Mongrel: Hybrid Techniques for Standard Cell Placement*

Sung-Woo Hur and John Lillis
EECS Department, University of Illinois at Chicago
{shur, jlillis}@eecs.uic.edu

ABSTRACT

We give an overview of a standard-cell placer Mongrel. The proto-
type tool adopts a middle-down methodology in which a grid is im-
posed over the layout area and cells are assigned to bins forming a
global placement. The optimization technique applied in this phase
is based on the Relaxation-Based Local Search (RBLS) framework
in which a combinatorial search mechanism is driven by an analyt-
ical engine. This enables a more global view of the problem and
results in complex modifications of the placement in a single search
“move”. Details of this approach including a novel placement le-
galization procedure are presented. When a global placement has
converged, a detailed placement is formed and further optimized by
the proposed optimal interleaving technique. Experimental results
are presented and are quite promising, demonstrating that there is
significant room for improvement in state of the art placement.

1 Introduction

The cell placement problem is among the most fundamental in VL-
SI physical design. Because of the impact of placement on such
design objectives as area, routability and timing, it has received
extensive attention during the past two decades. In the context of
standard cells, the classical wire-length driven formulation can be
stated as follows: given a netlist of standard cells of fixed height
(but variable width) and a specified number of rows, assign each
component to a row and to an x-position in that row such that
no two cells overlap and that estimated wire length is minimized.
While there are typically additional details which must be consid-
ered (e.g., wire-length estimator, constraints on white space, deter-
mination of the number of rows, etc.), the preceding formulation
captures the computational nature of the problem. With respect to
wire-length estimation, the most common estimator for the length
of a net is the Half-Perimeter (HP) of the pins. The popularity of
HP resuits from its simplicity, the fact that it is an exact estimator
of the minimum rectilinear Steiner tree for 2 and 3-pin nets, and
mounting evidence of its relation to routing congestion [1] (this is
not to say that more detailed optimizations before routing are not
useful, merely that the prevailing wisdom is that a good HP mini-
mizer is a very useful, if not essential, first step).

Placement techniques which have received substantial attention
in the: literature and in industry include recursive bisection (e.g.,
[21), analytical placement (e.g., [3]), and annealing-based methods
(e.g., [4]). The first two approaches can typically be considered top-
down while annealing-based tools typically have a “flatter” view of
the placement. All three classes of approaches have their merits.

This paper proposes a set of hybrid techniques for standard cel-
1 placement. The flow of our prototype tool Mongrel is best de-
scribed as middle-down. An initial global placement phase focuses
on assigning cells to global bins in a grid imposed over the layout
area. This grid is comparatively fine-grained with typically a cou-
ple dozen cells per bin and the number of rows in the grid equal to
the number in the placement. Our approach has two levels of hierar-
chy: after the global placement is established, a detailed placement
phase begins in which the exact cell locations are determined. At
least one previous paper ([5]) has adopted a middle-down approach
(though typically starting with a coarser grid). The novelty of Mon-
grel lies not only in its middle-down methodology, but also in the

*This work was partially supported by NSF Grant CCR-9875945, the DAC Schol-
arship Program and an equipment donation from the Intel Corporation.

0-7803-6445-7/00/$10.00 © 2000 IEEE

optimization techniques applied in global and detailed placement.
A brief overview of these techniques is as follows.

o Inthe global placement phase, we adopt the Relaxation Based
Local Search (RBLS) methodology proposed in [6]. RBLS
utilizes an analytical engine to drive a local search mecha-
nism. One iteration can be roughly summarized as follows:
Given a current global placement, a subset of the cells are
selected and designated as mobile cells; using an analytical
engine, the optimal relaxed placement (i.e., ignoring bin ca-
pacities) of the mobile cells is found (i.e., a linear program is
solved); the information yielded by the relaxed placement is
then used to induce a new legal placement via a legalization
procedure. The best legal solution seen during the legaliza-
tion phase becomes the next configuration and is accepted if
it improves over the initial placement.

