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Abstract—Adaptability is one of man’s advantages over ma-
chines. Perhaps one of the reasons for our limited understanding
about human adaptation during manual tracking tasks is that
we have only limited tools to identify the model coefficients
(especially delay time) of an adapting human operator. In this
paper, we introduce a discrete time recursive delay identifier
(RDI) capable of simultaneously estimating a human operator’s
nonstationary delay time and linear model coefficients. At its
core lies the extended Kalman filter (EKF). Our goal to obtain
fractional delay time estimates was realized by using the bicubic
interpolation scheme as part of the EKF to provide subsample
magnitude and derivative estimates of the observed input/output
time series. While this theoretically limits the RDI’s applicability
to bandlimited or differentiable signals, this is seldom a concern
in practice. Based on data from simulated and experimental time
varying tracking tasks, we show the RDI's potential to substan-
tially increase our understanding about human adaptations thus
perhaps offering new avenues for machine adaptation.

I. INTRODUCTION
ODELING and identifying the characteristics of

human controller made great strides in the late 196
and early 1970’s [1]. Human operator models were refined
new identification techniqgues became available. These effolt
produced extremely useful models such as the linear crossoR/
model of McRuer [2] and the optimal control model fo

compensatory tracking of Baroet al. [3], [4], which was

later extended by Tomizuka to cover preview tracking [5]
[6]. What made this work such a challenging endeavor is th

be circumvented within the existing paradigms. While many
solutions or fixes have been reported (Section Il), they do not
provide a straight forward or otherwise satisfactory solution
to tackle the problem of identifying an adapting or, in more
general terms, a time varying HO. For example, as a HO’s
attention and/or motivation fluctuates, the rate and manner in
which sensory information is processed and acted on may also
fluctuate thus introducing more or less unintended changes
in the HO. These changes may not necessarily qualify as
adaptation. The difficulties encountered in estimating time
varying HO delay time have limited our ability to understand
how the forces driving human adaptation affect specific aspects
of human control.

Delay time in a human operator is primarily a result of trans-
port delays and central nervous system latencies. Depending on
the input bandwidth, it may also include neuromuscular lag,
high-frequency lead equalization, as well as a time varying
component that depends on attention level, task difficulty, etc.
SSince differentiation between these sources is generally very

ifficult or impossible, delay time (sometimes referred to as

iective delay time) is defined as that portion of the phase lag
he,e],t linearly increases with frequency over the measurement
andwidth. Therefore, delay time is considered a model param-
eter and not necessarily one particular physiological property.

In this paper, a new recursive delay-time identifier (RDI)
§tintr0duced that simultaneously estimates the varying delay-
ime and linear model coefficients of an adapting system like a

the human operator (HO) is a nonlinear, often time-varyi

controller whose operating coefficients and delay characterisf® résponding to changing conditions. This new identifier is

can vary rapidly with factors such as task demands, motivatidifS€d on the extended Kalman filter (EKF) [10], [11] which is

workload and fatigue [7], [8]. These factors limited the rangePMmonly used to identify parameters of a nonlinear model.
of applications for which the various models would hold. Since the delay time is modeled as a shift operator in the

