
2

x x

x x
T"

2

T"
1

T’
1

u
1

u
2

v1

v2

w(e)
2

Figure 15: Cut each of T1 and T2 into two smaller trees.

Now we have: L(T ′
1) = L(T ′

2) and w(T ′
1) = w(T ′

2). We can normalize
the weights of T ′

1 and T ′
2 such that their sum is 1. By induction hypothesis,

we can transform T ′
1 to T ′

2 with cost at most 2Dst(T ′
1, T

′
2). Similarly, we

can transform T ′′
1 to T ′′

2 with cost at most 2Dst(T ′′
1 , T ′′

2). Combining the two
transfer sequences, we can transform T1 to T2 with cost at most 2Dst(T1, T2).
The complete algorithm takes O(n2 logn) time. This completes the proof of
Theorem 15.

6 The Rotation Distance

6.1 Rotation and its equivalences

A rotation is an operation that changes one rooted binary tree into another
with the same size. Figure 16 shows the general rotation rule. Note that the

65

rotation is an invertible operation. If a tree T is changed into T ′ by a rota-
tion, then T ′ can be changed back into T by another rotation. In a rooted
binary tree of size n, there are n − 1 possible rotations, each corresponding
a non-root node.

A

B C

u

v

A B

C

u

v

rotation at u

rotation at v

Figure 16: The definition of rotation.

A symmetric order traversal of a rooted tree visits all of the nodes exactly
once. The order can be described recursively as follows: for a node in the
tree, traverse its left subtree(if there is), visit the node itself, and then
traverse its right subtree(if there is). A rotation maintains the symmetric
order of the nodes.

The rotation on binary trees can be formulated with respect to different
systems of combinatorial objects and their transformations. The diagonal-
flip operation in triangulations is perhaps more intuitive and so supplies
more insight.

Consider the standard convex (n + 2)-gon. We choose an edge of the
polygon as a distinguished edge, called “root edge”, and label its ends as 0
and n + 1. We also label the other n vertices from 1 to n counterclockwise.
Any triangulation of the (n + 2)-gon has n triangles and n − 1 diagonals.
¿From a triangulation of the (n + 2)-gon, we derive a binary tree of size
n by assigning a node for each triangle and connecting two nodes if the
corresponding triangles sharing a common diagonal. The root of the tree
corresponds to the triangle containing the root edge. It is not difficult to see
that the ith node of the binary tree in symmetric order corresponds to the
triangle with vertices i, j and k such that j < i < k. In this way, we obtain
a 1-1 correspondence between n-node binary trees and triangulations of the
(n + 2)-gon as illustrated in Figure 17.

A diagonal-flip is an operation that transforms one triangulation of a
convex polygon into another as showed in Figure 18. A diagonal inside the
polygon is removed, creating a quadrilateral. Then the opposite diagonal
of this quadrilateral is inserted in place of the one removed, restoring a

66

A B

i

subgon
1 + |B|

subgon
1 + |A|

i

0 n

Figure 17: A triangulation and its corresponding n-node rooted binary tree.

triangulation of the polygon. It is not difficult to see that diagonal-flips
in a triangulation correspond one-to-one to rotations in the corresponding
binary tree.

Figure 18: A diagonal flip in a triangulation of the hexagon.

Given a triangulation π of a polygon, we define the internal degree of a
vertex v as the number of diagonals adjacent to v, denoted by id(v). Now
let us see how id(v) is reflected in the corresponding binary tree. In a rooted
binary tree T , the left (resp. right) path is a maximal sequence of nodes
that form a path starting at the root all of whose edges go in left (resp.
right) direction. For a node v ∈ T , the left and right subtree rooted at v
are denoted by LTv and RTv respectively. Recall that all non-leaf nodes are
internal nodes in a tree. The following result is of interest itself and has not
appeared in literature to the best of the authors knowledge.

Theorem 17 ([34]) Suppose that the (n + 2)-gon P is oriented by labeling
its vertices from 0 to n + 1 and (0, n + 1) is the root edge. Let π be a
triangulation of P and T be the corresponding n-node rooted binary tree.
Then

(1) The internal degree id(0) of vertex 0 in P equals the number of in-
ternal nodes on the left path of T ;

67

(2) The internal degree id(n+1) of vertex n +1 in P equals the number
of internal nodes on the right path of T ;

(3) The internal degree id(i) of vertex i ∈ P (0 < i < n + 1) equals the
number of subtrees at node i, which is at most 2, plus the number of internal
nodes on the right path of the left subtree LTi and the number of internal
nodes on the left path of the right subtree RTi.

