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Estimation of Time-Varying Delay Time
in Nonstationary Linear Systems: An

Approach to Monitor Human Operator
Adaptation in Manual Tracking Tasks

Erwin R. Boer,Member, IEEE, and Robert V. Kenyon,Member, IEEE

Abstract—Adaptability is one of man’s advantages over ma-
chines. Perhaps one of the reasons for our limited understanding
about human adaptation during manual tracking tasks is that
we have only limited tools to identify the model coefficients
(especially delay time) of an adapting human operator. In this
paper, we introduce a discrete time recursive delay identifier
(RDI) capable of simultaneously estimating a human operator’s
nonstationary delay time and linear model coefficients. At its
core lies the extended Kalman filter (EKF). Our goal to obtain
fractional delay time estimates was realized by using the bicubic
interpolation scheme as part of the EKF to provide subsample
magnitude and derivative estimates of the observed input/output
time series. While this theoretically limits the RDI’s applicability
to bandlimited or differentiable signals, this is seldom a concern
in practice. Based on data from simulated and experimental time
varying tracking tasks, we show the RDI’s potential to substan-
tially increase our understanding about human adaptations thus
perhaps offering new avenues for machine adaptation.

I. INTRODUCTION

M ODELING and identifying the characteristics of a
human controller made great strides in the late 1960’s

and early 1970’s [1]. Human operator models were refined as
new identification techniques became available. These efforts
produced extremely useful models such as the linear crossover
model of McRuer [2] and the optimal control model for
compensatory tracking of Baronet al. [3], [4], which was
later extended by Tomizuka to cover preview tracking [5],
[6]. What made this work such a challenging endeavor is that
the human operator (HO) is a nonlinear, often time-varying
controller whose operating coefficients and delay characteristic
can vary rapidly with factors such as task demands, motivation,
workload and fatigue [7], [8]. These factors limited the range
of applications for which the various models would hold.
These same characteristics make identification of the HO
equally challenging. Even though many different identifiers
have been applied to this problem since the introduction of
the Kalman filter (KF) in 1960 [9], a satisfactory solution to
recursively estimate time varying HO delay-time remained a
problem in that the assumption of a fixed delay could not
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be circumvented within the existing paradigms. While many
solutions or fixes have been reported (Section II), they do not
provide a straight forward or otherwise satisfactory solution
to tackle the problem of identifying an adapting or, in more
general terms, a time varying HO. For example, as a HO’s
attention and/or motivation fluctuates, the rate and manner in
which sensory information is processed and acted on may also
fluctuate thus introducing more or less unintended changes
in the HO. These changes may not necessarily qualify as
adaptation. The difficulties encountered in estimating time
varying HO delay time have limited our ability to understand
how the forces driving human adaptation affect specific aspects
of human control.

Delay time in a human operator is primarily a result of trans-
port delays and central nervous system latencies. Depending on
the input bandwidth, it may also include neuromuscular lag,
high-frequency lead equalization, as well as a time varying
component that depends on attention level, task difficulty, etc.
Since differentiation between these sources is generally very
difficult or impossible, delay time (sometimes referred to as
effective delay time) is defined as that portion of the phase lag
that linearly increases with frequency over the measurement
bandwidth. Therefore, delay time is considered a model param-
eter and not necessarily one particular physiological property.

In this paper, a new recursive delay-time identifier (RDI)
is introduced that simultaneously estimates the varying delay-
time and linear model coefficients of an adapting system like a
HO responding to changing conditions. This new identifier is
based on the extended Kalman filter (EKF) [10], [11] which is
commonly used to identify parameters of a nonlinear model.

Since the delay time is modeled as a shift operator in the
discrete time domain, which is a nonlinear operation, it was
natural to resort to the EKF. To further bypass the fact that the
delay time is expressed in integer multiples of the sampling
interval, we adopted a scheme to obtain fractional delay time
estimates by embedding the bilinear interpolation scheme in
the EKF to estimate subsample magnitudes and derivatives of
the observations.

To elucidate these issues, consider a highly simplified case
in which the delay time of a noise free pure gain system

needs to be estimated. Nearly all identification
methods are based on minimizing a quadratic cost function
with as one of its terms the estimation error ,
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which for this simple example is .
Coefficient estimation relies on the partial derivative of
with respect to each of the unknown coefficients. In this
example, with as the only unknown, the partial derivative
becomes , where the dot above thedenotes the time
derivative estimate. This partial derivative is the sensitivity
of the output estimation error to changes in delay time and is
used to guide gradient searches to the true coefficient values
(delay time) very much like the approach taken in the EKF
(see below). Based on the specification that be a real
instead of an integer, calculation of this quantity as well
as itself require that the continuous time versions of time
series and are computable. This simple example
shows that the only true issue is differentiability of the
input signal. In the area of manual control, and many others,
observations are often bandlimited and noise is seldom truly
white in the sense that it spans all frequencies up to the
Nyquist frequency. Keeping this in mind, continuous time
magnitude and derivative estimates of the observations at
subsample times can be computed (see Appendix).

