Topological implications of negative curvature for biological and social networks

Bhaskar DasGupta

Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607
bdasgup@uic.edu
November 29, 2014

Joint work with

- Réka Albert (Penn State)
- Nasim Mobasheri (UIC)

Outline of talk

(9) Introduction

2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Introduction

Various network measures
Graph-theoretical analysis leads to useful insights for many complex systems, such as

- World-Wide Web
- social network of jazz musicians
- metabolic networks
- protein-protein interaction networks

Examples of useful network measures for such analyses

- degree based, e.g.
\triangleright maximum/minimum/average degree, degree distribution,
- connectivity based, e.g.
\triangleright clustering coefficient, largest cliques or densest sub-graphs, $\ldots \ldots$.
- geodesic based, e.g.
\triangleright diameter, betweenness centrality,
- other more complex measures

Introduction

network curvature as a network measure

network measure for this talk network curvature via (Gromov) hyperbolicity measure

- originally proposed by Gromov in 1987 in the context of group theory
\triangleright observed that many results concerning the fundamental group of a Riemann surface hold true in a more general context
- defined for infinite continuous metric space with bounded local geometry via properties of geodesics
- can be related to standard scalar curvature of Hyperbolic manifold
- adopted to finite graphs using a so-called 4-node condition

Outline of talk

(1) Introduction
(2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
(4) Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Basic definitions and notations

Graphs, geodesics and related notations

Graphs, geodesics and related notations

$$
\begin{aligned}
& G=(V, E) \quad \text { connected undirected graph of } n \geq 4 \text { nodes } \\
& \left.u \stackrel{\mathscr{P}}{\boldsymbol{P}} \underset{\sim}{ } \quad \text { path } \mathscr{P} \equiv \underset{=u}{\left(u_{0}, u_{1}, \ldots, u_{k-1}, u_{v}\right)} \underset{\nu}{u_{k}}\right) \text { between nodes } u \text { and } v
\end{aligned}
$$

$\ell(\mathscr{P}) \quad$ length (number of edges) of the path $u \stackrel{\mathscr{P}}{\sim} v$
$u_{i} \stackrel{\mathscr{P}}{\rightarrow} u_{j} \quad$ sub-path $\left(u_{i}, u_{i+1}, \ldots, u_{j}\right)$ of \mathscr{P} between nodes u_{i} and u_{j} $u \stackrel{\mathfrak{s}}{\sim} v \quad$ a shortest path between nodes u and v $d_{u, v} \quad$ length of a shortest path between nodes u and v

$u_{2} \stackrel{\mathscr{P}}{\rightarrow} u_{6}$ is the path $\mathscr{P} \equiv\left(u_{2}, u_{4}, u_{5}, u_{6}\right)$

$$
\begin{aligned}
& \ell(\mathscr{P})=3 \\
& d_{u_{2}, u_{6}}=2
\end{aligned}
$$

Basic definitions and notations

4 node condition (Gromov, 1987)

Consider four nodes $u_{1}, u_{2}, u_{3}, u_{4}$ and the six shortest paths among pairs of these nodes

Basic definitions and notations

4 node condition (Gromov, 1987)

Consider four nodes $u_{1}, u_{2}, u_{3}, u_{4}$ and the six shortest paths among pairs of these nodes

Assume, without loss of generality, that
$\underbrace{d_{u_{1}, u_{4}}+d_{u_{2}, u_{3}}}_{=L} \geq \underbrace{d_{u_{1}, u_{3}}+d_{u_{2}, u_{4}}}_{=M} \geq \underbrace{d_{u_{1}, u_{2}}+d_{u_{3}, u_{4}}}_{=S}$

Basic definitions and notations

4 node condition (Gromov, 1987)

Consider four nodes $u_{1}, u_{2}, u_{3}, u_{4}$ and the six shortest paths among pairs of these nodes

Assume, without loss of generality, that
$\underbrace{\boldsymbol{d}_{u_{1}, u_{4}}+\boldsymbol{d}_{u_{2}, u_{3}}}_{=L} \geq \underbrace{d_{u_{1}, u_{3}}+d_{u_{2}, u_{4}}}_{=M} \geq \underbrace{d_{u_{1}, u_{2}}+d_{u_{3}, u_{4}}}_{=S}$

Let $\delta_{u_{1}, u_{2}, u_{3}, u_{4}}=\frac{L-M}{2}$

UIC

Basic definitions and notations

4 node condition (Gromov, 1987)

Consider four nodes $u_{1}, u_{2}, u_{3}, u_{4}$ and the six shortest paths among pairs of these nodes

Assume, without loss of generality, that
$\underbrace{d_{u_{1}, u_{4}}+d_{u_{2}, u_{3}}}_{=L} \geq \underbrace{d_{u_{1}, u_{3}}+d_{u_{2}, u_{4}}}_{=M} \geq \underbrace{d_{u_{1}, u_{2}}+d_{u_{3}, u_{4}}}_{=S}$

$$
\text { Let } \delta_{u_{1}, u_{2}, u_{3}, u_{4}}=\frac{L-M}{2} \quad \frac{\text { monn }+ \text { mmm }-(m m m+m m n)}{2}
$$

Definition (hyperbolicity of G)

$$
\delta(G)=\max _{u_{1}, u_{2}, u_{3}, u_{4}}\left\{\delta_{\left.u_{1}, u_{2}, u_{3}, u_{4}\right\}}\right\}
$$

Basic definitions and notations

Hyperbolic graphs (graphs of negative curvature)
Definition (Δ-hyperbolic graphs)
G is Δ-hyperbolic provided $\delta(G) \leq \Delta$

Definition (Hyperbolic graphs)

If Δ is a constant independent of graph parameters, then a Δ-hyperbolic graph is simply called a hyperbolic graph

Basic definitions and notations

Hyperbolic graphs (graphs of negative curvature)

Definition (Δ-hyperbolic graphs)

G is Δ-hyperbolic provided $\delta(G) \leq \Delta$

Definition (Hyperbolic graphs)

If Δ is a constant independent of graph parameters, then a Δ-hyperbolic graph is simply called a hyperbolic graph

Example (Hyperbolic and non-hyperbolic graphs)

Tree: $\Delta(G)=0$ hyperbolic graph

Chordal (triangulated) graph:
$\Delta(G)=1 / 2$ hyperbolic graph

Basic definitions and notations

Hyperbolicity of real-world networks

Are there real-world networks that are hyperbolic?

