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Problem addressed:

• a “honey-pot” is hidden in a bounded region

R (typically, ⊂ R
2 or ⊂ R

3)

• the exact position x∗ of the honey-pot is

unknown but we do know the probability

density f of x∗.

• goal: find the honey-pot using a point robot

that moves in R and is able to see only a

small region around it.

• If the robot get sufficiently close, the

honey-pot is detected and the search is over.

• Given a finite amount of time T , which

translates into a finite-length path for the

robot, find a path that maximizes the

probability of finding the honey-pot.
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A formalization/formulation of the problem

Denote by S[x] ⊂ R the set of points in R that the robot

can see from some position x ∈ R

Problem 1 (Continuous Honey-pot Search). Find a

continuously differentiable path ρ : [0, T ] → R, with

‖ρ̇(t)‖ ≤ 1 for all t ∈ [0, T ] that maximizes

Pc[ρ] =

∫

x∈Spath[ρ]
f(x)dx where

Spath[ρ] = {x ∈ R : x ∈ S[ρ(t)] for some t ∈ [0, T ]}

denotes the set of points that the robot can scan along the

path ρ.

Implicit assumptions:

• it is possible to “insert” the robot at an optimal

starting point

appropriate for problems in which a fast

movement (not in “search mode”) to a desired

location is possible, such as in land rescue

missions where a team is deposited by air at a

starting point.

• the region in which the search takes place is known

via some a priori “map-learning” phase
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Discrete Version

• Break R into a finite number of tiles {Rk ⊂ R : k ∈ K},

where K is a finite index set.

– typically, the tiles are rectangular or hexagonal

forming a regular lattice.

– size of the tiles is chosen so that when the robot is

located at the center of one tile it can scan the whole

tile in one unit of time

As a result, restrict the search to paths that go from

tile to tile, remaining on each tile for one unit of

time.

• pk =
∫

Rk
f(x)dx denotes the probability that the

honey-pot is in the kth tile

• the probability that the honey-pot will be found as the

robot follows a path ρ, defined by a sequence of tiles

σ = {k1, k2, . . . , kN}, is

Pd[σ] =
∑

k∈Σ

pk

where Σ is the set of distinct elements in the sequence σ.

• time needed to transverse the path is

T[σ] :=

N−1∑

i=1

tki,ki+1

where tki,ki+1
denotes the time it takes for the robot to

move from tile ki to tile ki+1.
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Problem 2 (Discrete Honey-pot Search).

Find a sequence of tiles σ := {k1, k2, . . . , kN} that

maximizes

Pd[σ] :=
∑

k∈σ

pk

subject to the constraint that

T[σ] :=
N−1∑

i=1

tki,ki+1
≤ T
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Graph-theoretic Formulation of the

Discrete Version

Problem 3 (Reward Budget (RB)).

Instance: 〈G, c, r, L〉, where

• L is an integer

• G = (V, E) is a graph with

– edge cost function c : E → [0,∞) and

– vertex reward function r : V → [0,∞)

Valid Solutions: A (possibly self-intersecting)

path p = (v1, v2, . . . , vk) in G with vi ∈ V

such that C[p] :=
∑k−1

i=1 c(vi, vi+1) ≤ L

Objective: maximize the total reward

R[p] =
∑

v∈P r(v) where P denotes the set of

vertices in p
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Some Definitions/Notations from

Approximation Algorithms Community

Maximization Problem: maximize an

objetive function

OPT: maximum (optimum) value of the

objective function

ε-approximate solution or ε-approximation

a solution with an objective value of at least
1
ε
OPT

Unit Grid Graph (definition)
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Summary of our hardness results

Lemma 1. The RB problem is NP-hard even

when

• r(v) = 1 for every vertex v, c(e) = 1 for

every edge e and the graph G is planar

bipartite with the maximum degree of any

vertex being 3, or

• G is a unit grid graph and r(v) is 0 or 1 for

every vertex v

Proof is straightforward via a reduction from the

Hamiltonian path problem and using the

following references:

+ A. Itai, C. H. Papadimitriou and J. L. Szwarcfiter.

Hamiltonian Paths in Grid Graphs, SIAM Journal of

Computing, 11 (4), 676-686, November 1982.

+ M. R. Garey, D. S. Johnson and R. E. Tarjan. The

planar Hamiltonian circuit problem is NP-complete,

SIAM Journal of Computing, 5, 704-714, 1976.
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Summary of our approximation results

Theorem 1. (a) For any constant ε > 0, an

r-approximate solution to the RB problem can be

found in polynomial time where

r =







2 + ε if c(e) = 1 for every edge e

5 + ε otherwise

(b) If r(v) = 1 for every vertex v and c(e) = 1 for

every edge e, then a 2-approximate solution to the

RB problem can be computed in O(|V |+ |E|) time.
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Proof ideas for Theorem 1(b)

Via depth-first-search (DFS) and Eulerian tours

with doubled edges:

• do a DFS on G starting at some vertex s

computing a DFS tree

• replace every edge in the DFS tree by two

edges

• compute an Eulerian cycle

• output the path consisting of the first L edges

starting at s in this Eulerian cycle
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Proof ideas for Theorem 1(a)

General outline:

• consider a “dual” version of the RB problem

(the RQ problem)

• show that a good approximate solution to the

RQ problem translates to a corresponding

good approximate solution of the RB problem

via a binary search similar to that by

Johnson et al., path decompositions and

Eulerian tours via doubling edges.

D. S. Johnson, M. Minkoff and S. Phillips.

The prize collecting Steiner tree problem:

theory and practice, 11th ACM-SIAM

Symposium on Discrete Algorithms, 760-769,

2000.
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Proof ideas for Theorem 1(a) (continued)

General outline (continued):

• solve the RQ problem by using the

(2 + ε)-approximation results on the k-MST

problem by Arora and Karakostas:

S. Arora and G. Karakostas. A 2 + ε

approximation for the k-MST problem, 11th

ACM-SIAM Symposium on Discrete

Algorithms, 754-759, 2000.

that builds upon the 3-approximation results

on the same problem by Garg:

N. Garg. A 3-approximation for the minimum

tree spanning k vertices, 37th Annual

Symposium on Foundations of Computer

Science, 302-309, 1996.
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Proof ideas for Theorem 1(a) (continued)

Problem 4 (Reward Quota (RQ)).

(dual of Reward Budget (RB))

Instance: 〈G, s, c, r, R〉, where

• G = (V, E) is a graph

• c : E → [0,∞) is an edge cost function,

• r : V → [0,∞) is a vertex reward function

• R is a positive integer

Valid Solution: A (possibly self-intersecting)

path p = (v1 = s, v2, . . . , vk) such that
∑

v∈P r(v) ≥ R where P denotes the set of

vertices in the path p.

Objective: minimize the total cost
∑k−1

i=1 c(vi, vi+1).
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Proof ideas for Theorem 1(a) (continued)

(2 + µ)

approximation

of RQ

solution of RB

of total reward

≥ 1
1+ρ

OPT
(

L
2+µ

)

OPT
(

L
2+µ

)

≥ 1
5
OPT(L)

⇒

1
1+ρ

OPT
(

L
2+µ

)

≥ 1
5+5ρ

OPT(L)

‖
ε

general case

OPT
(

L
2+µ

)

≥ 1
2+µ

OPT(L)

⇒

1
1+ρ

OPT
(

L
2+µ

)

≥ 1
1+2ρ + µ + ρµ

︸ ︷︷ ︸

OPT(L)

‖
ε

c(e) = 1 for all e ∈ E
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Thank you!!
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