Following the background section, the RDI is introduced for
the general case of this simple example (i.e., identification of
higher order systems with time varying coefficients and delay
time based on bandlimited noisy observations) and applied to
simulated and experimental data. We believe that this new
approach will greatly enhance our ability to quantify the
behavior of human adaptation mechanisms.

II. BACKGROUND

Many different approaches have been proposed to circum-
vent the problem that the delay time is modeled as a nonlinear
operator in a discrete time system representation and has to
be fixed before applying identification schemes such as least
squares. A frequently used solution is to approximate the
delay time by an all-pass linear system thus reducing delay
time identification to linear coefficient estimation [12]. Jex
used the first order Pade approximation to characterize human
operator delay time in his Critical Tracking Task experiments
[13]. Even if the delay time is known to its nearest whole
number of sample intervals, the remaining unaccounted for
fractional delay time can have a significant effect on the
moving average (MA) portion of a linear model [14] (see
Section III-A for a brief introduction to ARMAX models).
In case of low bandwidth systems that are excited with only
limited bandwidth signals, as is generally the case in manual
control, it is often difficult to distinguish between a pure delay
and a phase lag resulting from: i) a pole that is associated
with a cutoff frequency outside the system bandwidth or ii) a
zero in the right half s-plane (i.e., nonminimum phase system).
In these cases, the MA or autoregressive (AR) coefficients
can easily model part of the pure delay [15], [16]. The
problem with modeling the effect of a pure delay time with
a linear coefficient model is that the total number of model
coefficients increases which results in difficulties similar to
those associated with trying to identify over parameterized
systems [17].

Direct delay time identification based on minimizing a cost
function requires differentiation with respect to the delay time

(see Section IV-C). Banyasz and Keviczky [18] provide an
insightful derivation based on minimizing a quadratic error
function based on a pure gain pure delay system. Unfortu-
nately, they fail to recognize many of the problems associated
with such an approach such as the fact that: i) the cost
function is not unimodal with respect to delay time [19], ii)
derivation with respect to delay time involves differentiation
of the observations which can not be blindly performed in
case of stochastic signals, and iii) problems associated with
identification of linear ARMAX models in case of small time
steps [17] on which their derivations were based.

The most promising optimization based approach so far is
one in which the estimation error is filtered such that the
resulting generalized criterion function with respect to the
delay time becomes unimodal are given in [19], [20]. However,
their multistep iterative methods do not apply to time varying
systems. Tuchet al. [21] apply straightforward minimization
of a quadratic error function to continuous time linear time-
invariant systems. They assume noise-free observations and
initially known linear model coefficients. For this highly spe-
cialized case, nonbiased delay time estimates are obtained. The
fact that their method only applies to time invariant systems
limits its applicability to nonadaptive systems. While these
methods appear to be mathematically elegant ways to simulta-
neously identify delay time and linear coefficients in stationary
systems, they are not applicable to adapting human operators.

One semi-successful computationally expensive approach is
one in which a large set of models each associated with a
different delay time are recursively identified and a criterion
function is used to pick the one that represents the observations
best at a given time instance [10], [22], [23]. The recursive
nature of these methods makes them applicable to time varying
systems. These methods do not produce fractional delay time
estimate even though fixes can be devised to obtain such
estimates (e.g., subsequent smoothing of the delay time series,
followed by resampling of the observations to obtain the final
linear coefficient estimates based on a zero delay time) [24].

If the input and output signals of a system differ only by
a time shift but not in spectral composition, as is often the
case in communication applications, a wide variety of delay
time identification schemes are available many of which are
based on correlation analysis [25]–[27]. These approaches are
applicable in a system identification setting when the system
at hand is known except for its delay time. An example is the
correlation based approach combined with the least squares
method in Zheng and Feng [28]. Inspired by Box and Jenkins
[29], they first identify the AR coefficients, then delay time
followed by the MA coefficients. Again, these methods are
not applicable to systems quickly changing over time.

III. RECURSIVE DELAY IDENTIFIER

Most recursive identification methods, including the EKF,
are based on minimizing a cost function, which means that the
derivative of this function with respect to the model coefficient
needs to exist in order to be able to search for a minimum. One
of the fundamental problems with delay time identification in
the discrete time domain is the fact that the delay time is
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modeled as a shift operator with an integer argument (whole
number of time steps) against which one can not differentiate.
In the RDI, this issue is bypassed by incorporating a bicubic
interpolation filter to produce subsample estimates of the
discrete time signal’s magnitudes [30] and derivatives (see the
Appendix). The validity of this extension is based on the differ-
entiability of the system’s input and output signals thus limit-
ing the RDI’s applicability to bandlimited signals sampled at a
frequency significantly higher than their bandwidth. The delay
time estimation component of the RDI operates on these sub-
sample magnitude and derivative estimates hence extending
the otherwise unit shift operator to a fractional shift operator
against which can be numerically differentiated. For linear co-
efficient estimation, the observations are decimated and locally
resampled based on the current best fractional delay time esti-
mate and then used to update the linear coefficient estimates.