Yes, for example:

- Preferential attachment networks were shown to be scaled hyperbolic
\triangleright [Jonckheere and Lohsoonthorn, 2004; Jonckheere, Lohsoonthorn and Bonahon, 2007]
- Networks of high power transceivers in a wireless sensor network were empirically observed to have a tendency to be hyperbolic
\triangleright [Ariaei, Lou, Jonckeere, Krishnamachari and Zuniga, 2008]
- Communication networks at the IP layer and at other levels were empirically observed to be hyperbolic
\triangleright [Narayan and Saniee, 2011]
- Extreme congestion at a very limited number of nodes in a very large traffic network was shown to be caused due to hyperbolicity of the network together with minimum length routing
\triangleright [Jonckheerea, Loua, Bonahona and Baryshnikova, 2011]
- Topology of Internet can be effectively mapped to a hyperbolic space
\triangleright [Bogun, Papadopoulos and Krioukov, 2010]

Basic definitions and notations

Average hyperbolicity measure, computational issues

Definition (average hyperbolicity)

$$
\delta_{\mathrm{ave}}(G)=\frac{1}{\binom{n}{4}} \sum_{u_{1}, u_{2}, u_{3}, u_{4}} \delta_{u_{1}, u_{2}, u_{3}, u_{4}} \quad \begin{aligned}
& \text { expected value of } \delta_{u_{1}, u_{2}, u_{3}, u_{4} \text { if }} \\
& u_{1}, u_{2}, u_{3}, u_{4} \text { are picked uniformly at random }
\end{aligned}
$$

Computation of $\delta(G)$ and $\delta_{\text {ave }}(G)$

- Trivially in $\mathrm{O}\left(n^{4}\right)$ time
- Compute all-pairs shortest paths

Floyd-Warshall algorithm

$$
\mathrm{O}\left(n^{3}\right) \text { time }
$$

\triangleright For each combination $u_{1}, u_{2}, u_{3}, u_{4}$, compute $\delta_{u_{1}, u_{2}, u_{3}, u_{4}} \mathrm{O}\left(n^{4}\right)$ time

- Open problem: can we compute in $O\left(n^{4-\varepsilon}\right)$ time?

Outline of talk

(1) Introduction
(2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory $n \in$ tworks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Computing hyperbolicity for real networks

Direct calculation

Real networks used for empirical validation

20 well-known biological and social networks

- 11 biological networks that include 3 transcriptional regulatory, 5 signalling, 1 metabolic, 1 immune response and 1 oriented protein-protein interaction networks
- 9 social networks range from interactions in dolphin communities to the social network of jazz musicians
- hyperbolicity of the biological and directed social networks was computed by ignoring the direction of edges
- hyperbolicity values were calculated by writing codes in C using standard algorithmic procedures

Next slide: List of 20 networks

Computing hyperbolicity for real networks

Direct calculation

11 biological networks

\# nodes \# edges

1. E. colitranscriptional 311451
2. Mammalian signaling 5121047
3. E. coli transcriptional 418
4. T-LGL signaling 58
5. S. cerevisiae 6901082
6. C. elegans metabolic 4532040
7. Drosophila
segment polarity $\quad 78 \quad 132$ (6 cells)
8. ABA signaling 55
9. Immune response
network 18
10. T cell receptor
signaling 9438
11. Oriented yeast PPI 7862445

9 social networks

> \# nodes \# edges

1. Dolphin social network	62	160
2. American		
College Football	115	612
3. Zachary Karate Club 4. Books about US politics	34	78
5. Sawmill communication network	105	442
6. Jazz Musician network	36	62
7. Visiting ties in San Juan	198	2742
8. World Soccer Data, Paris 1998	75	144
9. Les Miserables characters	77	251

2. American

College Football
115
3. Zachary Karate Club105442
5. Sawmill
communication 36 62
6. Jazz Musician network144
8. World Soccer9. Les Miserablescharacters251

Computing hyperbolicity for real networks

Direct calculation

Biological networks			
	Average degree	$\delta_{\text {ave }}$	δ
1. E. coli transcriptional	1.45	0.132	2
2. Mammalian Signaling	2.04	0.013	3
3. E. Coli transcriptional	1.30	0.043	2
4. T LGL signaling	2.32	0.297	2
5. S. cerevisiae transcriptional	1.56	0.004	3
6. C. elegans Metabolic	4.50	0.010	1.5
7. Drosophila segment polarity	1.69	0.676	4
8. ABA signaling	1.60	0.302	2
9. Immune Response Network	2.33	0.286	1.5
10. T Cell Receptor Signalling	1.46	0.323	3
11. Oriented yeast PPI	3.11	0.001	2

social networks

| | Average
 degree | $\delta_{\text {ave }}$ | δ |
| :--- | :---: | :---: | :---: | :---: |
| 1. Dolphins social network | 5.16 | 0.262 | 2 |
| 2. American College Football | 10.64 | 0.312 | 2 |
| 3. Zachary Karate Club | 4.58 | 0.170 | 1 |
| 4. Books about US Politics | 8.41 | 0.247 | 2 |
| 5. Sawmill communication | 3.44 | 0.162 | 1 |
| 6. Jazz musician | 27.69 | 0.140 | 1.5 |
| 7. Visiting ties in San Juan | 3.84 | 0.422 | 3 |
| 8. World Soccer data, 1998 | 3.37 | 0.270 | 2.5 |
| 9. Les Miserable | 6.51 | 0.278 | 2 |

