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Abstract. A useful approach to the mathematical analysis of large-scale
biological networks is based upon their decompositions into monotone
dynamical systems. This paper deals with two computational problems
associated to finding decompositions which are optimal in an appropriate
sense. In graph-theoretic language, the problems can be recast in terms
of maximal sign-consistent subgraphs. The theoretical results include
polynomial-time approximation algorithms as well as constant-ratio in-
approximability results. One of the algorithms, which has a worst-case
guarantee of 87.9% from optimality, is based on the semidefinite program-
ming relaxation approach of Goemans-Williamson [14]. The algorithm
was implemented and tested on a Drosophila segmentation network [7]
and an Epidermal Growth Factor Receptor pathway model [25], and it
was found to perform close to optimally.

1 Introduction

In living cells, networks of proteins, RNA, DNA, metabolites, and other species
process environmental signals, control internal events such as gene expression,
and produce appropriate cellular responses. The field of systems (molecular) bi-
ology is largely concerned with the study of such networks, viewed as dynamical
systems. One approach to their mathematical analysis relies upon viewing them
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as made up of subsystems whose behavior is simpler and easier to understand.
Coupled with appropriate interconnection rules, the hope is that emergent prop-
erties of the complete system can be deduced from the understanding of these
subsystems.

A particularly appealing class of candidates for “simpler behaved” subsys-
tems are monotone systems, as in [16,15,29]. Monotone systems are a class of
dynamical systems for which pathological behavior (“chaos”) is ruled out. Even
though they may have arbitrarily large dimensionality, monotone systems behave
in many ways like one-dimensional systems. For instance, in monotone systems,
bounded trajectories generically converge to steady states, and there are no sta-
ble oscillatory behaviors. Monotonicity is closely related to positive and feedback
loops in systems. The topic of analyzing the behaviors of such feedback loops
is a long-standing one in biology in the context of regulation, metabolism, and
development; a classical reference in that regard is the work [23] of Monod and
Jacob in 1961. See also, for example, [20, 22,34, 26,31,6,4,1,27].

An interconnection of monotone subsystems, that is to say, an entire system
made up of monotone components, may or may not be monotone: “positive feed-
back” (in a sense that can be made precise) preserves monotonicity, while “nega-
tive feedback” destroys it. Thus, oscillators such as circadian rhythm generators
require negative feedback loops in order for periodic orbits to arise, and hence
are not themselves monotone systems, although they can be decomposed into
monotone subsystems (cf. [5]). A rich theory is beginning to arise, characterizing
the behavior of non-monotone interconnections. For example, [3] shows how to
preserve convergence to equilibria; see also the follow-up papers [2,18,12,9,13].
Even for monotone interconnections, the decomposition approach is very use-
ful, as it permits locating and characterizing the stability of steady states based
upon input/output behaviors of components, as described in [4]; see also the
follow-up papers [1,11,19]. Moreover, a key point brought up in [32] is that new
techniques for monotone systems in many situations allow one to characterize
the behavior of an entire system, based upon the “qualitative” knowledge rep-
resented by general network topology and the inhibitory or activating character
of interconnections, combined with only a relatively small amount of quantita-
tive data. The latter data may consist of steady-state responses of components
(dose-response curves and so forth), and there is no need to know the precise
form of dynamics or parameters such as kinetic constants in order to obtain
global stability conclusions.

Generally, a graph, whose edges are labeled by “+” or signs (sometimes
one writes +1, —1 instead of +, —, or uses respectively activating “—” or in-
hibiting “—” arrows), is said to be sign-consistent if all paths between any two
nodes have the same net sign, or equivalently, all closed loops have positive par-
ity, i.e. an even number, possibly zero, of negative edges. (For technical reasons,
one ignores the direction of arrows, looking only at undirected graphs; see more
details in Section 2.)

