Adaptation Asymmetry in Manual Tracking
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Abstract A theory of manual adaptive control requires
an understanding of the mechanisms by which human op-
erators alter their control strategies in response to changes
in control conditions. Here we show that significant asym-
metries in adaptation occur in a manual tracking task when
well-trained subjects are exposed to situations in which track
preview, lag of the controlled system, or track bandwidth
gradually change. We analyzed the experimental data using
our recently developed recursive system identification algo-
rithm which not only estimates non-stationary linear model
coefficients but also time varying delay time. We show that
daptation strongly depends on whether the task becomes eas-
ier or more difficult as a result of changing conditions. Sub-
jects were not always inclined to improve their strategy when
tracking difficulty gradually decreases as a result of changing
conditions. When the task gradually became more difficult,
subjects seemed predisposed to maintain their current strat-
egy rather than switching to a more effective strategy par-
ticlularly when switching required an increased work load
or attentional demand. The observed adaptation asymme-
tries indicate that tracking performance can not be predicted
based on momentary task conditions alone. To establish a
model of adaptation mechanisms and its driving forces, the
recent history of changes in tracking conditions needs to be
considered. We attribute the observed asymmetries to a per-
formance judgment process which triggers adaptation when
perceived performance falls outside a subjective range that
depends strongly on the recent history of tracking conditions.

1. Introduction

In his 1969 paper Young expressed the challenge for future
work in manual control: “Only by pressing the development
of a theory of manual adaptive control for the unlikely and
unexpected failure will we keep the theory of manual control
relevant to the needs of the times” [9]. Focus has since been
directed primarily to the human as a supervisory controller
[7]. One reason for the evidential abandonment of adaptive
manual control was the lack of a technique for dynamic mea-

surement of the adaptive processes that take place in a hu-
man operator when the control task changes either abruptly
or gradually.

Models for human operator response to sudden changes in
control conditions are much better understood than those to
gradual changes and were researched extensively during the
sixties [3,6]. These models generally consist of a detection,
an identification and a modification stage. Adaptation is of-
ten reduced to switching from one well learned control mode
to another. An overview of the experiments, theories and
analyses used to characterize human adaptation is given in
(8].

The need for better measurement tools was however never
addressed satisfactorily. The main problem lies in the diffi-
culty to recursively identify time varying delay time. Identifi-
cation of delay time is crucial since it can change considerably
during manual adaptation [5]. Recently we have been able
to simultaneously identify the changing linear coefficients of
a system as well as its changing delay time [2]. In this pa-
per, we use this identifier to characterize human operator
adaptation to gradual changes in a manual tracking task.
Our focus is directed to the effect of changing preview, track
bandwidth and control plant dynamics on human operator
behavior and show that adaptation depends asymmetrically
on the direction of the changing conditions. We hypothesize
that perceived performance and workload play a significant
role in mediating human adaptation to different varying con-
trol conditions. Our long term goal is to use the recursive
identifier to develop a theory of manual adaptive control.

2. Experimental Design

A detailed description of the experimental design can be
found in [1]. A brief description follows.

Subjects sat 75cm away from a 19inch graphics monitor
and superimposed a cross over a reference track using a joy-
stick (Fig. 2). The springless joystick (Measurement Systems
Inc. Model 521) had adjustable kinematic friction and no
equilibrium point. This friction remained constant for all
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deflection angles and was set to satisfy the subjective prefer-
ence across all subjects. Static friction was negligible. Stick
data, with defection angles ranging between -20 and +20 de-
grees, was sampled at 60Hz using a 12 bit A/D converter.
The visual scene was updated at the same rate.

Trials were characterized by three experimental parame-
ters: preview length (PV), reference track bandwidth (BW),
and control plant cutoff frequency (COF). Trials with fixed
settings as well as trials in which one or two of the experi-
mental parameters changed over time were presented to the
subjects.

The reference track was constructed based on a sum of
16 sinusoids with frequencies between 0.1 and 1.0 Hz, equal
amplitudes, and random phases. The resulting signal was
normalized to an RMS of 4.3cm to create the reference track
as illustrated by the solid line in Fig. 1. To create a track
with time varying bandwidth, this signal was subsampled at
appropriate intervals.