- Hyperbolicity values of almost all networks are small
- For all networks $\delta_{\text {ave }}$ is one or two orders of magnitude smaller than δ
- Intuitively, this suggests that value of δ may be a rare deviation from typical values of $\delta_{u_{1}, u_{2}, u_{3}, u_{4}}$ for most combinations of nodes $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
- No systematic dependence of δ on number of nodes/edges or average degree

Computing hyperbolicity for real networks

Direct calculation

Definition (Diameter of a graph)
 $\mathscr{D}=\max _{u, v}\left\{d_{u, v}\right\} \quad$ longest shortest path

$$
\begin{aligned}
& \text { Fact } \\
& \delta \leq \mathscr{D} / 2 \quad \text { small diameter implies small hyperbolicity }
\end{aligned}
$$

We found no systematic dependence of δ on \mathscr{D}

Computing hyperbolicity for real networks

Direct calculation

Definition (Diameter of a graph)

$\mathscr{D}=\max _{u, v}\left\{d_{u, v}\right\} \quad$ longest shortest path

Fact

$\delta \leq \mathscr{D} / 2 \quad$ small diameter implies small hyperbolicity

We found no systematic dependence of δ on \mathscr{D}

For more rigorous checks of hyperbolicity of finite graphs and
for evaluation of statistical significance of the hyperbolicity measure see our paper
R. Albert, B. DasGupta and N. Mobasheri,

Topological implications of negative curvature for biological and social networks.
Physical Review E 89(3), 032811 (2014)

Outline of talk

(1) Introduction
(2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Implications of hyperbolicity

We discuss topological implications of hyperbolicity somewhat informally

> Precise Theorems and their proofs are available in our paper
R. Albert, B. DasGupta and N. Mobasheri,

Topological implications of negative curvature for biological and social networks.
Physical Review E 89(3), 032811 (2014)

Outline of talk

(1) Introduction
(2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Implications of hyperbolicity

Hyperbolicity and crosstalk in regulatory networks

Definition (Path chord and chord)

Implications of hyperbolicity

Hyperbolicity and crosstalk in regulatory networks

Definition (Path chord and chord)

Theorem (large cycle without path-chord imply large hyperbolicity)
G has a cycle of k nodes which has no path-chord $\Longrightarrow \delta \geq\lceil k / 4\rceil$
Corollary
Any cycle containing more than $\mathbf{4 \delta}$ nodes must have a path-chord

Example

$$
\delta<1 \Rightarrow G \text { is chordal graph }
$$

Implications of hyperbolicity

Hyperbolicity and crosstalk in regulatory networks

An example of a regulatory network

Network associated to the Drosophila segment polarity
G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, Nature 406, 188-192 (2000)

UIC

Implications of hyperbolicity

Hyperbolicity and crosstalk in regulatory networks

Hyperbolicity and crosstalk in regulatory networks

short-cuts in long feedback loops

node regulates itself through a long feedback loop
$\Rightarrow \quad$ this loop must have a path-chord
\Rightarrow a shorter feedback cycle through the same node

interpreting chord or short path-chord as crosstalk
"source" regulates "target" through two long paths
$\Rightarrow \quad$ must exist a crosstalk path between these two paths

number of crosstalk paths increases at least linearly with total length of two paths
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014) \square
\square

Outline of talk

(1) Introduction
2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Implications of hyperbolicity

Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

$$
\begin{aligned}
& \left.d_{u_{0}, u_{0,1}}=\left\lvert\, \frac{d_{u_{0}, u_{1}}+d_{u_{0}, u_{2}}-d_{u_{1}, u_{2}}}{2}\right.\right\rfloor \\
& d_{u_{1}, u_{0,1}}=\left\lceil\left.\frac{d_{u_{1}, u_{2}}+d_{u_{1}, u_{0}}-d_{u_{2}, u_{0}}}{2} \right\rvert\,\right. \\
& d_{u_{1}, u_{0,1}}=d_{u_{1}, u_{1,2}} d_{u_{0}, u_{0,1}}=d_{u_{0}, u_{0,2}} \\
& d_{u_{2}, u_{0,2}}=d_{u_{2}, u_{1,2}}
\end{aligned}
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Geodesic triangles and crosstalk paths

Geodesic triangles and crosstalk paths

$\forall v$ in one path $\exists \nu^{\prime}$ in the other path such that $d_{\nu, \nu^{\prime}} \leq \max \{6 \delta, 2\}$

$$
\begin{aligned}
& \left.d_{u_{0}, u_{0,1}}=\left\lvert\, \frac{d_{u_{0}, u_{1}}+d_{u_{0}, u_{2}}-d_{u_{1}, u_{2}}}{2}\right.\right\rfloor \\
& d_{u_{1}, u_{0,1}}=\left\lceil\left.\frac{d_{u_{1}, u_{2}}+d_{u_{1}, u_{0}}-d_{u_{2}, u_{0}}}{2} \right\rvert\,\right. \\
& d_{u_{1}, u_{0,1}}=d_{u_{1}, u_{1,2}} d_{u_{0}, u_{0,1}}=d_{u_{0}, u_{0,2}} \\
& d_{u_{2}, u_{0,2}}=d_{u_{2}, u_{1,2}}
\end{aligned}
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Implications of geodesic triangles and crosstalk paths for regulatory networks

Implications of geodesic triangles for regulatory networks

Consider feedback or feed-forward loop formed by the shortest paths among three nodes We can expect short cross-talk paths between these shortest paths

Feedback/feed-forward loop is nested with additional
 feedback/feed-forward loops

