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Abstract—An algorithm that uses an optimal con-
trol theoretic approach to identifying time varying sys-
tems is presented. The hybrid cost function used by
this algorithm removes many of the limitation associ-
ated with identification methods based on the familiar
error based cost function. This results in improved pa-
rameter tracking of a wide variety of systems. Of par-
ticular interest is identification of systems and their
adaptation mechanisms observed in man-machine ap-
plications.

I. Introduction

Recursive Least Squares (RLS) or the Kalman Filter
system identifiers have been used frequently on time vary-
ing systems [3]. The underlying statistical approach used
in the RLS produces three important deficiencies: biased
parameter estimates when using forgetting factors less
than 1, varying alertness to system parameter changes,
and parameter drift in case of non-persistent excitation
[4].

The new method presented here is based on optimal
control theory and not on statistics. By explicitly model-
ing first order parameter variations and adding a cost on
these parameter variations to the error based cost func-
tion results in a hybrid cost function whose counterpart
lies in optimal control theory. This algorithm gives unbi-
ased estimates, has a constant level of alertness and shows
no drift in case of non-persistent excitation.

II. Theory

Linear MIMO (multiple input multiple output) systems
are generally modeled as:

Yn 0Z¢n + vn, (1)
3n+1 = O+ Wn, (2)

where v, and w,, are noise samples, 0, is the system pa-
rameter vector, and ¢,, a vector consisting of past output
samples and past and present input samples [3].

The new identifier which we coined SIOC (System Iden-
tification via Optimal Control) extends 2 to:

Ons1 = Op+up +wy, (3)
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where {u,} represents the first order time variations in
{6n} and w, as above. Taking u, and w, together and
calling it é, gives the state equation for SIOC:

Onyr = 6p+ 6y, (4)

Note that {6,} in 4 represents a stochastic process with
time varying statistics.

Almost all currently available identification methods
are based on minimizing the following error cost function:

N
Z U.?,‘v,,, (5)

n=0

I({v}) =

in which v, =y, — 0,7; ¢n. Note that v, represents the es-
timation error in 5, whereas it represents noise in 1; these
two representations are identical when 6, is identified with

Zero error.
SIOC’s hybrid cost function is:

N-1
= 1 T 1
J = 2§[vncznvn+6nm6n]+2v~@~v~ (6)

where @, and R, are weighting matrices and J is a func-
tion of {v, } and {é,}. Equation 6 is called hybrid because
it minimizes the weighted powers of two physically differ-
ent components: signal vector v, and a parameter vector
6. Note that setting R, to the zero matrix and @, to
the identity matrix in 6 results in 5.

Comparing the system model in 1 and 4 with the con-
ventional state control model [1, 2] shows that 8, repre-
sents the state, y, the output of the system, ¢,, the system
itself and &, the control vector. Furthermore, SIOC cal-
culates a parameter vector that minimizes the difference
between the model output and the observed system out-
put similar to the way optimal control theory calculates a
control vector that minimizes the difference between the
system output and a given track. Since SIOC and op-
timal control theorety are similar in structure, many as-
pects such as controllability, stability and observability
carry over.

The identification problem can now be formulated as
finding the time series {,} that minimizes 6. The min-
imization of 6 applies the theory of Lagrange multipliers
whereby 1 and 4 are the two constraint equations. The so-
lution can be obtained via the sweep method which entails
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backward and forward evaluation of a series of difference
equations [1, 2]. The SIOC identifier algorithm is:

SN = ¢NQNOK

N = ONQNUN
Sa = [[=[Sas1+Ral™"] Sats +6aQuéT
v, = [I —[Sat1+ Rn]—l] Unt1 + ¢nQn¥n
6o = given
9n+1 = on + 6n
b = [Sn+1 + Rn]_l [vn+l - Sn+10n] (7

Since R, and S, are both positive definite matrices, the
bracketed matrix has an inverse. Note also that SIOC is
a batch analysis method but gives a parameter estimate
at each time step and not an average as in most batch
identification methods. Because SIOC does not make any
assumptions about causality it can also be applied to non-
causal systems, an application that is beyond the scope
of most identification methods.

To provide an intuitive feel for 7, two extreme cases are
considered. First, setting R, to the identity matrix with
infinitesimal positive diagonal entries (to assure that R,
remains positive definite) removes the cost on §,, hence
allowing for any parameter change. In the limit, the ex-
pression for 8,4, in 7 reduces then to:

b1 = [¢n+IQn+1¢Z‘+1]—‘¢n+1Qn+1yn+1 (8)

which is the instantaneous least squares estimate. Second,
setting R, in the last equation of 7 to the infinite identity
matrix shows that 8, becomes zero and therfore 8,, equals
the given 8, for all n.

Replacing R, in 6 by (¢, Kn¢Z)~!, optimally incor-
porates the idea that strong signals contain more infor-
mation than signal almost buried in noise (persistence of
excitation). In other words, the cost on large §,, is small
when the SNR is large and vise versa.

III. Application

To demonstrate SIOC’s performance in tracking time
varying system parameters, an ARMA model with a sec-
ond order Auto Regressive and a first order Moving Av-
erage (ARMA) polynomials in z was simulated (y, =
—@1Yn—1—02Yn-2+bottn+b1tn_1+v,), whereby ay, a3, bo
and b; parameters varied sinusoidally (thin solid line in
Fig. 1 shows a;). The input and noise signals u, and
vn were zero mean Gaussian white processes with a SNR
of 0 dB. The weighting matrices for SIOC were: @, =T
and R, = 9007 for all n, and 8y = 0. The RLS algo-
rithm as in [3] with a forgetting factor of 0.985 and an
initial error covariance matrix of 10,0007 was used in the

comparison. These settings were chosen such that both
algorithms performed most similar.

Tracking performance of parameter ay for both identi-
fier is shown in Fig. 1. This figure demonstrates SIOC’s
better parameter tracking performance compared with
RLS. The RLS algorithm quickly looses track of the time
varying parameter trajectory whereas SIOC exhibits good
average parameter tracking. Even though RLS becomes
less and less alert as time passes, SIOC show no degrada-
tion in alertness. The main reason for the RLS’s inferior
tracking of the predefined parameter trajectories lies the
fact that parameter time variation are not explicitly in-
corporated in its algorithm.

Due to SIOC’s ability to track time varying system pa-
rameters, identifying adaptive controllers of which the hu-
man is a prime example, becomes easier. Currently SIOC
is being applied to human preview control to explore adap-
tation mechanisms associated with controlling under time
varying preview, system, or visual conditions.

References

(1] Ir A.E. Bryson and Yu-Chi Ho. Applied Optimal Con-
trol, Optimization, Estimation, and Control. John Wi-
ley and Sons, New York, NY, 1975.

[2] F.L. Lewis. Optimal Control. John Wiley and Sons,
New York, NY, 1986.

[8] Lennart Ljung. System Identification, Theory for the
User. Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey 07632, 1987.

[4] N.R. Sripada and D.G. Fisher. Improved least
squares identification. International Journal of Con-
trol, 46(7):1889-1913, 1987.

oM A

. \ y e
.0.3 AV )
\s /4 NN,

-0.4
-0.§
-0.6
0 200 400 600 800 1000
Time Step

Figure 1: True system parameter a; (thin) and their iden-
tified estimates (SIOC: thick, RLS dotted)
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