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1 Introduction

The modern era of molecular biology began with the discovery of the double
helical structure of DNA. Today, sequencing nucleic acids, the determination
of genetic information at the most fundamental level, is a major tool of bio-
logical research [87]. This revolution in biology has created a huge amount
of data at great speed by directly reading DNA sequences. The growth rate
of data volume is exponential. For instance, the volume of DNA and protein
sequence data is currently doubling every 22 months [58]. One important
reason for this exceptional growth rate of biological data is the medical use of
such information in the design of diagnostics and therapeutics [26, 52]. For
example, identification of genetic markers in DNA sequences would provide
important informations regarding which portions of the DNA are signifi-
cant, and would allow the researchers to find many disease genes of interest



(by recognizing them from the pattern of inheritance). Naturally, the large
amount of available data poses a serious challenge in storing, retrieving and
analyzing biological information.

A rapidly developing area, computational biology, is emerging to meet
the rapidly increasing computational need. It consists of many important
areas such as information storage, sequence analysis, evolutionary tree con-
struction, protein structure prediction, and so on [26, 52]. It is playing an
important role in some biological research. For example, sequence compar-
ison is one of the most important methodological issues and most active
research areas in current biological sequence analysis. Without the help of
computers, it is almost impossible to compare two or more biological se-
quences (typically, at least a few hundred character long).

In this chapter, we survey recent results on evolutionary tree construction
and comparison, computing syntenic distances between multi-chromosome
genomes, and multiple sequence alignment problems.

Evolutionary trees model the evolutionary histories of input data such as
a set of species or molecular sequences. Evolutionary trees are useful for a
variety of reasons, for example, in homology modeling of (DNA and protein)
sequences for diagnostic or therapeutic design, as an aid for devising classi-
fications of organisms, in evaluating alternative hypotheses of adaption and
ancient geographical relationships (for example, see [27, 39] for discussions
on the last two applications). Quite a few methods are known to construct
evolutionary trees from the large volume of input data. We will discuss
some of these methods in this chapter. We will also discuss methods for
comparing and contrasting evolutionary trees constructed by various meth-
ods to find their similarities or dissimilarities, which is of vital importance
in computational biology.

Syntenic distance are a measure of distance between multi-chromosome
genomes (where each chromosome is viewed as a set of genes). Applica-
tions of computing distances between genomes can be traced back to the
well-known Human Genome Project, whose objective is to decode this
entire DNA sequence and to find the location and ordering of genetic mark-
ers along the length of the chromosome. These genetic markers can be used,
for example, to trace the inheritance of chromosomes in families and thereby
to find the location of disease genes. Genetic markers can be found by find-
ing DNA polymorphisms, i.e., locations where two DNA sequences “spell”
differently. A key step in finding DNA polymorphisms is the calculation of
the genetic distance, which is a measure of the correlation (or similarity)
between two genomes.



Multiple sequence alignment is an important tool for sequence analysis.
It can help extracting and finding biological important commonalities from
a set of sequences. Many versions have been proposed and a huge number of
papers have been written on effective and efficient methods for constructing
multiple sequence alignment. We will discuss some of the important ver-
sions such as SP-alignment, star alignment, tree alignment, generalized tree
alignment, and fized topology alignment with recombination. Recent results
on those versions are given.

We assume that the reader has the basic knowledge of algorithms and
computational complexity (such as NP, P and MAX-SNP). Consult, e.g., [29,
40, 60] otherwise.

The rest of this chapter is organized as follows. In Section 2, we discuss
construction and comparison methods for evolutionary trees. In Section 3,
we discuss briefly various distances for comparing sequences and explain in
details the syntenic distance measure. In Section 4, we discuss multiple
sequence alignment problems. We conclude in Section 5 with a few open
problems.

