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ABSTRACT

The design, implementation, and testing of virtual en-

vironments is complicated by the concurrency and real-

time features of these systems. Therefore, the develop-

ment of formal methods for modeling and analysis of

virtual environments is highly desirable. In the paat,

Petri-net models have led to good empirical results in

the automatic verification of concurrent and real-time

systems. We applied a timed extension of Petri nets

to modeling and analysis of the CAVETM 1 virtual envi-

ronment at the University of Illinois at Chicago. Here,

we report on our time Petri net model and on empirical

studies that we conducted with the Cabernet toolset

from Politecnico di Milano. Our experiments uncov-

ered a flaw in the way a shared buffer is used by CAVE

processes. Due to an erroneous synchronization on the

buffer, different CAJ’E walls can simultaneously display

images based on different input information. We con-

clude from our empirical studies that Petri-net-based

tools can effectively support the development of reliable

virtual environments.
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1 INTRODUCTION

~~irtual Reality (VR) systems are becoming increas-

ingly widespread. Projection-based systems, such as the

CAVE, consist of several walls that display computer-

generated images for the benefit of a human viewer.

These images are drawn in real-time on the basis of the

viewer’s perspective in the virtual world in such a way as

to create the impression of a real-life, three-dimensional

view of a given scene.
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Several features of VR systems complicate modeling, –

analysis and testing of these systems. For instance,
VR systems usually consist of multiple hardware and

software components that operate asynchronously, such
as sensors, image computation and rendering processes.
and analog-to-digital converters. However, the output

of a VR system typically consists of video and audio
streams that must be output synchronously to create

the impression of a real scene to human eyes and ears.

Thus, the computations occurring in a VR system must
comply with real-time constraints in order for the sys-

tem to work convincingly. Moreover, the presence of

multiple asynchronous components introduces the pos-
sibility of concurrency errors, such as missed updates or

inconsistent changes to shared data. When these errors

occur, the output of the VR system is often compro-

mised, sometimes resulting in “simulation sickness”” for

the unfortunate human viewer.

Given the high cost and the timing requirements of

J’R systems, there is a need for automated tools that

can predict the performance of these s:ystems before the

systems are deployed. To date, numlerous techniques

have been defined for the automated analysis of general

concurrent and real-time systems [1, 4--11,14,16,19. 22],

However, these techniques and tools have yet to be ap-

plied to modeling and analysis of I’R systems.

Our goal here is to analyze a specific l~R system.

the CAVE environment at the University of Illinois at

Chicago, using a timed extension of Petri nets for nlod-

eling and analysis [12]. We selected a Petri-net-based

formalism for many reasons. First, Petri nets can cap-

ture quite naturally the main features of VR systems.

It is well known that Petri nets can mc)del easily nonde-

terminism and parallel computation, two essential fea-

tures of concurrent systems, such as VR sy.st ems. In

addition, Petri nets can model easily s,ynchronizat ion of

asynchronous processes, which is commonplace ill l-R

systems. For instance, VR systems often carry out t hc

computation and the rendering of the images for nlulti-

— ple walls as asynchronous processes. However. t hc pro-

I CAVET~4 is a registered trademark of the Regents of the cesses must be synchronized with each other (and. when

University of Illinois. applicable, with processes producing audio str~i]~]ls) lN-
.— ——~ .,.,
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fore their output is displayed.

An additional advantage is that Petri nets can accom-

modate quite easily models at different abstraction lev-

els. Although we have only considered high-level models

of the CAVE thus far, we plan to use Petri nets also for

finer-grained analysis, such as automatic verification of

CAVE application code. Other authors have shown that

Petri nets can be easily generated from high-level code

written, for instance, in the Ada language [5, 13, 24]. Fi-

nally, Petri nets have been studied extensively in the

past three decades, resulting in the definition of nu-

merous tools and techniques for analysis. In particular,

Petri nets are amenable both to formal verification and

simulation techniques [5, 13].

To date, many extensions of Petri nets to the timed

domain have been defined (see, for instance, [15, 18,23,

25]). These models differ in terms of their expressive

power and their ability to support analysis. In gen-

eral, the more expressive notations are also more diffi-

cult to analyze and vice versa. For our work we chose

Merlin and Faber’s time Petri nets mostly because they

were the least expressive notation that could adequately

model the properties of interest of VR systems [18].