The result is a powerful local search mechanism in which in-
dividual moves may result in complex modifications to the
placement. For the approach to succeed, the analytical en-
gine must be fast and the legalization procedure must be care-
fully designed. The former is achieved by adopting the net-
work flow techniques of [6]. For the latter we have developed
a novel scheme presented in Section 3.4.

e While the RBLS technique is quite effective, there is likely
room for further improvement in global placement via algo-
rithms which do not relax bin capacity constraints. Such an
approach is to simply apply the Fiduccia-Mattheyses (FM)
partitioner [7] to adjacent bins until there is no further im-
provement. This provides a complementary optimization:
The view is more local than that of relaxation, but it also
has greater control over constraint satisfaction.)

e In detailed placement, we are allowed to perturb the order-
ing of cells within each row. In this phase we propose a new
technique we have called optimal interleaving and also in-
corporated the dynamic clustering technique of [6].

Together these techniques form our prototype placer Mongrel
which we suggest represents a significant departure from tradition-
al techniques. Preliminary results are very promising: on standard
MCNC benchmarks we have obtained substantial improvements
(approximately 16% — 17% on average) over recently published re-
sults.

In the remainder of this paper we give some notational conven-
tions, present algorithmic details of Mongrel’s various phases and
present experimental results.

2 Preliminaries

We model a netlist by a hypergraph G = (V,E), where V is a set
of cells and E is a set of nets. A hyperedge e € E is a subset of
2 or more cells in V (i.e., e C V). Each cell corresponds to a cir-
cuit component and each net represents a common signal among
its constituent cells. Let |e;| denote the number of cells associated
with net e; and s(v) the size of cell v. Also, let A denote the total
cell area —i.e., A = X,y s(v).

In global placement, the core region is divided into an R x C
grid. Given a grid and maximum and minimum allowable row size,

165

the global placement problem is to assign cells to global bins to
optimize the total wire length, subject to the following constraints:

A A
_e). 2 < L
(1-¢) Rxcfvgif(”)—““) RxC M
lowerbound< ¥ Y s(v) < upper bound.)
1<j<mveh;;

The bin-capacity constraint (1) ensures that all bins are close to
their target capacity while allowing flexibility for optimization via
the parameter €. The row-size constraint (2), which can be viewed
as a white space constraint, ensures that all rows are of rougly equal
size.

A global placement P is legal if it satisfies the bin-capacity and
the row-size constraints. A detailed placement P is legal if no two
cells overlap and the row-size constraint is satisfied.

We use half perimeter of a bounding box of a net as length of
the net. The length of net i, len(e;), is estimated by

len(e;) = max u — x| + max [Yu — vl

where (x,,yy) gives the coordinates of cell v (in the case of a global
placement a cells coordinates are the center of the bin to which it
belongs). The placement problem can then be stated as

|E|
min Yy len(e;) over all legal placement P

i=1

where the notion of legality depends on whether the placement is
global or detailed.

3 Relaxation Based Local Search

3.1 Overview

The notion of relaxation based local search (RBLS) was introduced
in [6]. In that paper it was applied to the linear placement problem.
In Mongrel, we adopt a RBLS approach for row-based placement.
This section describes the issues involved.

At the top-level of abstraction, RBLS adopts a quite tradition-
al local search framework. From a current solution we sample a
neighboring solution and move to that solution if the objective is
improved. If no improvement is seen for & (a given parameter) con-
secutive moves, the search terminates.

The novelty of RBLS is in how neighboring solutions are gen-
‘erated. Rather than employing simple “moves” such as cell swap-
ping, we use an analytical engine to make more drastic modifica-
tions to the placement in the hope of capturing a more global view.
This process is summarized as follows:

o Sub-circuit Extraction: Given a parameter m, extract a sub-
circuit M(C V) where |M| = m. M will be called the set of
“mobile nodes”. From M we determine the fixed node set F:
the set of nodes in (V — M) which are directly connected to a
member of M via some net. An extracted sub-circuit consists
of node set FUM and net set E' induced by M.

