Finding Errors in Interoperating Components

Mark Grechanik
Systems Integration Group, Accenture Technology Labs
Chicago, IL 60601
Email: {mark.grechanik@accenture.com

Abstract— Two or more components (e.g., objects, modules, or Our solution is &/erifier for I nteroperating ©mponents for
programs) interoperate when they exchange data, such as XML finding Logic fAults (Viola) that finds errors in components
data. Currently, there is no approach that can detect a situation exchanging XML data and helps test engineers to validate

at compile time when one component modifies XML data so that ted Viol t del f th d
it becomes incompatible for use by other components, delaying reported errors. Viola creates models o € source code

discovery of errors to runtime. Our solution, a Verifier for Of components and computes approximate specifications of
Interoperating cOmponents for finding Logic fAults (Violapuilds the data (i.e., schem@sthat these components exchange.
abstract programs from the source code of components that The input to Viola is the component’s source code, schemas
exchange XML data. Viola symbolically executes these abstract ¢, the XML data used by these components, dFidite
programs thereby obtaining approximate specifications of the .
data that would be output by these components. The computed S'Fate Automata (FSAshat model abstract operat!ons _On data
and expected specifications are compared to find errors in XML With low-level platform API calls. Abstract operations include
data exchanges between components. We describe our approachnavigating to data elements, reading and writing them, adding
implementation, and give our error checking algorithm. We used and deleting data elements, and loading and saving XML
Viola on open source and commercial systems and discovereddata_ These FSAs are created by expert programmers who
errors that were not detected during their design and testing.

understand how to use platform API calls to access and

|. INTRODUCTION manipulate XML data.

Components are modular units (e.g., objects, modules, or\ﬁola uses control and data flow analyses along with the pro-

programs) that interact by exchanging data. Components X'r%erd FSAaS tONe):f:atC; ab strac: c;ipe;]ratlc:ns frr%rg tl?e I(I: om)p()onetntd
hosted on a platform, which is a collection of softwan?ou ce code. Next, these operations are symboolically execute

packages. These packages expdpplication Programming OO tcortnkrj)Ut;:speprc(zjxrlnmitr?er?fsheTmZ? .:f thir??;i g::?]tevr;(;ug ttrJ:a
Interface (API)functions through which components invoke utput by por : IS, gIVe
ut data, Viola reengineers the approximate schema of the

platform services to access and manipulate data. For exa'(?rf2 :
ple, aneXtensible Markup Language (XMI3] parser is a ata that would be output by some component from its source

platform for XML data; it exports API functions that diﬁerentCOde'

components invoke to access and manipulate XML documez(%;?rhe reengineered and expected schemas are compared to

Two or more components interoperate when they exchan eeterr_‘nl?e i dth;ay matcf:hef\ch other. If a m;smaé(}h b;a;wzers
information [9]. It is conservatively estimated that the cost em IS found, it means that Some component modities the data

programming errors in component interoperability just in thlé\correctly S0 th_at r“”_“”?e exceptions may be thrown _by of[her
components using this incorrect data. To confirm this, Viola

capital facilities industry in the U.S. alone is $15.8 billion .
per year. A primary driver for this high cost is fixing flaws inanalyzes paths to data elements accessed and modified by these

incorrect data exchanges between interoperating compone(m ponents to determine whether the sc.hema mls_match results
[10]. in actual errors. Sequences of operations leading to some

(Rptential errors are reported to help test engineers validate

Type checking algorithms can be used to verify the corre ng reproduce errars.

ness of operations on types of exchanged data within asinS i heloful bug finding tool wh tati vsi
program statically. However, there are many situations where l0la 1S a helpful bug Tinding tool whose stalic analysis

the static type checking of interoperating components is n@FChamSm reports some potential errors for a system of
attempted, resulting in the run-time discovery of errors. Fbr?teroperatmg_ components. We tested Viola on open source
example, programmers may use platform API calls incorrec d commercial SySt?mS' and we _det_ected a number of k_npwn
in the component source code, and modify XML data so thal Pd unknqwn Errors In these ap_phcatlons with good precision

becomes incompatible for use by other components. Current)k's showing the potential of this approach.

no tool checks interoperating components for potential flaws

in their source code that lead to incorrect data exchanges and
runtime errors, even when components are located within theConsider the example shown in Figure 1 as fragments of
same application. Java (Figure 1a) and C++ code (Figure 1d) for two respective

II. A MOTIVATING EXAMPLE

1A capital facility is a structure or equipment which generally costs at least2A schema is a set of artifact definitions in a type system that defines the
$10,000 and has a useful life of ten years or more. hierarchy of elements, operations, and allowable content.

