
Smart: A Tool for Application Reference Testing

Qing Xie, Mark Grechanik, and Matthew Hellige
Accenture Technology Labs

Chicago, IL 60601, USA

{qing.xie, mark.grechanik, matthew.hellige}@accenture.com

ABSTRACT
Graphical User Interface (GUI) APplications (GAPs) are
ubiquitous and provide various services. Since many GAPs
are not designed to exchange information (i.e., interoperate),
companies replace legacy GAPs with web services, that are
designed to interoperate over the Internet. However, it is
laborious and inefficient to create unit test cases to test the
web services.

We propose to demonstrate a SysteM for Application Ref-
erence Testing (SMART) novel approach for generating tests
for web services from legacy GAPs. During demonstration of
Smart we will show how this tool enables nonprogrammers
to generate unit test cases for web services by performing
drag-and-drop operations on GUI elements of legacy GAPs.
We published a research paper that describes our approach
and the results of the evaluation of Smart [2].

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Verification

Keywords
Reference Testing, GUI, Web Service

1. INTRODUCTION
When legacy Graphical User Interface (GUI) APplica-

tions (GAPs) are rewritten, they often serve as references
to test new applications, which we call target applications.
Testing new target applications is expensive, taking up to
80% of the project cost [3]. Application reference testing
is a form of regression testing where the target application
is tested against the previous legacy application which is
called the reference application[10, 11, 6]. In this demo we
consider a form of reference testing where target applications
are tested using data from their corresponding reference ap-
plications. Since a subset of functionality is migrated from
reference to target applications in most cases, it is beneficial
to reuse test cases from these reference applications.

Unfortunately, many legacy applications do not have test
cases with which these applications were tested: these test

Copyright is held by the author/owner.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA
ACM 978-1-59593-882-4/07/0011.

cases are lost or in undocumented formats. However, since
legacy applications are used for many years, they accumu-
late a lot of data in their data storages. This data may be
extracted from reference applications to test corresponding
target applications. However, it is laborious and inefficient
to understand the source code of the reference applications
and schemas for their data storages in order to write pro-
grams to extract test cases for target applications. In gen-
eral, applications rarely have automated oracles [7, 9, 8, 4].
Some companies spend on average close to 25% of project
time to extract test data from reference applications [1].

A core of our proposed demonstration is to extract data
from legacy reference GAPs and use this data to generate
test cases for target web services, that are software com-
ponents that interoperate over the Internet, and they gain
widespread acceptance partly because of the business de-
mand for applications to exchange information [5]. Many
legacy applications are GUI-based, and they expose data
through their GUIs. GUI testing approaches use different
techniques to control and manipulate GAPs in order to drive
input data through GUI elements and switch between dif-
ferent GUI screens while GAPs perform background compu-
tations enroute. The intuition behind our approach is that
we reverse the GUI testing process by replaying GAPs in or-
der to make them expose stored data in their GUI elements.
Our idea is to utilize GUI elements of the reference GAPs
in order to extract test data and generate unit test cases for
target applications.

We propose to demonstrate a SysteM for Application Ref-
erence Testing (SMART) for generating tests from reference
GAPs and applying these tests to the corresponding target
web services. SMART allows users to specify how they use
reference GAPs, and then replay these GAPs for different
input data using a prerecorded operational path, retrieving
data from different GUI elements en route. SMART uses
this retrieved data to generate unit test cases to test target
web services. A detailed description of our approach and
the results of the evaluation of SMART can be found in our
research paper [2].

2. AN OVERVIEW OF SMART
The intuition behind our solution is that GAPs are re-

played using special uniform techniques in order to make
these GAPs expose stored data in their GUI elements. This
data is used to generate unit test cases and test harnesses to
test target web services. We describe our solution using the
architecture for SMART, which is shown in Figure 1 with



Test
Harness

Reference 
Application

(RAP)

Acces-
sibility
Layer

Test Designer
7

8

3

1

5Test
Cases

Replay 
Script

6

9

4

10

11

Proxy
Reference 
Application
View (RAV)

Target 
Application
View (TAV)

Target
Application

(TAP)

2

Figure 1: The architecture of SMART.

block arrows marked with numbers indicating sequences of
operations.

A central component of SMART is the Test Designer (or
Designer). Its purpose is to allow SMART users to specify
how to use GUI elements of reference GAPs to generate unit
test cases and how to map these GUI elements to target web
services, specifically to exposed methods and their param-
eters. These mappings are used to generate test harnesses
that use generated unit test cases.

