Computational Complexities of Honey-pot Searching with Local Sensory Information
 Bhaskar DasGupta ${ }^{\ddagger}$

Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607
Email: dasgupta@cs.uic.edu

João P. Hespanha ${ }^{\dagger}$

Department of Electrical \& Computer Engineering
University of California
Santa Barbara, CA 93106-9560
Email: hespanha@ece.ucsb.edu

Eduardo Sontag ${ }^{\mathbb{P}}$

Department of Mathematics
Rutgers University
New Brunswick, NJ 08903
Email: sontag@ilbert.rutgers.edu.
\ddagger Supported by NSF Grants CCR-0296041, CCR-0206795, CCR-0208749 and IIS-0346973.
\dagger Supported by NSF grant ECS-0242798.
\mathbb{P} Supported by NSF grant CCR-0206789.

Problem addressed:

- a "honey-pot" is hidden in a bounded region $\mathcal{R}\left(\right.$ typically,$\subset \mathbb{R}^{2}$ or $\left.\subset \mathbb{R}^{3}\right)$
- the exact position \mathbf{x}^{*} of the honey-pot is unknown but we do know the probability density f of \mathbf{x}^{*}.
- goal: find the honey-pot using a point robot that moves in \mathcal{R} and is able to see only a small region around it.
- If the robot get sufficiently close, the honey-pot is detected and the search is over.
- Given a finite amount of time T, which translates into a finite-length path for the robot, find a path that maximizes the probability of finding the honey-pot.

A formalization/formulation of the problem

Denote by $\mathcal{S}[x] \subset \mathcal{R}$ the set of points in \mathcal{R} that the robot can see from some position $x \in \mathcal{R}$
Problem 1 (Continuous Honey-pot Search). Find a continuously differentiable path $\rho:[0, T] \rightarrow \mathcal{R}$, with $\|\dot{\rho}(t)\| \leq 1$ for all $t \in[0, T]$ that maximizes

$$
\begin{aligned}
& P_{c}[\rho]=\int_{x \in \mathcal{S}_{\text {path }}[\rho]} f(x) d x \text { where } \\
& \quad \mathcal{S}_{\text {path }}[\rho]=\{x \in \mathcal{R}: x \in \mathcal{S}[\rho(t)] \text { for some } t \in[0, T]\}
\end{aligned}
$$

denotes the set of points that the robot can scan along the path ρ.

Implicit assumptions:

- it is possible to "insert" the robot at an optimal starting point appropriate for problems in which a fast movement (not in "search mode") to a desired location is possible, such as in land rescue missions where a team is deposited by air at a starting point.
- the region in which the search takes place is known via some a priori "map-learning" phase

Discrete Version

- Break \mathcal{R} into a finite number of tiles $\left\{\mathcal{R}_{k} \subset \mathcal{R}: k \in \mathcal{K}\right\}$, where \mathcal{K} is a finite index set.
- typically, the tiles are rectangular or hexagonal forming a regular lattice.
- size of the tiles is chosen so that when the robot is located at the center of one tile it can scan the whole tile in one unit of time
As a result, restrict the search to paths that go from tile to tile, remaining on each tile for one unit of time.
- $p_{k}=\int_{\mathcal{R}_{k}} f(x) d x$ denotes the probability that the honey-pot is in the $k^{\text {th }}$ tile
- the probability that the honey-pot will be found as the robot follows a path ρ, defined by a sequence of tiles $\sigma=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}$, is

$$
\mathbf{P}_{\mathbf{d}}[\sigma]=\sum_{\mathbf{k} \in \boldsymbol{\Sigma}} \mathbf{p}_{\mathbf{k}}
$$

where Σ is the set of distinct elements in the sequence σ.

- time needed to transverse the path is

$$
\mathbf{T}[\sigma]:=\sum_{\mathrm{i}=1}^{\mathrm{N}-\mathbf{1}} \mathbf{t}_{\mathbf{k}_{\mathbf{i}}, \mathrm{k}_{\mathbf{i}+\mathbf{1}}}
$$

where $t_{k_{i}, k_{i+1}}$ denotes the time it takes for the robot to move from tile k_{i} to tile k_{i+1}.

Problem 2 (Discrete Honey-pot Search).

Find a sequence of tiles $\sigma:=\left\{k_{1}, k_{2}, \ldots, k_{N}\right\}$ that maximizes

$$
\mathbf{P}_{\mathbf{d}}[\sigma]:=\sum_{\mathbf{k} \in \sigma} \mathbf{p}_{\mathbf{k}}
$$

subject to the constraint that

$$
\mathbf{T}[\sigma]:=\sum_{\mathbf{i}=1}^{\mathbf{N}-\mathbf{1}} \mathbf{t}_{\mathbf{k}_{\mathbf{i}}, \mathbf{k}_{\mathbf{i}+1}} \leq \mathbf{T}
$$

Graph-theoretic Formulation of the Discrete Version

Problem 3 (Reward Budget (RB)).

