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Comparison of Interpolating Methods for
Image Resampling

J. ANTHONY PARKER, ROBERT V. KENYON, anp DONALD E. TROXEL

Abstract—When resampling an image to a new set of coordinates (for
example, when rotating an image), there is often a noticeable loss in
image quality. To preserve image quality, the interpolating function
used for the resampling should be an ideal low-pass filter. To determine
which limited extent convolving functions would provide the best inter-
polation, five functions were compared: A) nearest neighbor, B) linear,
C) cubic B-spline, D) high-resolution cubic spline with edge enhance-
ment (z = -1), and E) high-resolution cubic spline (¢ = -0.5). The func-
tions which extend over four picture elements (C, D, E) were shown to
have a better frequency response than those which extend over one (A)
or two (B) pixels. The nearest neighbor function shifted the image up
to one-half a pixel, Linear and cubic B-spline interpolation tended to
smooth the image. The best response was obtained with the high-reso-
lution cubic spline functions, The location of the resampled points
with respect to the initial coordinate system has a dramatic effect on
the response of the sampled interpolating function—the data are exactly
reproduced when the points are aligned, and the response has the most
smoothing when the resampled points are equidistant from the original
coordinate points. Thus, at the expense of some increase in computing
time, image quality can be improved by resampled using the high-reso-
Iution cubic spline function as compared to the nearest neighbor, linear,
or cubic B-spline functions.

INTRODUCTION

ESAMPLING is used for several different purposes in

image processing. An image may be resampled to a finer
matrix in order to improve its appearance for image display —re-
duce artifacts due to the boundary between picture elements
(pixels). When an image is rotated by angles which are not a
multiple of 90 degrees, resampling is required since the new
coordinate points will not line up with the old points. In re-
motely sensed data, there are often distortions due to perspec-
tive or due to the atmosphere, which can be removed by re-
sampling the image to an undistorted coordinate system [1],
[2]. When registering images taken with different sensors or
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at diffe-ent times, it may be necessary to resample the images
so that the registration is accurate to subpixel locations.

Several of these uses of image resampling are valuable for
medical imaging. But, resampling for image registration and
image rotation are of particular interest for digital radioloy.
Much of the early interest in digital radiology has been due
to the ability to enhance images obtained after injection of
contrast by subtraction of a mask image(s) taken before the
injection [3]. There may be complex distortion between
the image and the subtraction mask due to patient motion
[4]. Since subtraction depends upon careful registration of
the image and the subtraction mask, improved resampling al-
gorithms may improve the accuracy of the registration and
thus improve the quality of the images produced by digital
subtraction angiography. '

Several interpolating functions have been used for image
resampling. The simplest is the nearest neighbor function,
where the value of the new point is taken as the value of the
old coordinate point which is located the nearest to the new
point. Another algorithm frequently used is linear interpola-
tion, where the new point is interpolated linearly between
the old points. The next most complex functions use the
four nearest points (two points in each direction). Cubic B-
spline interpolating functions, which were investigated by
Hou and Andrews [5], are positive everywhere and tend to
smooth the resampled image. Cubic splines which are nega-
tive in the interval (1, 2) tend to preserve the original image
resolution {6]-[9].

The choice of an interpolating function to be used for re-
sampling depends upon the task being performed. An under-
standing of the frequency domain response of the interpo-
lating functions may help in the choice of an interpolating
function [9], [10], especially when the resampling is used
prior to further image processing. This paper describes the
resampling process and then examines the frequency domain
response of five interpolating functions: nearest neighbor,
linear, cubic B-spline, and two high-resolution cubic spline
functions.

RESAMPLING

Resampling is the process of transforming a discrete image
which is defined at one set of coordinate locations to a new
set of coordinate points. Resampling can be divided concep-
tually into two processes: interpolation of the discrete image
to a continuous image and then sampling the interpolated
image (Fig. 1). Frequently, resampling is used to increase the
number of points in an image to improve its appearance for
display. This process of filling in points between the data
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Fig. 1. Resampling. The process of resampling can be divided into two processes—interpolation followed by sampling; the
effects of each of these operations can then be considered separately. A discrete function, x[n], is convolved with an
interpolating function, 2(#), to produce a continuous function, y(r). The continuous function is then multiplied by a

sampling function to produce a discrete function resampled at a new set of points, v(n').

points is often thought of as interpolation. However, more
accurately, the process of interpolation is fitting a continuous
function to the discrete points in the digital image. This con-
tinuous function can then be sampled at whatever points are
necessary. In implementing resampling, interpolation and
sampling are often combined so that the signal is interpolated
at only those points which will be sampled (Fig. 2).