These nets associate a so-called jiring interval (i.e., a

delay bounded by two constants) with net transitions.

Our work on Petri-net-based analysis of the CAVE en-

vironment has led to two main results. First, we built

a time-Petri-net model of the C.4VE environment. Sec-

ond, we applied the Cabernet toolset to the simulation

and automatic verification of the net model [2]. Here

we report on the model we defined and on the results of

our simulations with the model.
/

Our experiments uncovered a flaw in the way a shared

buffer is used by C.4VE processes. The buffer is written

by a process producing sensor information about the

current position and orientation of the CAVE viewer.

Four additional processes use information from the

buffer to compute the images to be displayed simultane-

ously on each of the CAVE walls. Due to an erroneous

synchronization on the buffer, the four processes some-

times use inconsistent information (e.g., by missing an

update to the buffer) about the position and the ori-

entation of the viewer. As a result, different walls can

simultaneously display images based on different sen-

sor information. This possibility was discovered concur-

rently but independently from us by another CAVE re-

searcher. Evidently, this flaw could have been detected

before CAVE’s code was written-and corrected more

easily—if tools similar to ours had been used during the

CAVE’s design stages.

This paper is organized as follows. Section 2 summa-

rizes the CAVE environment. Section 3 introduces time

Petri nets. Our Petri net model of the CAVE is dis-
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cussed in Section 4. We discuss our empirical results in

Section 5. Some conclusions and future research direc-

tions are discussed in Section 6.

2 THE CAVE ENVIRONMENT

The CAVE is a multi-person, room-sized, high-

resolution, 3D video and audio environment [12]. The

CAVE is a theater 10x1OX9 feet, made up of three

rear-projection screens for walls and a down-projection

screen for the floor. Electrohome Marquis 8000 or 8500

projectors throw full-color workstation fields (1024x768

stereo) at 96 Hz onto the screens, giving 3000 x 2000

linear pixel resolution to the surrounding composite im-

age. Computer-controlled audio provides a sonification

capability to multiple speakers. A viewer’s head and

hand are tracked with Ascension tethered electromag-

netic sensors operating at a 96 Hz sampling frequency

for a dual sensor configuration. The tracking system

has a valid operating range of 7.5 feet and a delay of

about 50–75 ms.

Stereo images are generated by Stereographic’ LCD

stereo shutter glasses that are used to present the al-

ternating right and left eye images viewed by the sub-

ject. The correct perspective and stereo projections are

based on ~’alues returned by the position sensor attached

to the Stereographic shutter glasses. Two SGI Onyxes

with Infinite Reality (IR) Engines are used to create the

imagery that is projected onto the walls and floor.

The heart of the image generation is the Infinite Real-

ity Engines running on two SGI onyx hosts with three

high-speed graphics pipelines each linked to an inde-

pendent R1O,OOO processor. The processors within each

Onyx host share a common memory space where vari-

ables for the generation of the scenes can be stored and

accessed by each processor; howe~wr, the two Onyx hosts

are connected through a high-speed communication net-

work. Each processor uses input data from the tracker

and information stored in a visual database to gener-

ate an image. The database stores a 3D representation

of the scene on display in the CAVE. Some processors

can be used to update visual scene variables while other

are used to generate database changes and communi-

cate with other computers over high-speed networks for

multi-system collaborative environments.

A typical CAVE application starts by initializing inter-

nal graphics and external projection and sensory hard-

ware. An initial scene is generated and displayed on all

walls of the CAVE. Next, the application begins reading

real-time data from the sensors attached to the ~iewm

moving about in the environment. These data are used

to change the generated look-at point and to interact

with objects in the scene. The images are either up-

dated at a fixed interval set by the program or run free.

In the free-running mode, there is no deadline for the



program to finish computing an image. When this hap-

pens, the image is displayed. In the fixed-interval mode,

there is a strict timing loop whereby the program must

display the content of a suitable buffer, whether the im-

age is complete or not, upon expiration of a deadline.

After the new image has been sent to the projectors,

the program returns to the point where it obtains new

input data from the sensors or other devices.