These same characteristics make identification of the HipCrete time domain, which is a nonlinear operation, it was
equally challenging. Even though many different identifie@atura|_t0 resort to the EKF. To further bypass the fact that _the
have been applied to this problem since the introduction 8¢lay time is expressed in integer multiples of the sampling
the Kalman filter (KF) in 1960 [9], a satisfactory solution tgnterval, we adopted a scheme to obtain fractional delay time
recursively estimate time varying HO delay-time remained gptimates by embedding the bilinear interpolation scheme in
problem in that the assumption of a fixed delay could nde EKF to e_stimate subsample magnitudes and derivatives of
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which for this simple example is, = y, — bor, 4 . (see Section IV-C). Banyasz and Keviczky [18] provide an
Coefficient estimation relies on the partial derivative @f insightful derivation based on minimizing a quadratic error
with respect to each of the unknown coefficients. In thisnction based on a pure gain pure delay system. Unfortu-
example, withd,, as the only unknown, the partial derivativenately, they fail to recognize many of the problems associated
becomedyr,, 14, , Where the dot above thedenotes the time with such an approach such as the fact that: i) the cost
derivative estimate. This partial derivative is the sensitivitiunction is not unimodal with respect to delay time [19], ii)
of the output estimation error to changes in delay time anddsrivation with respect to delay time involves differentiation
used to guide gradient searches to the true coefficient valwésthe observations which can not be blindly performed in
(delay time) very much like the approach taken in the EKEase of stochastic signals, and iii) problems associated with
(see below). Based on the specification tlat be a real identification of linear ARMAX models in case of small time
instead of an integer, calculation of this quantity as wetiteps [17] on which their derivations were based.
ase, itself require that the continuous time versions of time The most promising optimization based approach so far is
series{y,} and {r,,} are computable. This simple examplene in which the estimation error is filtered such that the
shows that the only true issue is differentiability of the&esulting generalized criterion function with respect to the
input signal. In the area of manual control, and many otheglay time becomes unimodal are given in [19], [20]. However,
observations are often bandlimited and noise is seldom truheir multistep iterative methods do not apply to time varying
white in the sense that it spans all frequencies up to tegstems. Tuctet al [21] apply straightforward minimization
Nyquist frequency. Keeping this in mind, continuous timef a quadratic error function to continuous time linear time-
magnitude and derivative estimates of the observations imtariant systems. They assume noise-free observations and
subsample times can be computed (see Appendix). initially known linear model coefficients. For this highly spe-
Following the background section, the RDI is introduced fatialized case, nonbiased delay time estimates are obtained. The
the general case of this simple example (i.e., identification fsfct that their method only applies to time invariant systems
higher order systems with time varying coefficients and deldiynits its applicability to nonadaptive systems. While these
time based on bandlimited noisy observations) and appliedrtethods appear to be mathematically elegant ways to simulta-
simulated and experimental data. We believe that this negously identify delay time and linear coefficients in stationary
approach will greatly enhance our ability to quantify theystems, they are not applicable to adapting human operators.

behavior of human adaptation mechanisms. One semi-successful computationally expensive approach is
one in which a large set of models each associated with a
Il. BACKGROUND different delay time are recursively identified and a criterion

Many different approaches have been proposed to circufdnction is used to pick the one that represents the observations
vent the problem that the delay time is modeled as a nonlind¥@st at a given time instance [10], [22], [23]. The recursive
operator in a discrete time system representation and hadi@ure of these methods makes them applicable to time varying
be fixed before applying identification schemes such as leg¥stems. These methods do not produce fractional delay time
squares. A frequently used solution is to approximate tigstimate even though fixes can be devised to obtain such
delay time by an all-pass linear system thus reducing del@§timates (e.g., subsequent smoothing of the delay time series,
time identification to linear coefficient estimation [12]. Jefollowed by resampling of the observations to obtain the final
used the first order Pade approximation to characterize huni@gar coefficient estimates based on a zero delay time) [24].
operator delay time in his Critical Tracking Task experiments If the input and output signals of a system differ only by
[13]. Even if the delay time is known to its nearest whol@ time shift but not in spectral composition, as is often the
number of sample intervals, the remaining unaccounted féase in communication applications, a wide variety of delay
fractional delay time can have a significant effect on tHéme identification schemes are available many of which are
moving average (MA) portion of a linear model [14] (se®ased on correlation analysis [25]-[27]. These approaches are
Section III-A for a brief introduction to ARMAX models). applicable in a system identification setting when the system
In case of low bandwidth systems that are excited with onfit hand is known except for its delay time. An example is the
limited bandwidth signals, as is generally the case in manlrrelation based approach combined with the least squares
control, it is often difficult to distinguish between a pure delagnethod in Zheng and Feng [28]. Inspired by Box and Jenkins
and a phase lag resulting from: i) a pole that is associate?®], they first identify the AR coefficients, then delay time
with a cutoff frequency outside the system bandwidth or ii) #®llowed by the MA coefficients. Again, these methods are
zero in the right half s-plane (i.e., nonminimum phase systenfipt applicable to systems quickly changing over time.