_ 10- =
IS F E
8. - |
[0} r i
o] L
3 =
s F
& -5¢ .
= F E
-10 ‘ ‘ ‘ ‘ ‘ =
0 5 10 15 20 25 30 35
Time[s]
_ 10- E
£ F E
L, F =
(] L ]
e] E ]
2 F 3
c H E
2 -5 =
= ! E
-10F ‘ ‘ ‘ ‘ ‘ ‘ -
35 40 45 50 55 60 65 70
Time[s)]

Figure 1: Subject PB’s raw data during an increasing pre-
view trial. Track bandwidth was 1.0Hz and the control plant’s
cutoff frequency 0.75Hz. The solid line represents the refer-
ence track and the dotted line the plant output.

The gain of the first order stable control plant was ad-
justed to assure unit gain at 0.5Hz regardless of the pole
placement. This reduced the otherwise large fluctuations in
perceived stick sensitivity when the control plant cutoff fre-
quency changes.

All six student subjects (two female and four male) par-
ticipated in three 45-min training sessions followed by six 45-
min experimental sessions. The training sessions familiarized
them with all the possible conditions they would encounter
in the experimental sessions. A maximum of three session
per day was adopted with at least 30 minutes between ses-
sions. Each subject performed a total of 80 trials, lasting 70s
each, during the three training session and 167 trials during
the six experiment sessions.

The different preview conditions are described in the cap-
tion of Fig. 2.
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Figure 2: Ezperimental visual scene as presented on 19inch
graphics monitor. Left panel shows the zero preview case in
which no directional information was available. Right panel
shows approzimately how far the reference signal ertended
into the future (toward top of screen) with 700ms preview.
The top of the screen corresponded to 1.0s preview, but this
preview amount was never used.

Trial conditions were picked randomly without replace-
ment from the following set of experimental parameter
settings. The static conditions consisted of all permuta-
tions on (PV=0,167,700; BW=0.5,1.0; COF=0.75,2.5). The
time varying trials consisted of permutations on (PV=0-700;
BW=0.5,1.0; COF=0.75,2.5), on (PV=0,167,700; BW=0.25-
1.0 COF=0.75,2.5), on (PV=0,167,700; BW=0.5,1.0;
COF=0.5-2.5), and on all permutation in which two experi-
mental parameter varied. PV=0-700 indicates that preview
changed from 0 to 700ms or from 700 to Oms. Every static
conditions was run four times and every time varying con-
ditions twice. For example, subjects experienced increasing
preview twice and decreasing preview twice for the same BW
and COF settings. In this paper we only report on a subset
of the trials in which one experimental parameter changed.

Experimental parameters remained constant during the
first and last 15s of the time varying trials and changed lin-
early between the specified values when time ranges from 15
to 55s. Their values are indicated along the x-axis in Figs. 3
through 5.

3. Analyses

Man-Machine System Model Estimating human op-
erator coefficients requires knowledge about the input signal
they use. In compensatory and pursuit tracking the input
signal is well defined. However, during preview tracking, op-
erators have flexibility in shifting their input signal back and
forth in time by changing the point at which the fixate in
the preview. Without monitoring eye position, exact knowl-
edge about the input signal can only be inferred. To circum-
vent this problem, we decided to identify the entire closed
loop system rather than just the human operator. This pro-
vides information regarding the operator’s ability to turn the
entire system into a unit-gain, zero-delay tracking system.
To assess this, the model of the MMS or man-machine sys-
tem (i.e. human-plus-control-plant) was assumed to be accu-
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rately characterized by the following discrete time ARMAX
(1,1,2) model

Yn = @1Yn—1 +boTn+d, +b17n—144, +
Up + C1Un—1 + C2Un—2

where d, is the time varying fractional delay time. This
model is most appropriate if the majority of time is spend in
open loop mode; during pursuit (and preview) tracking hu-
mans operate in open loop control mode for extended periods
of time with only intermittent transitions to compensatory
or error correcting control mode [4]. Until we have estab-
lished a clear understanding of the mechanisms responsible
for switching between control modes, we assume that the ef-
fect of infrequent error corrections is small and can be char-
acterized by colored noise as indicated in proposed model.

Recursive Model Identification Simultaneous esti-
mation of time varying delay time and linear model coeffi-
cients was performed using the recursive identification tech-
nique detailed in [2]. This technique employs the Extended
Kalman Filter to recursively estimate fractional delay time
which is then used to resample the input signal using bilin-
ear interpolation. The resulting locally time-shifted input
signal is subsequently used to estimate the linear model co-
efficients for the current time step using the normal Kalman
Filter'. The identifier was run in non-causal or smoothing
mode to eliminate the estimation lag that would have been
introduced otherwise. This effectively eradicates the need to
question whether the observed asymmetry in adaptation is
true or an artifact of the identifier.

