

Bhaskar DasGupta*

Department of Computer Science University of Illinois at Chicago Chicago, IL 60607 bdasgup@uic.edu

⁺ Joint result with Tanima Chatterjee, Laura Palmieri, Zainab Al-Qurashi and Anastasios Sidiropoulos

▼ Partially supported by NSF grants IIS-1160995 and IIS-1814931

Gerrymandering

Creation of district plans with highly asymmetric electoral outcomes to disenfranchise voters

☐ Long history starting from as early as 1812

1812 : shape of South Essex district (Massachusetts) resembling a *salamander* created to favor selected candidates

■ Extensive legal history too!

1986: US Supreme Court: gerrymandering is justiciable

2006: US Supreme Court : *some measure* of partisan symmetry

may be used to remedy gerrymandering

Which measure? Court did not say. Depends case by case.

2019: US Supreme Court : best settled at the legislative and political level (ALAS!)

☐ Major impediment to removing gerrymandering

How to formulate an effective and precise measure for partisan bias that will be **acceptable in courts**?

"Gerry" and "salamander" 1812, State Senate Elections, Massachusetts

Some tools politicians use for partisan gerrymandering in 2-party system

- □Packing → concentrate voters of opposition party in a single district
- □Cracking → spread voters of opposition party across many districts

Other methods include

- Hijacking
- Kidnapping etc.

"Efficiency Gap" measure for partisan gerrymandering

- ➤ Introduced by Stephanopoulos and McGhee in 2014 for a 2-party system (such as USA)
- ➤ Minimizes absolute difference of total "wasted votes" between the parties
- > Very promising in several aspects, e.g.,
 - > provides a "mathematically precise" measure of gerrymandering with desirable properties
 - > was found legally convincing in a US appeals court case
 - ➤ ALAS, Supreme Court overturned the ruling in 2019

"Wasted votes" for a district

- ➤ Total votes 100 (need 51 to win)
 - ➤ Party A vote 59
 - >Party B vote 41
- ➤ Wasted votes for Party A 59-51=8
- ➤ Wasted votes for Party B 41

"Efficiency gap" measure for the whole map

sum of Party A wasted votes over all districts - sum of Party B wasted votes over all districts

Total votes over all districts

Basic assumption: *only two* parties: Party A and Party B (3rd party votes are negligible, like in USA)

Topological part of an input: a "map" P

▶ partitioned into atomic elements or cells
 e.g., , subdivisions of counties

Two possible types of maps:

Rectilinear polygon \mathcal{P} without holes

- $\triangleright \mathcal{P}$ placed on a unit grid of size $m \times n$
- \triangleright atomic elements (cells) \Rightarrow unit squares of grid inside \mathcal{P}
- $\triangleright \ v_{i,j}: \text{cell on } i^{\text{th}} \text{ row and } j^{\text{th}} \text{ column}$

Arbitrary polygon \mathcal{P} without holes:

- \triangleright atomic elements (cells) \Rightarrow sub-polygons (without holes) inside \mathcal{P}
- \triangleright Alternate way of looking: **planar graph** $G(\mathcal{P})$
 - nodes are cells
 - edge connects two cells if they share boundary

only two parties: Party A and Party B

Parameters of our gerrymandering problem

- Map \mathcal{P} :
 - \triangleright size $|\mathcal{P}|$: number of cells or nodes in \mathcal{P}
- Cell or node y of \mathcal{P} :
 - \triangleright PartyA(y): total number of voters for Party A
 - \triangleright PartyB(y): total number of voters for Party B
 - $\triangleright \mathsf{Pop}(y) = \mathsf{PartyA}(y) + \mathsf{PartyB}(y)$: total number of voters
- **Global:**
 - $\triangleright \kappa$: required (legally mandated) number of districts $(1 < \kappa < |\mathcal{P}|)$
 - ▶ Hard constraint: solution with different value of κ would be *illegal*
 - ightharpoonup precludes designing approximation algorithm in which the value of κ changes even by just ± 1
 - \triangleright computational hardness for a value of κ may *not* necessarily imply hardness for another value of κ