Implementation of resampling from a discrete function to
one point in the resampled function is shown in Fig. 3. The
interpolating function is shifted so that its peak is aligned with
the position of the resampled point. The value of the resam-
pled point is equal to the sum of the values of the original
function scaled by the corresponding values of the interpolat-
ing function.

Resampling to a larger matrix is often used prior to display
in order to make the appearance of the display more pleasing.
Increasing the matrix size by resampling cannot increase the
resolution of the image or the information in the image. (Im-
age processing can only reduce the information in the image.)
The purpose of the resampling is to reduce the high-frequency
artifacts due to the step changes in intensity that occur at the
boundary of each pixel. The resampled image allows the
human observer to more accurately appreciate the data since
the edge effects at the pixel transitions are removed, or at least
moved to a high enough spatial frequency where the eye is less
sensitive.

Interpolation With an Ideal Low-Pass Filter

A signal can be exactly reconstructed from samples if the
signal is band limited and the sampling is done at a fre-
quency above the Nyqui . frequency. Note, however, that
unlike the continuous sig ial, the sempled signal is not band
limited. Sampling can bc viewed as replicating the frequency
spectrum at multiples of two pi times the sampling frequency.
Interpolation, in contrast, is the opposite of sampling. It
produces a continuous signal from a discrete signal. In order
to reproduce a band-limited function from a set of samples,
the interpolating function should be an ideal low-pass filter.
An ideal low-pass filter removes the replicates of the frequency
spectrum introduced by the sampling.

A discrete function can be considered to be an exact repre-
sentation of a band-limited continuous function in the sense
that the original function can be reproduced from it. Re-
sampling the discrete function using an ideal low-pass filter
for interpolation will produce a new discrete function which
is again an exact representation of the original function. Fur-
thermore, if the resampled function is resampled back to the
original coordinate points, the original discrete function will
be exactly reproduced assuming that the various samplings
are all above the Nyquist sampling rate. This argument sug-
gests that the interpolating function which should be used
for resampling is an ideal low-pass filter.

There are, however, practical considerations which make
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Fig. 2. Implementation of resampling. Resampling can be thought of as interpolation from a discrete to a continuous
function followed by sampling (top line). The interpolation is performed by convolving the signal, x[n], with a con-
tinuous interpolating function, (). The sampling is performed by multiplying the interpolated signal by a comb function.
This process is, however, usually implemented by convolving with a sampled interpolating function, 2[n] (bottom line).
Convolving with a sampled interpolating function is equivalent to interpolating and then sampling.
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Fig. 3. Resampling of a single point. A single point in the output is the
sum of the product of the original signal, x[n], times the value of the
interpolating function, A(¢), shifted to the location of the output
point.

this theoretical resampling technique difficult in the con-
text of picture processing. First, pictures are of finite extent.
Therefore, this theoretical description which assumes that
the images are of infinite extent is only an approximation;
and there will be variations from the theoretical results,
especially at the edges of the images. Second, because of the
computational burden, the filtering usually takes place in
the image domain by convolving with finite impulse response

filters of a short duration. For these reasons, an exact inter-
polation cannot be performed; and consideration must be
given to tradeoffs between exact interpolation and compu-
tational efficiency.

Interaction Between Interpolation and Sampling

Sampling the interpolated image is equivalent to interpolat-
ing the image with a sampled interpolating function (Fig. 2).
When resampling from a smaller matrix size to a larger matrix
size, there are several points on the sampled interpolating
function. Therefore, the resampled image can be thought of
as the original image filtered by the unsampled interpolating
function. When resampling to a matrix of about the same
size, the sampled interpolation function may have a consid-
erably different frequency spectrum than the unsampled in-
terpolation function. The sampling of the interpolating
function aliases the higher frequencies of the interpolating
function into the lower frequencies. (In the case of an ideal
low-pass filter, there are no higher frequencies so the sampled
interpolating function has the same spectrum as the unsampled
function from ~pi to *pi.) Because of the aliasing caused by
sampling the interpolating function, it is necessary to examine
not only the unsampled interpolation function, but also typ-
ical sampled interpolation functions.