In these cases, the MA or autoregressive (AR) coefficients
can easily model part of the pure delay [15], [16]. The
problem with modeling the effect of a pure delay time with
a linear coefficient model is that the total number of model Most recursive identification methods, including the EKF,
coefficients increases which results in difficulties similar tare based on minimizing a cost function, which means that the
those associated with trying to identify over parameterizefkrivative of this function with respect to the model coefficient
systems [17]. needs to exist in order to be able to search for a minimum. One

Direct delay time identification based on minimizing a cosif the fundamental problems with delay time identification in

function requires differentiation with respect to the delay timihe discrete time domain is the fact that the delay time is

Ill. RECURSIVE DELAY |IDENTIFIER
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modeled as a shift operator with an integer argument (whalard tool for both system description and control design.
number of time steps) against which one can not differentiat®RMAX models are ARMA or Auto Regressive Moving
In the RDI, this issue is bypassed by incorporating a bicubfrerage models eXtended with a Moving Average external
interpolation filter to produce subsample estimates of thiisturbance term. An example of an ARMAX representation
discrete time signal’s magnitudes [30] and derivatives (see tisethe following:
Appendix). The validity of this extension is based on the differ-
entiability of the system’s input and output signals thus limitin = @1Yn—1+a2¥n—2+boTn +b17n—1+vn+c10n—1+CoUn—2
ing the RDI's applicability to bandlimited signals sampled at a
frequency significantly higher than their bandwidth. The delayherea; anda; are the AR coefficientshy andb; the MA
time estimation component of the RDI operates on these s@efficients and:; andc, the X coefficients. The input time
sample magnitude and derivative estimates hence extend#§es is denoted by, }, the output by{y,,}, and the output
the otherwise unit shift operator to a fractional shift operat@servation noise byv, }. Detailed information pertaining to
against which can be numerically differentiated. For linear cARMAX state space system representations as well as Kalman
efficient estimation, the observations are decimated and locdilfer principles can for instance be found in [11] and [17]. The
resampled based on the current best fractional delay time elifiear state space model equations are
mate and then used to update the linear coefficient estimates.
Taking the derivative with respect to the delay shift involves On =On—1 +wn (1a)
differentiation of the input signal with respect to time. For this Yn =0L b, + v, (1b)
to be possible, a continuous time representation of the refer-
ence signal needs to be constructed. For deterministic inghere6,, is the model coefficient vector (assuming a single
signals or equivalently, stochastic signals whose bandwidthaigtput system). The white Gaussian noise progess}, with
much lower than the Nyquist frequency, such a representatié@ro mean and covariance matiix,, represents the model
can be obtained through interpolation. Ito calculus providescaefficient noise. The diagonal entriesd), can also be in-
theory for differentiation of stochastic processes; this approai&ipreted to indicate the rate at which these model coefficients
was not pursued because most practical input signals aré expected to change over time (see below). The vegtor
deterministic, and even if this were not the case, oncehalds the input and output samples on which corresponding
bandlimited stochastic process is sampled at a frequersiries ind, operate. The Gaussian noise procéss}, with
well beyond its bandwidth, it can without additional loss ofovariance matrix (scalar in case of a single-output system)
information be treated as a deterministic signal [31]. R, represents the observation noise in the output time series
By appending the Rauch-Tung-Striebel nonlinear fixeds, }. In terms of the above ARMAX model examplg, and
interval optimal smoother to the EKF (i.e., RDI) [11], [32],¢» become
[33], more accurate model coefficient estimates are obtained
because more information is used [34]. Theoretical properties O = a1, az, bo, by, c1, 2]
and efficient implementations of the optimal smoother were Q= [Wn—1,Yn—2"ns Tn—1, Un—1, Un—2].
established in [35]-[37]. Surprisingly few applications have
been reported on their use in system identification perhapsi© clarify the relationship between expected model co-
due to their non-realtime character. Norton used them to stufficient adaptation and the selection i, }'s covariance
daily rainfall in-flow dynamics of the King River in SW Tas-matrix Q,, a few words about one approach to derive the
mania [38]. To the best of our knowledge, they have not be&@lman filter algorithm, namely through minimization of a
applied to HO data. To enhance ones understanding abotfo&t function that assigns a cost to variations in the estimated
system, using optimal smoothing in the model identification [odel coefficientsf,, and one to the error between the
certainly advantageous. It not only improves model coefficieAPserved outpuy,, and estimated outpyj,, = 6 ¢,. These
estimates, it also eliminates identification lags introduced §pSts@;,* and R, are the inverse of the covariance matrices
the EKF’s own time constants (determined by thepriori  Of the noise processesu, } and{v,}, respectively [10], [40].
noise covariance matrices) thus improving the interpretatidfe cost function is therefore

