Scalable Vision-based Gesture Interaction for Cluster-driven High
Resolution Display Systems

Xun Luo*
Office of the Chief Scientist R&D
Qualcomm Inc.

Figure 1: A user interacts with a display wall using gestures, for 2D
window resizing and moving tasks. Frame images are captured by a
single camera on the tripod but processed by multiple nodes of the
cluster driving the display wall.

ABSTRACT

We present a coordinated ensemble of scalable computing tech-
niques to accelerate a number of key tasks needed for vision-based
gesture interaction, by using the cluster driving a large display sys-
tem. A hybrid strategy that partitions the scanning task of a frame
image by both region and scale is proposed. Based on this hybrid
strategy, a novel data structure called a scanning tree is designed
to organize the computing nodes. The level of effectiveness of the
proposed solution was tested by incorporating it into a gesture in-
terface controlling a ultra-high-resolution tiled display wall.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Input Devices and Strategies; D.1.3 [Program-
ming Techniques]: Concurrent Programming—~Parallel Program-
ming

1 INTRODUCTION

A successfully implemented solution to obtain multi-million-pixel
resolution is to construct display systems that consist of multi-
ple screen tiles driven by a computer cluster. Such display sys-
tems include projection-based walls, flat panel-based walls, and flat
panel-based tabletops. For many applications that run on these
displays, vision-based gesture interaction could be advantageous
compared to instrument-based counterparts under certain circum-
stances. However, vision-based gesture interaction faces the per-
formance challenges for low latency and high throughput of frame
image processing. A promising way to address these performance
challenge is using scalable computing techniques to accelerate the
frame image processing, without loss of interactivity.

In this paper we describe the scalable computing techniques for
vision-based gesture interaction that utilize the computing power
inherent in cluster-driven displays. The processing of captured

*e-mail: xun.luo@ieee.org
fe-mail:kenyon @uic.edu

IEEE Virtual Reality 2009
14-18 March, Lafayette, Louisiana, USA
978-1-4244-3943-0/09/$25.00 ©2009 IEEE

Robert V. Kenyon®
Electronic Visualization Laboratory
University of Illinois at Chicago

video frames from a single camera is parallelized by multiple nodes
of the cluster. Consequently, we are able to achieve a lower la-
tency and a higher throughput for frame image processing. Figure
1 shows a prototypical vision-based gesture interface in use by a
display wall. Being an application-level solution, this work comple-
ments other research in the literature that uses computer cluster to
speed up frame image processing at the programming model level,
such as the RPV environment [2] and the FlowVR middleware [1].

2 DESIGN AND IMPLEMENTATION
2.1 The Hybrid Task Partitioning Strategy

To take advantage of the better load balancing inherent in by-region
task partitioning, and lower the computation overhead as much as
possible by exploiting the characteristics of by-scale task partition-
ing. A hybrid approach is proposed as follows:

1. The task partitioning is a two-stage process. The first stage
breaks down the workload with the by-scale strategy. Large work-
loads at high scale levels are further partitioned in the second stage
which uses the by-region strategy.

2. In the first stage, each cluster node is assigned to process the
whole frame image at a single scale level, or within a certain scale
level range: a) The workloads at small scale levels which are less
computationally demanding are grouped and assigned to a single
cluster node. In this way, the light workloads are aggregated to
avoid under-utilized cluster nodes. b) A cluster node which has
been assigned to scan at a large scale level further partitions its
workload using the by-region strategy, and assigns the processing
of sub-regions to several additional cluster nodes. In this way task
partitioning enters the second stage with the by-region strategy. c)
If the workload of scanning at a certain scale level is comparable
to those at either aggregated small scale levels or partitioned large
scale levels, it is assigned to a single cluster node.

3. The partitioning process is completed when an optimized
overall system performance is achieved.

2.2 The Scanning Tree

Figure 2 gives a graphical presentation of the scanning tree data
structure which manages the cluster nodes. The scanning tree
can have two or three levels. Every node of the tree represents
a cluster node and is indexed with a unique key, which is its IP
address. Each edge of the scanning tree maps to a duplex net-
work link. A node of the scanning tree has two data attributes:
scan._region and scale_range. The scan_region attribute is a quadru-
ple [Xie 15 Xright» Yiop Yborrom] that specifies the unscaled sub-region
coordinates to be scanned in the frame image. The scale_range at-
tribute is a triple [Syrare, Sstep, Sstop] that denotes the start, step and
stop of scanning scales performed by the node on its scan_region.

3 EVALUATION RESULTS

A gesture interface is implemented using the OpenCV library, with
KLT feature-based template comparison. A baseline implementa-
tion that does not use the scalable computing techniques is also
implemented for evaluation purposes. The gesture interface is then

Authorized licensed use limited to: University of Illinois. Downloaded on June 13,2010 at 16:05:26 UTC from IEEE Xplore. Restrictions apply.