only two parties: Party A and Party B

Granularities of numeric parameters

- □ Course granularity:
 - $\triangleright Pop(y)$'s are numbers of arbitrary size
 - > total number of bits contributes to input size
- □ Fine granularity:
 - $\triangleright \forall \text{ cell or node } y : 0 < \mathsf{Pop}(y) \leq c \text{ for some } \textit{fixed constant } c$
 - **▷** data at the "Voting Tabulation District" (VTD) level or "census block" level
- **□** Ultra-fine granularity:
 - $\triangleright \forall \text{ cell or node } y$: $\mathsf{Pop}(y) = c \text{ for some } \textit{fixed constant } c$
 - > theoretically interesting case, but practically a bit unrealistic

only two parties: Party A and Party B

- κ number of districts
- ${\cal S}$ set of all cells in given polygonal map ${\cal P}$ or, set of all nodes in given planar graph $G({\cal P})$
- districting scheme partition of \mathcal{S} into κ subsets $\mathcal{S}_1, \ldots, \mathcal{S}_{\kappa}$

Notations for each
$$\mathcal{S}_j$$

Party affiliations in
$$S_j$$
 PartyA $(S_j) = \sum_{y \in S_j} \text{PartyA}(y)$ PartyB $(S_j) = \sum_{y \in S_j} \text{PartyB}(y)$

Population of
$$S_j$$
 Pop (S_j) = PartyA (S_j) + PartyB (S_j)

Legal requirements for valid re-districting plans

- \square Every S_j must be a connected polygon
- \square Populations of different S_j 's must be as equal as possible

only two parties: Party A and Party B

Legal requirements for valid re-districting plans

- \square Every S_j must be a connected polygon
- \square Populations of different S_j 's must be as equal as possible
 - > Strict partitioning criteria

$$\{\mathcal{S}_1,\ldots,\mathcal{S}_\kappa\}$$
 is an exact κ -equipartition of $\mathcal{S},$ i.e., $\forall j: \mathsf{Pop}(\mathcal{S}_j) \in \{\lfloor \mathsf{Pop}(\mathcal{S})/\kappa \rfloor, \lceil \mathsf{Pop}(\mathcal{S})/\kappa \rceil\}$

▷ (Multiplicatively) approximate partitioning criteria

$$\{\mathcal{S}_1,\ldots,\mathcal{S}_\kappa\}$$
 is a ε -approximate κ -equipartition of $\mathcal{S},$ i.e., $\frac{\max\left\{\mathsf{Pop}(\mathcal{S}_j)\right\}}{\min\left\{\mathsf{Pop}(\mathcal{S}_j)\right\}} \leq 1 + \varepsilon$

courts may allow a maximum value of ε in the range of 0.05 to 0.1 e.g., (US Supreme Court ruling in Karcher v. Daggett, 1983)

▶ Additively approximate partitioning criteria

$$\{S_1, \ldots, S_{\kappa}\}\$$
 is an additive ε -approximate κ -equipartition of S , i.e., $\max \{\mathsf{Pop}(S_j)\} \leq \min \{\mathsf{Pop}(S_j)\} + \varepsilon$

only two parties: Party A and Party B

"Wasted votes" for a district

- \succ Total votes 100 (Party A needs 50 to win) $Pop(S_j)$
 - \triangleright Party A vote 59 Party A (S_i)
 - \triangleright Party B vote 41 Party B(\mathcal{S}_j)
- > Wasted votes for Party A 59-50=9 Party A $(S_j)-\frac{1}{2}Pop(S_j)$
- \triangleright Wasted votes for Party B 41 PartyB(S_j)
- \triangleright Efficiency gap for S_i 9 41 = -32

$$\mathsf{Effgap}(\mathcal{S}_j) = \left\{ \begin{array}{l} \left(\mathsf{PartyA}(\mathcal{S}_j) - \frac{1}{2} \mathsf{Pop}(\mathcal{S}_j) \right) - \mathsf{PartyB}(\mathcal{S}_j) \\ = 2 \mathsf{PartyA}(\mathcal{S}_j) - \frac{3}{2} \mathsf{Pop}(\mathcal{S}_j) \end{array} \right. \quad \text{if } \mathsf{PartyA}(\mathcal{S}_j) \geq \frac{1}{2} \mathsf{Pop}(\mathcal{S}_j)$$

from the point of view of Party A (the victim party of gerrymandering)

only two parties: Party A and Party B

"Wasted votes" for a district

- \succ Total votes 100 (Party A needs 50 to win) $Pop(S_j)$
 - > Party A vote 41
 - > Party B vote 59