Criteria for an Interpolating Function

The reason for resampling from a smaller to a larger matrix
size is often to make an image more pleasing to a human
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Fig. 4. Interpolating functions. This figure shows several interpolating functions (first colv nn), their Fourier transforms
(second column), and the logarithm of their Fourier transforms on an 80 dB scale (third column). The dashed box shows
and ideal low-pass filter with cutoff at pi times the sampling frequency. The performance in the pass zone can be best
appreciated on the linear plot of the Fourier transform; the stop zone performance can best be appreciated on the loga-
rithm of the Fourier transform plot. The best performance (the best approximation to an ideal low-pass filter) is pro-
vided by the high-resolution cubic spline function with ¢ = -0.5.

viewer. In this circumstance, the properties of the human vi-
sual system must be taken into account. Certain types of dis-
tortions will be much better tolerated by the observer than
other distortions. For example, noise which is correlated with
an image is much more noticeable than noise which is uncorre-
lated with the image. The property which is sought in the
final image is not necessarily its mathematical similarity to the
original scene, but rather the appearance of similarity, ie.,
verisimilitude. Considerable work has been done on interpo-
lation for a human observer (for example, see Ratzel [10]).
Often, the resampled images are produced for further pro-
cessing by a computer. In this case, verisimilitude is 5ot nec-
essarily the best property. Rather, mathematical similarity is
more desirable. The form of the mathematical similarity will
depend on the processing which is to be performed. Keys

emphasized similarity of the Taylor series expansion of the
two signals [9]}. Alternately, it may be desirable for the inter-
polating function to have a flat frequency response. We have
emphasized the examination of the frequency response of
various interpolating functions in this paper.

Simple Interpolation Functions

From a computational standpoint, the easiest interpolation
algorithm to implement is the so-called nearest neighbor al-
gorithm, where each pixel is given the value of the sample
which is closest to it. This method interpolates the sampled
image by convolving it with a rectangle function (Fig. 4).
Convolution with a rectangle function in the spatial domain
is equivalent to multiplying the signal in the frequency domain
by a sinc (sin (x)/x) function. The sinc function is a poor low-
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Tig. 5. Effects of resampling. An original signal, x [r], and the same
signal resampled with a nearest neighbor, y,,, and linear, y, inter-
polating functions show some of the effects which are produced by
resampling. The nearest neighbor algorithm shifts original data to the
new coordinate locations. This shift can be as much as 5 pixel. The
magnitudes of the pixel values are, however, preserved. The linear
interpolation algorithm smooths the data. Notice how the peak in
the function has been blunted. The position of the data is, however,
not shifted.

pass filter since it has prominent side lobes. Therefore, the
nearest neighbor algorithm has a poor frequency domain re-
sponse.

The nearest neighbor algorithm causes the resampled image
to be shifted with regard to the original image by the differ-
ence between the positions of the coordinate locations. If, for
example, the locations of the resampled points are half way
between the original points, the image will be shifted by one-
half pixel (Fig. 5). This shift means that the nearest neighbor
algorithm cannot be used when it is necessary to preserve sub-
pixel image relations. Furthermore, the nearest neighbor al-
gorithm fails completely when resampling to a large matrix
size since the pixel values are merely replicated.

There are, however, some quite special properties of the
nearest neighbor algorithm. If the resampling is done on a
coordinate system with the same spacing as the original coordi-
nate system, then, except for the shift, the resampled data ex-
actly reproduces the original data. That is, the difference
between the frequency spectrum of the original and the re-
sampled images is a pure linear phase shift.

A slightly more complicated function to calculate is the
linear interpolation algorithm (Fig. 4). Linear interpolation
amounts to convolution of the sampled image by a triangle
function. This function corresponds in the frequency domain
to a modestly good low-pass filter. It does, however, attenuate
frequencies near the cut-off frequency resulting in smoothing

of the image (Fig. 5), and it does pass a significant amount of
energy above the cut-off frequency. Sampling an image which
has been bilinearly interpolated will cause the data above the
cutoff which has been passed by the interpolating function to
be aliased into the low frequencies.