Taking the derivative with respect to the delay shift involves
differentiation of the input signal with respect to time. For this
to be possible, a continuous time representation of the refer-
ence signal needs to be constructed. For deterministic input
signals or equivalently, stochastic signals whose bandwidth is
much lower than the Nyquist frequency, such a representation
can be obtained through interpolation. Ito calculus provides a
theory for differentiation of stochastic processes; this approach
was not pursued because most practical input signals are
deterministic, and even if this were not the case, once a
bandlimited stochastic process is sampled at a frequency
well beyond its bandwidth, it can without additional loss of
information be treated as a deterministic signal [31].

By appending the Rauch–Tung–Striebel nonlinear fixed
interval optimal smoother to the EKF (i.e., RDI) [11], [32],
[33], more accurate model coefficient estimates are obtained
because more information is used [34]. Theoretical properties
and efficient implementations of the optimal smoother were
established in [35]–[37]. Surprisingly few applications have
been reported on their use in system identification perhaps
due to their non-realtime character. Norton used them to study
daily rainfall in-flow dynamics of the King River in SW Tas-
mania [38]. To the best of our knowledge, they have not been
applied to HO data. To enhance ones understanding about a
system, using optimal smoothing in the model identification is
certainly advantageous. It not only improves model coefficient
estimates, it also eliminates identification lags introduced by
the EKF’s own time constants (determined by thea priori
noise covariance matrices) thus improving the interpretation
of observed changes in model coefficients [39]. In studying
adaptation, it is important to keep in mind that the identifier
used is also a filter with its own time constants. Ideally, the
identifier’s time constants should be smaller than those of
the adaptation mechanisms involved so that the identifier can
converge fast enough to track changes in the model caused
by adaptation.

A. Kalman Filter

State space descriptions of linear models form the basis
for much of the modeling, control and system identification
literature. The linear ARMAX model has become a stan-

dard tool for both system description and control design.
ARMAX models are ARMA or Auto Regressive Moving
Average models eXtended with a Moving Average external
disturbance term. An example of an ARMAX representation
is the following:

where and are the AR coefficients, and the MA
coefficients and and the coefficients. The input time
series is denoted by , the output by , and the output
observation noise by . Detailed information pertaining to
ARMAX state space system representations as well as Kalman
filter principles can for instance be found in [11] and [17]. The
linear state space model equations are

(1a)

(1b)

where is the model coefficient vector (assuming a single
output system). The white Gaussian noise process , with
zero mean and covariance matrix , represents the model
coefficient noise. The diagonal entries in can also be in-
terpreted to indicate the rate at which these model coefficients
are expected to change over time (see below). The vector
holds the input and output samples on which corresponding
entries in operate. The Gaussian noise process , with
covariance matrix (scalar in case of a single-output system)

, represents the observation noise in the output time series
. In terms of the above ARMAX model example, and

become

To clarify the relationship between expected model co-
efficient adaptation and the selection of ’s covariance
matrix , a few words about one approach to derive the
Kalman filter algorithm, namely through minimization of a
cost function that assigns a cost to variations in the estimated
model coefficients and one to the error between the
observed output and estimated output . These
costs and are the inverse of the covariance matrices
of the noise processes and , respectively [10], [40].
The cost function is therefore

From this equation, it is clear that an increase in, decreases
the cost on changing the model coefficients, thus allowing for
faster adaptation. As was mentioned earlier, the dynamics of
the Kalman filter itself are constrained by these two covariance
matrices. These issues are especially important if we want to
identify step changes in system behavior because the estimated
model coefficient time series are partially affected by the
Kalman filter’s own bandwidth (slew rate).
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B. Extended Kalman Filter

The EKF was developed for nonlinear systems of the
following form:

(2a)

(2b)

which is the discrete time representation given in [10]. Their
nomenclature is adjusted to conform with the rest of this paper,
plus the equations are reconfigured for system identification
purposes. The concept of the EKF is to represent these
equations by their first order Taylor expansions about the
conditional means and

where denotes the estimate ofat time step whereby
all observations up to and including are utilized. Also

and

In this paper, the system model coefficients are assumed to
vary according to (1a) so that (2a) reduces to (1a). The EKF
equations become

which is the basic form used in the RDI. The delay time
estimate is assumed to be the first entry in.

C. Difference Between Linear Coefficient
and Delay Time Identification

The momentary convergence rates for delay time and linear
coefficient identification differ depending on the current input
output signal characteristics. The delay time converges fastest
when the derivative of the input signal reaches its maximum,
whereas the linear coefficients converge fastest at the highest
magnitudes in the observations [highest signal-to-noise ratio
(SNR)]. To elucidate this difference, consider the following
pure gain pure delay system , with
unknown gain and delay . In a KF, the convergence
rate of a given model coefficient depends on the sensitivity of
the estimation error with respect to this coefficient (Kalman
gain). The estimation error is defined as
where for our example. The sensitivity

with respect to the linear coefficient is

and we see that the effect is largest when the input signal
reaches high magnitudes. The effect of a change in

delay time on the estimation error is

which tells us that the effect is highest when the slope in the
input signal is highest.