 $\mathsf{PartyB}(\mathcal{S}_j)$

 $\mathsf{PartyA}(\mathcal{S}_i)$

- ➤ Wasted votes for Party A
- 'O O
- 41 Party $\mathsf{A}(\mathcal{S}_j)$
- \triangleright Wasted votes for Party B 59 50 = 9
- $\mathsf{PartyB}(\mathcal{S}_j) rac{1}{2}\mathsf{Pop}(\mathcal{S}_j)$
- \triangleright Efficiency gap for S_j 41 9 = -32

$$\mathsf{Effgap}(\mathcal{S}_j) = \left\{ \begin{array}{l} \mathsf{PartyA}(\mathcal{S}_j) - \left(\mathsf{PartyB}(\mathcal{S}_j) - \frac{1}{2}\mathsf{Pop}(\mathcal{S}_j)\right) \\ = 2\mathsf{PartyA}(\mathcal{S}_j) - \frac{1}{2}\mathsf{Pop}(\mathcal{S}_j) \end{array} \right. \quad \text{if } \mathsf{PartyA}(\mathcal{S}_j) < \frac{1}{2}\mathsf{Pop}(\mathcal{S}_j)$$

from the point of view of Party A (the victim party of gerrymandering)

only two parties: Party A and Party B

- κ number of districts
- set of all cells in given polygonal map $\mathcal P$ or, set of all nodes in given planar graph $G(\mathcal P)$

districting scheme partition of \mathcal{S} into κ subsets $\mathcal{S}_1, \ldots, \mathcal{S}_{\kappa}$

Effgap
$$_{\kappa}(\mathcal{P},\mathcal{S}_1,\ldots,\mathcal{S}_{\kappa}) = ig|\sum_{j=1}^{\kappa} \mathsf{Effgap}(\mathcal{S}_j)ig|$$

(to be minimized)

from the point of view of Party A (the victim party of gerrymandering)

only two parties: Party A and Party B

κ -district Minimum Wasted Vote Problem (MIN-WVP κ)

```
Input 
ho poly(y), PartyA(y), PartyB(y) for every cell y \in \mathcal{P} \Rightarrow integer 1 < \kappa \le |\mathcal{P}|

Assumption \mathcal{P} has at least one \kappa-equipartition why this assumption?

Valid solution Any \kappa-equipartition \mathcal{S}_1, \ldots, \mathcal{S}_{\kappa} of \mathcal{P}^{\ddagger}

Objective minimize \ Effgap_{\kappa}(\mathcal{P}, \mathcal{S}_1, \ldots, \mathcal{S}_{\kappa}) = \left|\sum_{j=1}^{\kappa} Effgap(\mathcal{S}_j)\right|

Notation OPT_{\kappa}(\mathcal{P}) \stackrel{\text{def}}{=} \min \left\{ Effgap_{\kappa}(\mathcal{P}, \mathcal{S}_1, \ldots, \mathcal{S}_{\kappa}) \mid \mathcal{S}_1, \ldots, \mathcal{S}_{\kappa} \text{ is a } \kappa\text{-equipartition of } \mathcal{P} \right\}
```

[‡] in exact or approximate sense

A numerical example to illustrate efficiency gap calculation problem

Two possible district maps

	$\operatorname{PartyA}(\mathcal{Q}_{})$	$\operatorname{PartyB}(\mathcal{Q}_{})$	$Effgap(\mathcal{Q}_{})$
Q_1	208	192	-184
\mathcal{Q}_2	170	230	140
Q_3	88	312	-24

