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Fig. 1. Font and back views of a prototypical HAMERA device.

Abstract—This paper presents the design and implementation
of HAMERA (Hand cAMERA), a novel device for hand pro-
file construction in the pervasive environment. With the help
of software, HAMERA requires the minimum hardware of a
mainstream mobile device enhanced with a single accelerometer,
and is capable of providing advantageous features including high-
quality hand image collection, on-device profile construction and
easy usability. Evaluation results show the efficiency of HAMERA
in serving its goals.

I. INTRODUCTION

One of the ultimate goals of pervasive computing is that the
user is able to interact with computer systems at anywhere
and anytime. Vision-based gesture interface is a promising
technology to help achieving this goal by using the most
dexterous part of the human body, i.e. the hand, as a natural
human-computer interface(HCI). Encouraged by this potential,
vision-based gesture HCI has been an active research topic for
the past two decades [1], [2]. To name a few representative
systems, Freeman et al [3] used a video camera to detect hand
movement. By waving the hand from side to side, the user was
able to remotely control the sound of a television. Segen et
al constructed a two-camera system to extract fingertips of
the hand, applied reverse kinematics to drive an articulated
hand model, and subsequently used the derived hand model
for gesture-commands interpretation [4]. More recently, Kolsh
et al developed HandVu [5], a vision-based gesture HCI which
was designed primarily for wearable systems. In its most
common configuration where the camera is fixed on a head-
mounted display (HMD), HandVu is capable of working under
different illumination conditions as well as with various image

backgrounds. With the advances of computer vision research
and CPU processing power, it is reasonable to expect that the
number of gesture HCIs will continue to grow.

People’s hand appearances distinct from each other, and
using an one-size-fit-all hand profile for everyone will not be
sufficient. Figure 2 shows the hand images we collected from
two subjects: one southwest Asian and one southeast Asian.
The appearance differences can be clearly observed even
though collection conditions have been carefully calibrated
to be identical for both subjects. For accurate identification
of a specific user’s hand, it is necessary for the gesture HCI
to have the user’s personalized hand profile. Once the profile
is acquired, a gesture HCI in the pervasive environment can
work in a way similar to the ”Personal Augmented Computing
Environment” [6], [8] paradigm or ”Carry Small, Live Large”
scheme [7]. In such scenarios, personalized hand profiles can
be stored on a portable device carried with the user. When
interaction with a computer in the pervasive environment is
taking place, the personalized hand profile is retrieved and
subsequently used by the gesture HCI.

Construction of personalized hand profile in the pervasive
environment is not a trivial research problem. This process
requires the user herself, who is usually not a professional
photographer, to collect images of the hand of high quality
and considerable quantity. It also involves post-processing of
the collected hand images for feature extraction and model
training. Lastly, both the image collection and post-processing
are ideally to be accomplished by one single device with
small form factor, low-cost hardware, low-power consumption
and easy-to-use user interface. To the best of our knowledge,
there is not such a device yet in the industry or academia
that satisfyingly offering the characteristics needed. This paper
presents HAMERA (Hand cAMERA) to address this gap.
HAMERA is an enhanced personal mobile device for hand
profile construction in the pervasive environment. It stands
out by making three major contributions. First, its minimum
hardware requirement is easy to satisfy, which is a mobile
device that: 1) has a platform (e.g. Windows Mobile, Linux,
Android or Java) to run third-party applications. 2) has a
camera component. 3) is equipped with a single accelerometer.
Most of the contemporary mobile devices have 1 and 2 ready.
Accelerometers are not prevalent on mobile devices yet but
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Fig. 2. Hand images from a southwest Asian subject (top six) and a southeast
Asian subject (bottom six).

the addition of them is cost and energy efficient. Secondly,
image quality control is done automatically without the need
for manual intervention during collection. The user simply sets
collection parameters in a configuration UI once and monitors
a viewfinder UI for the rest of the collection process. Lastly,
post-processing of collected images is done on the device and
thus the constructed hand profile is portable with the user.

This paper is organized as follows. After a review of
existing technologies in the literature in Section II, Section III
presents the hardware construction of HAMERA. The software
implementations are described in Section IV and evaluation
results are provided in Section V. Section VI concludes the
paper and points out several possible future directions.

II. RELATED WORK

The state-of-art approaches to construct a hand profile can
be summarized as a process with two steps:

1) Collecting the hand images of a user in a controlled
environment. The environment is usually a controlled
setting with fix-mounted cameras and light sources.

2) Processing the hand images collected into a hand pro-
file. Under most cases, the computer that does post-
processing is a separate device from the image-capturing
device, which is the camera.

