
Finding Errors in Interoperating Components
Mark Grechanik

Systems Integration Group, Accenture Technology Labs
Chicago, IL 60601

Email: {mark.grechanik}@accenture.com

Abstract— Two or more components (e.g., objects, modules, or
programs) interoperate when they exchange data, such as XML
data. Currently, there is no approach that can detect a situation
at compile time when one component modifies XML data so that
it becomes incompatible for use by other components, delaying
discovery of errors to runtime. Our solution, a Verifier for
Interoperating cOmponents for finding Logic fAults (Viola)builds
abstract programs from the source code of components that
exchange XML data. Viola symbolically executes these abstract
programs thereby obtaining approximate specifications of the
data that would be output by these components. The computed
and expected specifications are compared to find errors in XML
data exchanges between components. We describe our approach,
implementation, and give our error checking algorithm. We used
Viola on open source and commercial systems and discovered
errors that were not detected during their design and testing.

I. I NTRODUCTION

Components are modular units (e.g., objects, modules, or
programs) that interact by exchanging data. Components are
hosted on a platform, which is a collection of software
packages. These packages exportApplication Programming
Interface (API) functions through which components invoke
platform services to access and manipulate data. For exam-
ple, an eXtensible Markup Language (XML)[3] parser is a
platform for XML data; it exports API functions that different
components invoke to access and manipulate XML documents.

Two or more components interoperate when they exchange
information [9]. It is conservatively estimated that the cost of
programming errors in component interoperability just in the
capital facilities industry1 in the U.S. alone is $15.8 billion
per year. A primary driver for this high cost is fixing flaws in
incorrect data exchanges between interoperating components
[10].

Type checking algorithms can be used to verify the correct-
ness of operations on types of exchanged data within a single
program statically. However, there are many situations where
the static type checking of interoperating components is not
attempted, resulting in the run-time discovery of errors. For
example, programmers may use platform API calls incorrectly
in the component source code, and modify XML data so that it
becomes incompatible for use by other components. Currently,
no tool checks interoperating components for potential flaws
in their source code that lead to incorrect data exchanges and
runtime errors, even when components are located within the
same application.

1A capital facility is a structure or equipment which generally costs at least
$10,000 and has a useful life of ten years or more.

Our solution is aVerifier for Interoperating cOmponents for
finding Logic fAults (Viola) that finds errors in components
exchanging XML data and helps test engineers to validate
reported errors. Viola creates models of the source code
of components and computes approximate specifications of
the data (i.e., schemas2) that these components exchange.
The input to Viola is the component’s source code, schemas
for the XML data used by these components, andFinite
State Automata (FSAs)that model abstract operations on data
with low-level platform API calls. Abstract operations include
navigating to data elements, reading and writing them, adding
and deleting data elements, and loading and saving XML
data. These FSAs are created by expert programmers who
understand how to use platform API calls to access and
manipulate XML data.

Viola uses control and data flow analyses along with the pro-
vided FSAs to extract abstract operations from the component
source code. Next, these operations are symbolically executed
to compute approximate schemas of the data that would be
output by these components. That is, given the schema of the
input data, Viola reengineers the approximate schema of the
data that would be output by some component from its source
code.

The reengineered and expected schemas are compared to
determine if they match each other. If a mismatch between
them is found, it means that some component modifies the data
incorrectly so that runtime exceptions may be thrown by other
components using this incorrect data. To confirm this, Viola
analyzes paths to data elements accessed and modified by these
components to determine whether the schema mismatch results
in actual errors. Sequences of operations leading to some
potential errors are reported to help test engineers validate
and reproduce errors.

Viola is a helpful bug finding tool whose static analysis
mechanism reports some potential errors for a system of
interoperating components. We tested Viola on open source
and commercial systems, and we detected a number of known
and unknown errors in these applications with good precision
thus showing the potential of this approach.

II. A M OTIVATING EXAMPLE

Consider the example shown in Figure 1 as fragments of
Java (Figure 1a) and C++ code (Figure 1d) for two respective

2A schema is a set of artifact definitions in a type system that defines the
hierarchy of elements, operations, and allowable content.