$Effgap(\mathcal{P},\mathcal{Q}_1,\mathcal{Q}_2,\mathcal{Q}_3) =$	-184+140-24 =68
---	-----------------

	$\operatorname{PartyA}(\mathcal{Q}_{})$	PartyB(Q)	$Effgap(\mathcal{Q}_{})$		
Q_1	208	192	-184		
Q_2	134	266	58		
Q_3	124	276	48		
Effgap $(P, Q_1, Q_2, Q_3) = -184 + 58 + 48 = 78$					

Mathematical properties of Effgap_{κ}($\mathcal{P}, \mathcal{S}_1, \ldots, \mathcal{S}_{\kappa}$): set of attainable values assume *strict* κ -equipartition, *i.e.*, Pop(\mathcal{S}_1) = \cdots = Pop(\mathcal{S}_{κ})

Lemma 1

 \triangleright Effgap_{κ} $(\mathcal{P}, \mathcal{S}_1, \dots, \mathcal{S}_{\kappa})$ assumes one of the $\kappa + 1$ values:

$$\left| \ 2 imes \mathsf{PartyA}(\mathcal{P}) - \left(z + rac{\kappa}{2}
ight) rac{\mathsf{Pop}(\mathcal{P})}{\kappa} \,
ight| \ \ ext{for} \ z = 0, 1, \dots, \kappa$$

$$riangleright ext{If Effgap}_{\kappa}(\mathcal{P},\mathcal{S}_1,\ldots,\mathcal{S}_{\kappa}) = \left| ext{ 2 PartyA}(\mathcal{P}) - \left(z + rac{\kappa}{2}
ight) rac{\mathsf{Pop}(\mathcal{P})}{\kappa}
ight| ext{ then}$$

$$rac{\mathsf{Pop}(\mathcal{P})}{2\,\kappa}z \leq \mathsf{PartyA}(\mathcal{P}) \leq rac{\mathsf{Pop}(\mathcal{P})}{2\,\kappa}z + rac{1}{2}\mathsf{Pop}(\mathcal{P})$$

Illustrative example: $\kappa=2$

only 3 possible values of $\mathsf{Effgap}_2(\mathcal{P},\mathcal{S}_1,\mathcal{S}_2)$

$$\left| \left. 2 imes \mathsf{PartyA}(\mathcal{P}) - rac{1}{2} \, \mathsf{Pop}(\mathcal{P}) \, \right| \ \ ext{or} \ \ \left| \left. 2 imes \mathsf{PartyA}(\mathcal{P}) - \mathsf{Pop}(\mathcal{P}) \, \right| \ \ ext{or} \ \ \left| \left. 2 imes \mathsf{PartyA}(\mathcal{P}) - rac{3}{2} \, \mathsf{Pop}(\mathcal{P}) \, \right|$$

First a "somewhat" bad news (worst-case computational complexity meets gerrymandering)

Theorem (informal description)

Not only calculation of efficiency gap is NP-complete, but

assuming $P \neq NP$, no non-trivial approximation is possible in polynomial time

But, have no fear!
We have only shown hardness in theoretical worst-case

Worst-case computational complexity meets gerrymandering

Assumptions

- \square Map \mathcal{P} : rectilinear polygon without holes
- \square Strict partitioning criteria: $\{S_1, \ldots, S_{\kappa}\}$ is exact κ -equipartition of S
- \Box Course granularity: Pop(y)'s are numbers of arbitrary size
- \square P \neq NP

Theorem 1

For any rational constant $\varepsilon \in (0,1)$, for any ρ and all $2 \le \kappa \le \varepsilon |\mathcal{P}|$, MIN-WVP $_{\kappa}$ problem for rectilinear polygon \mathcal{P} does not admit a ρ -approximation algorithm