To undertake step 1 in the pervasive environment is a well-
known challenge because of three sources of image noise:
illumination fluctuation, image blur and hand depth varia-
tion. Illumination fluctuation, caused by the lighting condition
change in the environment, results in intensity discrepancy
across images. Image blur, caused by the camera or hand

movement, results in reduced sharpness of the images. Hand
depth variation, caused by the change of distance between
camera and hand, results in inconsistent size ratio of the hand
against the background. All these three phenomena undermine
quality of the hand profile constructed and need to be properly
handled. To deal with illumination fluctuation, contemporary
digital cameras (DCs) usually use automatic exposure control
across whole image. Automatic exposure control calculates the
overall intensity of the captured frame, and adjust this value
to be uniform across images. For image blur, different DCs
use different image stabilization (IS) techniques, including
optical IS, mechanical IS and digital IS. Optical IS captures
the camera movements with the help of sensing components
embedded in the lens, and adjusts the lens accordingly to offset
these movements; mechanical IS compensates camera move-
ment by maneuvering the image sensor; digital IS corrects the
captured image in a post-processing fashion to eliminate the
motion artifacts. To handle hand depth variation, the best way
nowadays is to instruct the user to hold the camera steadily
and maintain a constant distance between the camera and the
hand.

It can be seen that the existing solutions that deal with
the three phenomena have shortcomings. For illumination
fluctuation, automatic exposure control can balance the in-
tensity across images, but is a naive solution that does not
distinguish the hand and the background. As image blur is
concerned, optical IS requires the incorporation of delicate
sensing components in the lens, for devices that use low-
cost lens this is usually not feasible. Because mechanical IS
requires maneuvering of the image sensor for movement com-
pensation, it brings undesired higher cost to the device. Digital
IS is a passive method and can not fully eliminate motion
artifact. Letting the user estimate and maintain the camera-
hand distance to deal with hand depth variation requires the
user to have good manual skills and is not very realistic.
HAMERA takes different paths to address these phenom-
ena. To fight illumination fluctuation, it employs foreground
segmentation to identify the hand blob in the whole image,
and then controls the image intensity only within this blob.
The advantages of this approach is that it is independent of
intensity noise in the background, and the exposure uniformity
across multiple hand images are ensured. In order to avoid
image blur, HAMERA actively monitors the camera shaking
and tilt angle with the accelerometer, and only collects images
when these two measurements are below certain thresholds. In
comparison with the passive strategies that compensate camera
movement, this strategy is preventive and reduces the image
blur by attacking its root cause. To deal with hand/backgroun
variation, HAMERA calculates the foreground/background
pixel ratio to make sure that this value is within the allowed
range, otherwise images are not collected. As shown in Section
V, this is a very effective method in controlling hand depth
variation and puts no burden on the user for maintaining
camera-hand distance.

In addition to its enhancement to step 1, HAMERA also
has another advantage by performing a large portion of step
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2 on the device itself. For the collected raw hand images
which are often in the quantity of dozens or even hundreds,
HAMERA conducts post-processing on each of them. This
post-processing is composed of several stages. The first stage
is foreground segmentation, where the pixels belonging to
the hand are separated from the background pixels and the
background is subsequently replaced with a blank canvas. The
second stage is exposure adjustment on the segmented hand
image, which makes image intensities consistent across all
hand images. During this stage, the illumination conditions
of different raw hand images are normalized. In the third
stage HAMERA extracts the skin color information and builds
a color histogram to represent the user’s skin tone. This
histogram-form color model is stored as part of the user’s
hand profile. In the last stage, HAMERA converts all the
hand images into a set of binary format images, i.e. black-
and-white templates. This set of templates is used to construct
another key part of the hand profile – the shape model. It is
worth noting that HAMERA still relies on external computers
to aid the shape model construction, which is usually a very
computationally intensive task.

III. HARDWARE CONSTRUCTION

Figure 1 shows a prototypical HAMERA device we built,
with a Motorola A1200 smart phone being the baseline mobile
device. As previously stated, HAMERA can be built over any
mobile device that allows third party application deployment
and has a camera component. Our choice of A1200 is based
solely on its availability.