Implications of hyperbolicity

Implications of geodesic triangles and crosstalk paths for regulatory networks

Implications of geodesic triangles for regulatory networks

Consider feedback or feed-forward loop formed by the shortest paths among three nodes We can expect short cross-talk paths between these shortest paths

Feedback/feed-forward loop is nested with additional
 feedback/feed-forward loops

Empirical evidence [R. Albert, Journal of Cell Science 118, 4947-4957 (2005)]
Network motifs ${ }^{a}$ are often nested
Two generations of nested assembly for a common E. coli motif
[DeDeo and Krakauer, 2012]

$a_{\text {e.g., feed-forward or feedback loops of small number of nodes }}$

Implications of hyperbolicity

Hausdorff distance between shortest paths
Definition (Hausdorff distance between two paths \mathscr{P}_{1} and \mathscr{P}_{2})

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \stackrel{\text { def }}{=} \max \left\{\max _{\nu_{1} \in \mathscr{P}_{1}} \min _{\nu_{2} \in \mathscr{R}_{2}}\left\{d_{\nu_{1}, \nu_{2}}\right\}, \max _{\nu_{2} \in \mathscr{P}_{2}} \min _{\nu_{1} \in \mathscr{P}_{1}}\left\{d_{\nu_{1}, \nu_{2}}\right\}\right\}
$$

small Hausdorff distance implies every node of either path is close to some node of the other path

Implications of hyperbolicity

Hausdorff distance between shortest paths
Definition (Hausdorff distance between two paths \mathscr{P}_{1} and \mathscr{P}_{2})

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \stackrel{\text { def }}{=} \max \left\{\max _{\nu_{1} \in \mathscr{P}_{1}} \min _{\nu_{2} \in \mathscr{A}_{2}}\left\{d_{\nu_{1}, \nu_{2}}\right\}, \max _{\nu_{2} \in \mathscr{P}_{2}} \min _{\nu_{1} \in \mathscr{P}_{1}}\left\{d_{\nu_{1}, \nu_{2}}\right\}\right\}
$$

small Hausdorff distance implies every node of either path is close to some node of the other path

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Hausdorff distance between shortest paths
Definition (Hausdorff distance between two paths \mathscr{P}_{1} and \mathscr{P}_{2})

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \stackrel{\text { def }}{=} \max \left\{\max _{\nu_{1} \in \mathscr{P}_{1}} \min _{\nu_{2} \in \mathscr{P}_{2}}\left\{d_{\nu_{1}, \nu_{2}}\right\}, \max _{\nu_{2} \in \mathscr{P}_{2}} \min _{\nu_{1} \in \mathscr{P}_{1}}\left\{d_{\nu_{1}, \nu_{2}}\right\}\right\}
$$

small Hausdorff distance implies every node of either path is close to some node of the other path

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Hausdorff distance between shortest paths
Definition (Hausdorff distance between two paths \mathscr{P}_{1} and \mathscr{P}_{2})

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \stackrel{\text { def }}{=} \max \left\{\max _{\nu_{1} \in \mathscr{P}_{1}} \min _{\nu_{2} \in \mathscr{R}_{2}}\left\{d_{\nu_{1}, \nu_{2}}\right\}, \max _{\nu_{2} \in \mathscr{R}_{2}} \min _{\nu_{1} \in \mathscr{A}_{1}}\left\{d_{\nu_{1}, v_{2}}\right\}\right\}
$$

small Hausdorff distance implies every node of either path is close to some node of the other path

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Hausdorff distance between shortest paths

this result versus our previous path-chord result

this result

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \leq \max \{6 \delta, 2\}
$$

\mathscr{P}_{2}

Which result is more general in nature ?

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Hausdorff distance between shortest paths

this result versus our previous path-chord result

this result

$$
d_{H}\left(\mathscr{P}_{1}, \mathscr{P}_{2}\right) \leq \max \{6 \delta, 2\}
$$

\mathscr{P}_{2}

Which result is more general in nature ?

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

A notational simplification

A notational simplification

$$
\begin{aligned}
& \text { unless } \mathrm{G} \text { is a tree or a complete graph }\left(K_{n}\right), \delta>0 \\
& \qquad \delta>0 \equiv \delta \geq 1 / 2 \\
& \qquad \delta \geq 1 / 2 \Rightarrow \max \{6 \delta, 2\}=6 \delta
\end{aligned}
$$

Hence, we will simply write 6δ instead of $\max \{6 \delta, 2\}$

Implications of hyperbolicity

Distance between geodesic and arbitrary path

Distance from a shortest path $u_{0} \stackrel{\mathfrak{s}}{\sim} u_{1}$ to another arbitrary path $u_{0} \stackrel{\mathscr{P}}{\mathscr{P}} u_{1}$ n is the number of nodes in the graph $\quad \ell(\mathscr{P})$ is length of path \mathscr{P}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and arbitrary path

Distance from a shortest path $u_{0} \stackrel{\substack{ \\\rightarrow}}{u_{1}}$ to another arbitrary path $u_{0} \stackrel{\mathscr{P}}{\rightarrow} u_{1}$ n is the number of nodes in the graph $\quad \ell(\mathscr{P})$ is length of path \mathscr{P}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and arbitrary path

An interesting implication of this bound

$$
\exists v^{\prime} d_{v, v^{\prime}} \leq 6 \delta \log _{2} \ell(\mathscr{P})
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and arbitrary path

An interesting implication of this bound

$$
\text { assume } \forall v^{\prime} \in \mathscr{P} \quad d_{v, v^{\prime}} \geq \gamma
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and arbitrary path

An interesting implication of this bound

Next: better bounds for approximately short paths $>$
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Approximately short path

Why consider approximately short paths ?