Performance Measure To test our hypothesis that the
perceived changes in performance, resulting from changing
tracking task conditions, plays a role in mediating adapta-
tion, the following algorithm was developed to compute a
recursive measure of tracking error. This algorithm sorts the
squared tracking errors in a 10s window centered on the time
step of interest and returns the squared tracking error value
that is larger than 85 % of the values in this window?®. The
results are shown in the bottom panels of Figs. 3 through 5.

4. Results

Raw data of an increasing preview trial is shown in Fig. 1.
The plant output is draw as the dotted line. It shows the
improvement in tracking as preview increases as indicated
by the decrease in the number of large over and under shoots

I The a-priori noise covariance R was set to 5.0e—2, the variance
in delay time Q4 to 5.0e — 2 and the variance in the linear coeffi-
cients Qp to 5.0e —5. Note that only the ratio between Q4, @, and
R affects the identifier. The results shown in Figs. 3 through 5 were
obtained using these settings. Changes in these coefficients on the
order of 50% did not affect the results in a significant manner.

2Using a forward/backward running average with forgetting
factor required such a long effective averaging window to reduce
large fluctuations that it lost its time specificity. This motivated
our choice of the 85 percentile measure.
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Figure 3: Human operator adaptation to changing preview.
Two conditions are compared; left (right) column shows the
effect at a 2.5Hz (0.75Hz) control plant cutoff frequency. The
track bandwidth was fized at 1.0Hz in both cases. Solid (dot-
ted) lines indicate an increase (decrease) in preview according
to the scale along the z-azis. See text for further details.

as well as a decrease in the time shift between reference track
and plant output.

The effects of changes in the experimental parameters
(preview, track bandwidth and control plant cutoff fre-
quency) on the overall identified system are shown in Figs. 3
through 5. The experimental conditions are explained in the
figure captions. Median results of the four most motivated
subjects (two males and two females) are shown; they reflect
the typical adaptation asymmetries observed in all subjects.
Primary focus in this paper is directed to the effect of chang-
ing control conditions on delay time adaptation. Changes in
pole-zero placement and dc-gain are addressed only briefly.
Presentation of all the results is beyond the scope of this
paper and will be topic of a forthcoming journal paper.

In each figure, the top panel shows delay time, the next
pole and zero placement, the third row shows dc-gain, and
the bottom panels the 85 percentile squared tracking error.
It is important to note that the solid (dotted) lines represent
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trials in which the task difficulty decreased (increased). To
allows for direct comparison of model coefficients under iden-
tical experimental conditions, trials with increasing task dif-
ficulty (dotted lines) are plotted in reverse time. This means
that time runs from right to left for the dotted lines as indi-
cated by the dotted arrow in the top panels. For example,
in the top panel of Fig. 3 the solid arrow, which corresponds
to the data represented in solid lines, indicates that time
runs from left to right and that preview increases from 0 to
700ms. Similarly, the dotted arrow in the top panel of Figure
4 indicates that time runs from right to left and that track
bandwidth increases from 0.2 to 1.0Hz. Even though data
are plotted against time, values of the experimental variable
at 0, 15, 35, 55 and 70s are indicated along the x-axis. Note
that the experimental parameters remained constant for first
and last 15s of every trial as noted by the lack of changes in
x-axis values in this region.

The operator was able to null the total MMS delay time
when preview reached about 300ms (Fig. 3). This coincides
with the point at which tracking error asymptotes. Decreas-
ing preview (dotted lines) results in a slightly shorter delay
time than observed during increasing preview with time. Dc-
gains are highest at the beginning of a trial particularly in
case of a sluggish plant (0.75 Hz). The pole of the system
during increasing preview and a responsive plant, lies at a
higher frequency than observed during decreasing preview.
This means that the total phase lag at frequencies greater
that about 0.5Hz may be similar for both conditions. Over-
all, the effects of increasing and decreasing preview with time
follow a similar pattern and do not depend strongly on plant
dynamics.

