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Biological & Social Interaction Networks
Clusters/Communities

Interaction systems in biology and social science

modeled as pairwise interaction graphs
nodes are entities

edges are interactions between entities

Goal: partition nodes into communities or clusters
of statistically significant interactions

www.fmsasg.com/SocialNetworkAnalysis/
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Unsatisfactory Choices for Communities

What are clusters of “statistically significant”
interactions?

Unsatisfactory choices in practical applications
(too strict, computationally difficult,. . . )

cliques

dense subgraphs
...
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Model Based Clustering

Model: define a null model GGG of a
background random
graph

provides
probability pi,jpi,jpi,j of
edge between vivivi

and vjvjvj (implicitly
or explicitly)

vivivi

vjvjvj
pi,jpi,jpi,j
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Input graph GGG: 0 < wi,j ≤ 10 < wi,j ≤ 10 < wi,j ≤ 1
normalized weight

| wi,j − pi,j || wi,j − pi,j || wi,j − pi,j | is large
⇓⇓⇓

{vi, vj}{vi, vj}{vi, vj} is statistically
significant

vivivi

vjvjvj

wi,jwi,jwi,j
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Correlation Clustering as a Model Based Clustering

{+,−}{+,−}{+,−}-correlation clustering

Goal: maximize number of + edges minus number of − edges
inside clusters

e.g. [Bansal, Blum, Chawla, 2002], [Charikar, Guruswami, Wirth , 2003], [Swamy, 2004]

given input graph H with each edge labeled as +++ or −−−
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0 if the edge was labeled +++ or missing
1 otherwise i.e., labeled −−−

contribution of an edge inside cluster to total score: ai,j − pi,jai,j − pi,jai,j − pi,j
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Newman’s Modularity Clustering

Newman’s Modularity Clustering
A specific model based clustering

Extremely popular in practice (in biology, social science, etc.)
For example, see

(Ravasz et al., Science, 2002)
(Newman and Girvan, Physical Review E, 2004)
(Newman, Physical Review E, 2004)
(Newman, PNAS, 2006)
(Guimera et al, Nature Physics, 2007)
(Leicht and Newman, Physical Review Letters, 2008)

null model dependent on the degree distribution of the input graph

can be used for directed/undirected and weighted/unweighted
graphs
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Newman’s Modularity Clustering
Undirected Graphs

Null Model GGG

Input graph G = (V,E) has m edges

∀ u, v ∈ V : pu,v =
degree(u)× degree(v)

2m
∀ u, v ∈ V : pu,v =

degree(u)× degree(v)
2m

∀ u, v ∈ V : pu,v =
degree(u)× degree(v)

2m

u = vu = vu = v allowed

uuu

vvv

degree(u) = 3degree(u) = 3degree(u) = 3

degree(v)degree(v)degree(v)
= 2= 2= 2

m=8m=8m=8
pu,v=3/8 pv,v=−1/4pu,v=3/8 pv,v=−1/4pu,v=3/8 pv,v=−1/4

Expected degree of a node v is precisely degree(v)
and, thus, the expected number of edges is m

∑

v∈V

degree(u) × degree(v)
2m

= degree(u)
∑

v∈V

degree(u) × degree(v)
2m

= degree(u)
∑

v∈V

degree(u) × degree(v)
2m

= degree(u)
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Newman’s Modularity Clustering
Undirected Graphs

Fitness of a cluster (subset of nodes) S ⊆ VS ⊆ VS ⊆ V

u1u1u1 u2u2u2

u3u3u3

SSS
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Modularity Clustering
Undirected Graphs

Modularity value of a clustering CCC
C = {V1,V2, . . . ,VkC = {V1,V2, . . . ,VkC = {V1,V2, . . . ,Vk} is a partition of VVV

modularity is sum of individual fitnesses
(normalized by dividing by 2m to get a value between 0 and 1)