When applying decomposition theorems such as those described in
[3,4,1,32,2,18,11,19,12,9, 13], it tends to be the case that the fewer the number
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of interconnections among components, the easier it is to obtain useful
conclusions. One may view a decomposition into interconnections of monotone
subsystems as the “pulling out” of “inconsistent” connections among monotone
components, the original system being a “negative feedback” loop around an
otherwise consistent system. In this interpretation, the number of interconnec-
tions among monotone components corresponds to the number of variables be-
ing fed-back. In addition, and independently from the theory developed in the
above references, one might speculate that nature tends to favor systems that
are decomposable into small monotone interconnections, since “negative” feed-
back loops, although required for homeostasis and for periodic behavior, have
potentially destabilizing effects, especially if there are signal propagation delays.
Some evidence is provided by work in progress such as [21], where the authors
compare certain biological networks and appropriately randomized versions of
them and show that the original networks are closer to being consistent, and by
[28], where the authors show that, in a Boolean setting, and using a mean-field
calculation of sensitivity, networks of Boolean functions behave in a more and
more “orderly” fashion the closer that the components are to being monotone.
Thus, we are led to the subject of this paper, namely computing the smallest
number of edges that have to be removed so that there remains a consistent
graph. In this paper, we study the computational complexity of the question of
how many edges must be removed in order to obtain consistency, and we provide
a polynomial-time approximation algorithm guaranteed to solve the problem
to about 87.9% of the optimum solution, which is based on the semidefinite
programming relaxation approach of Goemans-Williamson [14] (A variant of
the problem is discussed as well). We also observe that it is not possible to
have a polynomial-time algorithm with performance too close to the optimal.
While our emphasis is on theory, one of the algorithms was implemented, and
we show results of its application to a Drosophila segmentation network and to
an Epidermal Growth Factor Receptor pathway model. It turns out that, when
applying the algorithm, often the solution is much closer to optimal than the
worst-case guarantee of 87.9%, and indeed often gives an optimal solution.

2 Monotone Systems and Consistency

We will illustrate the motivation for the problem studied here using systems of
ordinary differential equations

i = F(z) (1)

(the dot indicates time derivative, and x = x(t) is a vector), although the discus-
sion applies as well to more general types of dynamical systems such as delay-
differential systems or certain systems of reaction-diffusion partial differential
equations. In applications to biological networks, the component z;(t) of the
vector & = x(t) indicates the concentration of the ith species in the model at
time t. We will restrict attention to models in which the direct effect that one
given variable in the model has over another is either consistently inhibitory
or consistently promoting. Thus, if protein A binds to the promoter region of
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gene B, we assume that it does so either to consistently prevent the transcription
of the gene or to consistently facilitate it. (Of course, this condition does not
prevent protein A from having an indirect influence, through other molecules,
perhaps dimmers of A itself, that can ultimately lead to the opposite effect on
gene B.) Mathematically, we require that for every i,7 = 1...n, i # j, the partial
derivative OF;/0xz; be either > 0 at all states or < 0 at all states.

Given any partial order < defined on R", a system (1) is said to be monotone
with respect to < if xg < yo implies x(t) < y(t) for every t > 0. Here x(t), y(t) are
the solutions of (1) with initial conditions xg, yo, respectively. Of course, whether
a system is monotone or not depends on the partial order being considered,
but we one says simply that a system is monotone if the order is clear from
the context. Monotonicity with respect to nontrivial orders rules out chaotic
attractors and even stable periodic orbits; see [16,15,29], and is, as discussed
in the introduction, a useful property for components when analyzing larger
systems in terms of subsystems.

A useful way to define partial orders in R™, and the only one to be further
considered in this paper, is as follows. Given a tuple s = (s1,...8,), where
s; € {1, —1} for every 7, we say that © <, y if s;,x; < s;y; for every i. For instance,
the “cooperative order” is the orthant order <, generated by s = (1,...1). This
is the order < defined by x < y if and only if z; < y; foralli =1,...,n. It is not
difficult to verify if a system is cooperative with respect to an orthant order; the
following lemma, known as “Kamke’s condition,” is not hard to prove, see [29]
for details (also [3] in the more general context of monotone systems with input
and output channels).

Lemma 1. Consider an orthant order <s generated by s = (S1,...,5,). A sys-
tem (1) is monotone with respect to <y if and only if

sisjg—a;zo, h,j=1...n, i #j. (2)
An equivalent way to phrase this condition is to ask that dF;/0z; > 0 at all
states for every i,j,i # j, which is the Kamke condition for the special case
of the cooperative order. The name of the order arises because in a monotone
system with respect to that order each species promotes or “cooperates” with
each other.