Regulatory networks

Up/down-regulation of a target node is mediated by two or more "close to shortest" paths starting from the same regulator node

Additional "very long" paths between the same regulator and target node do not contribute significantly to the target node's regulation

Definition ε-additive-approximate short path \mathscr{P}

$$
\underset{\text { length of } \mathscr{P}}{\ell(\mathscr{P})} \leq \text { length of shortest path }+\varepsilon
$$

Implications of hyperbolicity

Approximately short path

Why consider approximately short paths ?

Algorithmic efficiency reasons

Approximate short path may be faster to compute as opposed to exact shortest path

Routing and navigation problems (traffic networks)
 Routing via approximate short path

Definition μ-approximate short path $u_{0} \stackrel{\mathscr{P}}{\leftrightarrow} u_{k}=\left(u_{0}, u_{1}, \ldots, u_{k}\right)$

$$
\begin{array}{ll}
\ell\left(u_{i} \stackrel{\mathscr{P}}{\substack{\text { length of sub-path } \\
\text { from } u_{i} \text { to } u_{j}}} u_{j}\right) \leq \mu & \begin{array}{l}
\text { distance } \\
\text { between } \\
u_{i} \text { and } u_{j}
\end{array}
\end{array} \quad \text { for all } 0 \leq i<j \leq \mathbb{k}
$$

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from shortest path to an approximately short path $u_{0} \stackrel{\mathscr{P}}{\rightarrow} u_{1}$ ε-additive approximate or, μ-approximate

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from shortest path to an approximately short path $u_{0} \stackrel{\mathscr{P}}{\stackrel{P}{m}} u_{1}$ ε-additive approximate or, μ-approximate

$$
\begin{gathered}
u_{0}^{\mathscr{P}} \rightarrow u_{1} \text { is } \varepsilon \text {-additive approximate } \\
\forall \nu \exists v^{\prime} d_{\nu, \nu^{\prime}} \leq(6 \delta+2) \log _{2}\left(8(6 \delta+2) \log _{2}[(6 \delta+2)(4+2 \varepsilon)]+1+\frac{\varepsilon}{2}\right) \\
\mathrm{O}(\delta \log (\varepsilon+\delta \log \varepsilon)) \\
\text { short crosstalk path for small } \varepsilon \text { and } \delta
\end{gathered}
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from shortest path to an approximately short path $u_{0} \stackrel{\mathscr{P}}{\rightarrow} u_{1}$ ε-additive approximate or, μ-approximate

$$
\longleftarrow \text { shortest path } u_{0} \stackrel{\substack{m}}{\ldots}
$$

$$
u_{0} \stackrel{\mathscr{P}}{m} u_{1} \text { is } \mu \text {-approximate }
$$

$$
\begin{gathered}
\forall v \exists v^{\prime} \quad d_{v, \nu^{\prime}} \leq(6 \delta+2) \log _{2}\left((6 \mu+2)(6 \delta+2) \log _{2}[(6 \delta+2)(3 \mu+1) \mu]+\mu\right) \\
\mathrm{O}(\delta \log (\mu \delta)) \quad \begin{array}{c}
\text { depends only on } \delta \text { and } \mu \\
\text { short crosstalk path for small } \mu \text { and } \delta
\end{array}
\end{gathered}
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path
Contrast the new bounds with the old bound of $d_{v, \nu^{\prime}}=\mathrm{O}(\delta \log \ell(\mathscr{P}))$ $d_{u_{0}, u_{1}}$ is the length of a shortest path between u_{0} and u_{1}
$u_{0} \stackrel{\mathscr{B}}{\rightarrow} u_{1}$ is ε-additive approximate

$$
\ell(\mathscr{P}) \leq d_{u_{0}, u_{1}}+\varepsilon
$$

Old bound
$\mathrm{O}\left(\delta \log \left(\varepsilon+d_{u_{0}, u_{1}}\right)\right)$

New bound

$\mathrm{O}(\delta \log (\varepsilon+\delta \log \varepsilon)) \begin{aligned} & \text { no dependency } \\ & \text { on } d_{u_{0}, u_{1}}\end{aligned}$
$u_{0} \stackrel{\mathscr{P}}{\stackrel{P}{\rightarrow}} u_{1}$ is μ-approximate
$\ell(\mathscr{P}) \leq \mu d_{u_{0}, u_{1}}$

Old bound
$\mathrm{O}\left(\delta\left(\log \left(\mu d_{u_{0}, u_{1}}\right)\right)\right)$

New bound

$\mathrm{O}(\delta \log (\mu \delta)) \begin{aligned} & \text { no dependency } \\ & \text { on } d_{\mu_{0}, u_{1}}\end{aligned}$ on $d_{u_{0}, u_{1}}$

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from an $\underbrace{\text { approximately short }}_{\begin{array}{c}\varepsilon \text {-adititive approximate } \\ \text { or, } \mu \text {-approximate }\end{array}}$ path $u_{0} \stackrel{\mathscr{P}}{\rightarrow} u_{1}$ to a shortest path for simplified exposition, we show bounds only in asymptotic $\mathrm{O}(\cdot)$ notation please refer to our paper for more precise bounds

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path
Distance from an approximately short path $u_{0} \stackrel{\mathscr{B}}{\rightarrow} u_{1}$ to a shortest path
ε-additive approximate
or, μ-approximate
for simplified exposition, we show bounds only in asymptotic $\mathrm{O}(\cdot)$ notation please refer to our paper for more precise bounds

$$
u_{0} \stackrel{\mathscr{P}}{\mathscr{P}} u_{1} \text { is } \varepsilon \text {-additive approximate }
$$

$$
\forall v^{\prime} \exists v \quad d_{\nu^{\prime}, \nu} \leq \mathrm{O}(\varepsilon+\delta \log (\varepsilon+\delta \log \varepsilon))
$$

depends only on δ and ε
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path
Distance from an approximately short path $u_{0} \stackrel{\mathscr{A}}{\rightarrow} u_{1}$ to a shortest path ε-additive approximate
or, μ-approximate
for simplified exposition, we show bounds only in asymptotic $\mathrm{O}(\cdot)$ notation please refer to our paper for more precise bounds