DOMParser parser = new DOMParser();
parser.parse(“book.xml”);
Document doc = parser.getDocument();
Element book = doc.getDocumentElement();
book.appendChild(authors);
NodeList authorList = book.getChildNodes();
for(i = 0; i < authorList.getLength(); i++) {

Node item = authorList.item(i);
if(item.getName() == getAuthorName()) {

item.getParentNode().removeChild(item);
authors.appendChild(item);

}
}
new XMLSerializer().serialize(doc);

root->selectNodes(“book”,&list);
list->get_item((long)0, &book);
if(flag){

book->selectNodes(“title”,&list);
list->get_item((long)0, &node);

}
else
{

int i = getNodeSequence();
book->get_ChildNodes(&list);
list->get_item((long)i,&node);

}
char *value;
node->getNodeValue(&value);

<book>
<author>Name</author>
<title>Some Title</title>

</book>

<book>
<authors>Single

<author>Name</author>
<authors>
<title>Some Title</title>

</book>

a) c) d)

b)

Fig. 1. Java (a) and C++ (d) components that interoperate using XML data (b) and (c).

components that interoperate using XML data (Figure 1b-c).
Block arrows show the flow of XML data between compo-
nents. Variations of these code fragments are used in many
open source and commercial applications. The Java component
usesXerces DOM parser API to read in and modify XML
data that is shown in Figure 1b. This XML data describes
the attributes of a book that include the author and title. The
Java component modifies the structure of the XML component
by adding the tagauthors as a child element of the root
elementbook and moving theauthor element under the tag
authors. The resulting XML data is shown in Figure 1c.

The C++ component shown in Figure 1d reads in the XML
data shown in Figure 1b-c, and depending on the value of
the boolean variableflag, returns the title or the name of
the author of a book. The writer of this component assumes
that a book has a single author, and the structure of XML
data corresponds to the one shown in Figure 1b. When the
Java component modifies this data, the C++ component may
throw a run-time exception because the elementauthor is
not present in the XML data under the root elementbook.

Currently, there are various projects that address this prob-
lem by making XML a first-class data type at the language
level (e.g., XJ, XLinq, Xact, and Cω). While some success has
been demonstrated, these projects have three major problems.
First, they impose additional type systems and new coding
practices on programmers, and these additions serve as in-
hibiting factors for adopting these approaches. Second, for
these languages to be sound (i.e., to ensure the absence of
bugs if the compiler reports no errors) programmers should
not compute names of XML data elements at runtime. This
constraint limits programmers to a small class of applications.
Third, given the large number of legacy systems that has been
written using API calls exported by XML parsers, it is unlikely
that these systems will be rewritten any time soon using these
approaches.

In our example, schemas are not used to validate the XML

data at runtime. If they were used, then exceptions would
be thrown during runtime validation of XML data either in
the the Java component after it modified the data, or in the
C++ component before it reads the data. If XML data is not
validated at runtime, then exceptions will be thrown when
certain API functions are called to access data elements. Either
way, runtime errors occur whether XML data is validated or
not.

It is possible for a parser to fail validation of XML data
against a schema, however, components may never throw
runtime exceptions. It happens when different interoperating
components do not access and modify the same data ele-
ments. For example, the Java component modifies the element
author by moving it as a child of the inserted element
authors, and the path to the elementtitle remains the
same. Even though the XML data shown in Figure 1b and
Figure 1c are different, the C++ component will not throw a
runtime error when the value of its variableflag is true
returning the title of the book.

Even with this simple example it takes a considerable
amount of time to find errors. Several factors are involved:
knowing the structure of the input data and how changes made
by components affect it, using platform API calls correctly
and translating API calls at compile time into changes that
would be made to XML data, and knowing the order in
which components execute. The temporal dependency between
the order of component execution and the visibility of errors
makes catching errors especially difficult. If the C++ compo-
nent executes before the Java component, then it would operate
on the correct XML data shown in Figure 1b. However, if the
Java component executes before the C++ component, then it
would modify the data into an instance shown in Figure 1c,
and thus make it incompatible for the C++ component. These
factors add to the complexity of interoperating components,
and make it difficult to catch errors at compile time.