A rephrasing of this characterization of monotonicity with respect to orthant
orders can be given by looking at the signed digraph associated to (1) and defined
as follows. Let V(G) = {1,...,n}. Given vertices 4,7, let (i,j) € E(G) and
fe(i,j) = 1 if both OF;/0x; > 0 and the strict inequality holds at least at
one state. Similarly let (4,5) € E(G) and fg(i,j) = —1 if both 0F;/0z; < 0
and the strict inequality holds at least at one state. Finally, let (¢,5) € E(G) if
OF;/0xz; = 0. Recall that we are assuming that one of the three cases must hold.
Now we can define an orthant cone using any function fy : V(G) — {-1,1}, by
letting = <y, y if and only if fv (¢)z; < fv(i)y; for all i. Given fy, we define the
consistency function g : E(G) — {true, false} by g(i,7) = fv (@) fv(§)fe(i,j).
Then, the following analog of Lemma 1 holds.
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Lemma 2. Consider a system (1) and an orthant cone <y, . Then (1)is monotone
with respect to <y, if and only if g(i,7) =1 on E(QG).

For the next lemma, let the parity of a chain in G be the product of the signs
(41, —1) of its individual edges. We will consider in the next result closed undi-
rected chains, that is, sequences x;, . ..x;. such that z;, = x;_, and such that for
every A =1,...,r — 1 either (z;,,24,,,) € E(G) or (zi,,,,%:,) € E(G).

Lemma 3. Consider a dynamical system (1) with associated directed graph G.
Then (1) is monotone with respect to some orthant order if and only if all closed
undirected chains of G have parity 1.

2.1 Systems with Inputs and Outputs

As we discussed in the introduction, a useful approach to the analysis of bio-
logical networks consists of decomposing a given system into an interconnection
of monotone subsystems. The formulation of the notion of interconnection re-
quires subsystems to be endowed with “input and output channels” through
which information is to be exchanged. In order to address this we consider con-
trolled dynamical systems ([33], which are systems with an additional parameter
u € R™, and which have the form

&= g(x,u). 3)

The values of u over time are specified by means of a function ¢t — u(t) € R™,
t > 0, called an input or control. Thus each input defines a time-dependent
dynamical system in the usual sense. To system (3) there is associated a feedback
function h : R™ — R™, which is usually used to create the closed loop system & =
g(z, h(x)). Finally, if R, R™ are ordered by orthant orders <;,,, <, respectively,
we say that the system is monotone if it satisfies (2) for every u, and also

9.
arfv(5) 295 > 0, for every k,j (4)
8’U,k

(see also [3].) As an example, let us consider the following biological model of
testosterone dynamics [10, 24]:

. A .

N =K ha

i’g =C1T1 — bgl’g (5)
x.g = CoT2 — ngg.

Drawing the digraph of this system, it is easy to see that it is not monotone
with respect to any orthant order, as follows by application of Lemma 3. On
the other hand, replacing x3 in the first equation by u, we obtain a system
that is monotone with respect to the orders <(; 1 1), <(_1) for state and input
respectively. Defining h(z) = 3, the closed loop system of this controlled system
is none other than (5). The paper [10] shows how, using this decomposition
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together with the “small gain theorem” from monotone input/output theory
([3]) leads one to a proof that the system does not have oscillatory behavior,
even under arbitrary delays in the feedback loop, contrary to the assertion made
n [24]. We can carry out this procedure on an arbitrary system (1) with a
directed graph G as follows: given a set E of edges in GG, enumerate the edges
in E€ as (i1,71),. .- (im, jm). For every 1 < k < m, replace all appearances of
x;,, in the function Fj, by the variable uy to form the function g(z,w). Define
h(z) = (zi,,...2;,). It is easy to see that this controlled system (3) has closed
loop (1).

Let the set E be called consistent if the undirected subgraph of G' generated
by E has no closed chains with parity —1. Note that this is equivalent to the
existence of fy such that ¢ = 1 on E, by Lemma 4 applied to the open loop
system (3). If E is consistent, then the associated system (3) itself can also be
shown to be monotone: to verify condition (4), simply define each g so that
(4) is satisfied for k, j. Since 0g;, /Our, = OF;, /0x;, # 0, this choice is in fact
unambiguous. Conversely, if (3) is monotone with respect to the orthant orders
<fv, <g, then in particular it is monotone for every fixed constant u, so that
is consistent by Lemma 3. We thus have the following result.