of observed changes in model coefficients [39]. In studying Ne1
adaptation, it is important to keep in mind that the identifier J= Z [%(én 0 )T By — by
used is also a filter with its own time constants. Ideally, the -
identifier's time constants should be smaller than those of + %(yn _ éri;d)n)TR;l(yn _ éf(/)n)]-

the adaptation mechanisms involved so that the identifier can

converge fast enough to track changes in the model cau$g@m this equation, it is clear that an increas€ip, decreases
by adaptation. the cost on changing the model coefficients, thus allowing for
faster adaptation. As was mentioned earlier, the dynamics of
the Kalman filter itself are constrained by these two covariance
matrices. These issues are especially important if we want to
State space descriptions of linear models form the basientify step changes in system behavior because the estimated
for much of the modeling, control and system identificatiomodel coefficient time series are partially affected by the
literature. The linear ARMAX model has become a starkalman filter's own bandwidth (slew rate).

A. Kalman Filter



92 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 1, JANUARY 1998

B. Extended Kalman Filter delay time on the estimation error is
The EKF was developed for nonlinear systems of the de, 37’n+(in_l
following form: od, "7 ad,
Opt1 = fn(bn) +wy (2a) which tells us that the effect is highest when the slope in the
Yn = hn(6n) + vn (2b) input signal is highest.

L _ . ) _ _ . From an experimental point of view, to assure that the
which is the discrete time representation given in [10]. Thegp, o0 ses identification equally between the two classes

nomenciature i_S adjusted to copform with the rest ‘?f thi?_pap%"r' model coefficients, the input signal should exhibit an even

plus the equations are reconfigured fo_r system 'dent'f'cat'f}%tribution of high peaks and steep slopes. This means that
purposes. Thehcpngept of the EIKF IS to represent ther?i‘ﬁary signals should not be used on systems with time varying
equations by their first order Taylor expansions about thgay time. Note that these signals are also not bandlimited

conditional means,, /., and6,,/,,_, as is required for the RDI to operate properly. Input signal

falln) = fn(én/n) + Fo(0n — én/n) selection in any experiment designed to gain an understanding
5 5 about a system is very important and should be linked closel

. to the class of models one believes describes the system best.
whered,, ,,_; denotes the estimate éfat time step» whereby Ljung provides a good discussion on the practical aspect of
all observations up to and including— 1 are utilized. Also input signal selection for linear stationary systems [17].

PG |
" Y, 0=br,. D. Calculating H,,
and This section describes how to obtaif),, the partial deriva-
tive of h,,(6,,) with respect,,. The partial derivative ok, (9,,)
() with respect to the AR coefficients and the colored noise
H,=—= . coefficients is simply the vector containing the corresponding
4 6=8, /01 past output samples. On the other hand, the partial derivatives

with respect to the MA coefficients depend on the delay time

. - mpl im f the in ignal magni whil
In this paper, the system model coefficients are assumeda od subsample estimates of the input signal magnitude €

vary according to (1a) so that (2a) reduces to (1a). The E}a@mal dlfferer_ltlatlon with respect to _the delay tlm(_a depe_nds
: on the delay time and subsample estimates of the input signal
equations become

N R R derivative. These estimates are calculated at subsample times
On =bn—1 + Kp[yn — hn(0n—1)] n —m 4+ d, wherem € {0,1,---nb} andnb is the order of

K,=P, H,[H'P, 1H, +R,]} the MA portion of the model. This is best clarified with an
Py =[I - K HT|Po1 +Q example. Assume the following ARMAX (1, 1, 0) model:

which is the basic form used in the RDI. The delay time 9 = hn(0n) = G1, Yn-1 +bo, 7, g + b1 70 144

estimate is assumed to be the first entrygjn A ]
for which 8,, is defined as

C. Difference Between Linear Coefficient b, = [dn,
and Delay Time Identification n B

The momentary convergence rates for delay time and linedite partial derivativeH,, of h,(6,,) with respect to at time
coefficient identification differ depending on the current inpuitepn becomes
output signal characteristics. The delay time converges fastest;; _ [8 ES A Une1aT T 1
when the derivative of the input signal reaches its maximum, = " © 0n nbdn T P Tnsld, I Tntdy ) Tn—14d,
whereas the linear coefficients converge fastest at the highekerer, +4, Stands for the time derivative of the continu-
magnitudes in the obse.rvat.ions [highest s_ignal—to-noise .raggs time representation of . ; at time(n_mﬂzn)TS. In
(SNR)]. To elucidate this difference, consider the followmg{;nese parameterizatio 3

