Tight Approximability Results for Test Set Problems in Bioinformatics
 Piotr Berman ${ }^{\dagger}$
 Department of Computer Science
 \& Engineering
 Pennsylvania State University
 University Park, PA 16802
 Email: berman@cse.psu.edu
 Bhaskar DasGupta ${ }^{\ddagger}$
 Department of Computer Science
 University of Illinois at Chicago
 Chicago, IL 60607
 Email: dasgupta@cs.uic.edu

Ming-Yang Kao ${ }^{〔}$

Department of Computer Science
Northwestern University
Evanston, IL 60201
Email: kao@cs.northwestern.edu
\dagger Supported by NSF grant CCR-0208821.
\ddagger Supported by NSF Grants CCR-0296041, CCR-0206795, CCR-0208749 and a CAREER grant IIS-0346973.

【 Supported by NSF grant EIA-0112934.

A General Framework

Problem $\operatorname{TS}^{\Gamma}(\mathrm{k}): \Gamma \subseteq 2^{\{0,1,2\}}, k$ a positive integer k
Instance: (n, \mathcal{S}) where $\mathcal{S} \subseteq 2^{\{0,1,2, \cdots, n-1\}}$
Terminologies:

- A k-test is a union of at most k sets from \mathcal{S}
- For a $\gamma \in \Gamma$ and two distinct elements $x, y \in\{0,1,2, \cdots, n-1\}$, a k-test $T \gamma$-distinguishes x and y if $|\{x, y\} \cap T| \in \gamma$.

Valid solutions: A collection \mathcal{T} of k-tests such that

$$
\begin{aligned}
& (\forall \mathbf{x}, \mathbf{y} \in\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \cdots, \mathbf{n}-\mathbf{1}\} \forall \gamma \in \Gamma) \mathbf{x} \neq \mathbf{y} \\
& \Longrightarrow \\
& \exists \mathbf{T} \in \mathcal{T} \text { such that } \mathrm{T} \gamma \text {-distinguishes } \mathrm{x} \text { and } \mathrm{y}
\end{aligned}
$$

Objective: minimize $|\mathcal{T}|$.

Minimum Test Collection Problems

- Equivalent to $\mathrm{TS}^{\{1\}}(1)$
- Objects $\mathcal{O}_{1}, \mathcal{O}_{2}, \cdots, \mathcal{O}_{n}$
$-\mathcal{O}_{i}, \mathcal{O}_{j}$ is distinguished by test T if $\mathrm{T} \cap\left\{\mathcal{O}_{i}, \mathcal{O}_{j}\right\}=1$.
- Applications: diagnostic testing
- Reference: Garey and Johnson's book on NP-completeness, page 71 .

More Problems Captured by General Framework

Condition Cover Problems

- Captured by TS ${ }^{\{1\},\{0,2\}}(1)$

- test : assignment σ of $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{m}}$ to $0 / 1$ values.

For this assignment, $\mathrm{m}^{\text {th }}$ output is $\mathcal{O}_{\mathrm{m}}(\sigma)$

- Set of tests given as part of input
- $\mathcal{O}_{i}, \mathcal{O}_{j}$ are distinguished if
$-\exists \sigma: \mathcal{O}_{i}(\sigma)=\mathcal{O}_{\mathfrak{j}}(\sigma) \& \exists \rho: \mathcal{O}_{i}(\rho) \neq \mathcal{O}_{j}(\rho)$
- Applications: verifying a multi-output feedforward Boolean circuit as a model of specific biological pathways

More Problems Captured by General Framework

Simplest String Barcoding Problems (SB ${ }^{\Sigma}(1)$)

- very special case of $\operatorname{TS}^{\{1\}}(\mathrm{k})$
- Given: set \mathcal{S} of sequences over alphabet Σ
- Definition of barcode: for a sequence s and a set of sequences \mathbf{t}, barcode (s, \vec{t}) is the Boolean vector $\left(c_{0}, c_{1}, c_{m-1}\right)$ where c_{i} is 1 if t_{i} is a substring of s.