M(C) = 1
2m

×
k
∑

i=1

M(Vi)M(C) = 1
2m

×
k
∑

i=1

M(Vi)M(C) = 1
2m

×
k
∑

i=1

M(Vi)

Goal: find a clustering CCC to maximize M(C)M(C)M(C)
(note: number of clusters k is unspecified)
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Modularity Clustering
Undirected Graphs

Equivalent Formula for Modularity value
(via simple algebraic manipulation)

Original modularity

M(C) = 1
2m

×
k
∑

i=1

∑

u,v∈Vi

(

au,v −
degree(u) × degree(v)

2m

)

M(C) = 1
2m

×
k
∑

i=1

∑

u,v∈Vi

(

au,v −
degree(u) × degree(v)

2m

)

M(C) = 1
2m

×
k
∑

i=1

∑

u,v∈Vi

(

au,v −
degree(u) × degree(v)

2m

)

Equivalent formula

M(C) =
k
∑

i=1

(

mi

m
−
(

Di

2m

)2
)

M(C) =
k
∑

i=1

(

mi

m
−
(

Di

2m

)2
)

M(C) =
k
∑

i=1

(

mi

m
−
(

Di

2m

)2
)

mimimi === number of edges whose both endpoints are in ViViVi

DiDiDi === sum of degrees of nodes in ViViVi
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×
k
∑

i=1

∑

u,v∈Vi

(

au,v −
degree(u) × degree(v)

2m

)

Yet another equivalent formula

M(C) =
∑

Vi,Vj : i<j

(

DiDj

2m2 − mi,j

m

)

M(C) =
∑

Vi,Vj : i<j

(

DiDj

2m2 − mi,j

m

)

M(C) =
∑

Vi,Vj : i<j

(

DiDj

2m2 − mi,j

m

)

mi,jmi,jmi,j === number of edges with one endpoint in ViViVi and another in VjVjVj

DiDiDi === sum of degrees of nodes in ViViVi
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Modularity Clustering
Generalization to other types of graphs

Generalization to other types of graphs

Undirected graphs

M(C) = 1
2m ×∑k

i=1

∑

u,v∈Vi

(

au,v − degree(u)×degree(v)
2m

)

M(C) = 1
2m ×∑k

i=1

∑

u,v∈Vi

(

au,v − degree(u)×degree(v)
2m

)

M(C) = 1
2m ×∑k

i=1

∑

u,v∈Vi

(

au,v − degree(u)×degree(v)
2m

)
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Modularity Clustering
Generalization to other types of graphs

Generalization to other types of graphs

Directed graphs

M(C) = 1
2m
mmm

×
k
∑

i=1

∑

u,v∈Vi






au,v −

out-degree
degree (u)×

in-degree
degree (v)

2m
mmm






M(C) = 1

2m
mmm

×
k
∑

i=1

∑

u,v∈Vi






au,v −

out-degree
degree (u)×

in-degree
degree (v)

2m
mmm






M(C) = 1

2m
mmm

×
k
∑

i=1

∑

u,v∈Vi






au,v −

out-degree
degree (u)×

in-degree
degree (v)

2m
mmm
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Modularity Clustering
Generalization to other types of graphs

Generalization to other types of graphs

(Edge)-Weighted undirected graphs

M(C) = 1
2m

×
k
∑

i=1

∑

u,v∈Vi






au,v −

weighted-degree
degree (u)×

weighted-degree
degree (v)

2m






M(C) = 1

2m
×

k
∑

i=1

∑

u,v∈Vi






au,v −

weighted-degree
degree (u)×

weighted-degree
degree (v)

2m






M(C) = 1

2m
×

k
∑

i=1

∑

u,v∈Vi






au,v −

weighted-degree
degree (u)×

weighted-degree
degree (v)

2m







edge weights are non-negative

weighted degree of vvv is sum of weights of edges incident on vvv

au,vau,vau,v is the weight of the edge {u, v}{u, v}{u, v}
mmm is sum of edge weights
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Previously known complexity results