The A1200 smart phone runs MontaVista Mobile Linux
operating system and supports third party applications in the
form of Linux executables or Java midlets. Processing unit of
the A1200 is an Intel XScale 312MHz processor which is com-
pliant with ARM micro architecture. The camera component
consists of a 2 Megapixel Micron MT9D112 system-on-a-chip
sensor and a micro lens. Three resolution are provided, which
are 1200× 1600, 768× 1024 and 480× 640 respectively. The
camera component supports both normal and micro focusing
modes. The A1200 device has an extensible storage capacity
of up to 2 Gigabytes. In the prototypical configuration a 1
Gigabyte micro SD card is used. It is also equipped with a
2.4 inch touch screen with 320× 240 resolution.

An wireless accelerometer board is mounted on the back
(battery cover) of the A1200 device to augment it with
acceleration sensing ability. The sensor used is a STMi-
cro LIS3LV02DQ digital MEMS accelerometer, which can
measure 3-axis acceleration data. The LIS3LV02DQ has a
user selectable full scale of ±2g,±6g and it is capable of
measuring acceleration over a bandwidth of 640 Hz for all
axes. Measurement outputs of the accelerometer is transmitted
wirelessly through Bluetooth link to the A1200 device. The
Bluetooth transceiver used here is CSR BlueCore3, a system-
on-a-chip with micro controller and a DSP co-processor. The
accelerometer and Bluetooth transceiver are co-located on the
accelerometer board which is self-powered with a chargeable
battery pack.

Fig. 3. Raw hand image from the camera video feed (left), the binary
mask created by shresholding (middle) and foreground-segmented hand image
(right).

IV. SOFTWARE IMPLEMENTATION

The software component of HAMERA orchestrates the col-
laboration among HAMERA hardware modules. It consists of
four modules: the configuration UI module, the accelerometer
integration module, the viewfinder UI module and the image
post-processing module. When the user uses HAMERA for
hand profile construction, these four modules work in a process
as shown below:

• The user sets up image collection parameters using the
functionalities provided by the configuration UI module.
These parameters include number of images to collect,
collection interval, foreground segmentation threshold
and hand depth range.

• While the camera component of HAMERA is capturing a
live video feed of the user’s hand, the accelerometer inte-
gration module works in parallel and processes readings
from the accelerometer. The acceleration readings are
converted into two measurements of the camera: shaking
motion and tilt angle.

• The viewfinder UI renders each frame of the live video
feed on the HAMERA screen. If the shaking motion
and/or tilt angle are above allowed limits, then the cor-
responding frames are not further processed and subse-
quently discarded. Otherwise, the viewfinder UI performs
foreground segmentation to separate the hand from its
background, as shown in Figure 3.

• The depth of the hand is derived by comparing the
segmented foreground with the whole image. If this
depth is within the range defined in the configuration
UI module, the frame is further processed otherwise it
is discarded.

• If a frame is captured under satisfying shaking motion,
tilt angle and hand depth conditions, it is a qualified hand
image and stored for hand profile construction. The first
qualified hand image’s foreground intensity value is used
as a reference for the illumination control of subsequent
hand images.

• Once the specified number of hand images are collected,
these hand images are processed by the image post-
processing module to construct the hand profile, including
a skin color model and a hand shape model.

In the following sections the four software modules are
described in detail.
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Fig. 4. Screenshot of the configuration UI on HAMERA.

A. Configuration UI Module

Figure 4 shows a snapshot of the configuration UI compo-
nent. This component allows the user to set six parameters
for hand image collection. Number of samples specifies how
many hand images are to be collected in total during a
session. Collection interval is the minimum time span that
needs to elapse between taking two consecutive hand images.
HAMERA assumes that during hand image collection, the
background is always at a lower intensity than the hand,
so segmentation threshold is the intensity threshold used to
segment the hand (as foreground) out of its background. It is
represented as the percentage of the highest pixel intensity
value in the image. Hand area coverage and hand area
variance describes the user-defined percentage of hand pixels
in the whole image. These two parameters together set the
hand depth range. Audio overlay configures that if there is
audio feedback during hand image collection. By default the
feedback is visual and displayed by the viewfinder UI module.
If this option is turned on then text-to-speech audio feedback
is enabled in the viewfinder UI component.