$u_{0} \stackrel{\mathscr{P}}{\stackrel{\text { m }}{\rightarrow}} u_{1}$ is μ-approximate

$$
\forall v^{\prime} \exists v \quad d_{\nu^{\prime}, v} \leq \mathrm{O}(\mu \delta \log (\mu \delta)) \quad \text { depends only on } \delta \text { and } \mu
$$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014) \square

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from approximate short path $\mathscr{P}_{\text {arbitrary node } v}^{\text {from }} \underbrace{\text { to approximate short path } \mathscr{P}_{2}}_{\text {nearest node } v^{\prime}}$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from approximate short path $\mathscr{P}_{\text {arbitrary node } v}^{\text {from }} \underbrace{\text { to approximate short path } \mathscr{P}_{2}}_{\text {nearest node } v^{\prime}}$

go to any shortest path
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from approximate short path $\mathscr{P}_{\text {arbitrary node } v}^{\text {from }} \underbrace{\text { to approximate short path } \mathscr{P}_{2}}_{\text {nearest node } v^{\prime}}$

continue to the other path

UIC
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Distance from approximate short path $\mathscr{P}_{1} \underbrace{\text { to approximate short path } \mathscr{P}_{2}}$ arbitrary node \boldsymbol{v} nearest node $\boldsymbol{\nu}^{\prime}$

we sometimes overestimate quantities to simplify expression

\mathscr{P}_{1} is ε_{1}-additive approximate
\mathscr{P}_{2} is ε_{2}-additive approximate
$\mathrm{O}\left(\varepsilon_{1}+\delta \log \left(\varepsilon_{1} \varepsilon_{2}\right)+\delta \log \delta\right)$
\mathscr{P}_{1} is μ-approximate
\mathscr{P}_{2} is ε-additive approximate
$\mathrm{O}(\mu \delta \log (\mu \delta)+\varepsilon+\delta \log \varepsilon)$
\mathscr{P}_{1} is ε-additive approximate \mathscr{P}_{2} is μ-approximate
$\mathrm{O}\left(\varepsilon+\delta \log (\varepsilon \mu)+\delta^{2} \log \log \varepsilon\right)$
\mathscr{P}_{1} is μ_{1}-approximate
\mathscr{P}_{2} is μ_{2}-approximate
$\mathrm{O}\left(\mu_{1} \delta \log \left(\mu_{1} \delta\right)+\delta \log \mu_{2}\right)$
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Interesting implications of these improved bounds

approximately short path \mathscr{P}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Interesting implications of these improved bounds

assume $\forall \nu^{\prime} \in \mathscr{P} \quad d_{\nu, \nu^{\prime}} \geq \gamma$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Interesting implications of these improved bounds

if \mathscr{P} is ε-additive-approximate short then
assume $\forall \nu^{\prime} \in \mathscr{P} \quad d_{\nu, \nu^{\prime}} \geq \gamma \quad \Rightarrow$

$$
\varepsilon=\Omega\left(\frac{2^{\gamma / \delta}}{\delta}-\log \delta\right)
$$

approximately short path \mathscr{P}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

Interesting implications of these improved bounds

if \mathscr{P} is μ-approximate short then
assume $\forall \nu^{\prime} \in \mathscr{P} \quad d_{v, \nu^{\prime}} \geq \gamma \quad \Rightarrow$

$$
\mu=\Omega\left(\frac{{ }_{2} \gamma / \delta}{\gamma}\right)
$$

approximately short path \mathscr{P}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Distance between geodesic and approximately short path

To wrap it up, approximate shortest paths look like the following cartoon

Implications of hyperbolicity

Distance between geodesic and approximately short path

To wrap it up, approximate shortest paths look like the following cartoon

Interpretation for regulatory networks

- It is reasonable to assume that, when up- or down-regulation of a target node is mediated by two or more approximate short paths starting from the same regulator node, additional very long paths between the same regulator and target node do not contribute significantly to the target node's regulation
- We refer to the short paths as relevant, and to the long paths as irrelevant
- Then, our finding can be summarized by saying that almost all relevant paths between two nodes have crosstalk paths between each other
R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Outline of talk

(1) Introduction
2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

	$\kappa \geq 4$	$\alpha>0$	$r>3(\kappa-2) \delta$
Example:	5	1	$9 \delta+1$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

	$\boldsymbol{K} \geq \mathbf{4}$	$\alpha>0$	$r>3(\kappa-2) \delta$
Example:	5	1	$9 \delta+1$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

integer parameters used in this result

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

Corollary (of previous results)

consider any path \mathscr{P} between u_{3} and u_{4} suppose that \mathscr{P} does not intersect the shaded region

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

Corollary (of previous results)

consider any path \mathscr{P} between u_{3} and u_{4}

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

Corollary (of previous results)
consider any path \mathscr{P} between u_{3} and u_{4}
$\frac{\alpha}{6 \delta}+\frac{\kappa}{4} \quad$ suppose that \mathscr{P} does not intersect the shaded region
$\ell(\mathscr{P}) \geq \quad 2^{\overline{6 \delta}+\frac{x}{4}}$ $2^{\Omega\left(\frac{\alpha}{\delta}+\kappa\right)}$
$\mathscr{P} \varepsilon$-additive-approximate \Rightarrow $\varepsilon>\frac{2^{\frac{\alpha}{6 \delta}+\frac{\kappa}{4}}}{48 \delta}-\log _{2}(48 \delta)$ $\Omega\left(2^{\Theta(\alpha+\kappa)}\right)$ if δ is constant

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Influence of a node on the geodesics between other pair of nodes