DOMParser parser = new DOMParser(); <book> root->selectNodes(“book”, &list);

parser.parse(“book.xml”); <author>Name</author> list->get_item((long)0, &book);
Document doc = parser.getDocument(); <title>Some Title</title> if(flag }{
Element book = doc.getDocumentElement(); </book> book->selectNodes(“title”,&list);
book.appendChild(authors); b) list->get_item((long)0, &node);
NodeList authorList = book.getChildNodes();
for(i=0; i < authorList.getLength(); i++) { else
Node item = authorList.item(i); {
if(item.getName() == getAuthorName()) { <book> . int i = getNodeSequence():
item.getParentNode().removeChild(item); <authors>Single book->get_ChildNodes(&list);
authors.appendChild(item); <author>Name</author> list->get_item((long)i,&node);
} <authors>
} <title>Some Title</title> .)
new XMLSerializer().serialize(doc); </book> char *value,

node->getNodeValue(&value);

a) C)

Fig. 1. Java (a) and C++ (d) components that interoperate using XML data (b) and (c).

components that interoperate using XML data (Figure 1b-@Jata at runtime. If they were used, then exceptions would
Block arrows show the flow of XML data between compobe thrown during runtime validation of XML data either in
nents. Variations of these code fragments are used in mahg the Java component after it modified the data, or in the
open source and commercial applications. The Java compon@titr component before it reads the data. If XML data is not
usesXer ces DOM parser API to read in and modify XML validated at runtime, then exceptions will be thrown when
data that is shown in Figure 1b. This XML data describesertain API functions are called to access data elements. Either
the attributes of a book that include the author and title. Theay, runtime errors occur whether XML data is validated or
Java component modifies the structure of the XML componembt.

by adding the tagaut hor s as a child element of the root

elementbook and moving theaut hor element under the tag It is possible for a parser to fail validation of XML data

aut hor s. The resulting XML data is shown in Figure 1c. adainst a schema, however, components may never throw

The C++ component shown in Figure 1d reads in the xmfuntime exceptions. It happens when different interoperating

data shown in Figure 1lb-c, and depending on the value Fmponents do not access and modify the same data ele-
the boolean variablé | ag, returns the title or the name ofments. For example, the Java component modifies the element

the author of a book. The writer of this component assum@y! hor by moving it as a child of the inserted element

that a book has a single author, and the structure of leﬁ_Ut hor's, and the path to the element t | e remains the
g e. Even though the XML data shown in Figure 1b and

data corresponds to the one shown in Figure 1b. When ths . :

Java component modifies this data, the C++ component agure 1c are different, the C++ c_ompo_nent wil _not throw a
throw a run-time exception because the eleraut hor is ' time error when the value of its variablé ag is true
not present in the XML data under the root elemkobk. returning the title of the book.

Currently, there are various projects that address this prob£ven with this simple example it takes a considerable
lem by making XML a first-class data type at the languagémount of time to find errors. Several factors are involved:
level (e.g., XJ, XLing, Xact, and @). While some success hasknowing the structure of the input data and how changes made
been demonstrated, these projects have three major problefyscomponents affect it, using platform API calls correctly
First, they impose additional type systems and new codig@d translating API calls at compile time into changes that
practices on programmers, and these additions serve as\jguld be made to XML data, and knowing the order in
hibiting factors for adopting these approaches. Second, {ghich components execute. The temporal dependency between
these languages to be sound (i.e., to ensure the absenceh®forder of component execution and the visibility of errors
bugs if the compiler reports no errors) programmers shoulgakes catching errors especially difficult. If the C++ compo-
not compute names of XML data elements at runtime. Thifent executes before the Java component, then it would operate
constraint limits programmers to a small class of applicationsn the correct XML data shown in Figure 1b. However, if the
Third, given the large number of legacy systems that has beR{ya component executes before the C++ component, then it
written using API calls exported by XML parsers, it is unlikelywould modify the data into an instance shown in Figure 1c,
that these systems will be rewritten any time soon using thesgd thus make it incompatible for the C++ component. These
approaches. factors add to the complexity of interoperating components,

In our example, schemas are not used to validate the XMind make it difficult to catch errors at compile time.