From an experimental point of view, to assure that the
RDI focuses identification equally between the two classes
of model coefficients, the input signal should exhibit an even
distribution of high peaks and steep slopes. This means that
binary signals should not be used on systems with time varying
delay time. Note that these signals are also not bandlimited
as is required for the RDI to operate properly. Input signal
selection in any experiment designed to gain an understanding
about a system is very important and should be linked closely
to the class of models one believes describes the system best.
Ljung provides a good discussion on the practical aspect of
input signal selection for linear stationary systems [17].

D. Calculating

This section describes how to obtain , the partial deriva-
tive of with respect . The partial derivative of
with respect to the AR coefficients and the colored noise
coefficients is simply the vector containing the corresponding
past output samples. On the other hand, the partial derivatives
with respect to the MA coefficients depend on the delay time
and subsample estimates of the input signal magnitude while
partial differentiation with respect to the delay time depends
on the delay time and subsample estimates of the input signal
derivative. These estimates are calculated at subsample times

where and is the order of
the MA portion of the model. This is best clarified with an
example. Assume the following ARMAX (1, 1, 0) model:

for which is defined as

The partial derivative of with respect to at time
step becomes

where stands for the time derivative of the continu-

ous time representation of at time . In

these parameterizations, is a floating point value (fractional
number of time steps) which basically means that
needs to be reconstructed as the continuous time representation
from the time series . In the Appendix, it is shown that the
bicubic interpolation method most accurately reproduces the
continuous time signal in magnitude and first order derivative
based on a discretely sampled bandlimited signal consisting of
a sum of sinusoids (often used in manual control).

The Kalman filter is optimal if the assumption of a Gaussian
noise signal holds. It is easily demonstrated that the observed
output noise is Gaussian for a linear model if and

are two independent Gaussian processes [41]. For a
nonlinear system, this no longer holds and optimality is no
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longer guaranteed [11]. The exact consequences in our case
where is linear except in the delay time still needs to
be determined; the issue being the delay time coefficient in
is an operator and that subsample magnitude and derivative
estimates of the input are used. In principle, the RDI is a
hybrid between the discrete and continuous time domains.
In effect, it shifts the input sample times around before
applying the linear coefficient estimation. To quote Gelb [11]
on the use of the EKF: “There is no guarantee that the actual
estimate obtained will be close to the truly optimal estimate.
Fortunately, the extended Kalman filter has been found to
yield accurate estimates in a number of important practical
applications. Because of this experience and its similarity to
the conventional Kalman filter, it is usually one of the first
methods to be tried for any nonlinear filtering problem.”

To minimize the problems associated with identification
based on over-sampled time series [17], linear coefficient
estimation is based on observations decimated by a factor of

. On the other hand, subsample magnitude and derivative
estimation are still calculated based on the original observation
sampled at second intervals to minimize interpolation
noise. To express the delay time in terms of time steps
associated with the decimated observations (i.e., )
while is calculated based on the non-
decimated time series, the expression for becomes

.

E. Optimal Smoother

To reduce the estimation noise and eliminate some of
the dynamical effects of the identifier (see above), a non-
linear smoother was applied on the output of the extended
Kalman filter. The applied fixed interval smoother is the
Rauch–Tung–Striebel algorithm and is repeated here in a form
suitable for identification [10], [11]:

where and are the results obtained from the forward-
in-time EKF and where contains the backward filtered
model coefficients and is an estimate of the model
coefficient covariance matrix. As Gelb pointed out, the true
interpretation of or equivalently is dubious for
nonlinear time varying systems [11]. He suggests to use
Monte-Carlo simulations to probe the model coefficient space
for possibly better solutions. Most importantly, one should use
common sense in interpreting the data.

F. Constraints on the Recursive Delay Time Identifier

The RDI algorithm as it is presented above does not take
into account that the delay time estimates may converge to a
wrong value because of the multimodality of the cost function
with respect to delay time [19]. Furthermore, if the delay time
estimate is incorrect, the linear coefficients will not converge to
the correct values (and vise versa). Here we present monitors
to determine when divergence into a local instead of global

minimum is likely to occur. These monitors can also be used
to stop identification when the chance of entering a local
minimum regime is high, thus constraining the RDI to operate
only around the global minimum. Note that this assumes the
initial model coefficient estimate to lie within “reach” of the
global minimum.

Before we introduce the constraints used for monitoring
identifier divergence, a simple example is presented to demon-
strate the duality between the mutual effects of errors in delay
time and linear coefficient estimation. Assume a noise free
pure gain pure delay system with a sinusoidal input. If the
true gain is one and the delay time is off by half a period of
the sinusoid, the gain will converge to negative one. This is
driven by a sign difference between the observed and estimated
output signals. Similarly, if the gain is incorrectly estimated
to be negative one, the delay time will converge to a value
off by half a period of the sinusoid (positive or negative).
This is driven by a sign difference between the derivatives of
the observed and estimated output signals. One characteristic
associated with exact model coefficient estimates (in the noise
free case) is that the signs of the magnitudes (derivative)
between the observed and estimated output are equal at all
time steps. It is easily seen that small estimation errors are
characterized by inequalities in these signs whenever the
magnitude (derivative) of output signal (observed or estimated)
crosses zero. Note that these are exactly the times when the rate
of convergence in linear coefficients (delay time) is lowest. By
turning the identifier off whenever the magnitude (derivative)
signs are unequal, it is guaranteed that the estimates remain
close to the global minimum.