Simplest String Barcoding Problems (continued)

- Valid solutions: a set of sequences $\overrightarrow{\mathbf{t}}$ such that $\forall s, s^{\prime} \in \mathcal{S}: s \neq s^{\prime} \equiv \operatorname{barcode}(s, \overrightarrow{\mathbf{t}}) \neq \operatorname{barcode}\left(s^{\prime}, \overrightarrow{\mathbf{t}}\right)$

\mathcal{S}	$\overrightarrow{\mathrm{t}}$			
	A	CC	TTT	GT
$\mathrm{S}_{1}=\mathrm{AAC}$	1	0	0	0
$\mathrm{S}_{2}=\mathrm{ACC}$	1	1	0	0
$S_{3}=\mathrm{GGGGG}$	0	0	0	0
$\mathrm{S}_{4}=\mathrm{GTGTGG}$	0	0	0	1
$\mathrm{S}_{5}=\mathrm{TTTT}$	0	0	1	0

Objective: minimize $|\overrightarrow{\mathbf{t}}|$.

Simplest String Barcoding Problems (continued)

- Applications:
- database compression/fast database search for DNA sequences
- DNA microarray designs for unknown pathogen identification

More Problems Captured by General Framework

Minimum Cost Probe Set with Threshold r ($\left.\operatorname{MCP}^{\Sigma}(\mathrm{r})\right)$:

- variation of $\mathrm{TS}^{\{1\}}(1)$

Given : sets \mathcal{S} and \mathcal{P} of sequences over alphabet Σ and an integer $r>0$

Definition of r-barcode : for a sequence s and a set of sequences \mathbf{t}, r-barcode $(s, \overrightarrow{\mathbf{t}})$ is the integer vector (c_{0}, c_{1}, c_{m-1}) where

$$
c_{i}=\min \left\{r, \text { number of occurrences of } t_{i} \text { in } s\right\}
$$

Valid solutions: set of sequences $\overrightarrow{\mathbf{t}} \subseteq \mathcal{P}$ such that

$$
\forall s, s^{\prime} \in \mathcal{S}: s \neq s^{\prime} \equiv r \text {-barcode }(s, \overrightarrow{\mathbf{t}}) \neq r \text {-barcode }\left(s^{\prime}, \overrightarrow{\mathbf{t}}\right)
$$

Objective: minimize $|\overrightarrow{\mathbf{t}}|$.

- A special case of $\mathrm{MCP}^{\Sigma}(r)$ is $\mathrm{SB}^{\Sigma}(1)$

If \mathcal{P} is the set of all substrings of all sequences in \mathcal{S} then $\operatorname{MCP}^{\Sigma}(1)$ is precisely $\mathrm{SB}^{\Sigma}(1)$

- Applications: in minimization the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA gene (rDNA) clones by hybridization experiments on DNA microarrays

- Upper bounds are proved for the more general cases $\left(\operatorname{TS}^{\{1\},\{0,2\}}(1), \operatorname{TS}^{\{1\}}(1)\right.$ and $\left.\operatorname{MCP}^{\Sigma}(r)\right)$
- Lower bounds are proved for the most restrictive case $\left(\mathrm{SB}^{\{0,1\}}(1)\right.$ and $\left.\mathrm{TS}^{\{1\},\{0,2\}}(1)\right)$
- Lower bounds are also proved for $\operatorname{TS}^{\{1\},\{0,2\}}(\mathrm{k}), \operatorname{TS}^{\{1\}}(\mathrm{k})$ and $\mathrm{SB}^{\{0,1\}}(\mathrm{k})$ when k is large

Summary of our results
(matching upper/lower bounds)