2 Construction and Comparison of Evolutionary
Trees

The evolution history of organisms is often conveniently represented as trees,
called phylogenetic trees or simply phylogenies. Such a tree has uniquely la-
beled leaves and unlabeled interior nodes, can be unrooted or rooted if the
evolutionary origin is known, and usually has internal nodes of degree 3. Fig-
ure 1 shows an example of a phylogeny. A phylogeny may also have weights
on its edges, where an edge weight (more popularly known as branch length
in genetics) could represent the evolutionary distance along the edge. Many
phylogeny reconstruction methods, including the distance and maximum
likelihood methods, actually produce weighted phylogenies. Figure 1 also
shows a weighted phylogeny (the weights are for illustrative purposes only).

2.1 Phylogenetic Construction Methods

Phylogenetic construction methods use the knowledge of evolution of molecules
to infer the evolutionary history of the species. The knowledge of evolution
is usually in the form of two kinds of data commonly used in phylogeny
inference — namely, character matrices (where each position (7, j) is base j
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Figure 1: Examples of unweighted and weighted phylogenies.

in sequence 7), and distance matrices (where each position (7, j) contains the
computed distance between sequence i and sequence j). Three major types
of phylogenetic construction methods are the parsimony and compatibility
method, the distance method and the maximum-likelihood method. Below we
discuss each of them very briefly. See the excellent survey in [21, 79] for
more details.

Parsimony methods construct phylogenetic trees for the given sequences
such that, in some sense, the total number of changes (i.e., base substitu-
tions) or some weighted sum of the changes is minimized. See [19, 24, 68]
for some of the papers in this direction.

Distance methods [10, 25, 67] try to fit a tree to a matrix of pairwise
distances between a set of n species. Entries in the distance matrices are
assumed to represent evolutionary distance between species represented by
the sequences in the tree, i.e., the total number of mutations in both lin-
eages since divergence from the common ancestor. If no tree fits the distance
matrix perfectly, then a measure of the discrepancy of the distances in the
distance matrix and those in the tree is taken, and the tree with the mini-
mum discrepancy is selected as the best tree. An example of the measure of
the discrepancy, which has been used in the literature [10, 25], is a weighted
least-square measure, i.e., of the form

> wij (Dij — dig)?
1<ij<n

where D;; are the given distances and d;; are the distances computed from
the tree.



Maximum-likelihood methods [19, 20, 8] relies on the statistical method
of choosing a tree that maximizes the likelihood, i.e., maximizes the prob-
ability that the observed data would have occurred. Although this method
is quite general and powerful; it is computationally intensive because of the
complexity of the likelihood function.

All the above methods have been investigated by simulation and the-
oretical analysis. None of the methods work well under all evolutionary
conditions, but each works well under particular situations. Hence, one
must choose the appropriate phylogeny construction method carefully for
best results [39].

2.2 Comparing Evolutionary Trees

As discussed in the previous section, over the past few decades, many ap-
proaches for reconstructing evolutionary trees have been developed, includ-
ing (not exhaustively) parsimony, compatibility, distance and maximum-
likelihood methods. As a result, in practice they often lead to different trees
on the same set of species [50]. It is thus of interest to compare evolutionary
trees produced by different methods, or by the same method on different
data. Several distance models for evolutionary trees have been proposed in
the literature. Among them, the best known is perhaps the nearest neighbor
interchange (nni) distance introduced independently in [66] and [59]. Other
distances include the subtree-transfer distance introduced in [36, 37] and
the the linear-cost subtree-transfer distance [15, 16]. Below, we discuss very
briefly a few of these distances.

2.3 Nearest Neighbor Interchange Distance

An nni operation swaps two subtrees that are separated by an internal edge
(u,v), as shown in Figure 2. The nni operation is said to operate on this
internal edge. The nni distance, Dy,,,;(17,1%), between two trees 17 and 15 is
defined as the minimum number of nni operations required to transform one
tree into the other. K. Culik II and D. Wood [14] (improved later by [53])
proved that nlogn 4+ O(n) nni moves are sufficient to transform a tree of n
leaves to any other tree with the same set of leaves. D. Sleator, R. Tarjan,
and W. Thurston [75] proved an ©(nlogn) lower bound for most pair of
trees. Although the distance has been studied extensively in the literature
[66, 59, 91, 14, 18, 42, 43, 45, 75, 53], the computational complexity of

computing it has puzzled the research community for nearly 25 years until
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Figure 2: The two possible nni operations on an internal edge (u,v): ex-
change B+ C or B < D.

recently when the authors in [15] showed this problem to be NP-hard (an
erroneous proof of the NP-hardness of the nni distance between unlabeled
trees was published in [45]). Since computing the nni distance is shown to
be NP-hard, the next obvious question is: can we get a good approrimation
of the distance? The authors in [53] show that the nni distance can be
approximated in polynomial time within a factor of logn + O(1).