The observations made regarding the simple example still
hold if the input signal becomes a more complex bandlimited
signal and the model becomes a full blown ARMAX model.
In summary, when derivative constraint

or when the magnitude constraint

do not hold, identification is temporarily halted until the
constraints hold again. We do not claim mathematical rigor
but simply provide an intuitively straightforward method to
prevent runaway coefficient estimates. Note that the magnitude
constraint can also be used in case of systems with a fixed but
unknown delay time. If the delay time is estimated incorrectly
one will, depending on thea priori noise covariance estimates,
either observe variations in linear coefficient estimates that
are correlated with the input signal or that the magnitude
constraint does not hold for extended periods of time. In fact
it is worthwhile to explore how the average duration that the
constraint does not hold relates to the necessary delay time
correction (this was not pursued here).

Even with the above constraints the RDI has been observed
to produce misleading results when: i) the true delay time
changes too fast for the time constant of the identifier; ii) the
true delay time makes a jump greater than half the period
of the bandwidth of the observations hence causing the delay
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time to jump out of the global convergence zone; and iii)
the initial delay time estimate is off by more than half the
period of the bandwidth of the observations which places it
outside the global convergence zone. The first case can be
solved by increasing the delay time noise variance in the model
coefficient covariance matrix (i.e., diagonal entry). While
the third case simply requires re-estimation of the initial delay
time, the second case poses a real problem in that it requires an
artificially induced jump in the delay time estimate such that it
falls in the global convergence zone again. Such large changes
are generally caused by a malfunction in which case the whole
system dynamics can change and one may as well reinitialize
the identifier and restart the identification at that time step
with a new set of model coefficient estimates as well as a
coefficient estimation noise covariance matrix with large
diagonal entries to reflect the uncertainty in these new model
coefficient settings. As a general rule, if the constraints do not
begin to hold for a significant portion of the time, a new set of
initial estimates should be tried. Again common sense should
be used in selecting these model coefficient estimates.

G. Application

Besides determining the correct model order, selecting thea
priori model coefficient covariance matrix and the observa-
tion noise variance is often difficult [17]. A few guidelines
specifically geared to the identification of time varying systems
are presented here. First, the covariance matrixin the
RDI equations is split up into for the delay time and

for all the linear coefficients. Since the delay time is
expressed in terms of fractional time steps, also has to be
expressed in terms of the sampling interval after decimation
(i.e., ).

For the RDI (or any recursive identifier) to return mean-
ingful model coefficient estimates of an adapting system,
its bandwidth should exceed the bandwidth of adaptation
mechanisms. In other words, the RDI should be able to track
changes in model coefficients with minimal lag. This can
always be accomplished by increasing the diagonal elements
(variances) of thea priori model coefficient covariance matrix

. Estimating thea priori noise variance in model
coefficient requires knowledge about the maximum rate
per time step (after decimation) at which is expected
to vary (call this . The variance of after time
steps equals whereby is the variance of the
Gaussian random variable in the update equation

[41]. By setting to
becomes . If the resulting coefficient time series ex-
hibits large segments with monotone increases or decreases,
the respective variance may have been set too low. Similarly,
if the coefficient fluctuates wildly around some visible mean
trend, the variance was most likely over estimated. Finally,
since only the ratio has an effect on convergence rates,
the resulting variance of the estimation error can be used to
normalize to this value and adjust the diagonal entries of

accordingly [40].
Finally, it is important to realize that the RDI, just like the

EKF itself, can be applied to systems with multiple inputs
and/or outputs as well as systems with nonlinearities beyond

delay time itself. However, as systems and their models
become more complex, identifiability becomes more of a
problem especially if different components of the model are
able to realize the same behavioral characteristics. The optimal
control model for human operators [6] is a prime example; for
instance, the neuromuscular dynamics can to a large degree
also be modeled by the cost assigned to changes in applied
control. As shown in the following section, delay time can be
modeled in different ways thereby complicating its estimation.

IV. SIMULATION

To gain insight into the RDI’s abilities and limitations, a
simulation was designed to look at the interaction between
delay time and model coefficient estimation in a time varying
linear system.

A. Specification

The simulation was performed on a first order ARMA model

with fixed linear coefficients and a time varying delay time
. Note that indicates a unit shift operator

. The bandlimited time series and
were obtained by applying an ideal lowpass filter (using

the Fast Fourier Transform and its inverse) on normally dis-
tributed signals. The cutoff frequency and standard deviation
for were respectively set to 1.0 Hz and 2.0. For ,
they were set to 3.0 Hz and 0.01, and for to 0.3 Hz
and 0.1. In the noise free simulations, discussed below,
was set to zero. The zero’s and pole’s associated with the
ARMA model’s cutoff frequencies were respectively set to
0.75 and 1.25 Hz and a unit dc-gain was used. The simulation
was run at a sampling frequency of 600 Hz and subsampled
at 60 Hz to produce fractional delay times. While decimation
of the input and output signals as well as the AR coefficients
affect the effective output noise variance [39], it suffices here
to know that the resulting was about 0.3; this includes the
fact that identification of the linear coefficients was performed
at a 15 Hz sampling rate (decimation factorof 4) while input
signal magnitude and derivative estimation (i.e., interpolation)
was based on the 60 Hz rate. The true values for the linear
coefficients were and .