¢ Optimal Relaxed Placement: Given a set of mobile nodes
M, we find the optimal placement for each member of M
ignoring capacity constraints under a linear programming re-
laxation of the problem. Note that the relative order of cells
in F influences this solution.

¢ Placement Legalization: The information yielded by the re-
laxed placement is then used to induce a new legal placement
via a legalization procedure.

o Further Optimization: A legal global placement is then fur-
ther optimized using partitioning technique between neigh-
boring bins.

This flow is summarized by the pseudo-code in Figure 1.

Algorithm Relaxation Based Local Search (RBLS)

| Input: m,k, and current placement P

Output: new placement

Counter + k

while (Counter > 0) {
Extract a mobile node set M (|M| = m)
Determine a fixed node set F using M
For Vv € M, determine optimal relaxed location
P' + new placement after resolving size problem
P’ + optimize P' by local partitioning
if (WL(P'") < WL(P)) then

Counter + k
PP
else
Counter < Counter — 1
return P

Figure 1: Algorithm Relaxation Based Local Search (RBLS)

3.2 Sub-circuit Extraction

In general, the sub-circuit extraction strategy (determination of mo-
bile nodes in RBLS) affects the final solution quality. Experiments
with several candidate strategies led us to the simple and effective
randomized scheme described below.

First a net e with degree no greater than m is selected at random
and all members of e are added to M. We then repeatedly select (at
random) nets adjacent to M, but previously unselected and add new
members to M until M reaches its target size m. Thus the approach
can be considered a randomized net-based “wavefront” algorithm.
The result is a connected component in the hypergraph which will
then be handed to the analytical solver for optimal relaxed place-
ment. Experiments have shown this technique to perform better
than a node-based wavefront approach (as in [6]).

3.3 Optimal Relaxed Placement

Once M is extracted, we decompose the relaxed placement problem
into independent x and y subproblems. As in [6], the mobile node
set M induces a set of fixed nodes F and a set of active nets E' (all
nets which influence the relaxed placement problem for M) —i.e.,
E'={eilenM#0}and F={ve(V-M)|JecE st vee}
The effect of the fixed nodes is to provide “anchors” preventing the
mobile cells from collapsing to a single point. Note that in practice
it is only necessary to find left-most/right-most (top-most/bottom-
most) fixed nodes when solving for the x (y) dimensions). Note
also that fixed nodes may either be pad cells or regular cells.

To determine the optimal relaxed x— and y—coordinates for
mobile nodes, we first project the extracted sub-circuit onto the x—
and y—axes as shown in Figure 2. In the example, assume for sim-
plicity each cell has unit size and only one cell can be placed in a
bin. Cells b,c and d are selected as mobile nodes. Nets e; — e7
are active since they are connect to mobile cells. Cell a a fixed for
active net e;. Similarly, cells a and f are fixed for e3, and so on.

As in the preceding discussion, to find the location for each
mobile node to minimize the total half-perimeter wire length of
the active nets (ignoring capacity constraints), we decompose the
problem into two independent linear programs (LP). Note that these
two LPs differ as a result of the different ordering of fixed nodes in
the x and y dimensions. The LP relaxation for the x-dimension can
be stated as follows.

min Y (r,—1l) subjectto
¢€E'

le <xy <re,

L xy =Xy,

Yv € e,
YWEF,

166

y-location

g oo o oa

Projected sub-circuit —

x-location |

O mobilc node

D fixed node

Figure 2: Sub-circuits projected onto x and y axes.

Xy being the location of a node v € F in a given feasible placement
P. The dummy variables r, and /. give the leftmost and rightmost
ends of net e. The y-coordinates for mobile nodes can be derived
from an analogous LP.