III. T HE PROBLEM STATEMENT

Our goal is create a tool for finding errors in interoperating
components that exchange XML data. This tool should report
some potential errors when evidence of violating some prop-
erties is found. Our approach is neither sound nor complete. A
sound approach ensures the absence of errors in components if
it reports that no errors exist, and a complete approach reports
no errors for correct components.

We use a basic model shown in Figure 2 throughout this
paper. In this model,J andC are components (say a Java and
C++ components respectively) that interact using XML data
D2. ComponentJ reads in dataD1, modifies it, and passes it
as dataD2 to the componentC. ComponentC reads in the
data D2 expecting it to be an instance of some schemaS.
Since J outputs dataD2 before C accesses it, concurrency
is not relevant. However, because of design or programming
errors, the componentJ outputs the dataD2 as an instance of
a different schemaS’, which is not explicitly stated in any
design documents. SinceS’ is different from S, a runtime
error may be issued whenC reads inD2.

J D2
modify CD1

read read

Fig. 2. A model of component interoperability.

There are different reasons why programmers make mis-
takes when they write the componentsJ andC. Based on our
participation in large-scale projects, we observe that program-
mers often make wrong assumptions about schemas. Given
that many industrial schemas contain thousands of elements
and types, it is easy to make mistakes about names of elements
and their locations in schemas. The other source of errors
lies in the complexity of platform API calls that programmers
use to access and manipulate XML data. XML parsers export
dozens of different API calls, and mastering them requires a
steep learning curve.

Often, programmers lack the knowledge of the impact
caused by changing the code of some component on other
components that interoperate using XML data. This lack of
knowledge is an effect of the Curtis’ law that states that
application and domain knowledge is thinly spread and only
one or two team members may possess the full knowledge of
a software system [21]. The effect of this law combined with
the difficulty of comprehending large-scale XML schemas and
high complexity of platform API calls result in components
producing XML data that is incompatible for use by other
components.

The other source of errors is the disparity in evolving XML
schemas and components. Database administrators usually
maintain schemas, and programmers maintain components that
interoperate using XML data that should be instances of these
schemas. If a database administrator modifies some schemas
and does not inform all programmers whose components are
affected by this change, then some components will keep
modifying XML data according to the obsolete schemas.

The problem of mismatch between XML data and schemas
is typically addressed by using schema validators that are parts
of many XML parsers. In our model shown in Figure 2, an
XML parser can validate that the dataD2 is an instance of
the schemaS when J produces this data. If the data is not
an instance of this schema, then the parser throws a runtime
exception. Obviously, it is better to predict possible errors at
compile time rather than to deal with them at runtime.

In reality, the situation is even more complicated. Using
schemas for validating XML data is often not attempted
because it degrades components performance [37] [36], and
it even leads to throwing exceptions when there may not be
any runtime errors. Suppose that the componentJ deletes all
instances of some data element thus violating the schemaS
that requires at least one instance of this element be present
in D2. If either of componentsJ andC validates this incorrect
dataD2 against the schemaS, then a runtime error will be
issued. However, when executed, the componentC may never
attempt to access the deleted data element, and therefore, no
exception will be thrown if the validation step is bypassed. It
is important to know what data elements componentsJ and
C access and modify, and if no data element accessed byC
is modified byJ, then componentsJ andC may still interact
safely even if the dataD2 is not an instance of the given schema
S.

Although it is known in advance that components exchange
data, it is not clear how to detect operations at compile
time that lead to possible runtime errors. Using API calls
exported by XML parsers remains the primary mode of XML
access and manipulation. Various language extensions and
type systems were proposed to address this problem [17] [33]
[26]. Some of these approaches require programmers map
XML types to types from the proposed type systems, and
that adds complexity to developing interoperating components.
Other approaches propose type systems that are not sound or
have constraints (e.g., structural modification to XML data are
prohibited) that reduce their practicality. To our knowledge
these are research approaches, and none of them has been
used in commercial or open source projects.