Negative delay time, as indicated in the figures, represents
anticipation. One can think of these delay time fluctuations
as caused by a mechanism that scans the input signal without
knowing whether it feeds the past, present or future to the
controller, thus causing the system to effectively respond
to a time advanced or delayed representation of the true
input signal. The RDI is used to estimate these time-shift
fluctuations.

B. Analysis

Since the linear coefficients were fixed, was set to the
small value 1.0e-6 is the identity matrix. In case a linear
coefficient was assumed to be known, its initial value was set
to the correct value and the corresponding diagonal entry in
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Fig. 1. RDI model coefficient estimations from a noise-free simulation based
on the assumption that the MA-coefficients are known.

Fig. 2. RDI model coefficient estimations from a noise-free simulation.

was set to zero. Because the delay time standard deviation
was set to 0.1 time steps based on a 600 Hz sampling rate plus
the fact that the final identification update rate was 15 Hz,
became Finally, was set to 0.1 in the noisy
cases and to in the noise-free cases. Identification was
applied under four conditions:

• noise free with known MA-coefficients (Fig. 1);
• noise free with unknown MA-coefficients (Fig. 2);
• noisy with known MA-coefficients (Fig. 3);
• noisy with unknown MA-coefficients (Fig. 4).

To identify a partially known system, diagonal entries in
that correspond to the known coefficients are simply set to
zero. This approach does not work for the optimal smoother
since , which is inverted, no longer has full rank.
This problem can be circumvented by subtracting the known
portion of the output from the observed output and removing
the known coefficients from the model thus reducing the
model order [42]. Since this solution was not applied here, the
smoother was not activated in any of these identification runs.

C. Results and Discussion

In general, both noise free conditions resulted in highly
accurate delay time as well as linear coefficient estimates
(Figs. 1 and 2). Also, identification with noisy observations
resulted in meaningful estimates with known MA coefficients
(Fig. 3) but the case with unknown MA coefficients produced
highly biased linear coefficient estimate (Fig. 4). The delay

Fig. 3. RDI model coefficient estimations from a simulation with induced
observation noise based on the assumption that the MA-coefficients are
known.

Fig. 4. RDI model coefficient estimations from a simulation with induced
observation noise.

time estimates do not appear to be severely biased under any of
the conditions. We believe that the reason for these biased MA
coefficient estimates lies in the fact that they also approximate
fractional delay times. Since it is only an approximation, we
would not expect such a bias under noise free conditions
because the delay time estimate provides a more accurate
solution. This is supported by the fact that Figs. 1 and 2
show no difference in delay time estimates (exact in both
cases). Furthermore, a close look at the delay time estimates
in Figs. 3 and 4, shows that the dashed line (estimated delay
time) in Fig. 4 is always slightly lower than the one in Fig. 3
confirming the assertion that the MA coefficients also model
a portion of the delay time. If we would increase thea priori
noise in the MA coefficients (i.e., ), oscillations in these
coefficients would be observed with periods corresponding to
the time it takes the true delay time to increase or decrease
by one sampling interval. Similar concerns hold for low
bandwidth systems in which the AR coefficients can accurately
model pure delay (pole slightly beyond the bandwidth). For
high-bandwidth systems, Box and Jenkin’s approach to first
identify the AR coefficients followed by the MA and delay
time may offer some advantage [29]. It is important to realize
that these issues are general concerns that simply become more
important in the RDI because two competing mechanisms are
working simultaneously to approximate the pure delay time. At
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Fig. 5. Illustration of the gap-postview display. The box at the bottom of the
screen is controlled by lateral mouse movements. The track is shown from
time t � 1:0 at the top of the screen tot � gap at the point closest to the
box. The box is displayed at current timet. The time axis was not displayed
during the experiments.

higher noise levels, it is more difficult to differentiate between
a truly pure delay and a lag introduced by a pole or zero well
outside the system’s bandwidth. Since the true pole of the
simulated system lies outside the input signal bandwidth, this
may have caused the slight bias in Figs. 3 and 4.

Aside from these competing mechanisms in delay time
representation, the RDI’s own time constants, as dictated by
thea priori covariance matrix settings, play an important role.
The delay time estimate (dashed line) always lags the true
delay time (solid line) in Figs. 3 and 4 thus in some instances
causing substantial errors. This is not observed in Figs. 1 and
2 because of the significantly smaller value ofwhich makes
the identifier much more responsive (see Section III-G. on
selecting and ). Overall, we see excellent delay time
tracking.

V. TIME VARYING GAP-POSTVIEW TRACKING TASK

By applying the RDI to human tracking data, we take it into
a more practical realm with less controlled system adaptations
and noise structures. This section and the next are not meant
to provide an in-depth analysis of human adaptation; they
are meant to demonstrate the RDI’s potential in helping to
characterize and understand human adaptation.

