
Finding Relevant Applications For Prototyping

Mark Grechanik, Kevin M. Conroy, and Katharina A. Probst

Systems Integration Group, Accenture Technology Labs

Chicago, IL 60601

{mark.grechanik, kevin.m.conroy, katharina.a.probst}@accenture.com

Abstract

When gathering requirements for new software projects,

it is often cost-effective to find similar applications that can

be used as the basis for prototypes rather than building them

from scratch. However, finding such sample applications

can be difficult, often making prototyping time-consuming

and expensive.

We offer a novel approach called Exemplar (EXEcutable

exaMPLes ARchive) for finding highly relevant software

projects from a large archive of executable applications. Af-

ter a programmer enters a query that contains high-level

concepts (e.g., toolbar, download, smart card), Exemplar

uses information retrieval and program analysis to retrieve

applications that implement these concepts. We hypothe-

size that Exemplar will be effective and efficient in helping

programmers to quickly find highly relevant applications to

support prototyping.

1 Introduction

In the spiral model of software development [3], first,

requirements are described, and then a prototype is built

and shown to different stakeholders in order to receive early

feedback [4]. This feedback often leads to changes in the

prototype and the original requirements as stakeholders re-

fine their vision. When a substantial number of require-

ments change, the existing prototype is often discarded, a

new one is built, and the cycle repeats.

Building prototypes repeatedly from scratch is expen-

sive, considering that these prototypes are often discarded

after receiving feedback from stakeholders. Finding exist-

ing applications that match requirements, and subsequently

can be shown as prototypes, would reduce the cost of many

software projects. Since prototypes are approximations

of desired resulting applications, similar applications from

software repositories can often be used as the basis for pro-

totypes.

Hundreds of open source repositories and internal source

control management systems contain hundreds of thousands

of different applications. For example, Sourceforge.net re-

ports that it hosts 137,750 applications as of January 1,

2007. Given that many different applications have already

been written, some of these applications can serve as pro-

totypes because they are relevant to requirements. How-

ever, finding relevant applications is often very difficult be-

cause many search engines match keywords in queries to the

descriptions of the applications, comments in their source

code, and the names of program variables and types. If no

match is found, then potentially relevant applications are

never retrieved from repositories. As a result, programmers

often choose to build prototypes from scratch.

Exemplar (EXEcutable exaMPLes ARchive) is a min-

ing system that helps users find executable applications for

rapid prototyping and development. Exemplar combines in-

formation retrieval and program analysis techniques to re-

liably link high-level concepts specified in the project re-

quirements to the source code of the applications. We uti-

lize these links to find highly relevant applications as well as

fragments of the source code that implement these concepts,

thereby solving an instance of the concept assignment prob-

lem [2], namely, to identify how high-level concepts are as-

sociated with their implementations in source code. We are

currently building the system, and we plan to evaluate it and

to report empirical results.

2 Our Approach

In this section we describe the key ideas of and give in-

tuition about why and how our approach works.

2.1 The Problem

When depositing applications into software repositories,

programmers create meaningful descriptions of these appli-

cations. However, search engines use exact matches be-

tween the keywords from queries and the words in the de-

scriptions of the applications, making it difficult for users to

guess exact keywords to find relevant applications. This is

1



known as the vocabulary problem which states that no sin-

gle word can be chosen to describe a programming concept

in the best way [6].

A fundamental problem of finding relevant applications

is in the mismatch between the high-level intent reflected in

the descriptions of these applications and low-level imple-

mentation details. Many application repositories are pol-

luted with poorly functioning projects [9], and matches be-

tween keywords from the queries with words in the descrip-

tions of the applications do not guarantee that these appli-

cations are relevant.

Currently, the only way for programmers to determine if

an application is relevant is to download it, locate and ex-

amine fragments of the code that implement the desired fea-

tures and observe the runtime behavior of this application to

ensure that this behavior matches requirements. This pro-

cess is manual, with programmers studying the source code

of the retrieved applications, locating various Application

Programming Interface (API) calls, and reading informa-

tion about these calls in help documents. Still, it is difficult

for programmers to link high-level concepts from require-

ments to their implementations in source code [2].

Modern search engines do little to ensure that retrieved

applications can serve as prototypes. To assist rapid pro-

totyping, a code mining system should take high-level re-

quirements and return executable applications whose func-

tionality is described by these requirements. Short code

snippets that are returned as a result of the query do not

give enough background or context to help programmers to

create rapid prototypes, as programmers typically invest a

significant intellectual effort to understand how to use these

code snippets in larger scopes [10].

2.2 Key Ideas

Our goal is to automate parts of the human-driven

procedure of searching for relevant applications. Sup-

pose that requirements specify that a program should en-

crypt and compress data. When retrieving sample appli-

cations from Sourceforge using the keywords encrypt

and compress, programmers look into the source code to

check to see if some API calls from third-party packages are

used to encrypt and compress data. Even though the pres-

ence of these API calls does not guarantee that the applica-

tions can be used as prototypes, it is a good starting point

for deciding whether to check these applications further.