3 TIME PETRI NETS

A time Petri net is a 5-tuple N = (P, T, F, D, hlo),
where P is a finite set of places, T is a finite set of

transitions, F is an arc set, D associates a static delay

interval r = [a, b] with each transition t G T, and M.

is an initial marking, that is, an initial assignment of

tokens (i.e., markers) to each place p 6 P. Given an

arc j from a place p (a transition t)to a transition t (a

place p), p is said to be an input (output) place for t,
and t is an output (input) transition for p. A static de-

lay is bounded by two numeric constants, a and b, with

O~a<+manda~b~+co.

State changes are carried out by firing fireable transi-

tions. A transition is said to be enabled when all its

input places have at least one token. A transition with

delay interval ~ = [a, b] is fireable if it is continuously

enabled for at least a, but no more than b, time units.

Thus, if transition t with delay interval ~ = [a, b] be-

comes enabled at time 80, then transition t must fire in

the time interval [190+ a, 60 + b], unless it becomes dis-

abled by the removal of tokens from some input place

in the meantime. The static earliest firing time of tran-

sition t is a; the stattc latest firing time of t is b; the

dynamic earliest jiring time oft is @o+ a; the dynamtc

latest jiring time of tis t90+b: the dynamic firing interval

of t is [Oo+a. do +b].

.i state of a time Petri net consists of a mar-king (i.e.,

an assignment of tokens to each place) and a vector of

dynamic firing intervals for each enabled transition. The

initial net state is defined by the initial net marking,

time 6 = O, and dynamic delays equal to the static

delays for all enabled transitions. W’hen a transition t is

fired the net moves from a state z to a new state y. The

marking of y is obtained by removing a token from each

input place oft and adding a token to each output place

of t. The dynamic firing delays of transitions enabled

in y are computed as follows. If a transition was not

enabled in Z, its dynamic delay is equal to its static

delay. If a transition was enabled in x, its dynamic delay

in y is the difference between its dynamic delay in z and

c5(t),the dynamic delay of the transition that fired. An

important property of time Petri nets is that their state

space (i.e., the set of states reachable from the initial

state) can be fully represented as a finite graph [3].

4 PETRI NET MODEL OF ‘THE CAVE

Our first objective was to build a Petri-net-based model

of the CAVE. This activity turneld out to be more dif-

ficult than we had anticipated because there were no

documents describing in sufficient detail the interactions

among CAVE components and the effect of delays intro-

duced by the components on the overall CAVE behavior.

We did have access to Some high-level descriptions of the

CAVE [12, 17, 20] and to operaticmal specifications for

some of the components. We also conducted interviews

wit h CAVF developers when these descriptions proved

inadequate. The time Petri net that we defined is the

first formal model of the CAVE’s operational and timing

behavior.

In brief, the CAVE consists of the following three main

subsystems. First, the tracker subsystem obtains input

data about the position and orientation of the CAI”E

viewer. This subsystem also calibrates the data in or-

der to reduce noise in the data. The main subsystem

uses this data to compute the images to be displayed on

the four CAVE walls and renders (i.e., draws) the im-

ages. Finally, a monitor subsystem displays the images

on four screens. In this section, we first summarize the

behavior of each subsystem and then describe how the

subsystems are modeled in our time Petri net.

4.1 Cave subsystems

We will now provide a brief description of the functional

subsystems of the C.41:E. We understand that this or-

ganization is fairly common among \’R environments.

Tracker subsystem. This subsystem computes the

position and orientation of the head and wand of a

CAVE viewer. Measured data are sent to two SGI Onyx

hosts in the main subsystem, where the images to be dis-

played are computed. In brief. the tracker transmits a

pulsed direct current DC magnetic field that is sinmlta-

neously measured by all the receivers in the .Ascension

sensors. These receivers are located on the viewer’s eye-

glasses and wand; they provide input data about t be

position and orientation of the viewer’s head and wand.

The signal read by the antenna located on the view-er”s

eyeglasses provides six readings, corresponding to the

six degrees of freedom of the viewer’s head. This infor-

mation is important because it allows the \rR system

to compute the viewer’s perspective on the scene being

displayed.

An additional antenna located on the wand tracks the

wand’s position and orientation. This antenna works in

a similar way to the antenna on the viewer’s bead. In

addition, the wand has three buttons and a pressure sm-

sitive joystick. The joystick is a tvro-dilllell!;iollal device

that allows the viewer to enter navigation information. .,
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The buttons allow the viewer to set modes and select

options.