Adaptation to increasing track bandwidth with time (Fig.
4, dotted lines) differs substantially from those observed dur-
ing decreasing bandwidth. Subjects do not reduce delay time
when bandwidth decreases with time even though they have
exhibited shorter delay times for the same track bandwidth
in decreasing bandwidth trials (dotted line above solid line at
low bandwidth). Preview diminishes this asymmetry. Dur-
ing increasing bandwidth trials, preview also increases the
bandwidth at which a constant delay time could be main-
tained (the dotted line bends down at higher frequencies as
preview increases). This bend also signifies the point where
tracking error starts to increase significantly.

In response to time varying track bandwidth, little asym-
metry is observed in pole-zero placement. Similar to the
observation made in response to time varying preview, the
dc-gain seems highest during trial onset and then gradually
decrease.

Changes in the MMS’s dynamical are also observed in re-
sponse to time varying control plant dynamics (Fig. 5). Delay
time as well as the MMS'’s pole-zero placement show asym-
metries. Recall that the control plant is most responsive at
the 2.5 Hz cutoff frequency and is perceived as very sluggish
when the cutoff frequency is around 0.5 Hz. For subjects to
equalize the lag introduced by the sluggish plant, they need
to use lead equalization or prediction.

Delay time remains relatively constant when the plant
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Figure 4: Human operator adaptation to changing track
bandwidth. Three conditions are compared; left (mid-
dle,right) column shows the effect at a Oms (167ms,700ms)
preview. The control plant cutoff frequency remained at
0.75Hz in all these trials. Changes in track bandwidth are
shown along the z-awis. The information displayed in the
different rows equals those in Fig. 3.

becomes more responsive (solid lines). Conversely, as the
plant becomes more sluggish with time, a clear trend towards
longer delay times is observed (dotted lines). These two lines
cross at a cutoff frequency that increases with preview.

Since the dynamics of the system are actively altered as
part of the experiment, changes in the MMS pole placement
(thin lines) might be expected. In response to these changes
in plant dynamics subjects modified their lead equalization
as indicated by the sloping thick lines. Lead equalization
is characterized by the fact that the zero’s cutoff frequency
falls at a lower frequency than the pole’s cutoff frequency
(thick line above thin line) thus effectively increasing the
bandwidth of the system. Dc-gain and pole-zero placement
also show asymmetries. When the plant starts out sluggish,
subjects focus primarily on low frequencies in the reference
track and adopt rate control as indicated by the high dc-gain
and the fact that zero placement falls at a higher frequency
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than the pole placement (thin solid line above thick solid line
when cutoff frequency is low). As the system becomes more
responsive, the dc-gain drops significantly and the pole and
zero placement lines cross. This high dc-gain and swapping
of pole and zero placement is not observed when the system
starts out responsive and reaches the sluggish regime.

As expected, performance improves significantly when pre-
view is available. Here we clearly see the effect of asymme-
tries in model parameters on performance. At low cutoff fre-
quencies, the dotted lines indicate worse performance. The
main difference in model parameters is the lower dc-gain and
longer delay time at the end of decreasing cutoff frequency
trials. Similar correlations between asymmetries in model
parameters on performance are observed for varying preview
and track bandwidth.
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Figure 5: Human operator adaptation to changes in the first
order control plant’s cutoff frequency. Three conditions are
compared; left (middle,right) column shows the effect at a
Oms (167ms,700ms) preview. The track bandwidth remained
at 1.0Hz in all these trials. Changes in plant cutoff frequency
are shown along the z-azis. The information displayed in the
different rows equals those in Fig. 3.

5. Discussion

Four types of control adaptation can be distinguished: input
adaptation and prediction, task adaptation, controlled ele-
ment adaptation and programmed adaptation [9]. In adap-
tive manual control, humans use their ability to select the
most informative visual cues, establish a mental or internal
model of the control plant and reference track characteristics,
and establish a performance criterion that integrates task re-
quirements and human processing and control limitation.

Gradual changes in control conditions are either perceived
directly or need to be inferred from changes between the
observed and expected effect of control actions. Conditions
under which human operators perceive these gradual changes
and under what conditions they will adapt or optimize their
control strategy is topic of this discussion.

Adaptation to preview largely follows expectation in that
preview provides the information human operators need to
null the effect of their own inherent delay time as well as
equalize the dynamical lags introduced by the plant and their
own neuromusclar system. Since bandwidth can be perceived
directly at long preview, the lack of a significant adaptation
asymmetry to increasing and decreasing track bandwidth at
700ms preview might be expected. Adaptation to changes
in control conditions that require inference for detection, fol-
lows an asymmetrical and less predictable pattern. We sug-
gest that subjective evaluation of perceived performance is
one component responsible for the observed asymmetry in
adaptation.