Lemma 4. The set of edges E of the digraph G is consistent iff the correspond-
ing controlled system (3) is monotone with respect to some orthant orders.

3 Statement of Problem

A natural problem is therefore the following. Given a dynamical system (1) that
admits a digraph G, use the procedure above to decompose it as the closed loop of
a monotone controlled system (3), while minimizing the number ||[E€|| of inputs.
Equivalently, find fy such that P(Ey) =| E4 || is mazimized and P(E_) =||
E_||=||ES|| minimized. This produces the following problem formulation.

Problem 1 (Undirected Labeling Problem(ULP))

An instance of this problem is (G,h), where G = (V, E) is an undirected graph
and h: E — {0,1}. A wvalid solution is a vertex labeling function f:V — {0,1}.
Define an edge {u,v} € E to be consistent iff h(u,v) = (f(u) + f(v)) (mod 2).
The objective is then to find a valid solution maximizing |F| where F is the set
of consistent edges.

There is a second, slightly more sophisticated way of writing a system (1) as the
feedback loop of a system (3) using an arbitrary set of edges E. Given any such
E, define S(E°) = {i| there is some j such that (¢,j) € E°}. Now enumerate
S(E°) as {i1,...4m}, and for each k label the set {j | (ix,J) € E} as jr1, jk2, - - -
Then for each k, [, one can replace each appearance of z;, in Fj,, by us, to form
the function g(x,u). Then one lets h(z) = (z;,,...,x;, ) as above. The closed
loop of this system (3) is also (1) as before but with the advantage that there

are |S(E°)| inputs, and of course |S(E°)| < |E°|.
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If E is a consistent and mazimal set, then one can make (3) into a monotone
system as follows. By letting fi, be such that ¢ = 1 on E, we define the or-
der <y, on R"™. For every iy, ji such that (ix,ju) € EC€. it must hold that
fv(ik)fv(jkl)fE(ik,jkl) = —1. Otherwise F U {(Uc,]kl)} would be consistent,
thus violating maximality. By choosing ¢x = — fv (ix), equation (4) is therefore
satisfied. Conversely, if the system generated by E using this second algorithm
is monotone with respect to orthant orders, and if / is a negative function, then
it is easy to verify that E must be both consistent and maximal.

Thus the problem of finding F consistent and such that P(E_) =||S(E_)||=||
S(E%)| is smallest, when restricted to those sets that are maximal and consistent
(this does not change the minimum || S(E)||), is equivalent to the following
problem: decompose (1) into the negative feedback loop of an orthant monotone
control system, using the second algorithm above, and using as few inputs as
possible. This produces the following problem formulation.

Problem 2 (Directed Labeling Problem(DLP))

An instance of this problem is (G, h) where G = (V, E) is a directed graph and
h: E — {0,1}. A valid solution is a vertez labeling function f:V — {0,1}. Define
an edge (u,v) € E to be consistent iff h(u,v) = (f(u) + f(v)) (mod 2). The
objective is then to find a valid solution minimizing |g(E — F)| where g(C) =
{ueV |y eV, (uy) € C} for any C C E and F is the set of consistent edges.

4 Theoretical Results

Theorem 5

(a) For some constant € > 0, it is not possible to approximate in polynomial
time the ULP and the DLP problems to within an approximation ratio of
1 —¢€ and 1+ ¢, respectively, unless P=NP.

(b) For ULP, we provide a polynomial time a-approximation algorithm where
a =~ 0.87856 is the approximation factor for the MAX-CUT problem obtained
in [14] via semidefinite programming.

(¢) For DLP, if dJ}" denotes the mazimum in-degree of any vertex in the graph,
then we give a polynomial-time approximation algorithm with an approrima-
tion ratio of at most d*** - O(log|V]).