Heuristic Interpolation Function Properties

Since exact interpolation with an ideal low-pass filter can be
performed with a sinc function (corresponding to a rectangle
function in the frequency domain), this function might seem
to be ideal. The problem with the sinc function, however, is
that it has considerable energy over an extended distance.
Therefore, it cannot be easily implemented as a space domain
convolution. It would be natural to try truncating the sinc
function over a small distance, but truncation discards a con-
siderable amount of energy. Truncation in one domain leads
to ringing in the other domain, so that truncating the sinc
function in the space domain will result in ringing in the fre-
quency domain. The ringing will produce undesirable effects.
Ratzel tried using a truncated sinc function, but found that
it performed poorly compared to other functions such as the
cubic spline {10].

The sinc function is, however, useful for developing heuris-
tic properties which are desirable in an interpolating func-
tion. A more desirable interpolation function might be a sinc
function windowed with a less severe window than the rectan-
gle, e.g., a Hanning window. Such a function should be posi-
tive from O to 1, negative from 1 to 2, etc. In fact, the func-
tions which have been most successful at preserving high
frequencies (see below) tend to have this general shape.

Interpolation Functions Extending Over Four Pixels

The nearest neighbor algorithm interpolates on the basis of
a single point. The linear interpolation algorithm interpolates
on the basis of the two nearest points. Using three points for
interpolation would result in two points on one side of the
interpolated point and only one point on the other side;
therefore, the next logical interpolation function would use
the two nearest points in each direction.

Cubic B-Spline Interpolation Function: Hou and Andrews
examined the use of cubic B-splines as interpolation functions.
B-splines are several convolutions of the rectangular function.
The cubic B-spline is four convolutions of the simple rectan-
gular function (Fig. 4). The B-splines have an extent which is
appropriate for interpolation over the two nearest neighbors in
each direction [5]. They are reasonably good low-pass filters.
However, they are positive in the whole interval from 0 to 2;
therefore, they smooth somewhat more than is necessary be-
low the cut-off frequency. They do have good efficiency in
the stopband (see results). Since cubic B-splines are symmetric,
they only need to be defined in the interval (0, 2). Mathemat-
ically, the cubic B-spline can be written

interval
f(x)=x>[2-x* +4/6 0,1)
f(x)=-x6+x*-2x+8/6  (1,2).
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When resampling using an interpolating function which ex-
tends over four points, if the nearest point is at an offset d,
where d is in the interval (0, 1), four samples of the interpolat-
ing function will be used: f(d), f(1 - d), f(1 +d), and f(2 - d)
(Fig. 1). For the cubic B-spline, the sum of the values of these
four points for any value of d is 1. Namely, for any offset the
sum of the sampled interpolation function points is equal to 1.
Therefore, the dc amplification, the gain on the interpolating
function, will be unity. This remarkable property is quite
valuable when resampling is done because of geometric distor-
tion or rotation. In these cases, the offset is different at dif-
ferent points in the image. Without this property, the value of
a point in the interpolated image would depend upon the
alignment of the initial and final coordinates.

General Cubic Spline Interpolation Functions: The cubic
B-splines are one type of cubic spline function. More general-
ized cubic splines have also been considered for interpolation
over the two nearest neighbors. By definition a spline is piece-
wise continuous function; a cubic spline is a piece-wise contin-
uous third-order function. In order to choose from the large
number of cubic spline functions, several constraints must be
imposed. Like the cubic B-splines (see above), the function
should be symmetric about zero; therefore, we need only con-
sider the interval from O to 2. The general cubic spline is
given by

interval
f(x)=a30x3 +a20x2 ta0Xx T ay 0, 1)
f(x):4313‘3 +a21x2 tagxtag (1,2).

There are some natural constraints for a function which is to
be used for interpolation. If the resampling is done on the
same matrix as the original data, then the original data should
be exactly reproduced. This property requires that the value
of the function at location 0 is 1, and the values at locations 1
and 2 are 0. Additional logical constraints are that the func-
tion should be continuous at locations O and 1, that the slope
at locations 0 and 2 should be 0, and that the slope of the
spline approaching 1 and leaving 1 should be the same. This
defines a total of 7 constraints; however, the equations given
above have eight unknowns. Thus, these constraints define
the cubic spline interpolation function up to a constant [9]:

interval
) =@+2)x* - (@+3)x*+1  (0,1)
f(x)=ax® - Sax* + 8ax - 4a (1,2).