[1l. THE PROBLEM STATEMENT The problem of mismatch between XML data and schemas

Our goal is create a tool for finding errors in interoperatin§ tyPically addressed by using schema validators that are parts
components that exchange XML data. This tool should repdtt many XML parsers. In our model shown in Figure 2, an
some potential errors when evidence of violating some progML parser can validate that the daf is an instance of
erties is found. Our approach is neither sound nor complete IR¢ schemas whenJ produces this data. If the data is not
sound approach ensures the absence of errors in componerfid ifnstance of this schema, then the parser throws a runtime
it reports that no errors exist, and a complete approach repdi§eption. Obviously, it is better to predict possible errors at
no errors for correct components. compile time rather than to deal with them at runtime.

We use a basic model shown in Figure 2 throughout this In reality, the situation is even more complicated. Using
paper. In this model) andC are components (say a Java an§chemas for validating XML data is often not attempted
C++ components respectively) that interact using XML dafiecause it degrades components performance [37] [36], and
D,. Component] reads in datd;, modifies it, and passes itit €ven leads to throwing exceptions when there may not be
as dataD, to the component. ComponentC reads in the @ny runtime errors. Suppose that the compordedeletes all
data D, expecting it to be an instance of some schefa instances of some data element thus violating the sciéma
Since J outputs dataD, before C accesses it, concurrencythat requires at least one instance of this element be present
is not relevant. However, because of design or programmitiyDz. If either of componentd andC validates this incorrect
errors, the componerdt outputs the dat®, as an instance of dataD, against the schem&, then a runtime error will be

a different schema&' , which is not explicitly stated in any issued. However, when executed, the compo@emtay never
design documents. Sincg is different from S, a runtime attempt to access the deleted data element, and therefore, no

error may be issued whed reads inD;. exception will be thrown if the validation step is bypassed. It
is important to know what data elements componéhtsnd
] an C access and modify, and if no data element accesse@ by
D M’ D M‘ is modified byJ, then componentd and C may still interact
1 2 safely even if the datB, is not an instance of the given schema

S.

Although it is known in advance that components exchange

There are different reasons why programmers make miata, it is not clear how to detect operations at compile
takes when they write the componedteindC. Based on our time that lead to possible runtime errors. Using API calls
participation in large-scale projects, we observe that progragxported by XML parsers remains the primary mode of XML
mers often make wrong assumptions about schemas. Gigagess and manipulation. Various language extensions and
that many industrial schemas contain thousands of elemeiyge systems were proposed to address this problem [17] [33]
and types, it is easy to make mistakes about names of elemg¢d€d. Some of these approaches require programmers map
and their locations in schemas. The other source of errofdIL types to types from the proposed type systems, and
lies in the complexity of platform API calls that programmeréhat adds complexity to developing interoperating components.
use to access and manipulate XML data. XML parsers exp@ther approaches propose type systems that are not sound or
dozens of different API calls, and mastering them requireshave constraints (e.g., structural modification to XML data are
steep learning curve. prohibited) that reduce their practicality. To our knowledge

Often, programmers lack the knowledge of the impathese are research approaches, and none of them has beer
caused by changing the code of some component on othsed in commercial or open source projects.
components that interoperate using XML data. This lack of Our goal is to design a tool that does its best to ensure that
knowledge is an effect of the Curtis’ law that states thaertain properties hold in components interacting using XML
application and domain knowledge is thinly spread and ontlata. These properties are main and secondary safety prop-
one or two team members may possess the full knowledgeesfies. Given interoperating componertsand C producing
a software system [21]. The effect of this law combined withnd exchanging datB, at runtime which is an instance of
the difficulty of comprehending large-scale XML schemas ariie schemeS, the main safety property (MSHy defined as
high complexity of platform API calls result in componentgnsuringD, conforms toS.
producing XML data that is incompatible for use by other The secondary safety property (SSB defined as the
components. same data elements B should not be accessed by one and

