On optimal approximability results for computing the strong metric dimension

Bhaskar DasGupta

Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607
bdasgup@uic.edu
June 24, 2015

Joint work with
Nasim Mobasheri (UIC)

Outline of talk

2. Main result of this talk

(3) Brief discussion of proof techniques

Introduction

Basic notations and maximal shortest paths

Basic notations

- $\operatorname{Nbr}(u)$: set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u, v}$: length (number of edges) of $u \stackrel{s}{\leftrightarrow} v$
- $\operatorname{diam}(G)=\max _{u, v}\left\{d_{u, v}\right\}$: diameter of graph G

$\operatorname{Nbr}\left(u_{2}\right)=\left\{u_{1}, u_{4}, u_{5}\right\}$
$\boldsymbol{u}_{\mathbf{2}} \stackrel{s}{\leftrightarrow} \boldsymbol{u}_{\mathbf{6}}$ is the path $\boldsymbol{u}_{\mathbf{2}}-\boldsymbol{u}_{\mathbf{5}}-\boldsymbol{u}_{\mathbf{6}}$
$d_{u_{2}, u_{6}}=2$

Introduction

Basic notations and maximal shortest paths

Basic notations

- $\operatorname{Nbr}(u)$: set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u, v}$: length (number of edges) of $u \stackrel{s}{\leadsto} v$
- $\operatorname{diam}(G)=\max _{u, v}\left\{d_{u, v}\right\}$: diameter of graph G

Definition (maximal shortest path)

$u \stackrel{s}{\leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Introduction

Basic notations and maximal shortest paths

Basic notations

- $\operatorname{Nbr}(u)$: set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u, v}$: length (number of edges) of $u \stackrel{s}{\leadsto} v$
- $\operatorname{diam}(G)=\max _{u, v}\left\{d_{u, v}\right\}$: diameter of graph G

Definition (maximal shortest path)

$u \stackrel{s}{\leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Introduction

Basic notations and maximal shortest paths

Basic notations

- $\operatorname{Nbr}(u)$: set of neighbors of node u
- $u \stackrel{s}{\leftrightarrow} v$: a shortest path between nodes u and v
- $d_{u, v}$: length (number of edges) of $u \stackrel{s}{\leadsto} v$
- $\operatorname{diam}(G)=\max _{u, v}\left\{d_{u, v}\right\}$: diameter of graph G

Definition (maximal shortest path)

$u \stackrel{s}{\leftrightarrow} v$ is maximal if it is not properly included inside another shortest path

Introduction

Strong resolution

Definition (node x strongly resolves pair of nodes u and v)

$x \triangleright\{u, v\}$ if and only if
ν is on a shortest path between x and $u \quad x_{\leftrightarrow}^{s} \stackrel{s}{\leadsto} \stackrel{s}{\leadsto} u \quad x=v$ is allowed or
u is on a shortest path between x and $v \quad x^{s} \stackrel{s}{\leftrightarrow} u \stackrel{s}{\leftrightarrow} v \quad x=u$ is allowed

Introduction

Strong resolution

Definition (node x strongly resolves pair of nodes u and v)

 $x \triangleright\{u, v\}$ if and only if ν is on a shortest path between x and $u \quad x_{\leftrightarrow}^{s} \underset{\sim}{s} \stackrel{s}{\sim} u \quad x=v$ is allowed oru is on a shortest path between x and $v \quad x^{s} \stackrel{s}{\leftrightarrow} u \stackrel{s}{\leftrightarrow} v \quad x=u$ is allowed

Definition (strongly resolving set of nodes V^{\prime} for G)

 $V^{\prime} \triangleright G$ if and only ifsome node in V^{\prime} strongly resolves every distinct pair of nodes of G

$$
\forall u, v \in V \exists x \in V^{\prime}: x \triangleright\{u, v\}
$$

Introduction

Problem of computing strong metric dimension

Problem of computing strong metric dimension

Problem name
Instance undirected graph $G=(V, E)$
Valid Solution set of nodes V^{\prime} such that $V^{\prime} \triangleright G$ Objective minimize $\left|V^{\prime}\right|$

$$
\begin{gathered}
\text { Related notation } \\
\operatorname{sdim}(G)=\min _{V^{\prime} \triangleright G}\left\{\left|V^{\prime}\right|\right\}
\end{gathered}
$$

Introduction

Problem of computing strong metric dimension

Problem of computing strong metric dimension

Problem name
Instance undirected graph $G=(V, E)$
Valid Solution set of nodes V^{\prime} such that $V^{\prime} \triangleright G$ Objective minimize $\left|V^{\prime}\right|$

Related notation

$$
\operatorname{sdim}(G)=\min _{V^{\prime} \triangleright G}\left\{\left|V^{\prime}\right|\right\}
$$