A. Experimental Design

The goal here was to design an experiment in which the
human delay time would change in a predictable fashion thus
enabling us to verify the RDI’s estimates on a data set with
human induced noise which may not necessarily be Gaussian.
The experiment consisted of a subject sitting in front of a 19-in.
monitor on which a winding track was displayed between the
top of the screen (1.0 s postview) and some distance above
the bottom of the screen where a user controlled marker (box)
was displayed (Fig. 5). This resulted in a blank space between
the marker (0.0 s postview) and the point where the track
disappears into this gap. The gap was always greater than
0.0 s and never exceeded 1.0 s. The marker moved laterally
in unison with the mouse movements (i.e., pure-gain system).
The task was to keep the marker on the spot where the track
would intersect the 0.0 s postview or current time line thus
forcing the subject to extrapolate across the gap. The sampling

Fig. 6. RDI model coefficient estimations from a typical result of the manual
postview tracking task with time varying gap between the control element
and the visible part of the track.

and screen update rate were 36 Hz. The gap signal was
obtained by adding 500 ms to the delay time signal from the
previous simulation experiment and multiplying the result by
0.8 to avoid a gap greater than 1.0 s. The resulting gap signal
bandwidth is 0.18 Hz. The bandwidth of the input signal came
to (replay of the 1.0 Hz input signal from previous simulation,
originally designed for 60 Hz, at 36 Hz) 0.6 Hz.

B. Identifier Initialization

The closed loop system was assumed to be well described
by a pure-gain pure-delay model. Such an assumption may
not hold for compensatory, error regulating control because of
stability related to the feed back loop. However, the postview
display used here enables accurate perception of the reference
track thus making highly accurate open-loop tracking highly
plausible especially for the relatively low bandwidth input
signal (0.6 Hz) used here.

Here, was set to 0.5, to 1.0e-6, and to 0.5. This
reflects a highly variable delay time, a rather constant gain and
a substantial amount of observation noise. While the optimal
smoother was turned off for the simulations, it was turned
on here to improve model coefficient estimates (minimize
dynamical lag). Furthermore, to determine the RDI’s response
to a highly inaccurate initial delay time estimate, it was set to
0 ms even though the initial gap was about 400 ms.

C. Results and Discussion

The great similarity between the estimated delay time and
the gap length (Fig. 6) shows that the RDI does not break
down when exposed to human induced noise which may not
necessarily be Gaussian. If the naive subject (MG) had simply
placed the marker at the lateral position of the bottom of the
visible portion of the track, the delay time and gap would
have been identical. However, if the subject would have been
able to perfectly predict the track’s intersection point with the
current time line, his delay time would have been around zero.
Neither case seems to apply. For the 0.6 Hz bandwidth input
track, it is reasonable to assume that humans, using mostly
linear extrapolation, are capable of predicting its future fairly
accurately up to about one-eighth of the period of the highest
frequency component in the signal which corresponds to 0.2 s
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in this experiment. The data in Fig. 6 indicates a 0.2 s differ-
ence between gap and delay suggesting that our subject may
indeed have applied simple linear extrapolation across the gap.

Whether the small fluctuations of the estimated delay time
are true or a result of the identifier can be determined by
varying and fixing it at the value below which this “high”
frequency noise is eliminated. Going too far down will cause
the RDI to loose track (often signified by a sudden jump)
and produce meaningless estimates. As mentioned earlier, this
approach to tune the and matrices was also suggested by
Bryson and Ho in [40].

During the first 10 s, the RDI correctly recovers from the
highly inaccurate initial delay time estimate. As was discussed
earlier, recovery from an initial delay time error greater than
half the period associated with the input signal bandwidth may
not result in correct convergence.

The gap in this experiment finds many counter parts in the
world of tele-operation [43]. It is expected that embedding
the RDI in adaptive controllers for systems with time varying
delay time, such as distributed virtual reality with variable
transmission delays, will result in enhanced man-machine
interaction since it provides estimates about the amount of
prediction required in presenting the visuals.

VI. CRITICAL TRACKING TASK

A. Experimental Design

The critical tracking task (CTT) was originally designed by
Jexet al. in the 1960’s and used to estimate a human operator’s
effective delay time [13]. The goal in this compensatory
tracking task was to keep a gradually becoming more unstable
first order plant under control. At the point of control loss
(i.e., when the tracking error exceeded a set value), they
hypothesized that the human operator’s effective delay time
and the instability level were each other’s reciprocal. True
reciprocity would only be reached in the event of zero gain
and phase margin control, which is humanly impossible. To
maintain control, subjects have to lower their gain and delay
time as the instability increases to preserve maximal gain and
phase margins.

Here we repeated this experiment. The subject’s task was
to minimize lateral movements of a cross displayed in the
middle of a computer screen via mouse control. The trial was
terminated when the cross deviated from the center by more
than a screen width. A 36 Hz update rate was maintained.
As disturbance input to the system, the 1.0 Hz bandwidth
input signal from the gap-postview experiment was used but its
magnitude was first reduced by a factor of 100. The instability
level increased linearly from zero at a rate of 0.11/s.