Our goal is to design a tool that does its best to ensure that
certain properties hold in components interacting using XML
data. These properties are main and secondary safety prop-
erties. Given interoperating componentsJ and C producing
and exchanging dataD2 at runtime which is an instance of
the schemaS, the main safety property (MSP)is defined as
ensuringD2 conforms toS.

The secondary safety property (SSP)is defined as the
same data elements inS should not be accessed by one and
modified by some other interoperating components provided
that specifications are not used at runtime to validate XML
data. Since the MSP and SSP ensure stronger guarantee that
no runtime will be thrown, using XML parsers to validate data
against schemas is irrelevant to our problem. The problem
is to find and report some situations at compile time in
which interoperating components violate both safety proper-
ties. Currently, no tool checks interoperating components for

violating these properties, even when components are located
within the same application. Viola should output descriptions
of execution scenarios that lead to potential errors, and test
engineers should be able to follow these scenarios to validate
the reported errors.

IV. ERRORS

We classify errors that Viola catches in interoperating com-
ponents into the following general categories:

• Path-Path (P2)errors occur when a component accesses
elements that may be deleted by some other components.
P2 errors occur in components that access data elements
that are deleted by some other components (P2-1) and by
components that read or write wrong elements (P2-2). P2-
1 errors are execution-order-dependent and therefore are
difficult to find using testing or manual code inspection. If
some component deletes data elements after some other
component accesses these elements, then the execution
proceeds correctly. However, if the order of the execution
is reversed, then an exception will be thrown by a
component that accesses a previously deleted element.
P2-2 errors occur when one component navigates to a
wrong data element and reads its value by using sequence
numbers of elements for navigating rather than their
names. Consider a component that reads the value of the
first element located under the root “book” in the XML
data shown in Figure 1b. The read element is “author”
and the obtained value is “Name.” However, if the com-
ponentJ modified this data as shown in Figure 1c, then
the read element would be “authors” and the obtained
value is “Single”. Thus, if the componentJ inserts a
data element into the path to some elements accessed by
the componentC, then the result of interference of these
operations is that the componentC accesses and reads
values of different data elements from what was intended
when it uses sequence numbers of elements rather than
their names.

• Path-Schema (PS)errors occur when components attempt
to access, delete, or add elements that do not exist in the
schemas for the data (PS-2), or when components violate
bounds set by schemas on data elements as a result of
executing operations on data (PS-1).
PS-1 errors occurs when components violate constraint
bounds set by schemas. Suppose that a schema defines
the value of theminOccurs attribute for a data element
to be equal to one, however, a component deletes all
instances of this element. Some other component may
execute code that was written based on the assumption
that at least one instance of this data element should be
present in the XML data. This situation may also lead to
execution-order-dependent runtime errors.

• API errors that result from incorrect uses of API calls.
Mastering APIs for accessing and manipulating data often
requires programmers to spend long periods of time
learning dependencies between APIs and objects that
are created as results of their calls [35] [38]. One of

common mistakes is that programmers use incorrect APIs
in the sequences of calls designed to perform operations
on data. Given that the knowledge of how to use APIs
correctly is encapsulated in the descriptions of sequences
of API calls that expert programmers build for abstract
operations, Viola can flag sequences of API calls that do
not match any abstract operations as potentially erroneous
at compile time. It may also be that the flagged sequence
of API calls is correct, and no FSA was provided to Viola
to validate this sequence. In this case experts will add an
FSA to the Viola FSA database, and these sequences will
be accepted from that moment on.
Sometimes programmers forget to make components save
their changes to data (e.g., areturn statement may be
executed before theSave operation in some execution
path). Technically, it is not an incorrect use of API,
but rather omission of a crucial operation that makes
changes to data persistent. The data remains consistent
after operations are executed; however, changes made by
the component that does not save the data will be lost.
Viola reports these situations to programmers at compile
time helping them to find and debug potential logic faults.