2.4 Subtree-transfer Distances

An nni operation can also be viewed as moving a subtree past a neighboring
internal node. A more general operation is to transfer a subtree from one
place to another arbitrary place. Figure 3 shows such a subtree-transfer
operation. The subtree-transfer distance, Dg(17,7%), between two trees 17
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Figure 3: An example of a subtree-transfer operation on a tree.

and T5 is the minimum number of subtrees we need to move to transform
Ty into T3 [36, 37, 38, 15, 16].
It is sometimes appropriate in practice to discriminate among subtree-



transfer operations as they occur with different frequencies. In this case, we
can charge each subtree-transfer operation a cost equal to the distance (the
number of nodes passed) that the subtree has moved in the current tree.
The linear-cost subtree-transfer distance, Dj.q(17,1%), between two trees
11 and 7% is then the minimum total cost required to transform 77 into 7%
by subtree-transfer operations [15, 16]. Clearly, both subtree-transfer and
linear-cost subtree-transfer models can also be used as alternative measures
for comparing evolutionary trees generated by different tree reconstruction
methods. In fact, on unweighted phylogenies, the linear-cost subtree-transfer
distance is identical to the nni distance [16].

The authors in [38] show that computing the subtree-transfer distance
between two evolutionary trees is NP-hard and give an approximation algo-
rithm for this distance with performance ratio 3.

2.5 Rotation Distance

Rotation distance is a variant of the nni distance for rooted, ordered trees.
A rotation is an operation that changes one rooted binary tree into another
with the same size. Figure 4 shows the general rotation rule. An easy
approximation algorithm for computing distance with a performance ratio
of 2 is given in [74]. However, it is not known if computing this distance is
NP-hard or not.
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Figure 4: Left and right rotation operations on a rooted binary tree.

2.6 Distances on Weighted Phylogenies

Comparison of weighted evolutionary trees has recently been studied in [50].
The distance measure adopted is based on the difference in the partitions of
the leaves induced by the edges in both trees, and has the drawback of being
somewhat insensitive to the tree topologies. Both the linear-cost subtree-
transfer and nni models can be naturally extended to weighted trees. The



extension for nni is straightforward: an nni is simply charged a cost equal
to the weight of the edge it operates on. In the case of linear-cost subtree-
transfer, although the idea is immediate, i.e. a moving subtree should be
charged for the weighted distance it travels, the formal definition needs some
care and can be found in [16].

Since computing the nni distance on unweighted phylogenies is NP-hard,
it is obvious that computing this distance is NP-hard for weighted phylo-
genies also. The authors in [16] give an approximation algorithm for the
linear-cost subtree-transfer distance on weighted phylogenies with perfor-
mance ratio 2. In [15], the authors give an approximation algorithm for the
nni distance on weighted phylogenies with performance ratio of O(logn).
It is open whether the linear-cost subtree-transfer problem is NP-hard for
weighted phylogenies. However, it has been shown that the problem is NP-
hard for weighted trees with non-uniquely labeled leaves [16].

3 Computing Distances Between Genomes

The definition and study of appropriate measures of distance between pairs
of species is of great importance in computational biology. Such measures
of distance can be used, for example, in phylogeny construction and in tax-
onomic analysis.

As more and more molecular data becomes available methods for defining
distances between species have focused on such data. One of the most
popular distance measures is the edit distance between homologous DNA or
aminoacid sequences obtained from different species. Such measures focus
on point mutations and define the distance between two sequences as the
minimum number of these moves required to transform one sequence into
another. It has been recognized that the edit-distance may underestimate
the distance between two sequences because of the possibility that multiple
point mutations occurring at the same locus will be accounted for simply as
one mutation. The problem is that the probability of a point mutation is
not low enough to rule out this possibility.