Other interesting relationship between a triangulation of a convex poly-
gon and its corresponding rooted binary tree can be found in a nice survey
article [1].

6.2 Upper and lower bounds for the rotation distance

Any rooted binary tree of size n can be converted into any other with the
same size by performing an appropriate sequence of rotations. Therefore, we
can define the rotation distance between two trees as the minimum number
of rotations required to convert one tree into the other. Let rt(T1, T2) to
denote the rotation distance between two trees T1 and T2. Define

rt(n) = max{rt(T1, T2) | |T1| = |T2| = n}.

Similarly, we can define the diagonal flip distance between two triangulations
of the n-gon and denote the maximum distance between any pair of such
triangulations by fd(n). Obviously, rd(n) = fd(n + 2).

Culik and Wood showed that rd(n) ≤ 2n − 2([6]). Sleator, Tarjan and
Thurston improved this bound to 2n−6 and showed that the bound is tight
for all sufficiently large n using hyperbolic geometry.

Theorem 18 ([41]) rd(n) = fd(n + 2) ≤ 2n − 6 for all n > 10. Further-
more, the equality holds for all sufficiently large n.

The exact values of rd(n) for n ≤ 16 are listed below[41].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rd(n) 0 1 2 4 5 7 9 11 12 15 16 18 20 22 24 26

However, little is known about the lower bound for the rotation distance
rd(T1, T2) of two given trees T1 and T2. The following two theorems are the
only known lower bounds, which is presented in term of the diagonal flip
distance for simplicity. The first one is a variant of lemma 3 in [41].

68

Theorem 19 Let π1 and π2 be two triangulations of the n-gon. If π1 and
π2 have k different diagonals, then fd(π1, π2) ≥ k.

Let π1 and π2 be two triangulations of the n-gon. Consider a sequence
Π of diagonal-flips that transforms π1 into π2. A diagonal-flip (ab, cd) ∈ Π
is auxiliary if cd �∈ π2. We also say that the flip (ab, cd) touches the vertices
a, b, c, d. Let A(Π) denote the set of all auxiliary diagonal-flips in S. Let |Π|
denote the number of flips in Π. Then

|Π| ≥ |A(Π)|+ n − 3. (1)

Finally, a triangle of a triangulation is said to be internal if it contains three
diagonals of the triangulation.

Theorem 20 ([34]) Let π1 and π2 be two triangulations of a convex polygon
and let v be a vertex of the polygon. Suppose that the following conditions
are satisfied:

(a) v is an end of at least two diagonals in π2,
(b) v is not a vertex of any internal triangles in π1 or π2,
(c) v is not connected by a π2-diagonal to any vertices of internal trian-

gles in π2, and
(d) flipping any π1-diagonal adjacent to v does not create a π2-diagonal.
Then, there is at least one auxiliary diagonal touching v in any sequence

Π of diagonal-flips that converts π1 into π2.

As showed in the next subsection, Theorem 20 is useful for estimating
the diagonal flip distance between two triangulations.

6.3 Approximating the rotation and diagonal flip distances

Since the rotation and diagonal distance are equivalent, we just state results
in term of the diagonal flip distance.

Given two triangulations π1 and π2 with k different diagonals. Since
every different π1-diagonal has to be flipped, any diagonal-flip transforma-
tion from one to another contains at least k flips. On the other hand, by
Theorem 18, 2k flips are enough to transform π1 into π2. This implies an
approximation with ratio 2.

Theorem 21 The diagonal flip distance can be approximated with ratio 2
in polynomial time.

69

However, it is very hard to develop a polynomial approximation algo-
rithm with constant ratio < 2 for the distance. In what follows, we prove a
slightly better approximation.

Theorem 22 ([34]) There is a polynomial approximation algorithm that,
on the input of two triangulations π1 and π2 of the n-gon, output a diagonal
flip transformation of length at most (2 − 2

4(d−1)(d+6)+1)fd(π1, π2), where d
is the maximum number of diagonals adjacent a vertex in one of the given
triangulations.