Below are examples of warnings that Viola issues to pro-
grammers after it analyzes interoperating components:

P2-1: At line 23 componentC accesses element〈book,
author〉 that may be deleted by the componentJ
at line 122.

P2-2: At line23 componentC may read a wrong element
located under path〈book〉 because componentJ
modifies elements under this path at line122.

PS-1: At line23 componentC may delete all instances of
the element〈book, author〉, however, at least one
instance of this element is required by the schemaS.

PS-2: At line23 componentC accesses element〈book,
royalties〉, however, this element is not defined
by the schemaS.

V. THE ARCHITECTURE OFV IOLA

Viola’s architecture and process are shown in Figure 3.
The steps of the Viola process are presented with numbers in
circles. The names of components and schemas are taken from
the model shown in Figure 2. The input to the architecture
is the J’s and C’s components source code(1). The EDG
C++ and Java front ends [7] parse the source code of the
components and outputAbstract Syntax Trees (ASTs)(2).
The Analysis Routines (ARs)perform control and data flow
analyses on the ASTs in order to determine sequences of API
calls that can be replaced with abstract operations. ARs also
input FSAs that model abstract operations on XML data(3),
and check to see if sequences of API calls retrieved from the
source code are accepted by these FSAs. If a sequence of
API calls is not recognized, or some abnormalities in using
these API calls are detected, then API errors are reported to
programmers(4).

Running ARs results in abstract programs forC and J
components(5). Abstract programs represent sequences of

Analysis
Routines

API
Errors

Symbolic
Executor

EDG
Parsers

Paths
Analyzer

ASTs Errors

C’s Source
Code

J’s Source
Code

FSAs

J’s Abstract
Program

C’s Abstract
Program

S: D2’s
Schema

S1: D1’s
Schema

Schema
Comparator

S’
Schema

SETs

1

1

2

3

4

5

6
6 7

8 9

13

11 14

10

PASSED

12

12

Fig. 3. Viola’s architecture and process.

abstract operations on the XML data. TheSymbolic Executor
(SE)executes the abstract program for the componentJ on the
schemaS1 of the XML dataD1 (6) and outputs the schema
S’ (7) and Symbolic Execution Trees (SETs)(8). SETs
are graphs characterizing the execution paths followed during
the symbolic executions of a program. Nodes in these graphs
correspond to executed statements, and edges correspond to
transitions between statements.

SchemaS’ is the approximate specification of data that
would be output by the componentJ if it is executed on the
input dataD1. This schema can be viewed as reengineered
from the componentJ when its abstract program is symboli-
cally executed on the the schemaS1 of the XML dataD1. This
reengineered schemaS’ represents the approximate view of
the XML data held by a programmer who wrote the component
J. Comparing the reengineered schemaS’ with the schema
S establishes if the MSP is violated, and consequently if the
componentJ may perform some incorrect manipulation on the
input data.

The Specification Comparator (SC)compares the reengi-
neered schemaS’ with the D2’s schemaS (9), and reports
success if the schemas are the same(10). If this step fails,
then the MSP is violated. In the next step(11), Viola checks
for violations of the SSP by analyzing if the componentC
accesses data elements that are modified by the componentJ.

To check for the violations of the SSP property, SE executes
the abstract program of the componentC on the schemaS
of the dataD2 (12). The purpose of this step is to obtain
information about data elements that the componentC accesses
in the dataD2 provided that it is an instance of the schemaS.
Then SE executes the abstract program of the componentC on
the schemaS’ which is reengineered from the componentJ
during the previous steps. The purpose of this step is to obtain
information about data elements that the componentC would
access in the dataD2 that is not an instance of the schemaS1,
but rather of the reengineered schemaS’. This information is
stored in the SET resulting from this execution, and this SET
is added to the set of SETs(8).