B. Accelerometer Integration Module

The accelerometer integration module is responsible for
converting raw data from the HAMERA accelerometer into
two metrics: shaking motion and tilt angle. HAMERA senses
the device acceleration along the three local coordinate axis
with regard to the accelerometer. The overall acceleration a,
calculated in Equation 1 as the rooted square sum of the
three axis-wise readings, can be used directly as the shaking
motion metric, represented in the quantities of unit gravity
acceleration:

a =
√

a2
x + a2

y + a2
z (1)

When the device’s shaking motion is at low level, its
tilt angle is also reported by the accelerometer integration
module. The accelerometer is defined to reach its steady state
conditions in the state of rest or uniform motion characterized
with 1g acceleration caused by gravity. In the context of
HAMERA, steady state is defined as the state of rest. The
accelerometer in its steady state satisfied Equation 2 and can be

Fig. 5. Screenshot of the viewfinder UI on HAMERA.

directly used to measure the gravity vector g which is always
vertical to the horizontal plane. Tilt angles are then calculated
from three orthogonal acceleration components as shown by
Equation 3 and 4:

a ' g (2)

Θ = arcsin(
ax

g
) (3)

Φ = arcsin(
ay

g × cos Θ
) (4)

The vector [ax ay az]T represents the gravity vector mea-
sured in its local coordinate axis, Θ and Φ are pitch and roll
angles in the global coordinate axis.

C. Viewfinder UI Module

The task of the viewfinder UI module is to provide the user
with visual and optional audio feedback of the hand image
collection progress, as well as store the qualified hand images
for the image post-processing module. It displays the video
stream from the camera component on the HAMERA screen,
together with other informational statu messages. Figure 5
illustrates a snapshot of the viewfinder UI component. It can
be seen that the screen area is divided into three regions. The
top one is the video feed displaying region, where the user can
see the live video feed from the camera component. Below the
video feed region is the status messages region. This region
displays several pieces of information, including the parameter
values set by the configuration UI module, magnitude of
shaking motion, the hand depth factor, and reminders for the
user to make camera adjustments. At the bottom is the hand
image counter region, where the number of total hand images
to be collected, as well as qualified hand images that have
been stored are shown.

Two image related metrics are calculated by the viewfinder
UI component online. They are the illumination factor IFhand

and the hand depth factor DFhand. As indicated by Equation
5, illumination factor is the average intensity value across all
the pixels in the segmented hand foreground. For the hand
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images of a specific user, higher IFhand implies brighter
illumination, while lower IFhand means the contrary. The
hand depth factor is calculated using Equation 6. It is the area
percentage of segmented hand foreground against the whole
image. Because that for a specific user the physical hand size
is an invariant, higher DFhand maps to closer hand depth, and
lower DFhand indicates farther hand depth.

IFhand = Avg(Σ(Ihand(i))) (5)

DFhand =
Phand

Pimage
× 100% (6)

Even if the collection conditions for a video frame satisfy
the requirements for camera shaking motion and tilt angle,
that video frame still needs to be checked for its illumination
factor and hand depth factor values. Only when these two
values conform to the user defined ranges the video frame
is determined to be a qualified hand image. To be more
specific, the illumination factor has to be within at most ±5%
off the illumination factor of the first qualified hand image
(the only hand image that does not need to be examined for
its illumination factor). At the same time, the hand depth
factor needs to be within (hand area coverage) ± (hand area
variance), as provided by the configuration UI module.

D. Image Post-processing Module
The image post-processing module fulfils the task of con-

structing hand color and shape models, which are the two
elements of a personalized hand profile. This module does not
have a UI. All computation is performed by a background
process and does not affect the other usages of the HAMERA
device.

Firstly the background of the hand images stored by the
viewfinder module are removed. The background pixels are
replaced with zero-intensity ones to make the hand fore-
ground appear to be taken in front of a blank canvas. The
following step is hand image intensity normalization. The
image post-processing module calculates the average intensity
values across all hand images, and then reward the under-
illuminated images by lifting its intensity and punish the over-
illuminated images by lowering its intensity. This step balances
the illumination factors of the hand images.

The post-processing module then constructs the hand color
model. This model is represented in the form of a color
histogram. The RGB color space is divided into a group of
bins. In our prototypical device, the number of bins is 216.
This is equivalent to 65536 color bins. Because the camera
component of the Motorola A1200 represents each pixel with
an 18-bit RGB value, each pixel’s color value is hashed to
map to a 16 bit bin. After all pixels of the collected hand
images have been hashed into bins, numbers in the bins are
normalized to be in the [0,1] range, i.e. percentages of the
total number of pixels. The hand color model is subsequently
persisted as part of the personalized hand profile.

Another part of the hand profile – the shape model – is
constructed as follows. Color is not needed in this stage so the

Fig. 6. ROC curves showing the contribution of HAMERA to hand profile
quality.

hand images are converted from RGB format to binary format
with each foreground pixel set at intensity 1 (background
pixel are of intensity 0 after the background removal step).
The image post-processing module then packs all the hand
images into a training data set. This training data set can
be downloaded through wired or wireless link to a more
powerful computer to construct the hand shape model. After
the external computer finishes shape model construction it
sends back the model to HAMERA for on-device persistence.
The reason that an external computer still needs to participate
is because that shape feature extraction and model training
are usually computationally intensive, for example with Viola-
Jones [9] or Kanade-Lucas-Tomasi [10] features. However, the
image quality control and post-processing work performed by
HAMERA makes these work much easier and more efficient
for the external computer.