Proof.Let e be a diagonal in π1 or π2. The diagonal e is said to be isolated if
there is only one diagonal (in the other triangulation) crossing e. Given two
triangulations of the n-gon. They may have some diagonals in common in
general. All the common diagonals divide the rest of diagonals into disjoint
subclasses. Each disjoint subclass together with common diagonals around
it is called a cell. A desired algorithm is presented in Table 1. Obviously,
the algorithm takes polynomial time. We analyze its approximation ratio
as follows.

Without loss of generality, we assume that π1 and π2 do not have common
diagonals. Suppose that the Do loop runs m1 times for isolated diagonals.
Then, after the Do loop, π1 and π2 have been transformed into triangulations
π′

1 and π′
2 which have m diagonals in common. Without loss of generality, we

may assume that different diagonals in π′
1 and π′

2 forms two triangulations
of a convex (n − m)-gon. Note that fd(π1, π2) = m + fd(π′

1, π
′
2).

A vertex v ∈ P is pure with respect to π′
i, if it is only an end of π′

i-
diagonals. Let V1 and V2 denote the sets of pure vertices with respect to π′

1

and π′
2 respectively. We first prove that

fd(π′
1, π

′
2) ≥ (n − m) − 3 + |V1|/4.

Consider a shortest sequence S of diagonal flips that transforms π′
1 into π′

2.
Since there are no isolated edges in both π′

1 and π′
2, each vertex in V1 is an

end of at least two π1-diagonals. By Theorem 20, for each node in V1, there
is at least one auxiliary flip touching it. Since each auxiliary flip can touch
at most 4 vertices, there are at most |V1|/4 auxiliary flips in S. Hence, by
Inequality (1), fd(π′

1, π
′
2) ≥ (n − m) − 3 + |V1|/4.

70

Input: Two triangulations π1 and π2;

Do until the following ’if’ conditions fails
if there are isolated diagonals then

pick such an edge e;
let e′ be the unique diagonal that intersects e;
if e′ ∈ π1 then π1 := π1 + e − e′ else π2 := π2 + e − e′;

Enddo

Let the resulting polygon triangulations have k cells Pi(i ≤ k), and let
πj |Pi denote the restriction of πj on Pi for j = 1, 2 and i ≤ k; assume Pi

has ni vertices.

For each cell Pi

pick a node v;
transform π1|Pi into the unique triangulation π all of whose

diagonals have one end at v using at most ni steps;
transform π into π2|Pi reversely.

Endfor

Table 1: Transformation algorithm.

Similarly, by considering pure vertices with respect to π2, we are able to
prove that fd(π′

1, π
′
2) ≥ (n − m) − 3 + |V2|/4. Combining these two bounds

together, we obtain that

fd(π1, π2) ≥ (n − m)− 3 +
|V1| + |V2|

8
. (2)

On the other hand, one can prove that there are at least n−m
d−1 −3|V1|−(d+

2)|V2| vertices satisfying the conditions in Theorem 20. Thus, by Inequality
(1), fd(π′

1, π
′
2) ≥ (n − m) − 3 + n−m

4(d−1) −
3|V1|

4 − (d+2)|V2|
4 . Similarly, we have

fd(π′
1, π

′
2) ≥ (n − m) − 3 + n−m

4(d−1) −
3|V2|

4 − (d+2)|V1|
4 . Combining these two

inequalities together, we have that

fd(π′
1, π

′
2) ≥ (n − m)− 3 +

n − m

4(d− 1)
− (d + 5)(|V1| + |V2|)

8
. (3)

By (2) and (3), fd(π1, π2) = m+fd(π′
1, π

′
2) ≥ m+(n−m)(1+ 1

4(d−1)(d+6))−3.

71

The algorithm transforms π′
1 to π′

2 using at most M = 2(n− m) + m =
2n − m flips, which is less than (2 − 2

4(d−1)(d+6)+1)fd(π1, π2). This finishes
the proof. �

Furthermore, [34] also presented a polynomial approximation algorithm
with ratio 1.97 for the diagonal flip transformation between two triangula-
tions without internal triangle. Such a triangulation corresponds to a rooted
binary tree without degree 3 internal nodes.

