On the Computational Complexities of Three Privacy Measures for Large Networks Under Active Attack

Bhaskar DasGupta
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607, USA
dasgupta@cs.uic.edu
http://www.cs.uic.edu/~dasgupta

Bases on joint work with
T. Chatterjee, N. Mobasheri, V. Srinivasan and I. Yero

Supported by NSF grant IIS-1160995

Network Privacy Under Active Attack

malicious attackers are interested in sensitive attributes such as

- node degrees
- inter-node distances
- connecitivity of network

(k, ℓ)-anonymity (Trujillo-Rasua and Yero, 2016)

$\checkmark \ell$ is the maximum number of attacker nodes
$\triangleright(e . g .$, estimated through statistical methods)
$-k$ is a number indicating a privacy threshold
\triangleright prevent adversary from [6identifying individuals, ${ }^{\text {b/ }} \mid$ with probability higher than $1 / k$ identifying the "relevant attribute"
(for this talk)
distance vector from attacked nodes

Related Prior Concepts

- Metric dimension (also called landmarks)

Distance vectors must be mutually non-identical
[Harary \& Melter; 1976] [Khuller, Raghavachari \& Rosenfeld; 1996]
[Hauptmann, Schmied \& Viehmann; 2012]

Similar in flavor to general set cover problem

- Strong metric dimension

Constrained distance vectors
[Oellermann \& Peters-Fransen; 2012] [DasGupta \& Mobasheri; 2017]

Similar in flavor to the node cover problem

Other known privacy computational models and concepts

- Multi-party communication context
- [Yao, 1979], [Kushilevitz, 1992]
- Geometric notions of privacy
- [Feigenbaum, Jaggard, Schapira, 2010], [Comi, DasGupta, Schapira, Srinivasan, 2012]
- Information-theoretic
- [Bar-Yehuda, Chor, Kushilevitz, Orlitsky, 1993]
- Differential privacy (database retrieval context)
- [Dwork, 2006]
- Anonymization approach (like this talk)
- [Backstrom, Dwork, Kleinberg, 2007]

Problem 1 (metric anti-dimension or ADIM)

Find a k-antiresolving set \mathcal{S} of nodes that maximizes k

Intuitively, it sets an absolute bound $1 / k$ on the privacy violation probability of an adversary assuming that the adversary can use any number of attacker nodes

In practice, however, the number of attacker nodes employed by the adversary may be limited

This leads us to Problem 2

Problem 2 (k_{\geqslant}-metric antidimension or ADIM ${ }_{\geqslant k}$)

Given k, find $\mathbf{a} k^{\prime}$-antiresolving node set \mathcal{S} such that

- $k^{\prime} \geqslant k$, and
- $|\mathcal{S}|$ is minimized

n is number of nodes

Our Results for Problems 1 and 2

Theorem 1

(a) Both ADIM and ADIM ${ }_{\geqslant k}$ can be solved in $\mathrm{O}\left(\mathrm{n}^{4}\right)$ time.
(b) Both ADIM and ADIM ${ }_{\geqslant k}$ can also be solved in $O\left(\frac{n^{4} \log n}{k}\right)$ time "with high probability"
(i.e., with a probability of at least $1-\mathbf{n}^{-c}$ for some constant $\mathbf{c}>0$)

Remark
The randomized algorithm in (b) runs faster that the deterministic algorithm in (a) provided $k=\omega(\log n)$

Trade-off: (k, ℓ)-anonymity vs. $\left(k^{\prime}, \ell^{\prime}\right)$-anonymity

$$
k^{\prime}>k, \ell^{\prime}<\ell
$$

$\left(k^{\prime}, \ell^{\prime}\right)$-anonymity has smaller privacy violation probability $1 / k^{\prime}$ but can only tolerate infection of fewer number ℓ^{\prime} of nodes

This leads us to Problem 3

Problem 3 ($k_{=}$-metric antidimension or $\mathrm{ADIM}_{=k}$)
Given k, find a k-antiresolving node set \mathcal{S} that minimizes $|\mathcal{S}|$

n is number of nodes

Our Results for Problems 3

Theorem 2

(a) $\mathrm{ADIM}_{=k}$ is NP-complete for any k in the range $1 \leqslant k \leqslant n^{\varepsilon}$ where $0 \leqslant \varepsilon<\frac{1}{2}$ is any arbitrary constant
even if the diameter of the input graph is 2
(b) Assuming NP \nsubseteq DTIME $\left(n^{\log \log n}\right)$, there exists a universal constant $\delta>0$ such that
ADIM $_{=\mathrm{k}}$ does not admit a $\left(\frac{1}{\delta} \ln \boldsymbol{n}\right)$-approximation for any integer k in the range $1 \leqslant k \leqslant \boldsymbol{n}^{\varepsilon}$ for any constant $0 \leqslant \varepsilon<\frac{1}{2}$
even if the diameter of the input graph is 2
(c) If $k=n-c$ for some constant \boldsymbol{c} then $A D I M_{=k}$ can be solved in polynomial time

Our Results for Problems 3

Remarks on Theorem 2
(i) The result in (b) provides a much stronger inapproximability result compared to that in (a) at the expense of a slightly weaker complexity-theoretic assumption

```
(i.e., NP }\not\subseteq\mathrm{ DTIME ( }\mp@subsup{n}{}{\operatorname{log}\operatorname{log}n})\mathrm{ vs. P}\not=\mathbf{NP}
```

(ii) For $k=1$, the inapproximability ratio in (a) is asymptotically optimal up to a constant factor
because of the $(1+\ln (n-1))$-approximation of ADIM $_{=1}$ in Theorem 3(a)
to be discussed next

n is number of nodes

Our Results for Problems 3 (continued)

$$
\mathbf{k}=1
$$

Theorem 3
(a) $\mathrm{ADIM}_{=1}$ admits a $(1+\ln (\mathrm{n}-1))$-approximation in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time
(b) If G has at least one node of degree 1 then $A D I M_{=1}$ can be solved in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time
(c) If G does not contain a cycle of 4 edges then ADIM $_{=1}$ can be solved in $O\left(\mathrm{n}^{3}\right)$ time

Some Future Research Questions

- Is it possible to design a non-trivial approximation algorithm for ADIM $_{=k}$ for $k>1$?

We conjecture that a $O(\log n)$-approximation is possible for ADIM $_{=k}$ for every fixed k

- We provided logarithmic inapproximability result for ADIM $_{=k}$ for every k roughly up to \sqrt{n}. Can this approximability result be further improved when k is not a constant ?

We conjecture that the inapproximability factor can be further improved to $\Omega\left(\mathrm{n}^{\varepsilon}\right)$ for some constant $0<\varepsilon<1$ when k is around \sqrt{n}.

- How about attributes other than distance vectors?