Recently, there has been a spate of new definitions of distance that try
to treat rarer, macrolevel mutations as the basic moves. For example, if we
know the order of genes on a chromosome for two different species;, we can
define the reversal distance between the two species to be the number of
reversals of portions of the chromosome to transform the gene order in one
species to the gene order in the other species. The question of finding the



reversal distance was first explored in the computer science context by Kece-
cioglu and Sankoff and by Bafna and Pevzner and there has been significant
progress made on this question by Bafna, Hannenhalli, Kececioglu, Pevzner,
Ravi, Sankoff and others [5, 6, 33, 47, 48]. Other moves besides reversals
have been considered as well. Breaking off a portion of the chromosome and
inserting it elsewhere in the chromosome is referred to as a transposition and
one can similarly define the transposition distance[7]. Similarly allowing two
chromosomes (viewed as strings of genes) to exchange suffixes (or sometimes
a suffix with a prefix) is known as a translocation and this move can also be
used to define an appropriate measure of distance between two species for
which much of the genome has been mapped [46].

Ferretti et. al.[22] proposed a distance measure that is at an even higher
level of abstraction. Here even the order of genes on a particular chromosome
of a species is ignored/ presumed to be unknown. It is assumed that the
genome of a species is given as a collection of sets. Each set in the collection
corresponds to a set of genes that are on one chromosome and different sets
in the collection correspond to different chromosomes (see Figure 5). In this
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Figure 5: A Genome with 12 genes and 3 chromosomes

scenario one can define a move to be either an exchange of genes between
two chromosomes, the fission of one chromosome into two, or the fusion of
two chromosomes into one (see Figure 6). The syntenic distance between
two species has been defined by Ferretti et. al.[22] to be the number of such
moves required to transform the genome of one species to the genome of the
other.

Notice that any recombination of two chromosomes is permissible in
this model. By contrast, the set of legal translocations (in the translocation
distance model) is severely limited by the order of genes on the chromosomes
being translocated. Furthermore, the transformation of the first genome
into the second genome does not have to produce a specified order of genes
in the second genome. The underlying justification of this model is that
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Figure 6: Different mutation operations

the exchange of genes between chromosomes is a much rarer event than
the movement of genes within a chromosome and hence a distance function
should measure the minimum number of such exchanges needed.

In [17], the authors prove various results on the syntenic distance. For ex-
ample, they show that computing the syntenic distance exactly is NP-hard,
there is a simple polynomial time approximation algorithm for the synteny
problem with performance ratio 2 and computing the syntenic distance is
fixed parameter tractable.

The median problem arises in connection with the phylogenetic inference
problem [22] and defined as follows. Given three genomes G1, G2 and Gz, we
are required to construct a genome G such that the median distance ag =
>3 . D(G,G;) is minimized (where D is the syntenic distance). Without
any additional constraints, this problem is trivial, since we can take G to be
empty (and then ag = 0). In the context of syntenic distance, any one of
the following three constraints seem relevant: (cl) G must contain all genes
present in all the three given genomes, (¢2) G must contain all genes present
in at least two of the three given genomes, (c3) ¢ must contain all genes
present in at least one of the three given genomes. Then, computing the
median genome is NP-hard with any one of the three constraints (c1), (c2)
or (¢3). Moreover, one can approximate the median problem in polynomial
time (under any one of the constraints (cl), (c2) or (c3)) with a constant
performance ratio. See [17] for details.
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4 Multiple Sequence Alignment Problems

Multiple sequence alignment is the most critical cutting-edge tool for se-
quence analysis. It can help extracting, finding and representing biologi-
cally important commonalities from a set of sequences. These commonali-
ties could represent some highly conserved subregions, common functions,
or common structures. Multiple sequence alignment is also very useful in
inferring the evolutionary history of a family of sequences [11, 31, 70, 90].