6.4 Miscellaneous remarks

The diagonal flip operation was early studied by Wagner [45] in the context
of arbitrary triangulated planar graphs and by Dewdney [11] in the case of
graphs of genus one. They showed that any such graph can be transformed
to any other by diagonal flips. However, they did not try to accurately es-
timate how many flips are necessary. After [41] was published, the rotation
and diagonal flip operations have been studied in several aspects. Pallo [36]
proposed a heuristic search algorithm to compute the rotation distance be-
tween two given trees. Hurtado, Noy and Urrutia [24] studied diagonal flips
in arbitrary polygons. Guibas and Hershberger [18] abstracted polygon mor-
phing as a sequence of rotations on weighted binary trees and Hershberger
and Suri [23] proved that a weighted rooted binary tree can be converted
into any other in at most O(n logn) rotations.

7 Open Questions

In this section, we list some open questions concerning the nni and subtree-
transfer distances.

1. Give a constant ratio approximation algorithm for the nni distance on
unweighted evolutionary trees or prove that the ratio O(logn) is the
best possible.

2. Is the linear-cost subtree-transfer distance NP-hard to compute on
weighted evolutionary trees?

3. Can we improve the approximation ratios for subtree-transfer distance
on unweighted or weighted evolutionary trees?

4. Are there simple approximation algorithms for the rotation distance
with nontrivial ratios?

72

References

[1] D. Aldous, Triangulating the circle, at random. Amer Math. Monthly,
89, pp. 223-234, 1994.

[2] M.A. Armstrong, Groups and Symmetry, Springer Verlag, New York
Inc., 1988.

[3] D. Barry and J.A. Hartigan, Statistical analysis of hominoid molecular
evolution, Stat. Sci., 2, pp. 191-210, 1987.

[4] C.H. Bennett, P. Gács, M. Li, P. Vitányi, and W. Zurek, Information
Distance, to appear in IEEE Trans. Inform. Theory.

[5] R. P. Boland, E. K. Brown and W. H. E. Day, Approximating minimum-
length-sequence metrics: a cautionary note, Math. Soc. Sci., 4, pp.
261-270, 1983.

[6] K. Culik II and D. Wood, A note on some tree similarity measures,
Inform. Proc. Let., 15, pp. 39-42, 1982.

[7] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp and L. Zhang, On
distances between phylogenetic trees, Proc. 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 427-436, 1997.

[8] B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp, On the linear-cost
subtree-transfer distance, Algorithmica, submitted, 1997.

[9] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, On
computing the nearest neighbor interchange distance, Preprint, 1997.

[10] W. H. E. Day, Properties of the nearest neighbor interchange metric
for trees of small size, Journal of Theoretical Biology, 101, pp. 275-288,
1983.

[11] A. K. Dewdney, Wagner’s theorem for torus graphs, Discrete Math., 4,
pp. 139-149, 1973.

[12] A.W.F. Edwards and L.L. Cavalli-Sforza, The reconstruction of evolu-
tion, Ann. Hum. Genet., 27, 105, 1964. (Also in Heredity 18, 553.)

[13] J. Felsenstein, Evolutionary trees for DNA sequences: a maximum like-
lihood approach. J. Mol. Evol., 17, pp. 368-376, 1981.

73

[14] J. Felsenstein, personal communication, 1996.

[15] W.M. Fitch, Toward defining the course of evolution: minimum change
for a specified tree topology, Syst. Zool., 20, pp. 406-416, 1971.

[16] W.M. Fitch and E. Margoliash, Construction of phylogenetic trees, Sci-
ence, 155, pp. 279-284, 1967.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[18] L. Guibas and J. Hershberger, Morphing simple polygons, Proceeding of
the ACM 10th Annual Sym. of Comput. Geometry, pp. 267-276, 1994.

[19] J. Hein, Reconstructing evolution of sequences subject to recombination
using parsimony, Math. Biosci., 98, pp. 185-200, 1990.

[20] J. Hein, A heuristic method to reconstruct the history of sequences
subject to recombination, J. Mol. Evol., 36, pp. 396-405, 1993.

[21] J. Hein, personal email communication, 1996.

[22] J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of com-
paring evolutionary trees, Discrete Applied Mathematics, 71, pp. 153-
169, 1996.

[23] J. Hershberger and S. Suri, Morphing binary trees. Proceeding of the
ACM-SIAM 6th Annual Symposium of Discrete Algorithms, pp. 396-
404, 1995.