V. EVALUATION RESULTS

To evaluate HAMERA, we implement a gesture HCI using
techniques similar to those of the Intel face tracker [11]: hand
and non-hand images are collected to train the hand shape
models; Trained hand model are stored as posture templates; A
correct recognition of the match between the posture template
and a sub-region of the test image is counted as a detection,
while an incorrect match is counted as a false alarm. Each
hand model is trained with 500 hand images and 4000 non-
hand images. The first 50 hand image are collected and the
remaining 450 are derived applying a random ±5-degree rota-
tion on the collected images. Three collection conditions in the
pervasive environment are tested. The first condition enables
HAMERA’s illumination/depth control as well as shaking
motion/tilt angle control. The second condition keeps the illu-
mination/depth control of HAMERA but relaxes the shaking
motion/tilt angle control. Instead, it does deblur processing on
the collected hand images using Lucy-Richardson algorithm
[12], a prevalent digital IS method. The third condition does
not enforce any controls during the hand image collection.
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The 500 hand and 1500 background images are then used
to train the Viola-Jones [9] type shape models. This is done
for the three hand image collection conditions. The remaining
2500 background images are used as testing images to derive
detection rate and false alarm rate data. These data are plotted
as curves in the receiver operating characteristics (ROC) graph.
Each ROC curve consists of 16 data points of detection
rate/false alarm pairs, which are obtained by varying parameter
configuration of the corresponding hand shape models.

Figure 6 shows the ROC curves for the hand shape models
trained under the three conditions. It can be observed that
without any constraints enforced, noises in the training data set
result in expected low-quality shape models: the best detection
rate is 0.43, while the best false alarm rate is 6.44 ∗ 10−3.
Given that the template size is of 25 × 25 pixels and the test
image size is of 640 × 480 pixels, each test image contains
about 4.7∗104 sub-areas at the size of the template. The false
alarm rate is consequently equivalent to 8-9 false alarms per
test image. This accuracy performance is far from acceptable
to be used by a practical gesture HCI. Applying illumina-
tion/depth constraints significantly improves the performance
of the corresponding hand shape models, the best false alarm
rate improves to 7.02 ∗ 10−8, this is about one false alarm
every 300 test images when performing 25 × 25 size template
scan over 640 × 480 test image. However, when the best false
alarm rate is achieved the detection rate is still at a low level
of 0.06. Actually, the best detection rate of the trained hand
shape model is 0.65. Obviously illumination/depth constraints
alone do not guarantee high-quality hand shape models, albeit
hand models trained under this condition largely outperforms
the counterparts under uncontrolled method. When both illu-
mination/depth and shaking motion/tilt angle constraints are
enforced, the trained hand models are able to archive both
satisfying detection and false alarm rates. When the detection
rate is 0.82, the false alarm rate is 5.6 ∗ 10−8, which is about
one false alarm every 380 test images. In a real life vision-
based gesture HCI, when the camera captures 640 × 480
frames at 50 Hz, this class of hand shape model quality is
equivalent to one false alarm in every 8 seconds and can be
regarded as of high grade.

VI. CONCLUSION

In this paper the design and implementation of the HAM-
ERA device are described in detail. The main contribution of
this device is that it enables high-quality and efficient hand
profile construction in the pervasive environment, which to
the best of our knowledge is not yet a well-solved problem.
HAMERA shows that accelerometer can be effectively utilized
to address an important challenge – the image blur caused
by camera shaking motion and tilt angle. It also proves that
dynamic image features are helpful in the controlling of good
illumination and depth conditions. The evaluate results justifies
HAMERA’s capability for its design purpose.

There are several directions of future work. One is further
investigation of a broader range of sensors to benefit the
process of hand profile construction. Besides accelerometer,

several other sensors can also improve the image collection
performance in multiple aspects. For example, a magnetometer
can measure the global orientation of the user, and is thus
helpful in illumination tuning when natural lighting is present.
Similarly, a gyroscope attached to the user’s wrist can report
the wrist’s angular motion. This motion data could further
assist the identification of the camera tilt angle in multiple
directions. There is a large free space to explore the proactive
use and fusion of sensor data on mobile device.
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