A multiple alignment A of k > 2 sequences is obtained as follows:
spaces are inserted into each sequence so that the resulting sequences s/
(1 =1,2,...k) have the same length [/, and the sequences are arranged in k
rows of [ columns each.

The value of the multiple alignment A is defined as

l

PNICIORAC RO}

=1

where s}(4) denotes the i-th letter in the resulting sequence s}, and (s (%),
s5(1),...s},(4)) denotes the score of the i-th column. The multiple sequence
alignment problem is to construct a multiple alignment minimizing its value.

Many versions have been proposed based on different objective functions.
We will discuss some of the important ones.

4.1 SP-alignment and Steiner consensus string

For SP-score (Sum-of-the-Pairs), the score of each column is defined as:

p(s1 (), s5(0), . s, (D)) = > u(s5(0), s1(2),
1<i<t<k

where p(s}(2), (%)) is the score of the two opposing letters (i) and s;(i).
The SP-score is sensible and has previously been studied extensively.

SP-alignment problem is to find an alignment with the smallest SP-score.
It is first studied in [9] and subsequently used in [1, 3, 32, 64]. SP-alignment
problem can be solved exactly by using dynamic programming. However,
if there are k sequences and the length of sequences is n, it takes O(n*)
time. Thus, it works for only small numbers of sequences. Some techniques
to reduce the time and space have been developed in [1, 30, 55, 72]. With
these techniques, it is possible to optimally align up to 6 sequences of 200
characters in practice.
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In fact, SP-alignment problem is NP-hard [82]. Thus, it is impossible
to have a polynomial time algorithm for this problem. In the proof of NP-
hardness, it is assumed that some pairs of identical characters have non-zero
score. An interesting open problem is what if each pair of two identical
characters is scored 0.

The first approximation algorithm was given by Gusfield [32]. He in-
troduced the center star algorithm. Center star algorithm is very simple
and efficient. It selects a sequence (called center string ) s in the set of k
given sequences S such that 3% | dist(s., s;) is minimized. It then optimally
aligns the sequences in S — {s.} to s. and gets k — 1 pairwise alignments.
These k — 1 pairwise alignments lead to a multiple alignment for the & se-
quences in S. If the score scheme for pairs of characters satisfies the triangle
inequality, the cost of the multiple alignment produced by the center star
algorithm is at most twice of the optimum [32, 31]. Some improved results
were reported in [4, 64].

Another score called consensus score is defined as follows:

k
p($100),5400) - 54(0)) = i > (), ),
7j=1

where X is the set of characters that form the sequences. Here we reconstruct
a character for each column and thus obtain a string. This string is called a
Steiner consensus string and can be used as a representative for the set of
given sequences. The problem is called the Steiner consensus string problem.

The Steiner consensus string problem was proved to be NP-complete [80]
and MAX SNP-hard [82]. In the proof of MAX SNP-hardness, it is assumed
that there is a “wild card”, and thus the triangle inequality does not hold.
Combining with the results in [2], it shows that there is no polynomial time
approximation scheme for this problem. Interestingly, the same center star
algorithm also has performance ratio 2 for this problem [31].

Diagonal Band Alignment

The restriction of aligning sequences within a constant diagonal band is
often used in practical situations. Methods under this assumption have been
extensively studied too. Sankoff and Kruskal discussed the problem under
the rubric of “cutting corners” in [71]. Alignment within a band is used in
the final stage of the well-known FASTA program for rapid searching of pro-
tein and DNA sequence databases [61, 62]. Pearson showed that alignment
within a band gives very good results for many protein superfamilies [63].

12



Other references on the subject can be found in [1, 12, 23, 28, 81] Spouge
gives a survey on this topic in [76].

Let & = {s1,82, ...,sr} be a set of k sequences, each of length m (for
simplicity), and M an alignment of the k& sequences. Let the length of the
alignment M be M. M is called a c-diagonal alignment if for any p < m
and 1 < ¢ < j < k, if the p-th letter of s; is in column ¢ of M and the p-th
letter of s; is in column 7 of M, then |¢—r| < ¢. In other words, the inserted
spaces are “evenly” distributed among all sequences and the ¢-th position of
a sequence is about at most ¢ positions away from the i-th position of any
other sequence.