Using the SMART tool, the user sends a request to the
Proxy to load a Reference APplication (RAP) (1). A Proxy
is a generic program that receives requests, extracts data
from GAPs in response to these requests, and sends the ex-
tracted data back to requesters. Proxies use the accessibility
layer to control and manipulate RAPs uniformly by provid-
ing programmatic access to their GUI elements (2). Thus
this accessibility layer can be viewed as a virtual machine
that can be used to control and manipulate GAPs.

From a tester’s point of view, GUI elements have up to
four functions: action producers, input data acceptors, out-
put data retrievers, and state checkpoints. Action producers
enable RAPs to switch to different states. The GUI element
Button is an example of an action producer; clicking on a
button switches a RAP to a different state. Some GUI el-
ements may have all four functions, for example, a combo
box may be a state checkpoint, may contain output data,
may accept input data, and may produce some action when
the user makes a selection.

Input data acceptors are GUI elements that take data
from users (e.g., text boxes). Output data retrievers are GUI
elements that contain data (e.g, list views or text boxes).
These elements serve as data suppliers for generating unit
test cases. Finally, state checkpoint elements can be any
GUI elements that are required to exist on screens in order
for RAPs to function correctly. Since initializing GUI el-
ements is asynchronous, it is important to make sure that
key GUI elements are initialized and ready for use before
accessing them. Clearly, any output GUI element is also a
checkpoint element since SMART cannot retrieve any data
from it unless it is initialized.

The front end of the Designer has two views: Reference
Application View (RAV) and Target Application View (TAV).
RAV displays information on RAP, its GUI elements and
their programming representations. TAV displays the struc-

tures of target applications, specifically web services that
come from Web Service Description Language (WSDL) files.

After dragging-and-dropping required GUI elements from
the RAP onto the RAV and defining the names and func-
tions of these elements in RAV, the user generates the Re-
play Script (3). The Replay Script is a Java program that
contains code for controlling and manipulating RAP to switch
it from state to state. When executed, the Replay Script
sends a sequence of commands to the Proxy in order to con-
trol and manipulate the RAP to extract data from it (4).
This is a primary way to obtain data for generating unit test
cases. The Replay Script stores retrieved data unit as test
cases (5).

TAV enables testers to map test cases to methods of the
Target APplication (TAP). SMART reads in a description
of the target application in a WSDL file (7), and this de-
scription contains exposed interfaces, their methods, and
parameters of these methods. With SMART, test person-
nel can specify mappings between input parameters of the
methods of the target applications and GUI elements (8)

thereby assigning data items from test cases as input data
to methods of the target web service (6). Analogously, users
map return values of these methods to test oracles.

Once testers define all mappings, the Designer outputs a
test harness (9) that contains the driver for running tests
on the TAP. When this harness is run, it uses test cases
(10) to test the target web service (11). Testing is done by
running Test Harness that invokes methods of the target web
service, passes test data as the parameters to these methods,
and uses return values to compare them with the generated
test oracles.

3. REFERENCES
[1] Private conversations with Accenture project leaders

working on application renewal projects.

[2] K. M. Conroy, M. Grechanik, E. S. Liongosari,
M. Hellige, and Q. Xie. Automatic test generation
from gui-based applications for testing web services.
In ICSM, page to appear, 2007.

[3] G. Dedene and J.-P. D. Vreese. Realities of off-shore
reengineering. IEEE Software, 12(1):35–45, 1995.

[4] L. K. Dillon and Q. Yu. Oracles for checking temporal
properties of concurrent systems. In FSE ’94, pages
140–153, Dec. 1994.

[5] C. Ferris and J. A. Farrell. What are web services?
Commun. ACM, 46(6):31, 2003.

[6] W. M. McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[7] D. Peters and D. L. Parnas. Generating a test oracle
from program documentation: work in progress. In
ISSTA ’94, pages 58–65, New York, NY, USA, 1994.
ACM Press.

[8] D. J. Richardson. Taos: Testing with analysis and
oracle support. In ISSTA ’94, pages 138–153, New
York, NY, USA, 1994. ACM Press.

[9] D. J. Richardson, S. Leif-Aha, and T. O. O’Malley.
Specification-based Test Oracles for Reactive Systems.
In ICSE ’92, pages 105–118, May 1992.

[10] J. Su and P. R. Ritter. Experience in testing the motif
interface. IEEE Software, 8(2):26–33, 1991.

[11] P. A. Vogel. An integrated general purpose automated
test environment. In ISSTA ’93, pages 61–69, 1993.