5 Two Examples of Applications of the ULP Algorithm

5.1 Drosophila Segment Polarity

An important part of the development of the early Drosophila (fruit fly) embryo
is the differentiation of cells into several stripes (or segments), each of which
eventually gives rise to an identifiable part of the body such as the head, the
wings, the abdomen, etc. Each segment then differentiates into a posterior and
an anterior part, in which case the segment is said to be polarized. (This differen-
tiation process continues up to the point when all identifiable tissues of the fruit
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fly have developed.) Differentiation at this level starts with differing concentra-
tions of certain key proteins in the cells; these proteins form striped patterns by
reacting with each other and by diffusion through the cell membranes.
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Fig.1. A digram of the Fig.2. The network associated to the
Drosophila embryo during Drosophila segment polarity, as proposed in
early development. A part [7], Courtesy of N. Ingolia and PLoS. The
of the segment polariza- three edges that have been crossed have been
tion process is displayed. chosen in order to let the remaining edges
Courtesy of N. Ingolia and form an orthant monotone system.
PLoS [17].

A model for the network that is responsible for segment polarity [7] is illus-
trated in Figure 2. As explained above, this model is best studied when multiple
cells are present interacting with each other. But it is interesting at the one-
cell level in its own right — and difficult enough to study that analytic tools
seem mostly unavailable. The arrows with a blunt end are interpreted as having a
negative sign in our notation. Furthermore, the concentrations of the membrane-
bound and inter-cell traveling compounds PTC, PH, HH and WG(membrane)
on all cells have been identified in the one-cell model (so that, say, HH— PH is
now in the digraph). Finally, PTC acts on the reaction CI— CN itself by pro-

moting it without being itself affected, which in our notation means PTC £ CN
and PTC — CIL

The Implementation. The Matlab implementation of the algorithm on this di-
graph with 13 nodes and 20 edges produced several partitions with as many as
17 consistent edges. One of these possible partitions simply consists of placing
the three nodes ci, CI and CN in one set and all other nodes in the other set,
whereby the only inconsistent edges are CL % wg, CL % pte, and PTC £ ON.
But note that it is desirable for the resulting open loop system to have as simple
remaining loops as possible after eliminating all inconsistent edges. In this case,

the remaining directed loops EN = ¢i > CI &5 CN S en &5 EN and

EN S ¢ 5 1 5 CN S wg 5 WG 5 WG(membrane) 5 en 5

EN can still cause difficulties.
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A second partition which generated 17 consistent edges is that in which EN,
hh, CN, and the membrane compounds PTC, PH, HH are on one set, and the

remaining compounds on the other. The edges cut are ptc % PTC, CI % ON and

en EN, each of which eliminates one or several positive loops. By writing the
remaining consistent digraph in the form of a cascade, it is easy to see that the
only loop whatsoever remaining is wg < WG; this makes the analysis proposed
in [12] easier. In this relatively low dimensional case we can prove that in fact
OPT =17 as stated below.

Lemma 6. Any partition of the nodes in the digraph in Figure 2 generates at
most 17 consistent edges.

It is surprising that a realistic biological system with as many as 13 variables
and 20 edges can be transformed into a monotone system after the deletion of
only three nodes. It is conceivable that this restricts the possible dynamics of the
system. This is especially the case given that the open loop digraph has almost
no closed oriented paths (except for WG < wg), which is evidence that the
dynamics of the control system under constant inputs may be especially simple,
e.g. such that all solutions converge towards a unique equilibrium.

Multiple Copies. It was mentioned above that the purpose of this network is
to create striped patterns of protein concentrations along multiple cells. In this
sense, it is most meaningful to consider a coupled collection of networks as it
is given originally in Figures 1 and 2. Consider a row of k cells, each of which
has independent concentration variables for each of the compounds, and let the
cell-to-cell interactions be as in Figure 2 with cyclic boundary conditions (that
is, the k-th cell is coupled with the first in the natural way). We show that the
results can be extended in a very similar manner as before.

Lemma 7. Forthek-celllinearly coupled network describedin Figure 2, OPT=17k.

5.2 EGFR Signaling

In their May 2005 paper [25], Oda et al. integrate the information that has be-
come available about the epidermal growth factor receptor (EGFR) signalling
process from multiple sources, and they define a network with 330 known mole-
cules under 211 chemical reactions. The network itself is available from the
supplementary material in SBML format (Systems Biology Markup Language,
www.sbml.org), and will most likely be subject to continuous updates.