In [54], Li, Ma and Wang presented polynomial time approximation

schemes of c-diagonal alignment for both SP-score and consensus score.

4.2 Tree alignment

Tree score: In order to define the score pu(s](i),s5(¢),...s,(¢)) of the -th

column, an evolutionary (or phylogenetic) tree T' = (V, E) with k leaves is

assumed, each leaf j corresponding to a sequence s;. (Here V and E denote

the sets of nodes and edges in 7', respectively.) Let k+ 1, k+2, ..., k+m

be the internal nodes of T'. For each internal node j, reconstruct a letter
!

(possibly a space) s}(i) such that 32, ep #4(5,(1); 4(7)) is minimized. The
score (s’ (i), s5(4),. .. s,(i)) of the 4-th column is thus defined as

p(s1(0), 85(0), - s (D) = Y p(sp(6), s(9)).

(p.g)eE

This measure has been discussed in [1, 4, 68, 69, 70]. Multiple sequence
alignment with tree score is often referred to as tree alignment in the liter-
ature.

Note that, a tree alignment induces a set of reconstructed sequences, each
corresponding to an internal node. Thus, it is convenient to reformulate
tree alignment as follows: Given a set X of k sequences and an evolutionary
tree 1" with k leaves, where each leaf is associated with a given sequence,
reconstruct a sequence for each internal node to minimize the cost of T
Here, the cost of T' is the sum of the edit distance of each pair of (given
or reconstructed) sequences associated with an edge. Observe that, once a
sequence for each internal node has been reconstructed, a multiple alignment
can be obtained by optimally aligning the pair of sequences associated with
each edge of the tree. Moreover, the tree score of this induced multiple

13



alignment equals the cost of 7I". In this sense, the two formulations of tree
alignment are equivalent.

Sankoff gave an exact algorithm for tree alignment that runs in O(n*),
where 7 is the length of the sequences and & is the number of given sequences.
Tree alignment was proved to be NP-hard [82].

Therefore it is unlikely to have a polynomial time algorithm for tree
alignment. Some heuristic algorithms have also been considered in the past.
Altschul and Lipman tried to cut down the computation volume required by
dynamic programming [1]. Sankoff, Cedergren and Lapalme gave an itera-
tive improvement method to speed up the computation [69, 70]. Waterman
and Perlwitz devised a heuristic method when the sequences are related by
a binary tree [88]. Hein proposed a heuristic method based on the concept
of a sequence graph [34, 35]. Ravi and Kececioglu designed an approxima-
tion algorithm with performance ratio 2—2’% when the given tree is a regular
deg-ary tree (i.e., each internal node has exactly deg children) [65].

The first approximation algorithm with a guaranteed performance ratio
was devised by Wang, Jiang, and Lawler [83]. A ratio-2 algorithm was
given. The algorithm was then extended to a polynomial time approximation
scheme (PTAS), i.e.; the performance ratio could arbitrarily approach 1.
The PTAS requires computing exact solutions for depth-¢ subtrees. For a
fixed ¢, the performance ratio was proved to be 1 + %, and the running time
was proved to be O((k/degt)d€9t71+2M(2, t —1,n)), where deg is the degree
of the given tree, n is the length of the sequences, and M (deg,t—1,n) is the
time needed to optimally align a tree with deg’~! + 1 leaves, which is upper-
bounded by O(nd€9t71+1). Based on the analysis, to obtain a performance
ratio less than 2, exact solutions for depth-4 subtrees must be computed, and
thus optimally aligning 9 sequences at a time is required. This is impractical
even for sequences of length 100.