The other source of errors is the disparity in evolving XMlmodified by some other interoperating components provided
schemas and components. Database administrators usuhl specifications are not used at runtime to validate XML
maintain schemas, and programmers maintain components theth. Since the MSP and SSP ensure stronger guarantee that
interoperate using XML data that should be instances of thase runtime will be thrown, using XML parsers to validate data
schemas. If a database administrator modifies some schergainst schemas is irrelevant to our problem. The problem
and does not inform all programmers whose components @&eto find and report some situations at compile time in
affected by this change, then some components will keeich interoperating components violate both safety proper-
modifying XML data according to the obsolete schemas. ties. Currently, no tool checks interoperating components for

Fig. 2. A model of component interoperability.

violating these properties, even when components are located
within the same application. Viola should output descriptions
of execution scenarios that lead to potential errors, and test
engineers should be able to follow these scenarios to validate
the reported errors.

common mistakes is that programmers use incorrect APIs
in the sequences of calls designed to perform operations
on data. Given that the knowledge of how to use APIs
correctly is encapsulated in the descriptions of sequences
of API calls that expert programmers build for abstract

IV. ERRORS

We classify errors that Viola catches in interoperating com-
ponents into the following general categories:

« Path-Path (P2)errors occur when a component accesses
elements that may be deleted by some other components.
P2 errors occur in components that access data elements
that are deleted by some other components (P2-1) and by
components that read or write wrong elements (P2-2). P2-
1 errors are execution-order-dependent and therefore are
difficult to find using testing or manual code inspection. If
some component deletes data elements after some other

operations, Viola can flag sequences of API calls that do
not match any abstract operations as potentially erroneous
at compile time. It may also be that the flagged sequence
of API calls is correct, and no FSA was provided to Viola
to validate this sequence. In this case experts will add an
FSA to the Viola FSA database, and these sequences will
be accepted from that moment on.

Sometimes programmers forget to make components save
their changes to data (e.g.r&t ur n statement may be
executed before th&ave operation in some execution
path). Technically, it is not an incorrect use of API,
but rather omission of a crucial operation that makes

component accesses these elements, then the execution changes to data persistent. The data remains consistent

proceeds correctly. However, if the order of the execution
is reversed, then an exception will be thrown by a
component that accesses a previously deleted element.

after operations are executed; however, changes made by
the component that does not save the data will be lost.
Viola reports these situations to programmers at compile

P2-2 errors occur when one component navigates to a time helping them to find and debug potential logic faults.

wrong data element and reads its value by using sequencgelow are examples of warnings that Viola issues to pro-
numbers of elements for navigating rather than thegframmers after it analyzes interoperating components:

names. Consider a component that reads the value of th@p_1: At line 23 componentC accesses elemeribook,

data shown in Figure 1b. The read elementast'hor” at line 122.

ponentJ modified this data as shown in Figure 1c, then located under pathbook) because componerit
the read element would betit hor s” and the obtained modifies elements under this path at lih22.

value is 'Si ngl e”. Thus, if the componend inserts a ps.1: At line23 componentC may delete all instances of
data element into the path to some elements accessed by the elementbook, aut hor), however, at least one
the componenC, then the result of interference of these instance of this element is required by the sch@na
operations is that the compone@taccesses and reads ps.2: At line 23 componentC accesses elemerfbook,
values of different data elements from what was intended royal ti es), however, this element is not defined
when it uses sequence numbers of elements rather than by the schems.
their names.