In [6] it was shown that this LP can be solved efficiently via
network flow methods. As a result, it was shown to be practical
to solve such problems in the inner loops of a local search scheme
(while the use of a general LP solver would likely not have been
practical). We adopt these network flow techniques in Mongrel.

3.4 Legalization

A crucial issue in relaxation-based methods is the resolution of cell
overlaps or bin/row constraint violations. We have developed two
new techniques for this legalization process which have proved es-
sential for the effectiveness of our placer.

First, in conventional legalization procedures, one begins with
the relaxed placement and gradually massages it into a placement
obeying the various constraints. In such a procedure a legal place-
ment is derived only at the very last step. While this might be
sensible for top-down analytical methods, it seems less than ideal
for our search-based procedure. In our legalization procedure, we
start with the initial legal placement P (before relaxation) and then
sequentially move each mobile node to its relaxed target location; if
this results in a constraint violation we then invoke a constraint res-
olution procedure. The key point is that after each cell is moved we
produce a new legal placement. Thus during the course of legaliza-
tion we have m intermediate legal placements; adopting a philos-
ophy similar to that of a single pass of a partitioner like Fiduccia-
Mattheyses we then select the minimum wire-length intermediate
solution. This vastly increases the likelihood of producing an im-
proving move in our search scheme. This procedure is summarized
as follows.

o Store the wire length of the current legal placement and re-
gard it as best.

o For each mobile node v in the same sequence as added to M
in the sub-circuit extraction phase:

(1) Place v at its optimal relaxed location (x,,y,) giving
intermediate relaxed placement P'.

(2) If P’ is legal, goto step (3). Otherwise, invoke the cor-
rection procedure (see below) and obtain a new legal
placement.

(3) If the new legal placement has a shorter wire length,
record it as the best.

Our second contribution in legalization is how to handle step
(2) above. When a cell is moved to its target bin, it may produce a
constraint violation (under/over flow of a bin or row) and some kind
of correction must be made. Intuitively, the modifications made to
legalize the placement should attempt to disturb cell locations as
little as possible while minimizing wire length. Toward these ends
we propose a ‘“node rippling” procedure summarized as follows.

1. if there is an excess bin, say S, find a nearest bin, T, to which
a cell can move in without violating 7”’s bin-capacity con-
straints. Ripple move cells from § to T along a monotone
path (sequence of bins).

2. if there is a deficit bin, say 7, find a nearest bin, S, from
which a cell can move out without violating the bin-capacity
constraints. Ripple move cells from S to T along a monotone
path.

3. if row-size constraints are not satisfied, find a max-bin in the
largest row, say S and find a min-bin in the smallest row, say
T. Ripple move cells from S to T along a monotone path.

4. Repeat above procedure until the size constraints are satis-
fied.

Once we have selected a source bin .S and a destination bin T, a
ripple move is then a sequence of cell moves from S to 7 where we
always move a cell from the current bin to a bin in the direction of
T —i.e., the bin sequence is monotone. Once the above sequence
of ripple moves is complete we have a new legal placement.

To determine the bin sequence and the cells to be moved along
that sequence, we perform a global analysis based on the gains of
individual cells in the bins. This notion is illustrated in Figure 3. In
the figure since S is in the upper left corner and T is in the lower
right, all candidate moves are either to the right or down. Candi-
date cells to be moved are indicated by solid boxes and are either
nodes not in M or nodes in M but previously placed during the le-
galization procedure. (Dashed boxes are used to represent as-yet
unplaced mobile nodes which are not candidates for rippling). The
gain associated with a particular move is simply the resulting wire-
length reduction which may be positive or negative. If we assume
that an individual cell is moved at most once, we then have inde-
pendence among the gain values; this can be seen by noticing that
any montone path crosses each cut-line in the region exactly once.
This scenario induces the gain-graph in part (B) of the figure where
each vertex corresponds to a bin and an weighted arc represents the
maximum gain in that direction (horizontal and vertical gains may
be maximized with different cells). Further, since the gain-graph is
acyclic, we can find the maximum gain path by topological order-
ing. Once the bin sequence is determined in this way we actually
perform the ripple move with the slight modification that we allow
a cell to move more than once (the result is that the total gain is at
least that of the global analysis, and some times better).