The Paths Analyzer (PA)analyzes the paths computed by
components to accessed and modified data elements(13),

and reports the discovered errors to programmers(14). By
comparing the paths to elements that the component C may
access in the dataD2 that is an instance of the schemaS
versus the paths to elements in the data that is an instance of
the schemaS’, PA reports different situations that may lead
to P2 errors.

VI. RELATED WORK

Related work on verifying and testing software that accesses
and manipulates XML data falls into two major categories:
systems that use type checking and verification techniques
for XML manipulating programs, and model checkers that
automate the verification process for XML-unrelated software
artifacts.

An automated verification system for XML data manipula-
tion operations translates XML data and XPath expressions to
Promela, the input language of the SPIN model checker [23].
The techniques of this system constitute the basis of a web ser-
vice analysis tool that verifies linear temporal logic properties
of composite web services. Unlike Viola, this system cannot
be applied to arbitrary C++ and Java programs, however, Viola
can use its ideas to further improve the verification process of
interoperating components.

Currently, there are various language design projects that
address this problem by making XML a first-class data type
at the language level (e.g., XJ, XLinq, Xact, and Cω) [26]
[33] [17]. While some success is demonstrated, there are
three major problems with these projects. First, they impose
additional type systems and coding practices on program-
mers, and it serves as an inhibiting factor for adopting these
approaches. Next, for these approaches to be sound (i.e.,
to ensure the absence of bugs if the compiler reports no
errors) programmers should not compute names of XML data
elements at runtime. This constraint limits programmers to a
small class of applications. Finally, given the large number
of legacy systems that has been written and are being written
using API calls exported by XML parsers, it is unlikely that
these systems will be rewritten adhering to some of these
approaches.

Generator-based approaches (e.g. JAXB, Apigen, Castor)
can do automatic mapping for individual languages. For

example, if an XML schema contains thousands of types
then thousands of corresponding classes are generated in a
host programming language that map to these XML types.
This approach leads to serious problems with evolution and
maintenance of generated code, like a complex naming mech-
anism, and results in a significantly increased compilation
time of the system. Various generators are used as part of
programming environments and as standalone tools to generate
corresponding types in programming languages. Most are
generators that take XML schemas and generate corresponding
classes in Java and C++ [11] [12] [13]. This approach requires
sophisticated name management software.

Our work uses a variety of ideas introduced in different
model checkers [18] [19] [16] [27] [39]. Most of these model
checkers use the same abstract-verify-refine verification para-
digm that Viola is based on. Unlike other model checkers that
determine whether programs match specifications or satisfy
certain logic predicates (invariants), Viola concentrates on
verifying that two components interoperating using XML data
do not violate the predefined safety properties. In doing so,
Viola employs many common techniques used in other model
checkers, but in a novel way.

A static program analysis method checks structural proper-
ties of code by computing an initial abstraction of the code
that over-approximates the effect of function calls [40]. Like
Viola, this method then refines the computed abstractions by
inferring a context-dependent specification for each function
call, so that only as much information about a function is used
as is necessary to analyze its caller. Rather than concentrating
on specifications for function calls, Viola analyzes API calls
that access and manipulate XML data.

VII. C ONCLUSION

We present a novel solution called Viola for finding bugs in
components interacting via XML data. Viola is a helpful bug
finding and testing tool that assists test engineers by detecting
a situation at compile time when one component modifies
XML data so that it becomes incompatible for use by other
components. We implemented a prototype of Viola in C++
and Java using EDG Java and C++ and XML parsers. Viola’s
static analysis mechanism reports some potential errors for a
system of interoperating components. We tested Viola on open
source and commercial systems, and we detected a number of
known and unknown errors in these applications with good
precision thus proving the effectiveness of our approach.

REFERENCES

[1] Adobe PDF/XML architecture - working samples.
http://partners.adobe.com/public
/developer/en/xml/AdobeXMLFormsSamples.pdf.

[2] The book and employees projects.
http://totheriver.com/learn/xml/xmltutorial.html.