« Path-Schema (PS3rors occur when components attempt V. THE ARCHITECTURE OFVIOLA
to access, delete, or add elements that do not exist in th&/iola’s architecture and process are shown in Figure 3.
schemas for the data (PS-2), or when components violdtke steps of the Viola process are presented with numbers in
bounds set by schemas on data elements as a resultiofles. The names of components and schemas are taken from
executing operations on data (PS-1). the model shown in Figure 2. The input to the architecture
PS-1 errors occurs when components violate constraigtthe J’'s and Cs components source codel) . The EDG
bounds set by schemas. Suppose that a schema defidbes and Java front ends [7] parse the source code of the
the value of theri nCccur s attribute for a data elementcomponents and outpulbstract Syntax Trees (ASTY) .
to be equal to one, however, a component deletes @he Analysis Routines (ARgerform control and data flow
instances of this element. Some other component magalyses on the ASTs in order to determine sequences of API
execute code that was written based on the assumptiails that can be replaced with abstract operations. ARs also
that at least one instance of this data element should ibput FSAs that model abstract operations on XML da?3 ,
present in the XML data. This situation may also lead tand check to see if sequences of API calls retrieved from the
execution-order-dependent runtime errors. source code are accepted by these FSAs. If a sequence of

« API errorsthat result from incorrect uses of API calls. API calls is not recognized, or some abnormalities in using
Mastering APIs for accessing and manipulating data oftéhese API calls are detected, then API errors are reported to
requires programmers to spend long periods of timgrogrammerg 4) .
learning dependencies between APIs and objects thaRunning ARs results in abstract programs forand J
are created as results of their calls [35] [38]. One afomponenty 5) . Abstract programs represent sequences of

pP2-2:

D D (& D

API J's Abstract| |S;: D;'s S’
Errors 4 Program | . Schema| JSchema

o o, gt

J’s Source
Code

PASSED

j
EDG 2513 Analysis ® @' Symbolic (9 _Schema @ Paths —:Errors

Parsers (2) Routines -2, Executor __|->Comparator Analyzer
of of I ol —— G
C’s Source | ’ |C's Abstract | | S: D,’s
J Code ’ | FSAs ’(, Program | | Schema | SETs

Fig. 3. Viola’s architecture and process.

abstract operations on the XML data. TBgmbolic Executor and reports the discovered errors to programnidrg) . By
(SE)executes the abstract program for the compodesnt the comparing the paths to elements that the component C may
schemaS; of the XML dataD; (6) and outputs the schemaaccess in the dat®, that is an instance of the schensa
S (7) and Symbolic Execution Trees (SETSB) . SETs versus the paths to elements in the data that is an instance of
are graphs characterizing the execution paths followed duritiie schem&' , PA reports different situations that may lead
the symbolic executions of a program. Nodes in these grapghsP2 errors.
correspond to executed statements, and edges correspond to
transitions between statements. VI. RELATED WORK

SchemaS’' is the approximate specification of data that Relatec_j work on verifying and te§ting softwar.e that accesses
would be output by the componedtif it is executed on the and manipulates XML data falls into two major categories:

input dataD;. This schema can be viewed as reengineeréMStemS that use type checking and verification techniques

from the componend when its abstract program is symboli-for XML ma”ip“',%“r‘g programs, and model checkers that
cally executed on the the scher@aof the XML dataDy. This automate the verification process for XML-unrelated software

reengineered schenfl represents the approximate view oprtifacts. e .

the XML data held by a programmer who wrote the componentAn automated verification system for XML data manipula-
J. Comparing the reengineered scheBiawith the schema tion operations translates XML data and XPath expressions to
S establishes if the MSP is violated, and consequently if ﬂlferomela, the input language of the SPIN model checker [23].

componend may perform some incorrect manipulation on thé € techniques of this system constitute the basis of a web ser-
input data. vice analysis tool that verifies linear temporal logic properties

The Specification Comparator (S@ompares the reengi of composite web services. Unlike Viola, this system cannot
. " be applied to arbitrary C++ and Java programs, however, Viola
neered schem& with the D,’'s schemaS (9), and reports Pp y brog

) . . can use its ideas to further improve the verification process of
success if the schemas are the sqr@) . If this step fails, P P

e . interoperating components.
then _the MSP is violated. In the next _st(eﬂ)_l) » Viola checks Currently, there are various language design projects that
for violations of the SSP by analyzing if the compon&ht

2 address this problem by making XML a first-class data type
accesses data elements that are modified by the compﬂ)nergt the language level (e.g., XJ, XLing, Xact, and)[26]

