Tight Approximability Results for Test Set Problems in Bioinformatics

Piotr Berman[†]

Department of Computer Science & Engineering Pennsylvania State University University Park, PA 16802 Email: berman@cse.psu.edu

Bhaskar DasGupta[‡]

Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 Email: dasgupta@cs.uic.edu

Ming-Yang Kao[¶]

Department of Computer Science Northwestern University Evanston, IL 60201 Email: kao@cs.northwestern.edu

† Supported by NSF grant CCR-0208821.

 \ddagger Supported by NSF Grants CCR-0296041, CCR-0206795, CCR-0208749 and a CAREER grant IIS-0346973.

Supported by NSF grant EIA-0112934.

A General Framework

Problem TS^{Γ}(k): $\Gamma \subseteq 2^{\{0,1,2\}}$, k a positive integer k

Instance: (n, S) where $S \subseteq 2^{\{0, 1, 2, \dots, n-1\}}$

Terminologies:

- A k-test is a union of at most k sets from ${\mathcal S}$
- For a $\gamma \in \Gamma$ and two distinct elements $x, y \in \{0, 1, 2, \dots, n-1\}$, a k-test T γ -distinguishes x and y if $|\{x, y\} \cap T| \in \gamma$.

Valid solutions: A collection ${\mathcal T}$ of k-tests such that

$$(\forall \mathbf{x}, \mathbf{y} \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \cdots, \mathbf{n} - \mathbf{1}\} \ \forall \gamma \in \Gamma) \ \mathbf{x} \neq \mathbf{y}$$

 \implies
 $\exists \mathbf{T} \in \mathcal{T} \text{ such that } T \gamma \text{-distinguishes } \mathbf{x} \text{ and } \mathbf{y}$

Objective: minimize $|\mathcal{T}|$.

Some Problems Captured by General Framework

Minimum Test Collection Problems

- Equivalent to $TS^{\{1\}}(1)$
 - Objects $\mathcal{O}_1, \mathcal{O}_2, \cdots, \mathcal{O}_n$
 - $\mathcal{O}_i, \mathcal{O}_j \text{ is distinguished by test } T \text{ if } T \cap \{\mathcal{O}_i, \mathcal{O}_j\} = 1.$
- Applications: diagnostic testing
- Reference: Garey and Johnson's book on NP-completeness, page 71.

More Problems Captured by General Framework

Condition Cover Problems

• Captured by $TS^{\{1\},\{0,2\}}(1)$

- test : assignment σ of I_1, I_2, \ldots, I_m to 0/1 values. For this assignment, m^{th} output is $\mathcal{O}_m(\sigma)$
- Set of tests given as part of input
- $\mathcal{O}_i, \mathcal{O}_j$ are distinguished if

 $- \ \exists \sigma \ : \ \mathcal{O}_{\mathfrak{i}}(\sigma) = \mathcal{O}_{\mathfrak{j}}(\sigma) \ \& \ \exists \rho \ : \ \mathcal{O}_{\mathfrak{i}}(\rho) \neq \mathcal{O}_{\mathfrak{j}}(\rho)$

• Applications: verifying a multi-output feedforward Boolean circuit as a model of specific biological pathways

More Problems Captured by General Framework

Simplest String Barcoding Problems $(SB^{\Sigma}(1))$

- very special case of $TS^{\{1\}}(k)$
 - Given: set ${\mathcal S}$ of sequences over alphabet Σ
 - Definition of barcode: for a sequence s and a set of sequences t, $barcode(s, \vec{t})$ is the Boolean vector (c_0, c_1, c_{m-1}) where c_i is 1 if t_i is a substring of s.

Simplest String Barcoding Problems (continued)

- Valid solutions: a set of sequences $\vec{\mathbf{t}}$ such that $\forall s, s' \in S : s \neq s' \equiv barcode(s, \vec{\mathbf{t}}) \neq barcode(s', \vec{\mathbf{t}})$

Objective: minimize $|\vec{\mathbf{t}}|$.