[24] F. Hurtado, M. Noy, and J. Urrutia, Flipping edges in triangulations,
Proc. of the ACM 12th Annual Sym. of Comput. Geometry, pp. 214-223,
1996.

[25] J. P. Jarvis, J. K. Luedeman and D. R. Shier, Counterexamples in mea-
suring the distance between binary trees, Mathematical Social Sciences,
4, pp. 271-274, 1983.

[26] J. P. Jarvis, J. K. Luedeman and D. R. Shier, Comments on computing
the similarity of binary trees, Journal of Theoretical Biology, 100, pp.
427-433, 1983.

74

[27] J. Kececioglu and D. Gusfield, Reconstructing a history of recombi-
nations from a set of sequences, Proc. 5th Annual ACM-SIAM Symp.
Discrete Algorithms, 1994.

[28] M. Kuhner and J. Felsenstein, A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol.
11(3), pp. 459-468, 1994.

[29] M. Křivánek, Computing the nearest neighbor interchange metric for
unlabeled binary trees is NP-complete, Journal of Classification, 3, pp.
55-60, 1986.

[30] V. King and T. Warnow, On Measuring the nni distance between two
evolutionary trees, DIMACS mini workshop on combinatorial structures
in molecular biology, Rutgers University, Nov 4, 1994.

[31] S. Khuller, Open Problems: 10, SIGACT News, 24(4), p. 46, Dec 1994.

[32] W.J. Le Quesne, The uniquely evolved character concept and its cladis-
tic application, Syst. Zool., 23, pp. 513-517, 1974.

[33] M. Li, J. Tromp, and L.X. Zhang, On the nearest neighbor interchange
distance between evolutionary trees, Journal of Theoretical Biology,
182, pp. 463-467, 1996.

[34] M. Li and L. Zhang, Better Approximation of Diagonal-Flip Transfor-
mation and Rotation Transformation, Manuscript, 1997.

[35] G. W. Moore, M. Goodman and J. Barnabas, An iterative approach
from the standpoint of the additive hypothesis to the dendrogram prob-
lem posed by molecular data sets, Journal of Theoretical Biology, 38,
pp. 423-457, 1973.

[36] J. Pallo, On rotation distance in the lattice of binary trees, Infor. Proc.
Letters, 25, pp. 369-373, 1987.

[37] D. F. Robinson, Comparison of labeled trees with valency three, Journal
of Combinatorial Theory, Series B, 11, pp. 105-119, 1971.

[38] N. Saitou and M. Nei, The neighbor-joining method: a new method
for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, pp. 406-425,
1987.

75

[39] D. Sankoff, Minimal mutation trees of sequences, SIAM J. Appl. Math.,
28, pp. 35-42, 1975.

[40] D. Sankoff and J. Kruskal (Eds), Time Warps, String Edits, and Macro-
molecules: the Theory and Practice of Sequence Comparison, Addison
Wesley, Reading Mass., 1983.

[41] D. Sleator, R. Tarjan, W. Thurston, Rotation distance, triangulations,
and hyperbolic geometry, J. Amer. Math. Soc., 1, pp. 647-681, 1988.

[42] D. Sleator, R. Tarjan, W. Thurston, Short encodings of evolving struc-
tures, SIAM J. Discr. Math., 5, pp. 428–450, 1992.

[43] K.C. Tai, The tree-to-tree correction problem, J. ACM, 26, pp. 422-433,
1979.

[44] A. von Haseler and G.A. Churchill, Network models for sequence evo-
lution, J. Mol. Evol., 37, pp. 77-85, 1993.

[45] K. Wagner, Bemerkungen zum vierfarbenproblem, J. Deutschen Math.-
Verin., 46, pp. 26-32, 1936.

[46] M. S. Waterman, Introduction to computational biology: maps, se-
quences and genomes, Chapman & Hall, 1995.

[47] M. S. Waterman and T. F. Smith, On the similarity of dendrograms,
Journal of Theoretical Biology, 73, pp. 789–800, 1978.

[48] K. Zhang and D. Shasha, Simple fast algorithms for the editing distance
between trees and related problems, SIAM J. Comput. 18, pp. 1245-
1262, 1989.

[49] K. Zhang, J. Wang and D. Sasha, On the editing distance between
undirected acyclic graphs, International J. of Foundations of Computer
Science 7 (13), March 1996.

76