To check for the violations of the SSP property, SE executpss] [17]. While some success is demonstrated, there are
the abstract program of the compondion the schem& three major problems with these projects. First, they impose
of the dataD, (12) . The purpose of this step is to obtaimydditional type systems and coding practices on program-
information about data elements that the compof@aitcesses mers, and it serves as an inhibiting factor for adopting these
in the dataDZ prOVided that it is an instance of the sche®a approaches_ Next, for these approaches to be sound (i_e_,
Then SE executes the abstract program of the compd@hent to ensure the absence of bugs if the compiler reports no
the schemés’ which is reengineered from the componént errors) programmers should not compute names of XML data
during the previous steps. The purpose of this step is to obtaigments at runtime. This constraint limits programmers to a
information about data elements that the compo@niould small class of applications. Finally, given the large number
access in the dat@, that is not an instance of the sche®a of |egacy systems that has been written and are being written
but rather of the reengineered sche®la This information is ysing API calls exported by XML parsers, it is unlikely that
stored in the SET reSUIting from this exeCUtion, and this Sﬁ-ﬁese Systems will be rewritten adhering to some of these
iS added to the set Of SE-Kﬁ) . approacheS.

The Paths Analyzer (PApnalyzes the paths computed by Generator-based approaches (e.g. JAXB, Apigen, Castor)
components to accessed and modified data elemer®3, can do automatic mapping for individual languages. For

example, if an XML schema contains thousands of typem] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

then thousands of corresponding classes are generated in aComputer Glossariesinstitute of Electrical and Electronics Engineers,
January 1991.

hO_St programming Ianguagg that map to th_ese XMI—_ typEﬁO] Cost Analysis of Inadequate Interoperability in tbeS. Capital Facil-
This approach leads to serious problems with evolution and ities Industry, GCR 04-867NIST, August 2004.

maintenance of generated code, like a complex naming meby] Institute for Software Research, University of California,

. d Its i ianifi v i d ilati Irvine, XxADL 2.0 project, Apigen for »Arch schemas,
anism, and results in a signiticantly increased compilation http://www.isr.uci.edu/projects/xarchuci/tools-apigen.html, 2004.

time of the system. Various generators are used as part[1@f Sun Microsystems, Java Architecture for XML Binding (JAXB),

programming environments and as standalone tools to generate http:/java.sun.com/xml/jaxb, 2004.
. . . 13] Castor XML databinding framework, http://www.castor.org/xml-
corresponding types in programming languages. Most aré' ¢ ,mework himl. 2005,

generators that take XML schemas and generate corresponding S. Abiteboul, P. Buneman, and D. SucilData on the Web: From
classes in Java and C++ [11] [12] [13]. This approach requires Relations to Semistructured Data amdML. Morgan Kaufmann,

histicated t soft October 1999.
sophisticated name management sonware. [15] G. Ammons, R. Boik, and J. R. Larus. Mining specifications. ROPL,

Our work uses a variety of ideas introduced in different pages 4-16, 2002.

model checkers [18] [19] [16] [27] [39]. Most of these modeil6] T. Ball and S. K. Rajamani. The SLAM project: debugging system

heck h b . fi ificati software via static analysis. IROPL, pages 1-3, 2002.
checkers use the same abstract-verify-refine verification pa[rﬁ] G. M. Bierman, E. Meijer, and W. Schulte. The essence of data access

digm that Viola is based on. Unlike other model checkers that in cmega In ECOOR pages 287-311, 2005.

determine whether programs match specifications or sati§f§l S- Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in GEEE Trans. Software Eng.

certain logic predicates (invariants), Viola concentrates on 3q.).388-402, 2004.
verifying that two components interoperating using XML datp9] H. Chen and D. Wagner. MOPS: an infrastructure for examining

do not violate the predefined safety properties. In doing so, security properties of spftware. IACM Conference on Computer and
Communications Securitpages 235-244, 2002.

Viola employs _many common techmques used in other moq%] L. A. Clarke and D. J. Richardson, edito&ymbolic evaluation methods
checkers, but in a novel way. for program analysisPrentice-Hall, 1981.