The tracking sample is synchronized with the leading

edge of the monitor signal coming from the display sub-

system. Once a tracker sample is obtained, it is cali-

brated by electronic filters that reduce the noise present

in the input data. The tracker communicates with the

rest of the VR system through a 33.6 Kbaud serial line

connected to an IBM PC. The PC, which also takes in-

put from the joystick and buttons, is connected to the

two Onyx hosts through a high-speed fiber-optic net-

work link.

Main subsystem. This subsystem creates images to

be displayed on the walls of the CA\~E. The created

images are stored in a buffer shared with the display

subsystem. Image creation is accomplished in two steps.

First, an image computation process defines the geomet-

ric features of each image to be displayed. The main

purpose of this process is to identify the objects that

will appear in each image. Second. an image render-

ing process defines the full visual representation of the

image and stores it in the shared buffer. A rendering

process running on one of the Onyx hosts reads the data

from the tracker and copies it to the internal memory

shared by the Onyx processors. Given that there are

four walls in the CA1’E and each SGI-Onyx has only

3 graphics pipelines, two Onyxes are required to ren-

der the four walls. After reading tracker data, Onyx 1

forks a master process. The master process first forks

a network process to communicate with Onyx 2. This

system computes and renders the image for the bottom

wall of the CAVE. Xext, the master process forks two

additional processes on Onyx 1 that compute and ren-

der the left and right walls. Finally, the master process

proceeds to compute and render the front wall.

The CAVE implementation uses double buffering to

avoid interference between the main subsystem and the

display subsystem. The buffer between these subsys-

tems consists of two components. While the main sub-

system is writing into one buffer component, the dis-

play subsystem reads from the other component and

vice versa.

The processes rendering the four images must be syn-

chronized with each other before the images are dis-

played on the CAVE walls. Whenever a process finishes

an image, it sends a message to the master process and

suspends itself while waiting for a response from the

master process. Upon completion of all four images, the

master process instructs the other processes to swap the

double buffer; buffer swapping takes place at the next

monitor cvcle..

Image displaying subsystem This subsystem con-

sists if a lar-ge screen, high resolution, passive- (or active)

stereo, projection display well-suited for large audiences.

The swapping between the front and back buffers is syn-

chronized with the leading edge of the monitor which

has a frequency of 48 Hz. When all the four walls are

ready, swapping takes place at the next edge of the mon-

itor signal. If any of the walls is not ready to swap, the

monitor signal is ignored and a new monitor signal is

issued at the next monitor cycle (i.e., after 20.8 ms).

Once the buffers are swa:lped the four images are dis-

played on the CAVE walls.

4.2 Time Petri net model

Figure 1 shows a time Petri net model of the CAVE vir-

tual environment. This model was entered into Caber-

net using Cabernet’s graphical editor. Subsequently, we

ran numerous experiments on the Petri net? which are

discussed in the next section. Except when stated oth-

erwise, assume that transitions appearing in the Petri

net have either zero or negligible delays (i.e., because

they model synchronization among CAVE processes or

short process computations).

The Petri net in Figure 1 models all the subsystems of

the CAVE as well as the interacticms among the subsys-

tems. This net has 48 places and 35 transitions.

Places Head, Wand, and Button.input represent input

sources from a CAVE viewer. ‘These places are ini-

tally marked. meaning that input data is available when

an experiment is started. Transition Head.. Wand_Input

fires whenever Head and Wand are marked. The

Tracker-Obtain-Data transition has an interval delay of

[10.4, 10.4]. Thus, this transition fires every 10.4 ms in

order to model a 96 Hz Monitor signal. Thus. a token

appearing in Tracker. Got_Data signifies that the data

has been sampled from the tracker sensors.

Transition Trans.Delay represents the sending of data

from the tracker to the IBM PC. l~hen transi-

tion Trans_Delay fires, a token is deposited in place

PC-Receive, meaning that the PC has received tracker

data. Transitions Conversion and Calibration capture

computations performed by the IBM PC. Transit iou

Write_ enabled models synchronization on the line con-

necting the IBM PC to the SGI Onyx hosts. lYhen place

Read_ WriteJock is marked, transition Write_ enabled

can fire, meaning that the PC can send data to the

Onyx hosts. When this happens, tokens are deposited

in places Rendering-Available ancl Dat a-Ready. Tokens

in places Data-Ready and UsedJata (which is initially

marked) enable transition Replace-Old-Data. The firing

of this transition deposits a token in places New.-Data

(meaning that new data are al’ailable for drawing a new

set of images) and Read.. IVriteJock (meaning that the

lock on high-speed communication link between the PC
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and the Onyx hosts has been released).