[3] eXtensible Markup Language (XML).http://www.w3.org/XML/.
[4] The happycoding website.http://www.java.happycodings.com/XML/index.html.
[5] Homeowners applications.http://www.sambito.net/AddExampleWeb/navJava.htm.
[6] The probemsg project. http://www.akadia.com/services/java-xml-

parser.html.
[7] Edison Design Group.http://www.edg.com.
[8] XML Schema. http://www.w3.org/XML/Schema.

[9] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries.Institute of Electrical and Electronics Engineers,
January 1991.

[10] Cost Analysis of Inadequate Interoperability in theU.S. Capital Facil-
ities Industry, GCR 04-867. NIST, August 2004.

[11] Institute for Software Research, University of California,
Irvine, xADL 2.0 project, Apigen for xArch schemas,.
http://www.isr.uci.edu/projects/xarchuci/tools-apigen.html, 2004.

[12] Sun Microsystems, Java Architecture for XML Binding (JAXB),.
http://java.sun.com/xml/jaxb, 2004.

[13] Castor XML databinding framework,. http://www.castor.org/xml-
framework.html, 2005.

[14] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web: From
Relations to Semistructured Data andXML . Morgan Kaufmann,
October 1999.

[15] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. InPOPL,
pages 4–16, 2002.

[16] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. InPOPL, pages 1–3, 2002.

[17] G. M. Bierman, E. Meijer, and W. Schulte. The essence of data access
in cmega. In ECOOP, pages 287–311, 2005.

[18] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C.IEEE Trans. Software Eng.,
30(6):388–402, 2004.

[19] H. Chen and D. Wagner. MOPS: an infrastructure for examining
security properties of software. InACM Conference on Computer and
Communications Security, pages 235–244, 2002.

[20] L. A. Clarke and D. J. Richardson, editors.Symbolic evaluation methods
for program analysis.Prentice-Hall, 1981.

[21] B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems.Commun. ACM, 31(11):1268–1287, 1988.

[22] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient
algorithms for model checking pushdown systems. InCAV, pages 232–
247, 2000.

[23] X. Fu, T. Bultan, and J. Su. Model checking XML manipulating
software. InISSTA, pages 252–262, 2004.

[24] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS.
In CAV, pages 72–83, 1997.

[25] M. Grechanik, D. S. Batory, and D. E. Perry. Design of large-scale
polylingual systems. InICSE, pages 357–366, 2004.

[26] M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bordawekar,
I. Pechtchanski, and V. Sarkar. Xj: facilitating xml processing in java.
In WWW, pages 278–287, 2005.

[27] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with BLAST. InSPIN, pages 235–239, 2003.

[28] http://www.metalex.nl/pages/welcome.html.Metalex, 2002.
[29] http://www.papinet.org.papiNet, 2002.
[30] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In

ISSTA, pages 14–25, 2000.
[31] J. C. King. A program verifier. InIFIP Congress (1), pages 234–249,

1971.
[32] J. C. King. Symbolic execution and program testing.Commun. ACM,

19(7):385–394, 1976.
[33] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of

xml transformations in java.IEEE Trans. Software Eng., 30(3):181–192,
2004.

[34] D. Lee, M. Mani, F. Chiu, and W. W. Chu. NeT & CoT: Inferring
XML schemas from relational world. InICDE, page 267, 2002.

[35] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining:
helping to navigate the api jungle. InPLDI, pages 48–61, 2005.

[36] J. Meier, S. Vasireddy, A. Babbar, and A. Mackman. Improving .NET
application performance and scalability.Microsoft Corporation, 2004.

[37] R. Schmelzer. Breaking XML to optimize performance. ZapThink LLC
- special to SearchWebServices.com, Oct. 2002.

[38] D. Spinellis. A critique of the Windows application programming
interface.Computer Standards & Interfaces, 20(1):1–8, Nov. 1998.

[39] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A java
bytecode checker based on Moped. InTACAS, pages 541–545, 2005.

[40] M. Taghdiri. Inferring specifications to detect errors in code. InASE,
pages 144–153, 2004.