An improved version was given in [84]. They proposed a new PTAS for
the case where the given tree is a regular deg-ary tree. The algorithm is much
faster than the one in [83]. The algorithm also must do local optimizations
for depth-t subtrees. For a fixed ¢, the performance ratio of the new PTAS is
1+ % — % and the running time is O(min{2*, k}kdM (deg,t —1,n)), where
d is the depth of the tree. Presently, there are efficient programs [69] to
do local optimizations for three sequences (¢ = 2). In fact, we can expect
to obtain optimal solutions for 5 sequences (¢ = 3) of length 200 in practice
since there is such a program [30, 55] for SP-score and similar techniques can
be used to attack tree alignment problem. Therefore, solutions with costs

14



at most 1.583 times the optimum can be obtained in practice for strings of
length 200.

For tree alignment, the given tree is typically a binary tree. Recently,
Wang , Jiang and Gusfield design a PTAS for binary trees. The new ap-
proximation scheme adopts a more clever partitioning strategy and has a
better time efficiency for the same performance ratio. For any fixed r, where
r=2"141—-gand 0 < ¢ <221, the new PTAS runs in time O(kdn")

and achieves an approximation ratio of 1+ %' Here the parameter r
represents the “size” of local optimization. In particular, when r = 2:=1 4+ 1,
its approximation ratio is simply 1 + H_Ll

4.3 Generalized Tree alignment

In practice, we often face a more difficult problem called generalized tree
alignment. Suppose we are given a set of sequences. The problem is to
construct an evolutionary tree as well as a set of sequences (called recon-
structed sequences) such that each leaf of the evolutionary tree is assigned
a given sequence, each internal node of the tree is assigned a reconstructed
sequence, and the cost of the tree is minimized over all possible evolutionary
trees and reconstructed sequences.

Intuitively, the problem is harder than tree alignment since the tree is not
given and we have to compute the tree structure as well as the sequences
assigned to internal nodes. In fact, the problem was proved to be MAX
SNP-hard [82] and a simplified proof was given in [86]. It implies that it
is impossible to have a PTAS for generalized tree alignment unless P=NP
[2]. This confirms the observation from approximation point of view.

Generalized tree alignment problem is in fact the Steiner tree problem in
sequence spaces. One might use the approximation algorithms with guaran-
teed performance ratios [92] for graph Steiner trees. However, this may lead
to a tree structure where a given sequence is an internal node. Sometimes,
it is unacceptable. Schwikowski and Vingron give a method that combines
clustering algorithms and Hein’s sequence graph method. The produced
solutions contain biologically reasonable trees and keep the guaranteed per-
formance ratio. [73].

4.4 Fixed topology history/alignment with recombination

Multigene families, viruses, and alleles from within populations experience
recombinations [36, 37, 49, 78]. When recombination happens, the ancestral
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material on the present sequence sp is located on two sequences so and s3.
sz and s3 can be cut at k locations (break points) into k& + 1 pieces, where
82 = 82,1822...82,41 and S3 = 8$31832...83441. S1 can be represented
as $2,183,282.3...524834+1 ..., where subsequences s3; and s3;,1 differ from
the corresponding sz; and s3;11 by insertion, deletion, and substitution of
letters. k, the number of times s; switches between ss and s3, is called the
number of crossovers. The cost of the recombination is

dist(s11,s1,1) + dist(s22,832), ... dist(s14,51:) + dist(s241,525+1)
+...+kx

where dist(s2;+1,52;5+1) is the edit distance between the two sequences s ;41
and s2341, k is the number of crossovers and x is the crossover penalty.
The recombination distance to produce s; from so and s3 is the cost of a
recombination that has the smallest cost among all possible recombinations.
We use r_dist(s, s2,s3) to denote the recombination distance. For more
details, see [49, 89].

When recombination occurs, the given topology is no longer a binary
tree. Instead, some nodes, called recombination nodes, in the given topology
may have two parents[36, 37]. In a more general case as described in [49],
the topology may have more than one root. The set of roots is called a pro-
toset. The edges incident to recombination nodes are called recombination
edges. See Figure 7 (b). A node/edge is normal if it is not a recombination
node/edge.