Now transition Use.New_Data is enabled. When

this transition fires, a token is deposited in place

Tracker-Data.For-Rendering, signifying that the com-

putation of the images can actually start. The firing

of transition Use- Old.Data signifies that the tracker fell

behind the image computation processes. In this case,

old tracker data is reused to perform anew rendering. In

the net, this happens when place Used.Data is marked

and place Data-Ready is not marked. As with transi-

tion Use.New_Data, firing transition Use-Old-Data re-

moves the token from place Rendering-Available and de-

posits a token into place Tracker-Data-For-Rendering.

When this place is marked, transition Fork-Process

fires and deposits a token in places Master-Processl,

Onyzl-Barrier and Forked-Network.Process.

Place Master. Processl represents the starting point of

the master process. This process spawns two addi-

tional processes, which we model by firing two ad-

ditional transitions labeled Fork-Process. The mas-

ter process and the two spawned processes proceed

to compute and render images for the front wall,

right wall, and left wall of the C.AVE. These com-

putations are captured by the transitions labeled

Comp-Rend_Front_ Wail. Comp-Rend_Right- Wall, and

C’omp-Rend_Left- Wall.

\Then transition Comp-Rend_Front_ Wall is fired, a to-

ken is deposited in places Swp-Rdy.-l and Wait_.Swap-l.

Place Swp_Rdy-1 is used for synchronization among

the processes computing the four w’ails. Place

Wait-Swap-1 is used for synchronization between the

display subsystem and the main subsystem. The

behavior of transitions Comp-Re.nd_Right_ Wall and

Comp-Rend-Left.. Wall is similar to the case of transi-

tion Comp-Rend-Front- Wall.

The image to be displayed on the bottom wall is

computed on the second Onyx host in parallel with

the other three walls. Place Rendering-~ th-Available

captures a mutual-exclusion lock on the network be-

tween the two Onyx hosts. When this place, which

is initially marked, and place Forked-Network_Process

are marked, transition Shared.-Mem- Write-Enabled is

fired, meaning that data is transferred from Onyx 1

to Onyx 2. At this point, Onyx 2 computes and ren-

ders the bottom wall, which is captured by the firing

of transition Comp-Render-Bottom- Wall. When this

happens, tokens are deposited in places Swp-RdyJ and

Wait-Swap-~. The token in place Swp-Rdyd enables

transition Onyx_Barrier_reached whose firing adds a to-

ken to place Ready_ For-Swap.

Transition Swap_ Buffer captures the swapping of the

two components in the double buffer between the main

subsystem and the display subsystem. This transi-

tion is enabled when places Swp-RdyJ, Swp-Rdy-2,

Swp_Rdy_3, and Ready-For-Swap are marked, signifying

that all four images have been computed. If all these

places are marked, transition Swap-Buffer is fired as

soon as a token appears in place MonS’wap. This place

captures the monitor signal that synchronizes buffer

swapping. If, however, any of the input places is not

marked when a token appears in Men-Swap, the token

in place MonJwap is removed by the firing of transition

Mon_SyncJ%nk. In this case, the token will reappear in

MonJ7wap after 20.8 ms.

The firing of transition Swap. Buffer adds a to-

ken to places Rendering-Available and Render-

ingJth-Available. A token in the first of the two places

signifies that the main subsystem can start the compu-

tation of a new set of images. A tolken in the other place

signifies that the communication network between the

Onyx hosts is available again.

Transition Swap_Buffer also adds tokens to places

Swapl through Swapd. These places, along with places

Wait-Swapl through WaitSwap.~ enable the display

processes. The displaying actions are modeled by four

sets of transitions, one for each c)f the display devices

used by the CAVE. In particular, when transition Swap-

Comml fires the front wall is able to read from the

buffer. Transition Swap_FW-Complete captures the ac-

tual reading. Transition Display-. i~W-Complete models

the displaying on the walls. This transition has a de-

lay interval of [20.8, 20.8] in order to capture the time

required by the ~.ails to display the images. The behav-

ior of the transitions modeling the other three walls is

similar.