Corollary (of previous results)
consider any path \mathscr{P} between u_{3} and u_{4}
$\frac{\alpha}{6 \delta}+\frac{\kappa}{4} \quad$ suppose that \mathscr{P} does not intersect the shaded region
$\ell(\mathscr{P}) \geq 2^{\overline{6 \delta}+\frac{x}{4}}$

$$
2^{\Omega\left(\frac{\alpha}{\delta}+\kappa\right)}
$$

$\mathscr{P} \varepsilon$-additive-approximate \Rightarrow
$\varepsilon>\frac{2^{\frac{\alpha}{6 \delta}+\frac{\kappa}{4}}}{48 \delta}-\log _{2}(48 \delta)$
$\Omega\left(2^{\Theta(\alpha+\kappa)}\right)$ if δ is constant
$\mathscr{P} \mu$-approximate \Rightarrow
$\mu \geq \frac{\frac{\alpha}{6 \delta}+\frac{\kappa}{4}}{12 \alpha+6 \delta(3 \kappa-26)}$

$$
\Omega\left(\frac{2^{\Theta\left(\frac{\alpha}{\delta}+\kappa\right)}}{\alpha+\kappa \delta}\right)
$$

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

All shortest paths between $u_{\text {source }}$ and $u_{\text {target }}$ must intersect the ξ-neighborhood
Therefore, "knocking out" nodes in ξ-neighborhood cuts off all shortest regulatory paths between $u_{\text {source }}$ and $u_{\text {target }}$

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

But, it gets even more interesting !

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

But, it gets even more interesting !
shifting the $\boldsymbol{\xi}$-neighborhood does not change claim

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

how about enlarging the ξ-neighborhood ?

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

how about enlarging the ξ-neighborhood? approximately short paths start intersecting the neighborhood

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

Consider a ball (neighborhood) of radius $\xi \log n$
(n is the number of nodes)

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Interesting implications of these bounds for regulatory networks

Consider a ball (neighborhood) of radius $\boldsymbol{\xi} \log \boldsymbol{n} \quad$ (\boldsymbol{n} is the number of nodes) All paths intersect the neighborhood

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Empirical estimation of neighborhoods and number of essential nodes

We empirically investigated these claims on relevant paths passing through a neighborhood of a central node for the following two biological networks:

- E. coli transcriptional
- T-LGL signaling
by selecting a few biologically relevant source-target pairs

Our results show much better bounds for real networks compared to the worst-case pessimistic bounds in the mathematical theorems

see our paper for further details

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

The following cartoon informally depicts some of the preceding discussions

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

The following cartoon informally depicts some of the preceding discussions

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

The following cartoon informally depicts some of the preceding discussions

the further we move from the central node the more a shortest path bends inward towards the central node

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Implications of hyperbolicity

Identifying essential edges and nodes in regulatory networks

Outline of talk

(1) Introduction
2) Basic definitions and notations
(3) Computing hyperbolicity for real networks
4. Implications of hyperbolicity of networks

- Hyperbolicity and crosstalk in regulatory networks
- Geodesic triangles and crosstalk paths
- Identifying essential edges and nodes in regulatory networks
- A social network application

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Visual illustration of a well-known social network

Zachary's Karate Club (http://networkdata.ics.uci.edu/data.php?id=105)

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Structural hole in a social network [Burt, 1995; Borgatti, 1997]

Definition (Adjacency matrix of an undirected unweighted graph)
$\nu\left(\begin{array}{cccc}u & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \hdashline \vdots & a_{u, v} & \vdots & \vdots \\ \cdots & \vdots & \vdots & \vdots\end{array}\right) \quad a_{u, v}= \begin{cases}1, & \text { if }\{u, v\} \text { is an edge } \\ 0, & \text { otherwise }\end{cases}$

Definition (measure of structural hole at node u [Burt, 1995; Borgatti, 1997])

(assume \boldsymbol{u} has degree at least 2)

$\mathfrak{M}_{u} \xlongequal{\text { def }} \sum_{v \in V}\left(\frac{a_{u, v}+a_{v, u}}{\max _{x \neq u}\left\{a_{u, x}+a_{x, u}\right\}}\left[1-\sum_{\substack{y \in V \\ y \neq u, v}}\left(\frac{a_{u, y}+a_{y, u}}{\sum_{x \neq u}\left(a_{u, x}+a_{x, u}\right\}}\right)\left(\frac{a_{u, y}+a_{y, v}}{\max _{z \neq y}\left\{a_{v, z}+a_{z, v}\right\}}\right)\right]\right)$ too complicated \bigodot

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Structural hole in a social network [Burt, 1995; Borgatti, 1997]

Definition (Adjacency matrix of an undirected unweighted graph)
$\nu\left(\begin{array}{ccccc}\cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & a_{u, v} & \cdots & \cdots \\ \cdots & \cdots & \cdots & \vdots & \vdots\end{array}\right) \quad a_{u, v}= \begin{cases}1, & \text { if }\{u, v\} \text { is an edge } \\ 0, & \text { otherwise }\end{cases}$

Definition (measure of structural hole at node u [Burt, 1995; Borgatti, 1997]) (assume \boldsymbol{u} has degree at least 2)
Let $\operatorname{Nbr}(u)$ be set of nodes adjacent to u

$$
\mathfrak{M}_{u}=|\operatorname{Nbr}(u)|-\frac{\sum_{\nu, y \in \operatorname{Nbr}(u)} a_{\nu, y}}{|\operatorname{Nbr}(u)|}
$$

Next: An intuitive interpretation of $\mathfrak{M}_{\boldsymbol{u}} \downarrow$

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

An intuitive interpretation of \mathfrak{M}_{u}

Definition (weak dominance $<\underset{\text { weak }}{\rho, \lambda}$)

Nodes ν, y are weakly (ρ, λ)-dominated by node u provided

- $\rho<d_{u, v}, d_{u, y} \leq \rho+\lambda$, and
- for at least one shortest path \mathscr{P} between v and y, \mathscr{P} contains a node z such that $d_{u, z} \leq \rho$