Problem	Approximation Ratio		
	Upper Bound (algorithm)	Lower Bound	
		the bound	Assumptions
$\mathrm{TS}^{\{1\}}(1)$	$1+\ln n$	$(1-\varepsilon) \ln n$	NP $\subset \subset$ DTIME $\left(n^{\log \log n}\right)$
$\mathrm{TS}^{\{1\},\{0,2\}}(1)$	$1+\ln 2+\ln n$	$(1-\varepsilon) \ln n$	NP $\not \subset \mathrm{DTIME}\left(n^{\log \log n}\right)$
$\mathrm{SB}^{\Sigma}(1)$	$1+\ln n$	$(1-\varepsilon) \ln n$	$\begin{gathered} \operatorname{NP} \not \subset \mathrm{DTIME}\left(\mathrm{n}^{\log \log n}\right) \\ \|\Sigma\|>1 \end{gathered}$
$\mathrm{MCP}^{\Sigma}(\mathrm{r})$	$[1+\mathrm{o}(1)] \ln \mathrm{n}$	$(1-\varepsilon) \ln n$	$\begin{gathered} \text { NP } \not \subset \mathrm{DTIME}\left(\mathrm{n}^{\log \log n}\right) \\ \|\Sigma\|>1 \end{gathered}$
$\begin{aligned} & \operatorname{TS}^{\{1\}}\left(n^{\delta}\right) \\ & \operatorname{TS}^{\{1\},\{0,2\}}\left(n^{\delta}\right) \end{aligned}$		n^{ε}	$\begin{gathered} \mathrm{NP} \neq \mathrm{co}-\mathrm{RP} \\ 0<\varepsilon<\delta<1 \end{gathered}$
$\mathrm{SB}^{\{0,1\}}\left(\mathrm{n}^{\delta}\right)$		n^{ε}	$\begin{gathered} \mathrm{NP} \neq \mathrm{co}-\mathrm{RP} \\ 0<\varepsilon<\delta<\frac{1}{2} \end{gathered}$

ε and δ are arbitrary constants

Comparison of our results with those in [1,2]

[1] B. V. Halldórsson, M. M. Halldórsson and R. Ravi. On the Approximability of the Minimum Test Collection Problem, Proc. Ninth Annual European Symposium on Algorithms, Lecture Notes in Computer Science 2161, pp. 158-169, 2001.
[2] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi and L. Stougie. Approximation algorithms for the test cover problem, Mathematical Programming-B, Vol. 98, No. 1-3, 2003, pp. 477-491.

Comparison of our results with those in [1,2]

- The authors in $[1,2]$ proved a $(1-\varepsilon) \ln n$ lower bound for approximation for $\mathrm{TS}^{\{1\}}(1)$

We prove a lower bound of $(1-\varepsilon) \ln n$ for the very special case $\mathrm{SB}^{\{0,1\}}$

Comparison of our results with those in $[1,2]$ (continued)

- The proof in $[1,2]$ from set-cover to $\operatorname{TS}^{1}(1)$ does not seem to be easily transformable to provide a lower bound for $\mathrm{SB}^{\{0,1\}}$ with a similar quality of non-approximability because of the special nature of $\mathrm{SB}^{\{0,1\}}$
- We therefore needed to introduce an artificial intermediate problem (the "test set with order with positive integer parameter m " problem, denoted by TSO^{m}) which we could then translate to $\mathrm{SB}^{\{0,1\}}$ in a non-trivial manner

$\left(1-\varepsilon_{1}\right) \ln n$
non-approximability

$\left(1-\varepsilon_{2}\right) \ln n$
non-approximability

$\left(1-\varepsilon_{3}\right) \ln n$
non-approximability

Comparison of our results with those in $[1,2]$ (continued)

- In general, TSO^{m} is neither equivalent to or nor a special case of $\operatorname{TS}^{\{1\}}(1)$.

Summary of Other Techniques Used

- Algorithm for $\operatorname{TS}^{\{1\}}(1), \operatorname{TS}^{\{1\},\{0,2\}}(1)$ and $\operatorname{MCP}^{\Sigma}(r)$ is a greedy algorithm that selects tests based on the change of information content of the partition of the universe
- A set of tests \mathcal{T} defines an entropy $\mathrm{H}_{\mathcal{T}}$
- notion of information content IC
$\mathcal{T}=$ already selected tests
$\mathrm{T}=$ new test

$$
\operatorname{IC}(\mathrm{T}, \mathcal{T})=\mathrm{H}_{\mathcal{T}}-\mathrm{H}_{\mathcal{T} \cup T}
$$

- Greedy heuristics

```
T}=
while }\mp@subsup{\textrm{H}}{\mathcal{T}}{}\not=0\mathrm{ do
    select a T }\in\mathcal{S}-\mathcal{T}\mathrm{ that maximizes IC (T, T}
    T}=\mathcal{T}\cup
endwhile
```

- The inapproximability results for $\operatorname{TS}^{\{1\}}\left(n^{\delta}\right), \operatorname{TS}^{\{0\} .\{1,2\}}\left(n^{\delta}\right)$ and $\mathrm{SB}^{\{0,1\}}\left(\mathrm{n}^{\delta}\right)$ are obtained by approximation preserving reductions from the graph coloring problem.
ijucrfuraffe minar tof not yureyt

