Simple approximation algorithm for nonoverlapping local alignments

Piotr Berman
Department of Computer Science
Pennsylvania State University
University Park, PA 16802
Email: berman@cse.psu.edu

Bhaskar DasGupta \ddagger

Department of Computer Science University of Illinois at Chicago
Chicago, IL 60607
Email:dasgupta@cs.uic.edu
S. Muthukrishnan

AT\&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
Email: muthu@research.att.com

- ${ }^{\text {I }}$ Supported by NSF grant CCR-9700053, NLM grant LM05110 and DFG grant Bo 56/157-1.
\ddagger Supported by NSF Grant CCR-9800086.

Overview of this presentation

> Nonoverlapping local alignments via rectangles
> Previous work
> Our results

Future research topics

The Problem
Given a set of weighted axis-parellel rectangles such that projections of no two rectangles enclose each other on the the x or y axes

A pair of rectangles is independent if their projections on both axes are disjoint

Goal: Find a maximum-weight independent subset of rectangles

Example

Biological motivation
Selection of fragments of high local similarity between two strings (between d strings for this problem in d dimensions)

Useful for studies on distances between sequences based on genome rearrangements

Biological motivation

Finding regions of local similarities in two sequences

An approximation algorithms for a maximization problem has a performance ratio (or approximation ratio) of r if

$$
\begin{gathered}
\text { value of objective function } \\
\text { computed by algorithm }
\end{gathered} \geqslant \frac{1}{r}\binom{\text { maximum value }}{\text { of objective function }}
$$

Previous results
Bafna, Narayanan and Ravi (WADS'95)

- NP-complete
- Approximation algorithm with performance ratio 3.25
- Converts to a problem of finding maximum-weight independent set in a 5-clawfree graph
- Gives approximation algorithm for d+1-clawfree graphs with performance ratio $d-1+\frac{1}{d}$

Halldorsson (SODA'95)

- Approximation algorithm with performance ratio of about 2.5 when all weights are 1
- Gives approximation algorithm for d+1-clawfree graphs with performance ratio of about $\frac{d+1}{2}$ when all weights are 1

Previous results (continued)

Berman (SWAT'00)

- approximation algorithm with performance ratio $2.5+\boldsymbol{\varepsilon}$ taking at least $\Omega\left(\mathrm{n}^{4}\right)$ time finds a $\frac{\mathrm{d}+1}{2}$ - approximation of a (d+1)-clawfree graph

Our results
 (n is the number of rectangles)

- Approximation algorithm with performance ratio 3 runs in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
- In d dimension, the performance ratio is $2^{d}-1$ runs in $\mathrm{O}(\mathrm{nd} \log \mathrm{n})$ time

We use the two-phase technique of Berman and DasGupta (STOC'00)

Idea behind our algorithm

(a) Project each rectangle R_{j} as interval I_{j} on the x axis

Two intervals I_{j} and I_{k} conflict if their corresponding rectangles R_{j} and R_{k} are not independent

I_{j} and I_{k} conflict

I_{j} and I_{k} conflict
(b) Apply Two-phase algorithm, appropriately modified Start with an initially empty stack S

First Phase (Evaluation Phase):

- Look at intervals in non-decreasing order of endings
- Evaluate a score v for each interval I_{j} (depends on scores of intervals in S and the weight of I_{j})
- If $v>0$, push I_{j} to S with score v

Second Phase (Selection Phase):

- pop the intervals in stack S one after another
- if appropriate, add the rectangle corresponding to this interval to our solution

Let $w(I)$ denote the weight of interval I

More details of evaluation phase (evaluation of scores)
score v of an interval I_{j} is

$$
w\left(I_{j}\right)-\sum_{I_{k} \in S ; I_{k}} \sum_{\text {conflicts with } I_{j}}
$$

More details of selection phase

$$
\begin{aligned}
& \text { while (} \mathrm{S} \text { is not empty) } \\
& \begin{array}{l}
I=\operatorname{pop}(\mathrm{S}) \\
\text { if } I \text { does not conflict with already selected } \\
\text { intervals, then insert } I \text { to our solution } \\
\}
\end{array} \\
& \hline
\end{aligned}
$$

For any interval I selected by the algorithm, let
$b=\left\{\begin{array}{l}\text { maximum number of intervals in any optimal } \\ \text { solution that have right endpoint later than } I\end{array}\right.$

Theorem Our algorithm has a performance ratio of b

Idea of Proof: The proof proceeds in two stages.
(a) Consider end of evaluation phase
$V(S)=$ sum of scores of intervals in stack S
$P \quad=$ total weight of an optimal solution

$$
\text { (*) } V(S) \geq \frac{1}{b} P
$$

(b) Consider end of selection phase

$$
V=\text { total weight of our solution }
$$

$$
\text { (} * *) \quad V \geq V(S)
$$

In d dimensions, $\quad b \leqslant 2^{\mathrm{d}}-1$

Future research topics

- Improved approximation algorithms
- Implement and test performance in actual applications
- Consider more complex objects than rectangles
- Add more meaningful biological constraints to the problem
etc.