Example (Illustration of STR-MET-DIM)

$$
\begin{aligned}
& V^{\prime}=\left\{u_{1}, u_{2}, u_{3}\right\} \\
& \operatorname{sdim}(G)=3
\end{aligned}
$$

Introduction

Basic concepts related to approximation algorithms

Basic concepts related to approximation algorithms e.g., see V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001

Minimization problem

Definition (ρ-approximation algorithm (algorithm with approximation ratio ρ))

- runs in time polynomial in size of input
- produces solution with value $\leq \rho$ OPT
optimum value

Outline of talk

(1) Introduction

2. Main result of this talk

3 Brief discussion of proof techniques

Introduction

Main result of this talk

Main result of this talk

Theorem (Optimal approximability results for STR-MET-DIM)

- STR-MET-DIM admits a polynomial-time 2-approximation algorithm
- Assuming that the unique games conjecture ${ }^{a}$ is true, Str-MET-DIM does not admit a polynomial-time ($2-\varepsilon$)-approximation for any constant $\varepsilon>0$ even if the given graph G satisfies
- $\operatorname{diam}(G) \leq 2$, or
- G is bipartite and $\operatorname{diam}(G) \leq 4$

[^0]
Outline of talk

(1) Introduction

(2) Main result of this talk

3 Brief discussion of proof techniques

Introduction

Brief discussion of proof techniques

	Brief discussion of proof techniques
	Minimum Node Cover problem (MNC)
Problem name	MNC
Instance	undirected graph $G=(V, E)$
Valid Solution	set of nodes V^{\prime} such that $V^{\prime} \cap\{u, v\} \neq \varnothing$ for every edge $\{u, v\} \in E$
Objective	minimize $\left\|V^{\prime}\right\|$
Related notation	
	$\operatorname{MNC}(G)=\min _{\forall\{u, v\} \in E: V^{\prime} \cap\{u, v\} \neq \varnothing}\left\{\left\|V^{\prime}\right\|\right\}$

Introduction

Brief discussion of proof techniques

	Brief discussion of proof techniques
Minimum Node Cover problem (MNC)	
Problem name Instance	Mnc undirected graph $G=(V, E)$
Valid Solution	set of nodes V^{\prime} such that $V^{\prime} \cap\{u, v\} \neq \varnothing$ for every edge $\{u, v\} \in E$
Objective	minimize $\left\|V^{\prime}\right\|$
	Related notation
	$\operatorname{MNC}(G)=\min _{\forall\{u, v\} \in E: V^{\prime} \cap\{u, v\} \neq \varnothing}\left\{\left\|V^{\prime}\right\|\right\}$

Example (Illustration of MNC problem)

Introduction

Brief discussion of proof techniques

Boolean satisfiability problem (SAT)

```
Problem name SAT
    Instance - n Boolean variables }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{
    - m clauses C1, C2,\ldots,Cm}\mathrm{ over these variables
    \
    each clause is OR of some literals
        \lambda
    literal is variable or negation of variable
```

Decision question is $\Phi \stackrel{\text { def }}{=} C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ satisfiable ? can we set the variables such that Φ is true ?

Introduction

Brief discussion of proof techniques

Boolean satisfiability problem (SAT)

Problem name SAT

Instance - n Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- m clauses $C_{1}, C_{2}, \ldots, C_{m}$ over these variables

1
each clause is OR of some literals
λ
literal is variable or negation of variable
Decision question is $\Phi \stackrel{\text { def }}{=} C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ satisfiable ? can we set the variables such that Φ is true ?

Example (Illustration of SAT)

variables

$$
\begin{aligned}
\text { es } & x_{1}, x_{2}, x_{3}, x_{4} \\
\Phi= & \left(\neg x_{1} \vee x_{2}\right) \wedge\left(\underset{c_{1}}{\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\underset{c_{2}}{x_{3}}\right)}\right.
\end{aligned}
$$

Φ is satisfiable

$$
x_{1}=x_{2}=x_{3}=x_{4}=\mathrm{TRUE}
$$

Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques

Fact (S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2- ε, Journal of Computer and System Sciences, 74(3), 335-349, 2008)
$\delta>0$ any arbitrarily small constant assume unique games conjecture is true

Instance Φ of SAT

Instance (graph) G of MNC with n nodes

Φ is satisfiable
Φ is NOT satisfiable

Introduction

Brief discussion of proof techniques
Brief discussion of proof techniques for the result
Assuming that the unique games conjecture is true Str-MET-DIM does not admit a polynomial-time ($2-\varepsilon$)-approximation even if $\operatorname{diam}(G) \leq 2$, or even if G is bipartite and $\operatorname{diam}(G) \leq 4$
$\delta>0$ any arbitrarily small constant
assume unique games conjecture is true