Our idea is to use help documents that describe API calls

to match keywords from queries to the words from the de-

scriptions of these API calls. Help documentation is usu-

ally supplied by the same vendors whose packages are used

in applications. When programmers read these help doc-

uments about API calls, they trust these documents since

they come from known and respected vendors, were written

by multiple people and reviewed several times, and used

by other programmers who report their experience at differ-

ent forums. Because of these and some other factors, help

documents are more verbose and accurate, and are conse-

quently trusted more than the descriptions of applications

from software repositories.

We observe that relations between concepts entered in

queries are often preserved as dataflow links between API

calls that implement these concepts in the program code.

Our idea of improving the precision of Exemplar is to de-

termine relations (i.e., dataflow links) between API calls

in retrieved applications. If a dataflow link is present be-

tween two API calls in the program code of one application

and there is no link between the same API calls in some

other application, then the former application should have a

higher ranking than the latter. We claim that it is possible to

achieve a higher precision in finding relevant applications

by using this heuristic to rank applications, and we plan to

substantiate this claim with the results of our future experi-

ments with Exemplar.

2.3 Our Approach

We describe our approach using an illustration of dif-

ferences between the process for standard search engines

shown in Figure 1(a) and the Exemplar process shown in

Figure 1(b).

Consider the process for standard search engines shown

in Figure 1(a). A keyword from the query is matched

against the descriptions of the applications in some repos-

itory. When a match is found, applications app1 to appn

are returned. If the keyword does not match any words in

the description of, say app1, then this application will not

be returned.

Consider the process for Exemplar shown in Figure 1(b).

A keyword from the query is matched against the descrip-

tions of different help documents for software packages

whose API calls are used in the applications. When a

match is found, the names of the API calls API call1

to API call3 are returned. These names are matched

against the names of the functions invoked in these applica-

tions. When a match is found, applications app1 to app3

are returned.

A fundamental difference between these search schemes

is that Exemplar uses help documents to produce the names

of the API calls in return to user queries. Doing so can be

viewed as an instance of the query expansion concept in in-

formation retrieval systems [1]. The aim of query expansion

is to reduce this query/document mismatch by expanding

the query with keywords that have a similar meaning to the

set of relevant documents. Using help documents in Exem-

plar, the initial query is expanded to include the names of

the API calls whose semantics unequivocally reflects spe-



keyword

app1

appn

…descriptions
of apps

(a) Standard search engines.

keyword

app1

appn

…descriptions
of API calls

API call1

API call3

API call2

(b) Exemplar search engine.

Figure 1. Illustrations of the processes for standard and Exemplar search engines.

cific behavior of the matched applications.

Let us compare Exemplar with standard search engines.

Suppose that the user enters a query whose keywords do not

match any word in the description of the application app1.

While this application may be highly relevant, it is not re-

turned by standard search engines, since users and program-

mers may not use the same words to describe the same con-

cept, i.e., it is an instance of the vocabulary problem [6].

In the case of Exemplar, it matches the entered keyword

with the descriptions of the various API calls in help docu-

ments. Since a typical application invokes API calls from

several different libraries, the help documents associated

with these API calls are usually written by several differ-

ent people who have and use different vocabularies. The

richness of these vocabularies makes it more likely to find

matches, and produce different API calls. If some help doc-

ument does not contain a desired match, some other docu-

ment may yield a match.

As it is shown in Figure 1(b), API calls API call1,

API call2, and API call3 are invoked in the app1,

and consequently the application app1 is returned with a

higher rank than other applications.

Searching help documents produces additional benefits.

API calls from help documents are linked to their locations

in the applications source code thereby allowing program-

mers to navigate directly to these locations and to see how

high-level concepts from queries are implemented in the

source code. Doing so will solve an instance of the con-

cept assignment problem [2].

3 Exemplar Architecture and Process

The architecture for Exemplar is shown in Figure 2. The

main elements of the Exemplar architecture are the database

holding applications (i.e., the Apps Archive), the Search

and Ranking engines, and the API call lookup. Applica-

tions metadata describes dataflow links between different

API calls invoked in the applications. Exemplar is being

built on an internal, extensible database of help documents

that come from the Java API and Microsoft documentation

as well as help documents for other third-party software.

The inputs to Exemplar are shown in Figure 2 with thick

solid arrows labeled (1) and (4). The output is shown

with the thick dashed arrow labeled (14).

Exemplar works as follows. The input to the system

are help documents describing various API calls (1). The

Help Page Processor indexes the description of the API calls

in these help documents and outputs the API Calls Dictio-

nary, which is the set of tuples <<word1, . . ., wordn >,

API call> linking selected words from the descriptions

of the API calls to the names of these API calls (2).

When the user enters a query (4), it is passed to the

API call lookup along with the API Calls Dictionary (3).