Calculating Gain Values

An important issue is the relationship between the gain values and
the positions of the mobile nodes which have not yet been moved
to their target positions in the sequence. The location of such cells
will affect the gain of cells in the ripple sequence. We have cho-
sen to be optimistic and calculate these gains based on the optimal
relaxed location of the as-yet unplaced mobile nodes (previous-
ly placed mobile nodes are naturally assumed to be in the location
where they end up). Thus the the gain values may be inexact, but
this approach is clearly preferable to calculating gains based on the
original positions of as-yet unplaced mobile nodes.

167

19
e | T ?‘?‘?‘ g

o 0O
T

O——0—"—-0

R
G=—==0;

- — — P max-gain monotone path

(B) transformed graph

Figure 3: (A) Gain values to determine a monotone path. Dashed
rectangles denote mobile nodes which are excluded from candi-
dates to move (B) Resulting gain-graph and a max-gain monotone
path (total gain > 16).

3.5 Placement Optimization By Local Partitioning

Reducing wire length in a global placement is closely related to
minimizing the cut size between adjacent bins. Thus it is natural
to perform such re-partitioning between neighboring bins to com-
plement the relaxation based component of the global placer. Even
though the view is more local than that of relaxation, it has greater
control over constraint satisfaction. Based on this observation, we
adopt a generic Fiduccia-Mattheyses (FM) algorithm [7] over a pair
of adjacent bins - i.e., to cells in two bins b; j and b; ;4 (or b; j and
biy,;) aiming to minimize cut size.

Scanning the global placement from the top row to the bottom,
from the left to the right in each row, assuming two adjacent bins as
an initial partition, we apply the generic FM-partitioner to the pair
of bins subject to the bin-capacity and row-size constraints.

This optimization step can be repeated as long as there is im-
provement greater than a threshold value b for each scan.

4 Detailed Placement

Mongrel has two levels of hierarchy: global placement and detailed
placement. In this section, we describe a method to transform a
global placement to a detailed placement and propose a novel op-
timization technique for a linear arrangement which is adopted to
optimize every row in the detailed placement.

Note that the by construction of the grid, global placement com-
pletely determines the row assignments for the detailed placement.
Thus, if a global placement satisfies the row-size constraint, the
corresponding detailed placement will satisfy the constraint.

4.1 Converting Global to Detailed Placement

A global placement is first transformed to a detailed placement.
When we place each cell in a row in a detailed placement, we as-
sume all cells are abutted. The relative order of cells in the global
placement is preserved in the initial detailed placement — e.g., cells
in a left bin in aglobal placement are placed left. To determine the
initial ordering among cells in the same bin we use a simple greedy
based scheme based on a force-value exerted on each cell.

4.2 Optimal Interleaving

Once an initial detailed placement is obtained we perform further
intra-row optimization via a technique we call optimal interleav-
ing. Figure 4 illustrates the key steps of the interleaving technique
which can be summarized as follows.

e Given window size W, find a subsequence A within W from
current linear arrangement of cells in a row. The relative
order of cells in A is preserved.

e Let B=A in W preserving relative order of cells in the orig-
inal sequence.

¢ Interleave sequences A and B to get an optimal arrangement.

o The above steps are repeated by sliding the window right
across each row from the top row to the bottom.

The figure illustrates the solution space covered by interleaving for

given A and B. Thus there is potential for quite non-trivial optimiza-

n+m)
n

)

tion: the number of all possible ways of interleaving is (

where |A| = n and |B| = m. A polynomial time algorithm for find-
ing the optimal such interleaving among this exponentially large set
is sketched in the sequel.