When the images have been displayed on all four walls.

transition Displayd Walls Complete is fired, which adds

a token to place Monitor-Swap. Note that the total

amount of time required to return a token to this place

is 20.8 ms.

We observe that the static delay of most transitions in

our Petri net is a point, rather than an interval. .$ t ran-

sition has a point delay when its earliest and latest static

firing times are identical. There a,re several reasons for

this fact. Some transitions model computations that re-

quire a negligible amount of time. We defined the static

delay of these transitions to be [0,, O], meaning that the

transition must always fire as” soon as it becomes en-

abled unless it is disabled by another fireable transition.

Other transitions model synchronous events, such as the

monitor clock at 48 Hz or the tracker sampling period at

96 Hz. For instance, we capture the beginning of each

monitor cycle by firing a transition with a delay interval

of [20.8, 20.8], meaning that a new cycle begins exactly

every 20.8 ms.

,-
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5 EMPIRICAL RESULTS

We conducted numerous experiments with the Caber-

net toolset for the analysis of Petri-net models [22]. Our

experiments used either simulation or automatic verifi-

cation techniques on our model of the CAVE. Cabernet

performs verification by applying standard reachability

analysis techniques. Starting from the initial net state,

Cabernet iteratively explores states reached by firing

fireable transitions. However, whenever a new state is

found, Cabernet does not check whether the state has

been visited previously. For this reason, Cabernet can

only verify so-called bounded safety and bounded live-

ness properties. These properties hold within a time

interval starting with the initial net state [22].

We used automatic verification to establish certain

bounded safety properties of our net models. For in-

stance, we checked that deadlock cannot occur within

40 ms from the beginning of an experiment. Deadlock

is possible whenever the state space contains a non fi-

nal state without successors. This experiment took less

than two hours of CPU time on a Sun Sparcstation IPC

with 24 hIBytes of memory. However, we were unable to

use the verification capabilities of Cabernet for experi-

ments whose duration was greater than 40 ms because of

the state explosion problem. In the sequel, we summa-

rize relet’ant simulation experiments with our Petri-net

model.

In general. our simulation experiments differ from each

other in the way we associate delay intervals with tran-

sitions appearing in our Petri-net model. The first ex-

periment that we discuss is the simulation of the normal

beha~ior of the CA\rE. The goal of this experiment is

to define a baseline for the timing of CAVE events. The

second and third experiments are aimed at observing the

effects of delays on the arrival of head data on CAVE

behavior. The fourth, fifth, and sixth experiments im-

pose delays on the processes that compute and render

images. In practise, such delays can occur when com-

plex images (i.e., images containing many objects) must

be drawn. The goal of the seventh experiment is to es-

tablish absence of starvation in the CAVE. Starvation is

an erroneous condition in which a process cannot make

progress because it lacks a required resource, although

the resource never becomes permanently unavailable.

All experiments reported below were run on our Sun

Sparcstation IPC with 24 MBytes of memory.

5.1 Normal Behavior

This experiment is aimed at observing normal (i.e., cor-

rect) CAVE behavior. Relevant transition delays that

we used for this experiment are shown in Table 1. The

delay on the arrival of tracker data reflects the 96 Hz

frequency of the tracking devices. The inter~ral delay on
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transition Trans.Delay models transmission of 224 bits

over a 33.6 KBaud serial line beuween the tracker and

the IBM PC. The 224 bits consist c)f 12 16-bit words giv-

ing the position and orientation of the viewer’s head and

wand. Two additional 16-bit words start and end the

transmission of information. The delays on the transi-

tions corresponding to the image computation processes

were set to a small amount (e.g., 1 ms), in order to

model a simple CAVE application. Finally, the delay

on the monitor transition is set to 20.8 ms to capture

the standard delay of all display dlevices.

‘lhmsiiinn name I Time intervals m ms. 1~

PTracker. ~ht.ain-Data I [10.4. 10.41 1

Table 1: Time intervals of key transitions.

The timing of relevant events is slhown in Table 2. The

computation of all images is completed at 19.4 ms. This

is after tracker data is sampled, the sampling is synchro-

nized with the Monitor signal, the sampling is sent to

the IB31 PC for calibration, and the images are com-

puted by the Onyx hosts. Because these activities are

completed before the end of the first monitor cycle at

20.8 ms. the images are displayed, as expected. upon

completion of the second monitor cycle (i.e., at 41.6 ms).