A static program analysis method checks structural propé?fl] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
. f de b : initial ab . f th process for large system€ommun. ACM31(11):1268-1287, 1988.
ties of code by computing an initial abstraction of the co08;] 3. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient

that over-approximates the effect of function calls [40]. Like algorithms for model checking pushdown systemsCHV, pages 232
Viola, this method then refines the computed abstractions by, 247, 2090 , N
inferri text-d dent specification for each functi %] X. Fu, T. Bultan, and J. Su. Model checking XML manipulating
Inferring a context-depenc pecincat =N TUNCUON ™ software. INISSTA pages 252-262, 2004.

call, so that only as much information about a function is us¢zh] S. Graf and H. Si. Construction of abstract state graphs with PVS.
as is necessary to analyze its caller. Rather than concentraLizr%? In CAV, pages 72-83, 1997.

e . . . M. Grechanik, D. S. Batory, and D. E. Perry. Design of large-scale
on specifications for function calls, Viola analyzes API callS™ qviingual systems. INCSE pages 357—366, 2004.

that access and manipulate XML data. [26] M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bordawekar,
I. Pechtchanski, and V. Sarkar. Xj: facilitating xml processing in java.
VIlI. CONCLUSION In WWW pages 278-287, 2005.

.) L [27] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
We present a novel solution called Viola for finding bugs in ~ verification with BLAST. InSPIN pages 235-239, 2003.

components interacting via XML data. Viola is a helpful budg8] EttprxwwwmetaleX-nl/pages/weI%or;e.htanetaIex 2002.

S ; ; : ttp://www.papinet.orgpapiNet 2002.

flnd.lng E_md testing tO_OI that assists test engineers by dete_c_t D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In
a situation at compile time when one component modifies” |SSTA pages 14-25, 2000.

XML data so that it becomes incompatible for use by othé$1] i-g%- King. A program verifier. INFIP Congress (1) pages 234-249,
components: We Implemented a prototype of Viola in C+-,52] J. C..King. Symbolic execution and program testif@emmun. ACM
and Java using EDG Java and C++ and XML parsers. Viola’s" 19(7):385-394, 1976.

static analysis mechanism reports some potential errors folB3 C. Kirkegaard, A. Mgller, and M. I. Schwartzbach. Static analysis of
system of interoperating components. We tested Viola on open ;g‘é}{ansmrmat'ons in javdEEE Trans. Software Eng30(3):181-192,
source and commercial systems, and we detected a numbesff p. Lee, M. Mani, F. Chiu, and W. W. Chu. NeT & CoT: Inferring
known and unknown errors in these applications with good XML schemas from relational world. IfCDE, page 267, 2002.

o ; :] D. Mandelin, L. Xu, R. Botk, and D. Kimelman. Jungloid mining:
precision thus proving the effectiveness of our approach. helping to navigate the api jungle. PLDI, pages 4861, 2005,

[36] J. Meier, S. Vasireddy, A. Babbar, and A. Mackman. Improving .NET

REFERENCES application performance and scalabilitylicrosoft Corporation 2004.

[1] Adobe PDF/XML architecture R working samples. [37] R. Sch_melzer. Breaking XMI__ to optimize performanceapZhink LLC
http://partners.adobe.com/public - special to SearchWebServices.cddet. 2002.)
Ideveloper/en/xml/AdobeXMLFormsSamples.pdf [38] D Spinellis. A critique of the Windows application programming

[2] The book and employees projects. |nterface_3.C0mputer Standards & Interface20(1):1-8, No_v. 1998. _
http://totheriver.com/learn/xml/xmitutorial.html [39] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A java

[3] eXtensible Markup Language (XML)attp://www.w3.0rg/XML/ bytecode checker based on Moped. TWCAS pages 541-545, 2005.

[4] The happycoding Websitdaltpzllwww.java.happycodings.com/XML/indemh,v'- Taghdiri. Inferring specifications to detect errors in code.ABE
[5] Homeowners applicationsitp://www.sambito.net/AddExampleWeb/navJava Pges 144-153, 2004.
[6] The probemsg project. http://www.akadia.com/services/java-xml-
parser.html
[7] Edison Design Grouphttp://www.edg.com
[8] XML Schema. http://lwww.w3.org/XML/Schema