The Implementation. Each reaction in the network classifies the molecules as
reactants, products, and/or modifiers (enzymes). This information was imported
into Matlab using the Systems Biology Toolbox. The digraph G that is used for
this analysis has many more edges than the digraph considered in the digraph
displayed in [25]. The reason for this is as follows: if molecules A and B are
both reactants in the same reaction, then the presence of A will have an indirect
inhibiting effect on the concentration of B, since it will accelerate the reaction
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which consumes B (assuming B is not also a product). Therefore a negative
edge must also appear from A to B, and vice versa. Similarly, modifiers have an
inhibiting effect on reactants. We thus define G by letting sign(s, j) = 1 if there
exists a reaction in which j is a product and ¢ is either a reactant or a modifier.
We let sign(i,j) = —1 if there exists a reaction in which j is a reactant, and i
is also either a reactant or a modifier. Similarly sign(é,j) = 0 if the nodes i, j
are not simultaneously involved in any given reaction, and sign(s, j) is undefined
(NaN) if the first two conditions above are both satisfied. An undefined edge
can be thought of as an edge that is both positive and negative, and it can be
dealt with, given an arbitrary partition, by deleting exactly one of the two signed
edges so that the remaining edge is consistent. Thus, in practice, one can consider
undefined edges as edges with sign 0, and simply add the number of undefined
edges to the number of inconsistent edges in the end of each procedure, in order
to form the total number of inputs. This is the approach followed here; there are
exactly 7 such entries in the digraph G.

The Results. After running the algorithm 100 times for this problem, and choos-
ing that partition which produced the highest number of consistent edges, the
induced consistent set contained 633 out of 852 edges (ignoring the edges on
the diagonal and the 7 undefined edges). See the supplementary material for the
relevant Matlab functions that carry out this algorithm. A procedure analogous
to that carried out for system ( 5) allows to decompose the system as the feed-
back loop of a controlled monotone system using 852 — 633 = 219 inputs. Since
the induced consistent set is maximal by definition, we are guaranteed that the
function h is a negative feedback. Contrary to the previous application, many
of the reactions involve several reactants and products in a single reaction. This
induces a denser amount of negative and positive edges: even though there are
211 reactions, there are 852 (directed) edges in the 330 x 330 graph G. It is very
likely that this substantially decreases OPT for this system. The approximation
ratio of the SDP algorithm is guaranteed to be at least 0.87 for some r, which
gives the estimate OPT<= 633/0.87 ~ 728 (valid to the extent that r has sam-
pled the right areas of the 330-dimensional sphere, but reasonably accurate in
practice).

One procedure that can be carried out to lower the number of inputs is a
hybrid algorithm involving out-hubs, that is, nodes with an abnormally high
out-degree. Recall from the description of the DL P algorithm that all the out-
edges of a node x; can be potentially cut at the expense of only one input u, by
replacing all the appearances of z; in f;(z), j # i, by u. We considered the k
nodes with the highest out-degrees, and eliminated all the out-edges associated
to these hubs from the reaction digraph to form the graph G;. Then we run the
ULP algorithm on G; to find a partition fy of the nodes and a set of m edges
that can be cut to eliminate all remaining negative closed chains. Finally, we put
back on the digraph those edges that were taken in the first step, and which are
consistent with respect to the partition fy,. The result is a decomposition of the
system as the negative feedback loop of a controlled monotone system, using at
most k + m edges.
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An implementation of this algorithm with & = 60 yielded a total maximum
number of inputs & +m = 137. This is a significant improvement over the 226
inputs in the original algorithm. Clearly, it would be worthwhile to investigate
further the problem of designing efficient algorithms for the DLP problem to
generate improved hybrid algorithmic approaches. The approximation ratios in
Theorem 5(c) are not very satisfactory since d’** and log|V| could be large
factors; hence future research work may be carried out in designing better ap-
proximation algorithms.

5.3 Supplementary Material: MATLAB Implementation Files

A set of MATLAB programs have been written to implement the algorithms
described in this paper. They can be accessed from the URL
http://wuw.math.rutgers.edu/ sontag/desz_README.html.
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