Preview is directly perceived while track bandwidth and
plant dynamics need to be inferred. Given that perception is
immediate but that inference takes time, if a single mecha-
nism was involved in mediating the changes in overall system
characteristics to increasing and decreasing track bandwidth
conditions, then a hysteresis in the response curves would be
expected. However, our results show an asymmetry rather
than a hysteresis between these response curve indicating
that different mechanisms may be responsible for each.

When a tracking task started out difficult (high bandwidth
or low control plant cutoff frequency) and became gradually
easier, subjects maintained their initial delay time until the
end of the 70s trial even though they have demonstrated the
ability to track with lower delay times under identical con-
ditions. One explanation is that subjects realized that the
task difficulty automatically decreased and did not see the
need to improve performance even further. It is important
to note that the performance measure at the bottom row
in each figure may not be representative of the one subjects
used internally. The displayed measure is also rather insen-
sitive because of the 10s sliding window used to compute
the 85 percentile tracking error. From these results one may
conclude that the subjects did not always optimize to their
ability. Whether a fluid subjective tradeoff between perfor-
mance and effort causes these discrepancies remains to be
determined.

Subjective performance evaluation can explain only part
of the observed adaptation asymmetry. A second process
becomes apparent most clearly in the time varying cutoff
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frequency trials. When the system starts out responsive and
then gradually turns sluggish, subjects do not lower their de-
lay time nor do they increase their gain and switch to rate
control. Omne possible explanation is that their perceived
benefit to switch control strategy and adopt the more ap-
propriate rate control does not outweigh the incurred cost of
switching to this more demanding strategy. A similar argu-
ment may cause them not to switch to a higher gain and lower
delay strategy at high track bandwidth when the track band-
width gradually increases. In this case, they do not adopt
the high gain strategy they exhibit when the track starts
out with a high bandwidth. Again, it appears that subjects
do not switch strategies to improve tracking performance to
their demonstrated ability. In both cases, the 85 percentile
measure indicates that performance is reduced during the
period where they did not adopt the more effective strategy.

Rather than discussing the asymmetry in the subject’s
lead equalization in response to time varying plant dynam-
ics, we want to draw attention to the slightly puzzling finding
that a decreasing preview enabled subjects to track with a
shorter delay time than when preview increases. It is as if
subjects are better able to predict the reference track when
they have been tracking it with preview for some time. We
hypothesize that prolonged preview enables human operators
to construct a more accurate mental model of the reference
track characteristics which they then use in anticipating the
track when preview drops below the critical value at which
they, under static conditions, are able to equalize their in-
herent delay time.

The observed adaptation asymmetries indicate that track-
ing performance can not be predicted based on momentary
task conditions alone. To establish a model of adaptation
mechanisms and its driving forces, the recent history of
changes in tracking conditions needs to be considered. Sub-
jects appear to follow a lazy-controller’s approach. Certain
conditions cause them not to strive for ”optimality”. If the
task becomes automatically easier, they do not always im-
prove further. They also do not always adopt strategies that
require more attention or result in a higher work load partic-
ularly when they have been tracking with a particular strat-
egy from some time. Whether these asymmetric adaptation
phenomena are the result of a subjectively established suffi-
cient performance level or are the result of an asymmetry in
inferring changes in not directly perceivable task conditions
remains to be explored. One of the fundamental problems is
our limited knowledge regarding a human operators internal
performance criteria or cost function and how it is affected
by recent history.

6. Conclusion

Our recursive system identifier [2] has demonstrated to be
instrumental in analyzing a human operator’s adaptive be-
havior. Its main strength lies in estimating time varying
delay time which is a highly adaptable parameters in human
operator models. It revealed asymmetries in human opera-
tor adaptation that may be of practical importance in ap-
plications where humans interact in slowly varying environ-

ments. Unfortunately, space limitations forced us to touch
on only a few of the observed asymmetries and leave a de-
tailed discussion of these and the other data for a forthcoming
journal paper. Topic of future research is to use this iden-
tifier in developing a model of human operator adaptation
mechanisms during slowly varying tracking conditions. We
believe that perceptual and cognitive aspects such as sensi-
tivity to changes in control task parameters, perceived per-
formance,perceived workload, mental or internal models and
attention all play part in mediating adaptation.
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