The cost of a pair of recombination edges is the recombination distance
to produce the sequence on the recombination node from the two sequences
on its parents. The cost of other normal edges is the edit distance between
two sequences. A topology is fully labeled , if every node in the topology is
labeled. For a fully labeled topology, the cost of the topology is the total cost
of edges in the topology. Each node in the topology with degree greater than
1 is an internal node. Each leaf/terminal (degree 1 node) in the topology is
labeled with a given sequence. The goal here is to construct a sequence for
each internal node such that the cost of the topology is minimized. We call
this problem fized topology history with recombination (FTHB).

Obviously, this problem is a generalization of tree alignment. The differ-
ence is that the given topology is no longer a binary tree. Instead, there are
some recombination nodes which have two parents instead of one. Moreover,
there may be more than one root in the topology.
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recombination

Crossover

(a) (b)

Figure 7: (a) Recombination operation. (b) The topology. The dark edges
are recombination edges. The circled node is a recombination node.

A different version called fived topology alignment with recombination
(FTAR) is also dicsussed [56]. ;From approximation point of view, FTHR
and FTAR are much harder than tree alignment. It is shown that FTHR
and FTAR cannot be approximated within any constant performance ratio
unless P = NP [56].

A more restricted case, where each internal node has at most one recom-
bination child and there are at most 6 parents of recombination nodes in any
path from the root to a leaf in the given topology, is also considered. It is
shown that the restricted version for both FTHR and FTAR is MAX-SNP-
hard. That is, there is no polynomial time approximation scheme unless
P=NP [56].

The above hardness results are disappointing. However, recombination
occur infrequently. So, it is interesting to study some restricted cases. A
merge node of recombination node v is the lowest common ancestor of v’s
two parents. The two different paths from a recombination node to its merge
node are called merge paths. We then study the case, where

(C1) each internal node has at most one recombination child and

(C2) any two merge paths for different recombination nodes do not share
any common node.

Using a method similar to the lifting method for tree alignment, one
can get a ratio-3 approximation algorithm for both FTHR and HTAR when
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the given topology satisfies (C1) and (C2). The ratio-3 algorithm can be
extended to a PTAS for FTAR with bounded number of crossovers. (See
[56].)

Remarks: Hein might be the first to study the method to reconstruct the
history of sequences subject to recombination [36, 37]. Hein observed that
the evolution of a sequence with k& recombinations could be described by &
recombination points and k + 1 trees describing the evolution of the k& + 1
intervals, where two neighboring trees were either identical or differed by
one subtree transfer operation [36, 37, 38, 16, 15]. A heuristic method was
proposed to find the most parsimonious history of the sequences in terms of
mutation and recombination operations.

Another strike was given by Kececioglu and Gusfield [49]. They intro-
duced two new problems, recombination distance, and bottleneck recombina-
tion history. They tried to include higher-order evolutionary events such as
block insertions and deletions [28], and tandem repeats [44, 51].

3

5 Conclusion

In this chapter we have discussed some important topics in the field of
computational biology such as the phylogenetic construction and compari-
son methods, syntenic distance between genomes and the multiple sequence
alignment problems. Given the vast majority of topics in computational
biology, these discussed topics constitute only a part of them. Some of the
important topics which were not covered in this chapter are:

e protein structure prediction,

e DNA physical mapping problems,

e metabolic modeling,

e string / database search problems etc.

We hope that this survey article will inspire the readers for further study
and research of these and other related topics.

Papers on compuational molecular biology have started to appear in
many different books; journals and conferences. Below we list some sources
which could serve as excellent starting points for various problems that arise
in computational biology:

Books: References [13, 32, 41, 57, 71, 77, 90].
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Journals: Computer Applications in the Biosciences (recently renamed as
Bioinformatics), Journal of Computational Biology, Bulletin of Math-
ematical Biology, Journal of Theoretical Biology etc.

Conferences: Annual Symposium on Combinatorial Pattern Matching (CPM),
Pacific Symposium on Biocomputing (PSB), Annual International Con-
ference on Computational Molecular Biology (RECOMB), Annual Con-
ference on Intelligent Systems in Molecular Biology (ISMB) etc.

Web pages: http://www.cs.washington.edu/education/courses/590bi,
http://www.cse.ucsc.edu/research/compbio,
http://www.cs.jhu.edu/ salzberg/cs439.html etc.
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