I ‘lhnsation name Firang tzme~]

““”m=

Table 2: Transition firing time for the four walls.

5.2 Arrival of head data with a delay of 5 ms

In the first experiment the data is immediately avail-

able at time zero. In the second experiment. we modify

the model to make head data arrive at time 5 ms. Ta-

ble 3 shows that the drawings on all the walls are again

completed by time 20.8 ms, despite the additional de-

lay. This is so because head data must be synchronized

in the tracker with a Monitor signal at time 10.4 ms.

Thus, the delay that we introduce is absorbed by the

tracker subsystem before the main subsystem receivrs

the data.” Again, the images arc displayed on the four

walls at time 41.6 rns.
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i’hmwtion name I Firing time in ms. I

E

CompRender-Fron

CompRender.Rigk

CompJ%enderJ.~ft.

CompRender-

Display 4kValls(

Table 3: Transition firing time for the four walls.

5.3 Arrival of head data with a delay of 15 ms

For this experiment we further increase the delay of the

head data to 15 ms. Our goal is to see how a delay

of more than 10.4 ms (i.e., the sampling period of the

monitor signal) affects the displaying of images. The

increased delay causes Head and Wand data to be read

at time 20.8 ms, rather than 10.4 ms. In this case,

buffers are swapped at time 41.6 ms and the four images

are displayed 62.4 ms after the start of the experiment

(see Table 4).

Transttzon name Firma tzme m ms. I

-

Table 4: Transition firing time for the four walls.

—

5.4 Computation of front wall in 5 m’s ,,.

In this experiment we increase the time to draw the

front wall from 1 ms to 5 ms by changing the interval

delay of transition Comp.Render-Front- Wall from [1, 1]

to [5, 5]. Here we are working on the assumption that

the image on the front wall is far more graphics intensive

than the images on the other walls, resulting in a long

computation time for the front wall. Data at the head

and wand is assumed to be available at the start of the

simulation, similar to the first experiment.

In this case, the left, right, and bottom walls must wait

for the front wall to finish its computation. From Ta-

ble 5 we observe that the three walls complete their

drawing by time 20.8 ms; however, the front wall fails

to do so. which causes all the walls to miss a monitor

cycle. From time 22.9 ms to time 41.6 ms the processes

computing all walls are idle while they wait for synchro-

nization with the next monitor cycle. The interesting

result of this experiment is that a relatively small in-

crease in the computation of the front wall is magnified

to a delay of 20.8 ms on the displaying of the images.

1 lhnsttton name Firing ttme tn ms. \

cOrnD~13SdW~OI)t _wa]i I 22.9 ~
b

CompRender.Right-Wall 19.0

CompRender-Left_Wall 19.0

Comp-Render-Bottom.Wall 18.0

Display4WallsComplete 62,4

Table 5: Transition firing time for the four walls.

5.5 Computation of front and right walls in 5 ms

and 10 ms

This experiment is similar to the previous one, except

for the time to compute the right wall being increased

to 10 ms. This is achieved by changing the delay on

transition Comp.Rend.Right. Wall to [10, 10]. Table 6

shows that the added delay on the right vvall does not

affect the time at which the images are displayed. with

respect to the previous experiment.

i%ansitzon name F2r2ng t2me 2n ms. \

m=

Table 6: Transition firing time for the four walls.

5.6 Computation of front wall in 25 ms

The objective of this experiment is to induce a delay

greater than 20.8 ms on the front wall, causing the wall

to miss two monitor cycles. Thus, we set the time for

computing the image on the front wall to 25 ms. The

other three walls are still computed in 1 nns. From Ta-

ble 7 we observe that the front wall completes its draw-

ing at time 42.7 ms. By this time, the other three walls

have completed new drawings using tracker data sam-

pled at time 20.8 ms. This is so because the tracker

data is sampled every 10.4 ms and the monitor cycle

times out twice at times 20.8 ms and 41.6 ms. fllen

the buffers are finally swapped at time 62.4 ms. the

front wall reflects input data sampled at time zero.

whereas the other walls reflect input data sampled at

time 31.2 ms.