OPT = max
C

{M(C) }OPT = max
C

{M(C) }OPT = max
C

{M(C) } denotes the maximum modularity value

Previously known complexity results
computing OPT is NP-complete for sufficiently dense graphs
(Brandes, Delling, Gaertler, Görke, Hoefer, Nikoloski and Wagner, 2007)

the reduction roughly requires Ω (
√

n)Ω (
√

n)Ω (
√

n) degree for every node
NP-completeness result holds even if any solution is constrained to
contain no more than two clusters

Many results on heuristics and their experimental evaluations

As (Agarwal and Kempe, 2008) observed:

In spite of its extreme popularity, not much is known
about the computational complexity aspect of modularity
clustering beyond NP-completeness
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Our main results (undirected graphs)
Inapproximability
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Our main results (undirected graphs)
Inapproximability

Our main inapproximability results (undirected graphs)
computing OPT is APX-hard for dense graphs
(edge-complement of 3-regular graphs)

optimally partitioning into 222 clusters is NPNPNP-complete even
when the graph is sparse and regular

(ddd-regular for any constant d ≥ 9d ≥ 9d ≥ 9)
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Our main results (undirected graphs)
Approximation algorithms
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Our main results (undirected graphs)
Approximation algorithms

Our main approximability results (undirected graphs)
small number of clusters well-approximate OPTOPTOPT
in particular, partitioning into two clusters achieves 1

2 × OPT1
2 × OPT1
2 × OPT

OPT2 ≥ 1
2
× OPTOPT2 ≥ 1

2
× OPTOPT2 ≥ 1

2
× OPT
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Our main results (undirected graphs)
Approximation algorithms

Our main approximability results (undirected graphs)
small number of clusters well-approximate OPT
in particular, partitioning into just two clusters achieves 1

2 × OPT

OPT2 ≥ 1
2
× OPT

An approximation algorithm whose approximation ratio is
logarithmic in the maximum degree

(provided, roughly speaking, maximum degree is o(n)o(n)o(n))
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Our main results (undirected graphs)
Approximation algorithms

Our main approximability results (undirected graphs)
small number of clusters well-approximate OPT
in particular, partitioning into just two clusters achieves 1

2 × OPT

OPT2 ≥ 1
2
× OPT

An approximation algorithm whose approximation ratio is
logarithmic in the average degree

(provided, roughly speaking, average degree is o(n))

for locally-dense graphs ( i.e., every node has a degree of
Ω(n)Ω(n)Ω(n)) a solution within any constant additive error in
polynomial time

via use of regularity lemma
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Some proof ideas for main results
APXAPXAPX-hardness for dense graphs

APXAPXAPX-hardness for dense graphs

3-MISMISMIS ≡ maximum independent set for 333-regular graphs

δ` =
94

194
δ` =

94
194

δ` =
94
194

δh =
95

194
δh =

95
194

δh =
95

194

L ∈ NPL ∈ NPL ∈ NP
[1]−−−−→ 3-MISMISMIS −−−−→ Modularity Clustering

I ∈ LI ∈ LI ∈ L −−−−→ Ψ ≥ δh nΨ ≥ δh nΨ ≥ δh n −−−−→ OPT ≥ 2×(4δ2
h−δh)

n−4OPT ≥ 2×(4δ2
h−δh)

n−4OPT ≥ 2×(4δ2
h−δh)

n−4

I /∈ LI /∈ LI /∈ L −−−−→ Ψ ≤ δ` nΨ ≤ δ` nΨ ≤ δ` n −−−−→ OPT ≤ 4δ`−1
n−4OPT ≤ 4δ`−1
n−4OPT ≤ 4δ`−1
n−4

[1] Chlebı́k and Chlebı́ková, 2006
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Some proof ideas for main results
logarithmic approximation algorithm

