On optimal approximability results for computing the strong metric dimension

Bhaskar DasGupta

Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 bdasgup@uic.edu

June 24, 2015

Joint work with

Nasim Mobasheri (UIC)

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

June 24, 2015 1 / 15

.

2 Main result of this talk

3 Brief discussion of proof techniques

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

June 24, 2015 2 / 15

(4 回) (4 回) (4 回)

Basic notations and maximal shortest paths

Basic notations

- Nbr(u) : set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u,v}$: length (number of edges) of $u \stackrel{s}{\leftrightarrow} v$
- diam(G) = $\max_{u,v} \left\{ d_{u,v} \right\}$: diameter of graph G

Basic notations and maximal shortest paths

Basic notations

- Nbr(u) : set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u,v}$: length (number of edges) of $u \stackrel{s}{\leftrightarrow} v$
- diam(G) = $\max_{u,v} \left\{ d_{u,v} \right\}$: diameter of graph G

Definition (maximal shortest path)

 $u \stackrel{s}{\Leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Basic notations and maximal shortest paths

Basic notations

- Nbr(u) : set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u,v}$: length (number of edges) of $u \stackrel{s}{\leftrightarrow} v$
- diam(G) = $\max_{u,v} \left\{ d_{u,v} \right\}$: diameter of graph G

Definition (maximal shortest path)

 $u \stackrel{s}{\Leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Basic notations and maximal shortest paths

Basic notations

- Nbr(u) : set of neighbors of node u
- $u \stackrel{\bullet}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u,v}$: length (number of edges) of $u \stackrel{s}{\leftrightarrow} v$
- diam(G) = $\max_{u,v} \left\{ d_{u,v} \right\}$: diameter of graph G

Definition (maximal shortest path)

 $u \stackrel{s}{\Leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Definition (node x strongly resolves pa	ir of nodes	u and v)
$x \triangleright \{u, v\}$ if and only if v is on a shortest path between x and u	x ** v ** u	x = v is allowed
or <i>u</i> is on a shortest path between <i>x</i> and <i>v</i>	$x \stackrel{s}{\nleftrightarrow} u \stackrel{s}{\nleftrightarrow} v$	<i>x</i> = <i>u</i> is allowed

(日)

Definition (node x strongly resolves pa	ir of nodes	u and v)
$x \triangleright \{u, v\}$ if and only if		
v is on a shortest path between x and u	$x \stackrel{s}{\nleftrightarrow} v \stackrel{s}{\nleftrightarrow} u$	x = v is allowed
or <i>u</i> is on a shortest path between <i>x</i> and <i>v</i>	x ** u ** v	<i>x</i> = <i>u</i> is allowed

Definition (strongly resolving set of nodes V' for G)

 $V' \triangleright G$ if and only if some node in V' strongly resolves every distinct pair of nodes of G

 $\forall u, v \in V \exists x \in V': x \triangleright \{u, v\}$

Bhaskar DasGupta (UIC)

Problem of computing strong metric dimension

Problem of computing strong metric dimension				
Problem name	Str-M	ет-Dім		
Instance	undire	cted graph $G = (V, E)$		
Valid Solution	set of nodes V' such that $V' \triangleright G$			
Objective	minimize V'			
		Related notation	1	
		$sdim(G) = \min_{V' \triangleright G} \left\{ \left V' \right \right\}$		

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

Problem of computing strong metric dimension

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

Basic concepts related to approximation algorithms e.g., see V. Vazirani, *Approximation Algorithms*, Springer-Verlag, 2001

Minimization problem

Definition (ρ -approximation algorithm (algorithm with approximation ratio ρ))

- runs in time polynomial in size of input
- ► produces solution with value ≤ ρ OPT optimum value

.

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

Э 7/15 June 24, 2015

A 3 1 A 3 1 A

Main result of this talk

Theorem (Optimal approximability results for STR-MET-DIM)

- STR-MET-DIM admits a polynomial-time 2-approximation algorithm
- Assuming that the unique games conjecture^a is true, ► STR-MET-DIM does not admit a polynomial-time $(2 - \varepsilon)$ -approximation for any constant $\varepsilon > 0$
 - even if the given graph G satisfies
 - diam(G) ≤ 2 , or
 - G is bipartite and diam $(G) \leq 4$

for definition of unique games conjecture, see S. Khot, On the power of unique 2-Prover 1-Round games, 34th ACM Symposium on Theory of Computing, 2002

2 Main result of this talk

Brief discussion of proof techniques

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

A 3 1 A 3 1 A

Brief discussion of proof techniques

Brief discussion of proof techniques

Minimum Node Cover problem (MNC)

Problem	name	MNC	
---------	------	-----	--

Instance undirected graph G = (V, E)

Valid Solution set of nodes V' such that $V' \cap \{u, v\} \neq \emptyset$ for every edge $\{u, v\} \in E$

Objective minimize |V'|

Related notation

$$\mathsf{MNC}(G) = \min_{\forall \{u,v\} \in E: V' \cap \{u,v\} \neq \emptyset} \left\{ |V'| \right\}$$

Bhaskar DasGupta (UIC)

• • = • • = •

Brief discussion of proof techniques

Brief discussion of proof techniques

Minimum Node Cover problem (MNC)

10

- Instance undirected graph G = (V, E)
- Valid Solution set of nodes V' such that $V' \cap \{u, v\} \neq \emptyset$ for every edge $\{u, v\} \in E$

Objective minimize |V'|

Related notation

$$\mathsf{MNC}(G) = \min_{\forall \{u,v\} \in E: V' \cap \{u,v\} \neq \emptyset} \left\{ |V'| \right\}$$

Example (Illustration of MNC problem)

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

June 24, 2015 11 / 15

イロト 不得 トイヨト イヨト 三日

Brief discussion of proof techniques

June 24, 2015 12 / 15

• • = • • = •

Brief discussion of proof techniques

Brief discussion of proof techniques for the resultAssuming that the unique games conjecture is trueSTR-MET-DIM does not admit a polynomial-time $(2 - \varepsilon)$ -approximationeven if diam $(G) \le 2$, or even if G is bipartite and diam $(G) \le 4$

Brief discussion of proof techniques

Brief discussion of proof techniques for the result

Assuming that the unique games conjecture is true

STR-MET-DIM does not admit a polynomial-time $(2-\varepsilon)$ -approximation even if diam $(G) \le 2$, or even if G is bipartite and diam $(G) \le 4$

Brief discussion of proof techniques

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension

イロト イポト イヨト イヨト 二日

Brief discussion of proof techniques

Thank you for your attention

"But before we move on, allow me to belabor the point even further..."

Questions??

イロト イボト イヨト イヨト

Bhaskar DasGupta (UIC)

Approximability for strong metric dimension