As with the cubic B-spline, the sum of the four points—
), f(1 - d), f(1 +d), and f(2 - d)—is equal to 1 [8]. There-
fore, for any offset, this interpolating function has the impor-
tant property that the dc amplification is unity.

With the constant @ negative, the function is positive in the
interval O to 1 and negative in the interval 1 to 2. As the con-
stant a increases, the depth of the side lobe in the interval 1 to
2 increases. Thus, with the free constant negative, the func-
tion is of the general form of a windowed sinc function. Be-
cause this function has a better high-frequency performance

than the cubic B-spline (see below), we shall refer to this func-
tion as a high-resolution cubic spline interpolating function.

The choices for the constant @ which have been used are - 1
[6]-[8], -2 [8], and -4 [8], [9] (Fig. 4). The frequency
spectrum with ¢ = —é is flat in the low frequencies and then
falls off toward the cut-off frequency. Keys selected the con-
stant @ by making the Taylor series approximation of the inter-
polated signal agree in as many terms as possible with the orig-
inal signal. Witha =- %, any second degree polynomial will be
exactly reconstructed by interpolation. Keys also considered
the rate at which the approximation to a signal converges to
the signal as a function of sampling density. Witha = - —%, the
error of the approximation goes to zero as the third power of
the sampling interval. This interpolating function will exactly
reproduce a second degree polynominal.

The second derivatives of the two cubic polynominals [one
polynomial defined on (0, 1) and the other on (1, 2)] can be
made equal at 1 by setting a = g [8]. The properties of this
interpolating function are intermediate between the choices of
a=—%anda=*1,

Rifman selected @ =-1 in order to match the slope of the
sinc function at 1 [6], [8]. This choice results in some ampli-
fication of the frequencies just below the cut-off frequency.
The transition between the passband and the s‘topband is, how-
ever, a little bit sharper. Since high-frequency amplification is
often appealing to the eye, this choice of the constant ¢ has
frequently been used for image processing where verisimilitude
is the criterion of interest.

Two-Dimensional Interpolating Functions

For picture processing, the one-dimensional interpolating
functions must be transformed into two-dimensional functions.
The general approach is to define a separable interpolation
function as the product of two one-dimensional functions
[10]. Separability is attractive for implementation. Except
for the Gaussian function, separability implies that the inter-
polating function is not isotropic. However, the data on a rec-
tilinear coordinate system are also not sampled isotropically.

METHODS

Interpolating Functions

In order to study the frequency domain characteristics of
several candidate interpolating functions, programs were writ-
ten to allow entry of the interpolating functions and to allow
Fourier transformation of these functions. The curves were
entered in the Gamma-11 nuclear medicine system curve
format (Digital Equipment Corporation) so that they could
be displayed with vendor supplied software. Software was
written in the RATFOR programming language [11]. The in-
terpolating functions examined were A) nearest neighbor, B)
linear interpolation, C) cubic B-spline 5, D) high-resolution
cubic spline with ¢ =-1 [6], and E) high-resolution cubic
spline with a =-0.5 [9].

In order to investigate the effect of sampling on the inter-
polating functions, the number of samples in the function was
a variable to the function generating program. To assess the
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effect of the registration of the original and the resampled co-
ordinate systems, a subsample offset was allowed.

Image Interpolation

The effect of the high-resolution cubic spline interpolating
function with ¢ =-0.5 was compared to the more common
bilinear interpolation algorithm using an image from a coro-
nary arteriogram and an image of an eye. The coronary angio-
gram was unsharp masked in order to enhance the edges of the
vessel. The images were rotated 9 degrees counterclockwise
from their original positions. The images were then rotated
back to the original position.