Definition (strong dominance $<_{\text {strong }}^{\rho, \lambda}$)

Nodes ν, y are strongly (ρ, λ)-dominated by node u provided

- $\rho<d_{u, v}, d_{u, y} \leq \rho+\lambda$, and
- for every shortest path \mathscr{P} between v and y, \mathscr{P} contains a node z such that $d_{u, z} \leq \rho$

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

An intuitive interpretation of \mathfrak{M}_{u}

Notation (boundary of the ξ-neighborhood of node u)

$$
\mathscr{B}_{\xi}(u)=\left\{\nu \mid d_{u, v}=\xi\right\} \quad \text { the set of all nodes at a distance of precisely } \xi \text { from } u
$$

Observation

$\mathfrak{M}_{u}=\mathbb{E}\left[\left.\begin{array}{l}\text { number of pairs of nodes } v, y \text { such that } \\ \nu, y \text { is weakly } \underset{\rho}{(0,1)} \underset{\lambda}{ } \text {-dominated by } u\end{array} \right\rvert\, \begin{array}{l}v \text { is selected uniformly ran- } \\ \text { domly from } \underset{\underset{\rho}{0<j \leq 1}}{\bigcup} \mathscr{B}_{j}(u)\end{array}\right]$

$$
\geq \mathbb{T}\left[\begin{array}{l|l}
\text { number of pairs of nodes } v, y \text { such that } \\
v, y \text { is strongly (0,1)-dominated by } u
\end{array} \left\lvert\, \begin{array}{l}
v \text { is selected uniformly ran- } \\
\text { domly from } \bigcup_{0<j \leq 1} \mathscr{B}_{j}(u)
\end{array}\right.\right]
$$

always true
equality does not hold in general

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Generalize \mathfrak{M}_{u} to $\mathfrak{M}_{u, \rho, \lambda}$ for larger ball of influence of a node replace $(0,1)$ by (ρ, λ)

$$
\begin{aligned}
& \mathfrak{M}_{u}=\mathbb{E}\left[\left.\begin{array}{l|l}
\text { number of pairs of nodes } \nu, y \text { such that } \\
\nu, y \text { is weakly }(\underset{\rho}{(0,1)}, \boldsymbol{\lambda}
\end{array} \right\rvert\, \begin{array}{l}
v \text { is seminated by } u \\
\text { domly from } \\
\bigcup_{\rho}<j \leq{ }_{\lambda}
\end{array}\right] \mathscr{B}_{j}(u) . \\
& \mathfrak{M}_{u, \rho, \lambda}=\mathbb{E}\left[\left.\begin{array}{l|l}
\text { number of pairs of nodes } v, y \text { such that } \\
\nu, y \text { is weakly }(\rho, \lambda) \text {-dominated by } u
\end{array} \right\rvert\, \begin{array}{l}
v \text { is selected uniformly ran- } \\
\text { domly from } \bigcup_{\rho<j \leq \lambda} \mathscr{B}_{j}(u)
\end{array}\right]
\end{aligned}
$$

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Generalize \mathfrak{M}_{u} to $\mathfrak{M}_{u, \rho, \lambda}$ for larger ball of influence of a node replace $(0,1)$ by (ρ, λ)

Lemma (equivalence of strong and weak domination)

If $\lambda \geq \mathbf{6} \log _{2} n$ then

$\mathfrak{M}_{u, \rho, \lambda} \stackrel{\text { def }}{=}\left[\left.\begin{array}{l|l}\text { number of pairs of nodes } \nu, y \text { such that } \\ \nu, y \text { is weakly }(\rho, \lambda) \text {-dominated by } u\end{array} \right\rvert\, \begin{array}{l}v \text { is selected uniformly ran- } \\ \text { domly from } \bigcup_{\rho<j \leq \lambda}\end{array}\right]$
$=\mathbb{E}\left[\left.\begin{array}{l|l}\text { number of pairs of nodes } v, y \text { such that } \\ v, y \text { is strongly }(\rho, \lambda) \text {-dominated by } u\end{array} \right\rvert\, \begin{array}{l}v \text { is selected uniformly ran- } \\ \text { domly from } \bigcup_{\rho<j \leq \lambda} \mathscr{B}_{j}(u)\end{array}\right]$

equality holds now

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

Lemma (equivalence of strong and weak domination)

If $\lambda \geq \mathbf{6} \boldsymbol{\delta} \log _{2} n$ then

$\mathfrak{M}_{u, \rho, \lambda} \stackrel{\text { def }}{=} \mathbb{E}\left[\left.\begin{array}{l|l}\text { number of pairs of nodes } v, y \text { such that } \\ v, y \text { is weakly }(\rho, \lambda) \text {-dominated by } u\end{array} \right\rvert\, \begin{array}{l}v \text { is selected uniformly ran- } \\ \text { domly from } \bigcup_{\rho<j \leq \lambda} \mathscr{B}_{j}(u)\end{array}\right.$
$=\mathbb{E}\left[\left.\begin{array}{l|l}\text { number of pairs of nodes } v, y \text { such that } \\ \nu, y \text { is strongly }(\rho, \lambda) \text {-dominated by } u\end{array} \right\rvert\, \begin{array}{l}v \text { is selected uniformly } \\ \text { domly from } \bigcup_{\rho<j \leq \lambda} \mathscr{B}_{j}(u)\end{array}\right.$

What does this lemma mean intuitively?

R. Albert, B. DasGupta and N. Mobasheri, Physical Review E 89(3), 032811 (2014)

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively ?

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively?

UIC

Implications of hyperbolicity

Effect of hyperbolicity on structural holes in social networks

What does this lemma mean intuitively?

Final slide

Thank you for your attention

Questions??

