Simple approximation algorithm for nonoverlapping local alignments

Piotr Berman[¶] Department of Computer Science Pennsylvania State University University Park, PA 16802 Email: berman@cse.psu.edu

Bhaskar DasGupta[‡] Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 Email:dasgupta@cs.uic.edu

S. Muthukrishnan
AT&T Labs – Research
180 Park Avenue
Florham Park, NJ 07932
Email: muthu@research.att.com

¶ Supported by NSF grant CCR-9700053, NLM grant LM05110 and DFG grant Bo 56/157-1.

‡ Supported by NSF Grant CCR-9800086.

Overview of this presentation

Nonoverlapping local alignments via rectangles

Previous work

Our results

Future research topics

The Problem

Given a set of weighted axis-parellel rectangles such that projections of **no two** rectangles enclose each other on the the x or y axes

A pair of rectangles is independent if their projections on both axes are disjoint

Goal: Find a maximum-weight independent subset of rectangles

Biological motivation

Selection of fragments of high local similarity between two strings (between d strings for this problem in d dimensions)

Useful for studies on distances between sequences based on genome rearrangements

Biological motivation

Finding regions of local similarities in two sequences

An approximation algorithms for a maximization problem has a performance ratio (or approximation ratio) of r if

value of objective function $\geq \frac{1}{r}$ (maximum value of objective function)

Previous results

Bafna, Narayanan and Ravi (WADS'95)

- NP-complete
- Approximation algorithm with performance ratio 3.25
 - Converts to a problem of finding maximum-weight independent set in a 5-clawfree graph
 - Gives approximation algorithm for d+1-clawfree graphs with performance ratio $d-1+\frac{1}{d}$

Halldorsson (SODA'95)

- Approximation algorithm with performance ratio of about 2.5 when all weights are 1
 - Gives approximation algorithm for d+1-clawfree graphs with performance ratio of about $\frac{d+1}{2}$ when all weights are 1

Previous results (continued)

Berman (SWAT'00)

• approximation algorithm with performance ratio $2.5 + \varepsilon$ taking at least $\Omega(n^4)$ time

finds a $\frac{d+1}{2}$ - approximation of a (d+1)-clawfree graph

Our results (n is the number of rectangles)

- Approximation algorithm with performance ratio 3 runs in O(n log n) time
- In d dimension, the performance ratio is 2^d-1 runs in O(n d log n) time

We use the two-phase technique of Berman and DasGupta (STOC'00) Idea behind our algorithm

(a) Project each rectangle R_{j} as interval I_{j} on the x axis

Two intervals I_j and I_k conflict if their corresponding rectangles R_j and R_k are not independent

 I_i and I_k conflict

(b) Apply Two-phase algorithm, appropriately modified Start with an initially empty stack S

First Phase (Evaluation Phase):

- Look at intervals in *non-decreasing* order of endings
- Evaluate a score v for each interval I_j (depends on scores of intervals in S and the weight of I_j)
- If v > 0, push I_j to S with score v

Second Phase (Selection Phase):

- pop the intervals in stack S one after another
- if appropriate, add the rectangle corresponding to this interval to our solution

Let w(I) denote the weight of interval I

More details of evaluation phase

(evaluation of scores)

score
$$v$$
 of an interval I_j is $w(I_j) - \sum_{I_k \in S; I_k \text{ conflicts with } I_j} w(I_k)$

More details of selection phase

For any interval I selected by the algorithm, let

 $b = \begin{cases} maximum number of intervals in any optimal \\ solution that have right endpoint later than I \end{cases}$

Theorem Our algorithm has a performance ratio of b

Idea of Proof: The proof proceeds in two stages.

(a) Consider end of evaluation phase

V(S) = sum of scores of intervals in stack S

P = total weight of an optimal solution

$$(\star) \quad V(S) \ge \frac{1}{b}P$$

(b) Consider end of selection phase

V = total weight of our solution

$$(\star\star) \quad \left| V \ge V(S) \right|$$

In d dimensions, $b \leq 2^d - 1$

Future research topics

- Improved approximation algorithms
- Implement and test performance in actual applications
- Consider more complex objects than rectangles
- Add more meaningful biological constraints to the problem

etc.