Logarithmic approximation algorithm

modularity function is neither monotone nor sub-modular,
thus cannot use techniques from those domains

we show that a natural LP-relaxation for modularity clustering
has large integrality gap, so cannot use LP-based techniques

standard algorithmic approaches such as greedy provably do
not work well

instead, we go via quadratic optimization and semi-definite
programming ( SDP) based approach
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Some proof ideas for main results
logarithmic approximation algorithm

Logarithmic approximation algorithm

Quadratic optimization and SDP-based approach

OPT2 ≥ OPT
2

OPT2 ≥ OPT
2

OPT2 ≥ OPT
2

, thus suffices to partition into 222-clusters

express this 222-cluster partition problem as a quadratic integer
program after some algebraic simplification

w(u, v) =
au,v−

degree (u)×degree (v)
2m

4m
w(u, v) =

au,v−
degree (u)×degree (v)

2m
4mw(u, v) =

au,v−
degree (u)×degree (v)

2m
4m , W = [wu,v] ∈ R

n×nW = [wu,v] ∈ R
n×nW = [wu,v] ∈ R
n×n

maximize xTWxxTWxxTWx subject to x ∈ {−1, 1}nx ∈ {−1, 1}nx ∈ {−1, 1}n

But, but, . . . , the diagonal entries wu,uwu,uwu,u’s of WWW are negative

DasGupta (UIC) Approximability of Modularity Clustering GA Workshop, ICALP, 2011 26 / 33



Some proof ideas for main results
logarithmic approximation algorithm

Logarithmic approximation algorithm (continued)

ignore diagonal entries; later show that it was OK to ignore

maximize
∑

u6=v∈V

wu,vxuxv

∑

u6=v∈V

wu,vxuxv

∑

u6=v∈V

wu,vxuxv subject to ∀ u ∈ V : xu ∈ {−1, 1}∀ u ∈ V : xu ∈ {−1, 1}∀ u ∈ V : xu ∈ {−1, 1} (1)

obtain a lower bound on OPT using an explicit graph
decomposition

OPT = Ω

(

1
average degree

)

OPT = Ω

(

1
average degree

)

OPT = Ω

(

1
average degree

)

Approximate (1) within a factor of O

(

1
log OPT

)

O

(

1
log OPT

)

O

(

1
log OPT

)

by an

appropriate adaptation of the algorithm of (Charikar & Wirt h,
FOCS 2004)
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Our other results
directed or weighted graphs

Our other results for directed or weighted graphs

all the algorithmic results can be generalized to
directed and/or weighted graphs via “appropriate

modifications”
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Our other results
alternate null model (undirected graphs)

Idea of alternative null models has been explored before empirically
(Gaertler, Görke, Wagner, 2007) (Karrer and Newman, 2009)

We explore the classical Erdös-Rényi random graph null model G(n, p)G(n, p)G(n, p)

each possible edge is selected uniformly and randomly with a
probability of ppp

set p = 2m
n×(n−1)p = 2m
n×(n−1)p = 2m
n×(n−1) such that the expected number of edges in G(n, p)G(n, p)G(n, p)

is mmm

Our observation
This is same as computing Newman’s modularity measure on a

(

m
n

)(

m
n

)(

m
n

)

-regular graph
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Our other results
alternate overall modularity (undirected graphs)

Exact or approximate solutions to Newman’s modularity measure may
produce many trivial clusters of single nodes

Example

If the maximum degree is at most
4√n

16 ln n

4√n
16 ln n

4√n
16 ln n , then there always exists a

clustering such that

every cluster except one consists of a single node

modularity value is at least 252525% of the maximum

A possible reason
total modularity is sum of individual cluster modularities
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Our other results
alternate overall modularity (undirected graphs)

New modularity equation

total modularity is minimum of individual cluster modularities

Results
new objective indeed avoids generating trivial clusters

its optimal value is precisely half of the optimal value of ol d
objective
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The End

Any questions?
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