Window

Partitioning

Interlcaving

Figure 4: Illustration of interleaving technique

Dynamic Programming for Interleaving

Optimally interleaving two subsequences can be done efficiently
via dynamic programming.

Given window W size of n+m, suppose A = aj,az, - -,a, and
B =by,by,--+,bm. Let §;; denote an optimal arrangement with
ay,az,-+,ai(i < n) and by, by, - ,a;(j < m) and C(S; ;) the cost
of §; j. The objective of interleaving A and B is to find Sp .

The cost C(S; ;) of a partial placement S; ; is its total (x-dimension)
wire-length within the window W up to the right boundary of S; ;.
This can be viewed as the normalized sum of the wiring densities
along the sub-window covered by S; ;. A key point is that the op-
timal interleaving of a prefix S; ; is independent of the ordering of
subsequent cells in the window. This separability allows a dynamic
programming approach.

A recurrence relation for the dynamic programming can be s-
tated as follows.

168

So0 = O
0

S,'_|,jai, ifC(Si_l,ja,') <C(Si,j_1bj)
S;,j—1bj, otherwise.

a

g

<
I

Sn,m can be obtained by using an n x m table. A relatively straight-
forward analysis reveals that the algorithm can be implemented in
O(nm+ p(n+m)) where p is the total number of pins on incident
nets. Note that p is typically linear in the number of cells.

Optimal interleaving is iteratively applied to a detailed place-
ment by sliding windows. We have found that selecting a window
size W which is twice the average number of cells in a global bin
is effective. The partitions into sets A and B are done completely at
random.

4.3 Dynamic Clustering

When a detailed placement converges after iteratively applying in-
terleaving, there is often still room for further improvement. In
[6], a dynamic clustering method was proposed for linear place-
ment. The technique was shown to enable escape local optima.
The scheme is summarized as follows. Given parameters L and U
(lower- and upper-bound for the size of a clustered node), we dis-
sect each row into clusters of cells where each cluster has no fewer
than L and no more than U cells. Thus clusters are determined from
the current placement by finding the minimum local wiring density
within the lower and upper bounds. A generalization of optimal in-
terleaving which considers the possibility of reversing the ordering
of cells within a cluster is then applied to the clustered circuit. This
process alternates with optimization of the flattened circuit and re-
clustering until there is no significant improvement. As a final note,
we have found small values of L (say less than 3) and values of U
of less than 10 to be effective.

5 Overall Algorithm

Figure 5 shows the overall procedure of Mongrel. The algorithm
can be summarized as follows. First, an initial global placement is
generated. Then, Algorithm RBLS is invoked to optimize a global
placement. Control variables are used for sub-circuit size, conver-
gence criteria, and so on. When a global placement has converged,
it is transformed to a detailed placement. Interleaving and dynamic
clustering techniques are then used to further optimize the detailed
placement. ’

Input parameters R and C are used to determine the grid dimen-
sion for a global placement. R determines the number of rows and
is usually set to the number that are used for the number of rows in
{3, 4]. C is usually set such that each bin can accommodate 10 ~ 17
cells based on our experience because we have found best results
with such a grid dimension. iy is used to determine the initial value
for k. (maximum number of trials in RBLS without improvement).
During the course of RBLS, the sub-circuit size m is decreased. The
rate at which it is decreased is determined by B (< 1). If m becomes
less than the threshold size (k,;,;) of a mobile node set, we regard
the current placement to be converged. o is used to determine the
initial size of mobile node set.

6 Experiments

We have implemented Mongrel and tested it on a standard set of
benchmarks on a 400 MHz Pentium II/Linux.