Reduction: from PARTITION problem

Worst-case computational complexity meets gerrymandering

Assumptions

- \square Map \mathcal{P} : planar graph G = (V, E)
- ☐ (Multiplicatively) approximate partitioning criteria:

$$\{\mathcal{S}_1,\ldots,\mathcal{S}_\kappa\}$$
 is a $arepsilon$ -approximate κ -equipartition of \mathcal{S} , i.e., $rac{\max\left\{\mathsf{Pop}(\mathcal{S}_j)
ight\}}{\min\left\{\mathsf{Pop}(\mathcal{S}_j)
ight\}} \leq 1 + arepsilon$

□ Fine granularity: \forall node y: $0 < \mathsf{Pop}(y) \leq c$ for some fixed constant c

Theorem 2

For any constant $0<\varepsilon<1/2$, computing an exact solution of the MIN-WVP $_\kappa$ problem is NP-complete

Proof does *not* provide any non-trivial inapproximability ratio

Reduction: from maximum independent set for planar cubic graphs

However, even in theory, we can efficiently compute efficiency gap under "reasonable" assumptions

e.g., with these assumptions:

- ➤ Input map: a rectilinear polygon **?** (without holes)
- Every district must have a "nice" shape (y-convex shape)
- **κ** (number of districts) is *constant*
- ➤ Total population Pop(P) is polynomial in number of cells | P |

We developed and implemented a simple heuristic algorithm based on "local search" method

- Start with some existing or random valid solution
- Search for nearby valid solutions by randomly "swapping" local regions among various districts
 - Pitfall: can get stuck with far-away local optima but, does not seem to often occur for real maps

Next few slides: results for real maps

Local search algorithm

Wisconsin

Total votes: 2,841,407

Dem votes: 1,441,804 ~ 51%

Rep votes: 1,399,603 ~ 49%

Current EG: 14.8%

Dem #seats: 3

Rep #seats: 5

New EG: 3.8%

Dem #seats: 3

Virginia

Total votes: 3,569,498

Dem votes: 1,736,164 ~ 49%

Rep votes: 1,833,334 ~ *51%*

Current EG: 22%

Dem #seats: 3

Rep #seats: 8

New EG: 3.6%

Dem #seats: 5

Texas

Total votes: 7,379,170

Dem votes: 2,949,900 ~ 40%

Rep votes: 4,429,270 ~ 60%

Current EG: 4.01%

Dem #seats: 12

Rep #seats: 24

New EG: 3.3%

Dem #seats: 12

Pennsylvania

2012 House Elections

Total votes: 5,374,461

Dem votes: 2,722,560 ~ *51%*

Rep votes: 2,651,901 ~ 49%

Current EG: 23.8%

Dem #seats: 5

Rep #seats: 13

New EG: 8.64%

Dem #seats: 6

Pennsylvania

2016 Presidential Elections

Total votes: 5,896,628

Dem votes: 2,925,776 ~ 50% **Rep votes:** 2,970,852 ~ 50%

Current EG: 14.34%

Dem #seats: 6

Rep #seats: 12

New EG: 8.05%

Dem #seats: 7

Rep #seats: 11

Created on Feb. 2018 (by a local court in PA) and based on symmetry between seat share and vote share.

New EG: 3%

Dem #seats: 8

Some Interesting Insights based on simulation results

- ☐ Seat gain vs. efficiency gap
 - ☐ lower efficiency gap does not necessarily lead to seat gains for the loosing party

- ☐ Compactness vs. efficiency gap
 - ☐ Our new district map have fewer districts that are oddly shaped compared to the current gerrymandered maps

- ☐ How natural are current gerrymandered districts?
 - ☐ It seems that original gerrymandered districts are far from being a product of arbitrarily random decisions

Future research

Science of gerrymandering is a huge garden with so many unknown fruits for hungry theoretical computer scientists!

So many questions, so few answers

- > Define and analyze new quantitative measures of gerrymandering
 - What about 3 or more party systems?
- > Analyze computational complexities of existing measures of gerrymandering
- > Join court cases as an expert witness and convince judges that computational complexity matters

Journal paper: https://link.springer.com/article/10.1007/s10878-020-00589-x

Data files: https://www.cs.uic.edu/~dasgupta/gerrymander/

Thank you for your attention!

Questions?