The goal here is to illustrate that the RDI can be used
to enhance our understanding about human adaptation during
these kinds of tracking tasks, especially since to the best of our
knowledge no other methods have successfully been applied
to human operator data in which the observed system exhibits
substantial adaptations over relatively short periods of time. In
depth analysis on CTT and other time varying manual tracking
tasks will be reported elsewhere.

Fig. 7. RDI model coefficient estimations from a time varying manual
tracking task modeled after Jex’s critical tracking task.

B. Identifier Initialization

No particular rigor has been adopted to optimize the se-
lection of the a priori covariance matrices and . The
main goal was to see whether the RDI would confirm the
hypothesis that subjects reduce their delay time and gain as
the instability level increases and therefore not always operate
at the maximum of their ability. In accordance with Jex’s
prediction, the human operator was modeled as a pure-gain
pure-delay system. Here, was set to 0.5, to 0.05, and

to 0.5. Again, the optimal smoother was left on.

C. Results and Discussion

Data from our naive subject (MG) is shown in Fig. 7. The
top panel shows human operator delay time estimates for two
different trials while the bottom panel shows the corresponding
gain estimates. These data do indeed show the trends predicted
by Jexet al. The delay time drops “gradually” to about 150 ms
as the gain drops to about 1.5. Jex in [13] assumed a 110 ms
lower limit for a human’s effective delay time and a gain
of about 1.5 at the instability levels reached by our subject
(3.9 and 4.5). The two depicted trials show very similar
adaptation profiles. It is interesting to note that the thin gain-
line increases toward the end of this trial which may have
caused premature loss of control. Other trials show similar
terminal values, only the path at which the gain and delay
time reached these values differed suggesting variability in the
time course of adaptation. Even the two trials shown here show
marked differences. For example, the thin delay-line reaches
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a plateau after about 15 s upon which the variability seems
to decrease indicating that control was forced into a corner as
suggested by Jexet al. On the other hand, the thick delay-line
shows much more fluctuation in an overall significantly lower
delay. Such differences were expected because control is easy
at low instability levels thus allowing the human operator to
control “well enough” under a wide range of gain and phase
margins (i.e., gain and delay time settings). In fact, from the
thick delay-line data in Fig. 7, it appears that the tolerance in
control was tightened after about 20 s based on the relatively
sudden decrease in delay time.

The suggested usefulness of the RDI in tracking a human
operator’s time varying model coefficients is extremely en-
couraging in that it may open doors to answer many new
questions and hypothesis about human adaptation. Attention
no longer has to be focused on adaptation to sudden large
changes because of analysis constraints [7], [44]–[46], but can
be directed to the effect of more gradual changes.

One important component in many human operator models
is remnant. Human controller remnant is defined as that portion
of the human output that is not related to the system input
by the input/output describing function [47]. One source of
remnant is attributed to a human operator’s involuntary time-
varying behavior. To determine the magnitude of this effect,
the RDI can be used to quantify that portion of remnant caused
by these unintended adaptations.

VII. CONCLUSIONS

A new approach to recursively identify a linear system’s
time varying delay time and linear coefficients was introduced.
This RDI is based on the EKF and uses a bicubic interpola-
tion scheme to provide subsample magnitude and derivative
estimates of the observations. The encouraging results on
simulated as well as manual tracking data suggest that the
imposed differentiability constraint on the observations was of
little practical consequence.

Initial results from an experiment based on Jex’s critical
tracking task confirmed his theory about human gain and delay
time adaptation. Furthermore, the fact that the RDI produced
highly meaningful delay time estimates in a gap-postview
tracking tasks with a highly variable display gap suggests great
potential to use the RDI to further enhance our understanding
about human adaptation mechanisms.

APPENDIX

BILINEAR INTERPOLATION

The theoretically ideal interpolation scheme is the Whit-
tacker interpolation which convolves a sinc function with the
sampled time series to obtain subsample magnitude estimates
[48]. One practical approach is to approximate this sinc
function over a limited interval with polynomials. An example
is the bicubic interpolation scheme in which the sinc function
is approximated over the interval [2, 2] with four third-
order polynomials. Because of symmetry, the derivation of
the polynomial coefficients only need to be determined for
the intervals [0, 1] and [1, 2]. Parkeret al. [30] showed that
the lowest approximation error for signals whose bandwidth is

much lower than the Nyquist frequency is obtained with the
following two approximating polynomials

Estimation of the signal value at time , where ,
is based on sample values at time steps , and

. Note that the time is central to these three time
intervals. It is easily verified that the respective weights are

and . The arguments are the
distances between and the respective sample times. The
fact that the integral over 2 to 2 is exactly one, means that no
signal power is dissipated in the interpolation (i.e., filtering)
process. The value of is now found with

The derivative of the sampled signal at is calculated with

where the prime stands for derivative.
Boer compared seven interpolation schemes on their ac-

curacy in magnitude and derivative estimation, including the
linear, quadratic and cubic polynomial interpolation methods
as well as two others that approximate the sinc function [39].
They were all applied to an analytically known signal (sum
of sinusoids) with uniform power and a 1.0 Hz bandwidth.
Even though the third order polynomial interpolation showed
the best results in the magnitude estimates, the bicubic inter-
polation was superior in estimating the derivative. A practical
review of many approximation and interpolation methods can
be found in [48].
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