The control variable o is usually set to 0.7 ~ 0.8, ip to 2 ~
3 for the initial sub-circuit size and k. We usually set B to 0.1,
Y to 2, and kg, to 5 ~ 10 depending on circuit size. To control
the CPU time spent by the partitioning technique (Section 3.5) we
use a variable b as explained and it is set t0 0.01 x R x C. To
satisfy row size constraint (inequality (2)), our placer automatically

“Algorithm Mongrel
Il‘lpllt: n,m, u’ Bw ’Y? 10 > km,-,,,etc
Qutput: an optimized detailed placement
T %+ x x Global Placement+ x * */
P <+ Obtain an initial placement
m«—o-|V|
k+ip
while (TRUE) {

Call RBLS(P,m, k)

m«B-m

k<vyk

if (m < kiin) break

/%% x % % Detailed Placements x x x x/
W « 2x(avg. #cells in a bin)
P, + Transform P to a detailed placement
while (3 Improvement) {
Py « Interleave(Py,W)
Determine L and U
P. « Cluster(Py,L,U)
P, < Row Optimize(P,,W)
Py « Flatten(P,)

return P,

Figure 5: Algorithm Standard Cell Placer

controls the lower-bound and the upper-bound of a row size such

that % < 1.03. As a result the average white-space is
1.5%.

We have run experiments on the same set of circuits tested with
TimberWolf V.7 [4], the force-directed method of [3] and the Snap-
on method of [8]. Using the hybrid techniques, not only have new
best-published results been found for every circuit, but also a sub-
stantial overall improvement has been achieved. Table 1 summa-
rizes the results. Note that the Snap-on method uses different num-
ber of rows for some circuits (e.g., 88 for avgl and 64 for ind3) and
hence there are multiple entries for those circuits.

While the results in Table 1 are the best of 10 independent (and
trivially parallelizable) runs, Table 2 gives an idea of the statisti-
cal behavior of multiple runs of the current version of Mongrel in-
cluding run-time. The table includes best-of-5, average-of-10 and
worst-of-10 results as well as the best-of-10 results from Table 1.!
The data shows the stability of the approach (though efforts contin-
ue to improve the robustness of the approach). While Mongrel is
fairly compute intensive, the run-times also show promise. There is
also likely significant room for improvement of CPU time through
both algorithmic and implementation techniques.

7 Conclusions

We have presented hybrid techniques for standard cell placement.
Our prototype tool Mongrel adopts a two-level middle-down ap-
proach. An initial global placement phase focuses on assigning
cells to global bins in a grid imposed over the layout area. The
placement is then transformed into a detailed placement and fur-
ther optimized.

For global placement, we have adopted a Relaxation-Based Lo-
cal Search (RBLS) mechanism [6]. By using constraint relaxation
we are able to capture a global view of the problem while maintain-
ing the flexibility and non-determinism of local search.

A proposed legalization technique improves the performance of
RBLS by maintaining a sequence of legal placements from which

!The best-of-5 data is somewhat pessimistic in that we took the 10 trials in order
and arbitrarily eliminated the half containing the best solution from consideration. A
more robust statistic would randomly select subsets of size 5 from a large number of
runs and average the best results. Nevertheless, the given statistics should give insight
into the behavior of Mongrel.

169

[Wire Length (%) Improv. over |

CKT #nets | #cells | #rows |[TW-V7 FD T Snap-On | Mongrel || TW-V7 [FD | Snap-On |
prim] 904 833 16 084 7 0.87 0.95 0.83 12 4.6 12.6
struct 1920 | 1888 21 0.364 1 0.338 — 0.266 26.92 121.30 —
prim2 3029 | 3014 28 357 372 3.66 2.94 17.65 | 21.0 19.7
biomed | 5742 | 6417 46 1.621 178 184 1.36 16.05 1 23.60 26.09
ind2 13419 | 12142 72 1353 | 14.6 14.48 11.89 12.12 18.56 17.89
ind3.A"| 21940 | 15059 54714284 451 — 34.53 19.40 [2344 —
ind3.B 04 — — 4470 32.99 — — 26.20
avqs | 22124 | 21854 80 54T 1 491 5.15 4.40 18.67 1 10.39 14.56
avql.A | 25384 1 25114 86 586 | 538 — 4.87 16.89 | 9.48 —
avql.B 88 — — 5.21 488 — — 6.33

Average 16.1T] 16.55 17.62 |

Table 1: Results compared with TW-V7 [4], Force-directed (FD) [3], Snap-on [8] methods. Mongrel results are the best among 10 runs (see
Table 2 for information on solution distribution). Circuits ind3 and avgl have muitiple versions to account for discrepancies in row-count in

the literature.