TO model this behavior, we changed the inter-

val delay on transition CompJ?endJront. Wall from

[0, O] to [25, 25], obtaining the following ef-

fects. At approximately 18 ms, into the experiment.

four transitions modeling image computations (i.e..

Comp-Render-Front- Wall, Col~ilj_Re~lder.Rtg}tt. IJ’all.

Comp_Render-Left_ Wall,

and Comp-Render-Bottom- Wall) become enabled. .\ll
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transitions are fired within 1 ms, except for

i70mp.Render.Front. Wall, which fires at 42.7 ms. How-

ever, at time 20.8 ms the next tracker input is sampled;

this input reaches the image computation processes af-

ter a delay of 6.77 ms, approximately at time 28 ms.

In our Petri net, this phenomenon is modeled by tokens

appearing again in the input places of the four image

computation transitions at time 28 ms. Thus, all walls

begin computing a new image except for the front wall,

which is still working on the old image, as evidenced by

multiple tokens accumulating in place Master-Process3.

At time 62.4 ms the next monitor signal arrives, as sig-

nified by the appearance of a token in place Men-Swap.

At this time, the left, right and bottom wall have pro-

cessed the first and third tracker samples; however, the

front wall has only processed the first sample.

In this case, the frame drawn by the front wall lags

the frame drawn by the other three walls, which can

result in simulation sickness on the part of the CAVE

viewer. This phenomenon was confirmed by a CAVE

developer, who discovered the anomaly independently

and concurrently with us [21]. At the time of this writ-

ing, the anomaly has been corrected by introducing an

additional synchronization between the tracker subsys-

tem and the main subsystem.

We tried to detect this error using the automatic veri-

fication capabilities of Cabernet. However, this exper-

iment requires that all states reachable within 62.4 ms

from the beginning of the experiment be explored. The

state explosion problem prevented Cabernet from com-

pleting this experiment. W’e discontinued our run after

three hours of CPU time on our Sun Sparcstation IPC.

Transztton name Ftrzng tame m ms. I

=

Table 7: Transition firing time for the four walls.

5.7 Absence of starvation on front wall

For this experiment we used a predicate-checking capa-

bility of the Cabernet toolset. In particular, we checked

whether the computation of the front wall must be com-

pleted before time 20.8 ms under normal operating con-

ditions. Thus, we used the same Petri net as for the first

experiment. In this case, Cabernet returns the value

true, indicating that we can guarantee the computation

of the front wall to be completed within 20.8 ms. The

analyzer generates the reachability graph and does a

graph traversal in order to determine if this assertion is

true or not.

6 CONCLUSIONS AND FUTURE WORK

Our preliminary results indicate that Petri-net-based

techniques can effectively support the design and valida-

tion of virtual reality environments. To our knowledge,

ours is the first comprehensive model of a VR environ-

ment. We are also strongly encouraged by our ability

to find a flaw in the CAVE version that we studied.

We observe that the synchronous aspects of the CAVE’s

behavior have a significant effect on our Petri-net model.

As we noted earlier, most of our net transitions have

point, rather than delay, intervals. We suspect that

synchronous aspects will play less of a role in models

at lower levels of abstraction than our current model.

However, the predominance of transitions with point de-

lays suggests that we should experiment also with less

expressive models than Merlin and Faber’s time Petri

nets, In general, less expressive models are more con-

ducive to automated verification iind vice versa.

At present, we are pursuing several additional research

directions. First, we wish to “hide” Petri-net mod-

els from developers of VR applications. In particular,

we are in the process of developing a front-end system

wit h an easy-to-use graphical user interface. De\’elopers

would use this interface to enter descriptions of virtual

environments. Subsequently, a translator would gener-

ate Petri-net-based representations automatically.

\Ve are also investigating compositional analysis tech-

niques for our formal models. These techniques take

advantage of the modular structure of a system un-

der development by analyzing individual system com-

ponents separately. The results cjf component analysis

are eventually combined into a single (usually smaller)

representation of the whole system. Given that in gen-

eral VR systems are highly modular, we believe that we

can get good results with compositional techniques.

Finally, we are planning to build Petri net models at a

lower level of abstraction. In particular, we are in~esti-

gating Petri-net translators for CAVE library functions.

These translators would allow us to build fmer-grained

models of VR applications automatically.
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