231

232

N 7
[H) Head Node w)
N N/

Worker Node

TN

VA
| H ><,‘:| Camera Input

(w) () (w)

Nt N

g v
/’\\‘ NN ,/F\‘/,,/\
Wl W (wil W)
NN _ _

Figure 2: The scanning tree.
3.062.99

925
6.63
.28 .24
449
83
21209 "
3 4 8 12 16

Number of Nodes in Scanning Tree

O Estimated B Actual

Speedup
caNwhR OO~ ®OD

Figure 3: Estimated vs. Actual Speedup Values.

integrated with an ultra-high-resolution tiled display wall — Lamb-
daVision — at the Electronic Visualization Laboratory at University
of Illinois at Chicago (EVL-UIC). The wall has 55 LCD screen
tiles, and is driven by a 32-node cluster. Each node in the cluster
has a 64bit architecture with two 2GHz AMD processors and 4GB
RAM. Nodes are interconnected with gigabit network interfaces. A
graphics streaming middleware SAGE' is used by the display wall
for frame rendering and Ul management. The head node of the
computer cluster is connected to a Dragonfly camera. The Dragon-
fly captures frame image at 640 x 480 resolution, 30 Hz rate and
8-bit gray scale. Communications among the scanning tree nodes
are handled by the open source library QUANTA. The gesture inter-
face runs as a standalone application and communicate with SAGE
through socket connection.

A set of experiments are conducted to measure three groups of
metrics: speedup values under different scanning tree configura-
tions, workload balance across nodes in the scanning tree, as well
as performance impacts to the graphics streaming.

3.1 Speedup

Five scanning trees are constructed that has 3, 4, 8, 12 and 16 nodes
respectively. The estimated speedup values using method described
in Section 2.1 are derived without taking account of communication
costs. Figure 3 shows the actual speedup values measured for the
five scanning tree configurations. The measured values are very
close to the estimations for the 3-, 4- and 8-node scanning trees.
For 12- and 16-node scanning trees the discrepancies are relatively
large due to communication costs.

3.2 Load Balancing

Figure 4 illustrates the workload distribution estimated by the
method described in Section 2.1 and the actual measured numbers,
with an 8-node scanning tree configuration. Although the numbers
in the top and bottom plots are not directly comparable due to differ-
ent units used, it can be seen that the actual workload distribution

'SAGE and the later mentioned QUANTA software are both developed
by EVL-UIC.

25
z 2149 2277
o 20 |
g
e 14.92
@ 15
=
8 10.36 1081 1081 1081 1081
5 10
o
2
.¥6 5
H
) ! ! | ! |
Head Node1 Node2 Node3 Noded4 Node’5 Node6 Node 7
[Estimated Workload
40
3477
35
~ 30
g 25.94
= 25
o 20 18.05
8 16.78
2" 77 M7 179 1167
© 1
5
[} ! : | !
Head Node1 Node2 Node3 Node4 Node5 Node6 Node7
@ Actual Workload

Figure 4: Estimated and actual workload distributions across a 8-
node scanning tree. Note that the units used by top and bottom plots
are different.

roughly follows the estimated outcome, with the exception at the
head node. The larger readings at the head node is because that the
head node is also in charge of video capturing, whose CPU usage
is not easily separated when doing application-level profiling.

3.3 Performance Impacts

The OpenGL ”Atlantis” application is run over SAGE, with the ap-
plication window covering 20 display tiles. The profiling tools that
come with SAGE is used to measure its display bandwidth and dis-
play frame rate. Two conditions are tested, i.e. with and without
the gesture interface running. For the “with gesture interface run-
ning” condition, a 12-node scanning tree is used for parallel pro-
cessing. Without gesture interface in place, the display bandwidth is
485.54459.74Mbps. While with gesture interface running, the dis-
play bandwidth is 430.77 £ 49.84Mbps. Display bandwidth drops
by 11% when the gesture interface is active. Similar results are
observed on display frame rates. Without the gesture interface on
the frame rate is 69.21 £5.26. With gesture interface active, frame
rate becomes 61.03 £ 6.44. The frame rate decrease is about 12%.
Considering the gain of a five-fold speedup for gesture detection
and recognition, the performance impacts to graphics streaming are
relatively insignificant.

4 CONCLUSION AND DISCUSSION

To our best knowledge, this paper is the first to address scalable
vision-based gesture interaction for large display systems. The so-
lution can be further improved by compressing the frame image
distributed across scanning tree nodes. We have already completed
this enhancement and will publish the results in a subsequent paper.

REFERENCES

[1] J. Allard and B. Raffin. Distributed physical based simulations for large
vr applications. In IEEE Virtual Reality Conference, Alexandria, USA,
March 2006.

[2] D. Arita, Y. Hamada, S. Yonemoto, and R. ichiro Taniguchi. Rpv: A
programming environment for real-time parallel vision - specification
and programming methodology. In IPDPS ’00: Proceedings of the 15
IPDPS 2000 Workshops on Parallel and Distributed Processing, pages
218-225, London, UK, 2000. Springer-Verlag.

Authorized licensed use limited to: University of Illinois. Downloaded on June 13,2010 at 16:05:26 UTC from IEEE Xplore. Restrictions apply.