July 7, 2004

Simplest String Barcoding Problems (continued)

- Applications:
 - database compression/fast database search for DNA sequences
 - DNA microarray designs for unknown pathogen identification

• A special case of $MCP^{\Sigma}(r)$ is $SB^{\Sigma}(1)$

If \mathcal{P} is the set of all substrings of all sequences in \mathcal{S} then $MCP^{\Sigma}(1)$ is precisely $SB^{\Sigma}(1)$

• Applications: in minimization the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA gene (rDNA) clones by hybridization experiments on DNA microarrays

- Upper bounds are proved for the more general cases $(TS^{\{1\},\{0,2\}}(1), TS^{\{1\}}(1) \text{ and } MCP^{\Sigma}(r))$
- Lower bounds are proved for the most restrictive case $(SB^{\{0,1\}}(1) \text{ and } TS^{\{1\},\{0,2\}}(1))$
- Lower bounds are also proved for $TS^{\{1\},\{0,2\}}(k),\,TS^{\{1\}}(k)\,$ and $SB^{\{0,1\}}(k)\,$ when k is large

Summary of our results

(matching upper/lower bounds)

	Approximation Ratio		
Problem	Upper Bound	Lower Bound	
	(algorithm)	the bound	Assumptions
$TS^{\{1\}}(1)$	$1 + \ln n$	$(1-\varepsilon)\ln n$	$NP \not\subset DTIME(n^{\log \log n})$
$TS^{\{1\},\{0,2\}}(1)$	$1 + \ln 2 + \ln n$	$(1-\varepsilon)\ln n$	$NP \not\subset DTIME(n^{\log \log n})$
$SB^{\Sigma}(1)$	$1 + \ln n$	nn $(1-\varepsilon)\ln n$	$NP \not\subset DTIME(n^{\log \log n})$
			$ \Sigma > 1$
$MCP^{\Sigma}(\mathbf{r})$	$[1 + o(1)] \ln n$	$(1-\varepsilon)\ln n$	$NP \not\subset DTIME(n^{\log \log n})$
			$ \Sigma > 1$
$\mathrm{TS}^{\{1\}}(\mathfrak{n}^{\delta})$		n ^ε	NP≠co-RP
${ m TS}^{\{1\},\{0,2\}}({\mathfrak n}^{\delta})$			$0 < \varepsilon < \delta < 1$
$SB^{\{0,1\}}(\mathfrak{n}^{\delta})$		n ^ε	NP≠co-RP
			$0 < \varepsilon < \delta < \frac{1}{2}$
ε and δ are <i>arbitrary</i> constants			

Comparison of our results with those in [1,2]

- B. V. Halldórsson, M. M. Halldórsson and R. Ravi. On the Approximability of the Minimum Test Collection Problem, Proc. Ninth Annual European Symposium on Algorithms, Lecture Notes in Computer Science 2161, pp. 158-169, 2001.
- [2] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi and L. Stougie. *Approximation algorithms for the test cover problem*, Mathematical Programming-B, Vol. 98, No. 1-3, 2003, pp. 477-491.

- The authors in [1,2] proved a $(1 \varepsilon) \ln n$ lower bound for approximation for $TS^{\{1\}}(1)$
 - We prove a lower bound of $(1 \varepsilon) \ln n$ for the very special case $SB^{\{0,1\}}$

$$TS^{\{1\}}(1) \supseteq SB^{\{0,1\}}(1)$$

$$(1-\varepsilon) \ln n \text{ of } [1,2] \qquad our (1-\varepsilon) \ln n$$

Comparison of our results with those in [1,2] (continued)

- The proof in [1,2] from set-cover to $TS^{1}(1)$ does not seem to be easily transformable to provide a lower bound for $SB^{\{0,1\}}$ with a similar quality of non-approximability because of the special nature of $SB^{\{0,1\}}$
- We therefore needed to introduce an artificial intermediate problem (the "test set with order with positive integer parameter m" problem, denoted by TSO^m) which we could then translate to SB^{0,1} in a non-trivial manner

Comparison of our results with those in [1,2] (continued)

• In general, TSO^m is neither equivalent to or nor a special case of $TS^{\{1\}}(1)$.

Summary of Other Techniques Used

- Algorithm for TS^{1}(1), TS^{{1},{0,2}}(1) and MCP^Σ(r) is a greedy algorithm that selects tests based on the change of information content of the partition of the universe
 - A set of tests ${\mathcal T}$ defines an entropy ${\mathsf H}_{{\mathcal T}}$
 - notion of information content IC
 - \mathcal{T} = already selected tests

- new test

$$IC(T, T) = H_T - H_{T \cup T}$$

– Greedy heuristics

 $\mathcal{T} = \emptyset$

while $H_T \neq 0$ do

select a $T \in S - T$ that maximizes IC(T, T)

$$\mathcal{T} = \mathcal{T} \cup \mathsf{T}$$

endwhile

• The inapproximability results for $TS^{\{1\}}(n^{\delta})$, $TS^{\{0\},\{1,2\}}(n^{\delta})$ and $SB^{\{0,1\}}(n^{\delta})$ are obtained by approximation preserving reductions from the graph coloring problem.

jjuoijuəjje snos soj noz yuey[

MAT 2004