RESULTS
Interpolating Functions

The frequency spectra of several of the common interpola-
tion techniques were examined. Fig. 4 shows the space
domain representation of several interpolating functions, along
with the magnitude of their Fourier transforms both on linear
and logarithmic scales. The linear scale most clearly shows
the pass zone performance; the logarithmic scale (80 dB) most
clearly shows the stop zone performance. These data are sim-
ilar to the data presented by Ratzel [10] and Keys [9], except
that the effect of the constant @ in the high-resolution cubic
spline has been included.

The space domain representations of the interpolating func-
tions are shown in the first column. From top to bottom they
are the nearest neighbor, linear interpolation, cubic B-spline,
high-resolution cubic spline with ¢ =-1, and high-resolution
cubic spline with @ =-0.5. The second column shows the
magnitudes of the Fourier transforms of the interpolating
functions. The dotted box shows an ideal low-pass filter with
cut-off’ frequency at pi times the sampling frequency. The
third column again shows the magnitudes of the Fourier trans-
forms, but in this case an 80 dB scale has been used.

The high-resolution cubic spline functions have the best re-
sponse in the pass zone. With the parameter ¢ =-0.5, the re-
sponse is flat at the intermediate frequencies. Witha=-1, a
small amount of amplification of the frequencies just below
the cutoff is traded for a more rapid transition between the
pass zone and the stop zone. The nearest neighbor function
has a reasonable response in the pass zone, although it does
have some attenuation even at very low frequencies. Both
the linear interpolation and the cubic B-spline have poorer re-
sponse in the pass zone as would be expected from their
smoothing properties.

The high-resolution cubic splines have good response in the
stop zone as does the cubic B-spline. The linear interpolating
function has poor stop zone performance, and the nearest
neighbor has very poor stop zone performance. This poor stop
zone performance means that resampling after interpolation
with either of these latter two functions will result in a large
amount of aliasing. '

In summary, the nearest neighbor function does moderately
well in the pass zone, but very poorly in the stop zone. The
linear interpolation function performs better in the stop zone,

H(w)! argCH (w)l

= O T

Fig. 6. Sampled high-resolution cubic spline interpolation function.
The sampled interpolating function will alias the frequencies in the
stop zone into the pass zone resulting in considerably different per-
formance than the unsampled interpolating function. The magni-
tudes, H{w), and phases, arg(H(w)), of the high resolution cubic
spline function (¢ = -0.5) are shown for offsets 0, 0.1, 0.2, 0.3, 0.4,
and 0.5. At 0 offset, the sampled interpolating function is an ideal
low-pass filter. As the offset increases, the interpolating function
deviates from an ideal low-pass filter.

but at the expense of a considerable amount of smoothing in
the pass zone. The cubic B-spline has quite good stop zone
performance, but does the most smoothing in the pass zone.
The high-resolution cubic splines have the best combination
of pass zone and stop zone performance. A flat pass zone re-
sponse and good stop zone performance are obtained with a
value of a=-0.5, while = -1 trades some high-pass filtering
and a somewhat poor stop zone response for better preserva-
tion of the frequencies near the cutoff.

Sampled Interpolating Functions

In order to show the effects of the registration of the origi-
nal and the resampled coordinate systems, sampled interpo-
lating functions were examined. The sampling corresponds to
resampling to a matrix with the same size as the original ma-
trix, but with a subpixel translation. Translations of 0, 0.1,
02,03, 04, and 0.5 pixels were used. The resampling will
alias any data which are passed in the stop zone into the pass
zone. The translation of the resampled matrix points with
respect to the original matrix points will determine the phase
with which these aliased data are added to the pass zone.

Fig. 6 shows the results using the high-resolution cubic
spline function (¢ =-0.5). At zero translation, the magni-
tude of the Fourier transform is everywhere equal to one
due to the definition of the high-resolution cubic spline (the
value at O is 1, and the value at 1 and 2 is 0). The response
falls off going from O translation to 0.5 translation. At the
0.5 translation the magnitude is zero at pi. The magnitude
of the dc response is one for all translations.

Thus, the resampling has a dramatic effect on the response
of the interpolating function. At O translation, the resampled
response is improved with respect to the interpolated response.
Initially it might seem surprising that the aliased data im-
proves the response with respect to the interpolated data.
However, remember that one criterion for the interpolating
function was that for resampling at the same points, the ini-
tial function would be exactly reproduced. At 0.5 transla-
tion, the sampled response is considerably worse than the in-
terpolated response.