[I Wire Length [CPU(sec) |
[T CKT [Best/5 [Best/I0 | Avg [Max || Avg | Max |
prim| 0.86 0.837 0871 090 162 212
struct 0.275 0.267 | 0.278] 0.287 90 111
prim2 3.09 29471 3131 322 249 332
biomed 1.47 36 | 148] 1.38 480 548
ind2 12.76 11.89 | 12.45 [13.13 [[3443 | 4008
ind3.A [35.21 34353 13790 [43.12]| 4814 | 6635
ind3.B 3355 32.99°134.85 [39.09 || 4738 [6075
avqgs 4.48 440 7 462 476]| 8222 | 8B69
avgl.A 491 487 500 [35.36 | 8344 | 12448
avql.B 4.90 4881 5021 352117636 | 8158

Table 2: Statistical behavior of Mongrel over multiple runs. Aver-
age and Max wire-lengths are taken over all 10 trials.

the best is selected and by incorporating a gain-based global anal-
ysis when resolving constraint violations. The net result is vastly
increased likelyhood of finding an improved placement in the inner
loop of RBLS. A partitioning technique to optimize a legal place-
ment is another complementary tool in producing highly tuned so-
lutions.

The optimal interleaving technique was also proposed for intra-
row optimization. With a dynamic programming technique, we are
able to efficiently identify the optimal interleaving of two cell se-
quences. This technique is then applied iteratively.

Based on an optimized global placement, a combination of the
interleaving technique and the dynamic clustering technique of [6]
produces best published results for every benchmark circuit. Thus,
the framework of Mongrel appears to be quite powerful. We con-
tinue to pursue refinements and generalizations (both in terms of
problem objectives and algorithmic tools) of the approach.

Acknowledgements

The authors wish to thank Milos Hrkic and Karthik Kalpat of UIC
for their help in debugging and optimizing the code.

References

[1] M. Wang and M. Sarrafzadeh, “Behavior of Congestion Min-
imization During Placement,” in Proc. of Intl. Symposium on
Physical Design, pp. 145-150, 1999.

[2] M. A. Breuer, “Min-cut Placement,” Design Automation and
Fault-Tolerant Comuting, pp. 343-382, October 1977.

[3] H. Eisenmann and F. M. Johannes, “Generic Global Placement
and Floorplanning,” in Proc. ACM/IEEE Design Automation
Conference, pp. 269-274, 1998.

[4] W.-J. Sun and C. Sechen, “Efficient and Effective Placemen-

t for Very Large Circuits,” IEEE Transactions on Computer-

Aided Design, pp. 349-359, 1995.

[5] M. Sarrafzadeh and M. Wang, “NRG: Global and Detailed

Placement,” in Proc. of IEEE Intl. Conference on Coumputer-

Aided Design, pp. 532-537, IEEE Computer Society Press,

1997.

[6] S.-W. Hur and J. Lillis, “Relaxation and Clustering in a Local

Search Framework: Application to Linear Placement,” in Proc.

of ACM/IEEE Design Automation Conference, pp. 360-366,

1999.

[7] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuris-

tic for Improving Network Partitions,” in Proc. of ACM/IEEE

Design Automation Conference, pp. 175-181, 1982.

X. Yang, M. Wang, K. Egur, and M. Sarrafzadeh, “A Snap-
on Placement Tool,” in Proc. of Intl. Symposium on Physical
Design, pp. 153-158, 2000.

8]

170