Instance Φ of SAT Graph G of MNC with n nodes
Φ is satisfiable $\longrightarrow \operatorname{MNC}(G) \leq\left(\frac{1}{2}+\delta\right) n \longrightarrow \operatorname{sdim}(\tilde{G})<\left(\frac{1}{2}+\delta\right) n+\log _{2} n+1$

$$
\longrightarrow \operatorname{MNC}(G) \leq\left(\frac{1}{2}+\delta\right) n
$$

Φ is satisfiable $\longrightarrow \operatorname{MNC}(G) \leq\left(\frac{1}{2}+\delta\right) n \longrightarrow \operatorname{sdim}(\tilde{G})<\left(\frac{1}{2}+\delta\right) n+\log _{2} n+1$
$\operatorname{MNC}(G) \geq(1-\delta) n$
polynomial
time
transformation
IOn

Graph \tilde{G} of Str-Met-Dim with $n+\left\lfloor\log _{2} n\right\rfloor+1$ nodes $\operatorname{diam}(\tilde{G})=2$
Φ is NOT satisfiable \longrightarrow

$\operatorname{sdim}(\tilde{G}) \geq(1-\delta) n$
polynomial time transformation

Introduction

Brief discussion of proof techniques
Brief discussion of proof techniques for the result
Assuming that the unique games conjecture is true Str-MET-DIM does not admit a polynomial-time ($2-\varepsilon$)-approximation even if $\operatorname{diam}(G) \leq 2$, or even if G is bipartite and $\operatorname{diam}(G) \leq 4$
$\delta>0$ any arbitrarily small constant
assume unique games conjecture is true

$$
\varepsilon=\frac{1}{2}+\delta+\frac{\log _{2} n+1}{n}
$$

Φ is satisfiable $\longrightarrow \operatorname{MNC}(G) \leq\left(\frac{1}{2}+\delta\right) n \longrightarrow \operatorname{sdim}(\tilde{G})<\left(\frac{1}{2}+\delta\right) n+\log _{2} n+1$

Instance Φ of SAT

$$
\longrightarrow \operatorname{MNC}(G) \leq\left(\frac{1}{2}+\delta\right) n
$$

Φ is NOT satisfiable
polynomial
time
transformation
\qquad $\operatorname{MNC}(G) \geq(1-\delta) n$

Graph G of MNC with n nodes
Graph \tilde{G} of Str-MET-Dim with $n+\left\lfloor\log _{2} n\right\rfloor+1$ nodes $\operatorname{diam}(\tilde{G})=2$

$$
\left(\frac{1}{2}+\varepsilon\right) n
$$

polynomial time
transformation

Introduction

Brief discussion of proof techniques

Brief discussion of proof techniques for the result

NOT assuming unique games conjecture is true but assuming $\mathrm{P} \neq \mathrm{NP}$ ※1.3606

STR-MET-DIM does not admit a polynomial-time ($10 \sqrt{5}-21-\varepsilon$)-approximation even if $\operatorname{diam}(G) \leq 2$, or even if G is bipartite and $\operatorname{diam}(G) \leq 4$

Introduction

Brief discussion of proof techniques
Brief discussion of proof techniques for the result
NOT assuming unique games conjecture is true but assuming $\mathrm{P} \neq \mathrm{NP}$

$$
\approx 1.3606
$$

STR-MET-DIM does not admit a polynomial-time ($10 \sqrt{5}-21-\varepsilon$)-approximation even if $\operatorname{diam}(G) \leq 2$, or even if G is bipartite and $\operatorname{diam}(G) \leq 4$

$\delta>0$ any arbitrarily small constant

[Dinur and Safra, 2005]
Φ is satisfiable
Graph G of MNC with n nodes
Instance Φ of SAT
$\operatorname{MNC}(G) \leq(10 \sqrt{5}-21+\delta) n$
$\operatorname{sdim}(\tilde{G})<(10 \sqrt{5}-21+\delta) n$
$+\log _{2} n+1$ $\operatorname{sdim}(\tilde{G})<(10 \sqrt{5}-21+\delta) n$
$+\log _{2} n+1$

Graph \tilde{G} of Str-Met-Dim with $n+\left\lfloor\log _{2} n\right\rfloor+1$ nodes $\operatorname{diam}(\tilde{G})=2$
Φ is NOT satisfiable $\longrightarrow \operatorname{MNC}(G) \geq(1-\delta) n$
polynomial time transformation
polynomial time transformation

Final slide

Thank you for your attention

"But before we move on, allow me to

Questions??
 belabor the point even further..."

[^0]: $a_{\text {for definition of unique games conjecture, see } \mathrm{S} \text {. Khot, On the power of unique 2-Prover 1-Round games, }}$
 $34^{\text {th }}$ ACM Symposium on Theory of Computing, 2002