Fig. 6 also shows the phases of the high-resolution cubic

-,
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Fig. 7. Image resampling. (a) Initial image of a coronary angiogram. The primary data is 64 X 64 with a display dimen-
sion of 128 X 128. (b) Resampling using the bilinear interpolating algorithm. Notice the loss of sharpness at the edges

of the vessels. (c¢) Resampling using the high-resolution cubic spline.

(a)

©

Fig. 8. Image resampling. (a) Initial image of an eye of a blue-eyed subject. The data and display dimensions are 128 X
128. (b) Resampling using the bilinear interpolating algorithm. Notice the loss of detail in the iris. (¢) Resampling using

the high-resolution cubic spline.

spline functions (g =-0.5) for translations of 0, 0.1, 0.2, 0.3,
0.4, and 0.5. Translations O and 0.5 have zero phase shifts;
the other translations have some phase shift at the higher fre-
quencies. The space domain representation of the interpola-
tion functions suggests why there may be some phase shift.
The point nearest to the location of the interpolated point is
weighed most heavily. Although the effect is small, for trans-
lations less than 0.5 pixels, the highest frequencies do not ad-
equately reflect the translation.

Image Interpolation

Figs. 7 and 8 show the results of resampling an image with
linear interpolation and with the high-resolution cubic spline.
There was only a small loss of detail in the image which is ro-
tated using the high-resolution cubic spline algorithm, but
there is considerable smoothing using the bilinear interpo-

lation. In the angiogram (Fig. 7) the edge of the vessels is less
distinct using bilinear interpolation. In the image of the eye
(Fig. 8), there is loss of the iral detail with the bilinear inter-
polation.

DiscuUssION

The nearest neighbor algorithm has the shortest extent in the
image domain, one interpixel distance. It does well in the pass
zone, but it has very poor stop zone response. The linear
interpolating algorithm, which extends over two interpixel dis-
tances, has a somewhat better overall response.- The high-reso-
lution cubic splines, which extend over four interpixel dis-
tances, have better response in both the pass zone and the stop
zone. This improvement in response with filter length is just
what would be expected from design of a limited extent fil-
ter.
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The choice between the different length four interpolating
functions depends upon the task. The cubic B-spline provides
the most smoothing. The a = -1 high-resolution cubic spline
provides the best high-frequency response along with some
high-frequency enhancement. These characteristics may be
most appropriate for producing verisimilar imagery. The a =
-0.5 high-resolution cubic spline has both a flat low-frequency
response and good stopband performance. These character-
istics may be most appropriate when further mathematical
processing of the images is to be performed.

Sampling the interpolated image results in aliasing of the fre-
quencies above pi times the sampling frequency. For the high-
resolution cubic spline functions, there is a special case when
there is an exact match between the initial sampling coordi-
nates and the resampling coordinates. In this case the aliasing
results in an exact reconstruction of the image. That the aliased
frequencies from the stop zone exactly replace the attenuation
in the pass zone may at first seem surprising. However, this
unusual property comes from one of the image domain criteria
used to define these interpolation functions, namely, that when
the resampled point exactly corresponds to a point in the orig-
inal image, then it should exactly reproduce that point.

Resampling midway between the initial images results in the
frequencies at pi being added in with a phase shift of 180°
Thus, the worst problems with aliasing occur when resampling
midway between the initial sample points. Fig. 6 shows the
response of the sampled interpolating function for different
offsets between the initial and the resampled coordinate loca-
tions. The relationship between the location of the initial sam-
ples and the location of the resampled points often has a
greater effect on the system response than the choice between
the interpolation function used.

The visual results of interpolation with the ¢ =-0.5 high-
resolution cubic spline are quite good as compared to the more
common bilinear interpolation algorithm. There is less smooth-
ing of the high-resolution detail in the image. It does require
additional computation; however, the improvement in the in-
terpolation may be worth the computational burden for several
tasks. Although the length for interpolating functions is ade-
quate for many tasks, additional improvement in performance

(10]

[11]

could be made by including more points in the calculation.
The same criteria for selecting interpolating functions used in
this paper—frequency response, phase shift, and gain—would
also be useful in selecting between functions with a longer
extent.
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