Instance: $\langle G, c, r, L\rangle$, where

- L is an integer
- $G=(V, E)$ is a graph with
- edge cost function $c: E \rightarrow[0, \infty)$ and
- vertex reward function $r: V \rightarrow[0, \infty)$

Valid Solutions: A (possibly self-intersecting)
path $p=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ in G with $v_{i} \in V$ such that $C[p]:=\sum_{i=1}^{k-1} c\left(v_{i}, v_{i+1}\right) \leq L$

Objective: maximize the total reward $R[p]=\sum_{v \in P} r(v)$ where P denotes the set of vertices in p

Some Definitions/Notations from

Approximation Algorithms Community
Maximization Problem: maximize an
objetive function
OPT: maximum (optimum) value of the objective function
ε-approximate solution or ε-approximation a solution with an objective value of at least $\frac{1}{\varepsilon}$ OPT

Unit Grid Graph (definition)

1	1			
1				
1	1	1	1	1
1	1	1	1	
1	1	1	1	1
1	1	1	1	
1	1	1	1	1
1	1	1	1	
1	1	1	1	1
1	1	1	1	1
	1			

Summary of our hardness results

Lemma 1. The $R B$ problem is NP-hard even when

- $\mathbf{r}(\mathbf{v})=\mathbf{1}$ for every vertex $v, \mathbf{c}(\mathbf{e})=\mathbf{1}$ for every edge e and the graph G is planar bipartite with the maximum degree of any vertex being 3, or
- G is a unit grid graph and $r(v)$ is 0 or 1 for every vertex v

Proof is straightforward via a reduction from the Hamiltonian path problem and using the following references:

+ A. Itai, C. H. Papadimitriou and J. L. Szwarcfiter.
Hamiltonian Paths in Grid Graphs, SIAM Journal of Computing, 11 (4), 676-686, November 1982.
+ M. R. Garey, D. S. Johnson and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete, SIAM Journal of Computing, 5, 704-714, 1976.

Summary of our approximation results

Theorem 1. (a) For any constant $\varepsilon>0$, an r-approximate solution to the $R B$ problem can be found in polynomial time where

$$
r= \begin{cases}2+\varepsilon & \text { if } c(e)=1 \text { for every edge } e \\ 5+\varepsilon & \text { otherwise }\end{cases}
$$

(b) If $r(v)=1$ for every vertex v and $c(e)=1$ for every edge e, then a 2-approximate solution to the $R B$ problem can be computed in $O(|V|+|E|)$ time.

Proof ideas for Theorem 1(b)

Via depth-first-search (DFS) and Eulerian tours with doubled edges:

- do a DFS on G starting at some vertex s computing a DFS tree
- replace every edge in the DFS tree by two edges
- compute an Eulerian cycle
- output the path consisting of the first L edges starting at s in this Eulerian cycle

Proof ideas for Theorem 1(a)

General outline:

- consider a "dual" version of the RB problem (the RQ problem)
- show that a good approximate solution to the RQ problem translates to a corresponding good approximate solution of the RB problem via a binary search similar to that by Johnson et al., path decompositions and Eulerian tours via doubling edges.
D. S. Johnson, M. Minkoff and S. Phillips.

The prize collecting Steiner tree problem:
theory and practice, 11th ACM-SIAM
Symposium on Discrete Algorithms, 760-769, 2000.

Proof ideas for Theorem 1(a) (continued)

 General outline (continued):- solve the RQ problem by using the $(2+\varepsilon)$-approximation results on the k-MST problem by Arora and Karakostas: S. Arora and G. Karakostas. $A 2+\varepsilon$ approximation for the k-MST problem, $11^{\text {th }}$ ACM-SIAM Symposium on Discrete Algorithms, 754-759, 2000.
that builds upon the 3 -approximation results on the same problem by Garg: N. Garg. A 3-approximation for the minimum tree spanning k vertices, $37^{\text {th }}$ Annual Symposium on Foundations of Computer Science, 302-309, 1996.

Proof ideas for Theorem 1(a) (continued)

Problem 4 (Reward Quota (RQ)).

(dual of Reward Budget (RB))
Instance: $\langle G, s, c, r, R\rangle$, where

- $G=(V, E)$ is a graph
- $c: E \rightarrow[0, \infty)$ is an edge cost function,
- $r: V \rightarrow[0, \infty)$ is a vertex reward function
- R is a positive integer

Valid Solution: A (possibly self-intersecting)
path $p=\left(v_{1}=s, v_{2}, \ldots, v_{k}\right)$ such that $\sum_{v \in P} r(v) \geq R$ where P denotes the set of vertices in the path p.

Objective: minimize the total cost $\sum_{i=1}^{k-1} c\left(v_{i}, v_{i+1}\right)$.

Proof ideas for Theorem 1(a) (continued)

Thank you!!