The lookup engine searches the dictionary using the words

in the query as keys and outputs the set of the names of the

API calls whose descriptions contain words that match the

words from the query (5). These API calls serve as in-

put (6) to the Search Engine along with the Apps Archive

(7). The engine searches the Archive and retrieves appli-

cations that contain input API calls (8).

Before proceeding to rank the retrieved projects using

the dataflow links heuristic, the Analyzer computes the Ap-

plications Metadata (10) that contains dataflow links be-

tween different API calls from the applications source code

(9). This metadata is supplied to the Ranking Engine (12)

along with the Retrieved Applications (11), and the engine

outputs Relevant Applications (13), which are returned to

the user (14).

4 Related Work

Different code mining techniques and tools have been

proposed to retrieve relevant software components from

repositories. CodeFinder is a tool for refining code repos-

Help
Pages

API call 
lookup

API 
calls

Search
Engine Apps

Archive

Analyzer

Applications
Metadata

Retrieved
Applications

Ranking
Engine

Relevant
Applications

Help Page
Processor

API calls
Dictionary

1

2 4

5 6 7

8
9

10

12

11

13

3

14

Figure 2. Exemplar architecture.



itory iteratively in order to improve the precision and rel-

evance of returned software components [7]. Like Exem-

plar, CodeFinder reformulates queries in order to expand

the search scope. A main difference between CodeFinder

and Exemplar is that CodeFinder is heavily dependent on

the descriptions (often erroneous) of software components.

The Codebroker system uses source code and comments

written by programmers to query code repositories to find

relevant artifacts [15]. Unlike Exemplar, Codebroker is de-

pendent upon the descriptions of documents and meaning-

ful names of program variables and types, and this depen-

dency often leads to a lower precision of returned projects.

Even though it returns code snippets rather than appli-

cations, Mica is the most relevant work to Exemplar [14].

Mica uses an external search engine, such as Google in or-

der to search the Internet for relevant examples. Mica uses

help documentation to refine the results of the search while

Exemplar uses help pages as an integral instrument in order

to expand the ranges of the queries.

In the past several years, several approaches and tools

(e.g., Prospector, Hippikat, XSnippet, Strathcona) have

been developed to retrieve snippets of code based on the

context of the source code that programmers work on

[11][5][8][12][13]. While these approaches and tools im-

prove programmer’s productivity, they do not target return-

ing relevant applications for high-level queries.

5 Conclusion

We offer a novel approach called Exemplar for finding

highly relevant software projects from a large archive of ex-

ecutable examples. After a programmer enters a query that

contains high-level concepts (e.g., toolbar, download, smart

card), Exemplar combines these concepts with information

retrieval and program analysis to retrieve projects that im-

plement high-level concepts entered as part of this initial

query. We plan to evaluate Exemplar on open-source soft-

ware projects and obtain results that will show its effective-

ness and compare it with existing approaches.

References

[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press / Addison-Wesley,

1999.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. E. Web-

ster. Program understanding and the concept assig-

ment problem. Commun. ACM, 37(5):72–82, 1994.

[3] B. W. Boehm. A spiral model of software develop-

ment and enhancement. IEEE Computer, 21(5):61–

72, 1988.

[4] B. W. Boehm, T. E. Gray, and T. Seewaldt. Pro-

totyping vs. specifying: A multi-project experiment.

In ICSE ’84, pages 473–484, Piscataway, NJ, USA,

1984. IEEE Press.

[5] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth.

Hipikat: A project memory for software development.

IEEE Trans. Software Eng., 31(6):446–465, 2005.

[6] G. W. Furnas, T. K. Landauer, L. M. Gomez, and

S. T. Dumais. The vocabulary problem in human-

system communication. Commun. ACM, 30(11):964–

971, 1987.

[7] S. Henninger. Supporting the construction and evolu-

tion of component repositories. In ICSE, pages 279–

288, 1996.

[8] R. Holmes and G. C. Murphy. Using structural context

to recommend source code examples. In ICSE, pages

117–125, 2005.

[9] J. Howison and K. Crowston. The perils and pitfalls

of mining Sourceforge. In MSR, 2004.

[10] C. W. Krueger. Software reuse. ACM Comput. Surv.,

24(2):131–183, 1992.

[11] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jun-

gloid mining: helping to navigate the API jungle. In

PLDI, pages 48–61, 2005.

[12] M. P. Robillard. Automatic generation of suggestions

for program investigation. In ESEC/SIGSOFT FSE,

pages 11–20, 2005.

[13] N. Sahavechaphan and K. T. Claypool. XSnippet:

mining for sample code. In OOPSLA, pages 413–430,

2006.

[14] J. Stylos and B. A. Myers. A web-search tool for find-

ing API components and examples. In IEEE Sympo-

sium on Visual Languages and Human-Centric Com-

puting, pages 195–202, 2006.

[15] Y. Ye and G. Fischer. Supporting reuse by delivering

task-relevant and personalized information. In ICSE,

pages 513–523, 2002.