. ) ng, is a floating point value (fractional
pure gain pure delay system, = bo,"n+d, + var WIth  p mper of time steps) which basically means that,
unknown gainbo, and delayd,. In a KF, the convergence ..qs to be reconstructed as the continuous time representation

rate of a gi\(en model goefficient depends on the_ sensitivity B the time serie$r,, }. In the Appendix, it is shown that the

the estlr;:atlon_errqr with respect t?, this coefficient (Kalmage, pic interpolation method most accurately reproduces the
gain). The estimation errot, is defined asc, = yn ~ Un  continuous time signal in magnitude and first order derivative
where g, = bo,_,7, 4, , for our example. The sensitivity 56 on a discretely sampled bandlimited signal consisting of

717807178171]T'

with respect to the linear coefficiefs, _, is a sum of sinusoids (often used in manual control).
de,, The Kalman filter is optimal if the assumption of a Gaussian
Ao = "ntd,y noise signal holds. It is easily demonstrated that the observed
n—1

d that the effect is | t when the input si OLitput noise is Gaussian for a linear model{if,} and
and we see that the elect 1s ‘argest wien he input sig w,} are two independent Gaussian processes [41]. For a
,

n+d,_, reaches high magnitudes. The effect of a change I jinear system, this no longer holds and optimality is no
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longer guaranteed [11]. The exact consequences in our caseimum is likely to occur. These monitors can also be used
wherehn(én) is linear except in the delay time still needs tdo stop identification when the chance of entering a local
be determined:; the issue being the delay time coefficiefif in minimum regime is high, thus constraining the RDI to operate
is an operator and that subsample magnitude and derivativdy around the global minimum. Note that this assumes the
estimates of the input are used. In principle, the RDI is iaitial model coefficient estimate to lie within “reach” of the
hybrid between the discrete and continuous time domairggobal minimum.
In effect, it shifts the input sample times around before Before we introduce the constraints used for monitoring
applying the linear coefficient estimation. To quote Gelb [1iflentifier divergence, a simple example is presented to demon-
on the use of the EKF: “There is no guarantee that the actsiiate the duality between the mutual effects of errors in delay
estimate obtained will be close to the truly optimal estimatéime and linear coefficient estimation. Assume a noise free
Fortunately, the extended Kalman filter has been found paire gain pure delay system with a sinusoidal input. If the
yield accurate estimates in a number of important practidalie gain is one and the delay time is off by half a period of
applications. Because of this experience and its similarity the sinusoid, the gain will converge to negative one. This is
the conventional Kalman filter, it is usually one of the firstriven by a sign difference between the observed and estimated
methods to be tried for any nonlinear filtering problem.”  output signals. Similarly, if the gain is incorrectly estimated
To minimize the problems associated with identificatioto be negative one, the delay time will converge to a value
based on over-sampled time series [17], linear coefficieoff by half a period of the sinusoid (positive or negative).
estimation is based on observations decimated by a factorTdfis is driven by a sign difference between the derivatives of
A. On the other hand, subsample magnitude and derivatif® observed and estimated output signals. One characteristic
estimation are still calculated based on the original observatiassociated with exact model coefficient estimates (in the noise
sampled at7s second intervals to minimize interpolationfree case) is that the signs of the magnitudes (derivative)
noise. To express the delay time in terms of time stepstween the observed and estimated output are equal at all
associated with the decimated observations (ig.= \T,) time steps. It is easily seen that small estimation errors are
while ahn(én_l)/adn_l is calculated based on the non<characterized by inequalities in these signs whenever the
decimated time series, the expression fdf,[0] becomes magnitude (derivative) of output signal (observed or estimated)

Aahn(én_l) /8c2n_1. crosses zero. Note that these are exactly the times when the rate
of convergence in linear coefficients (delay time) is lowest. By
E. Optimal Smoother turning the identifier off whenever the magnitude (derivative)

To reduce the estimation noise and eliminate some si1gns are unequal, it is guaranteed that the estimates remain
: ' imi ose to the global minimum.

Itiie dynam|ctﬁl effects of lf[hg |dertl:]|f|er (tsef ib?r\]/e)’ ? ngn'The observations made regarding the simple example still
ear smoother was applied on he output ot the exten ﬁgld if the input signal becomes a more complex bandlimited

Kalman filter. The applied fixed interval smoother is th ianal and the model becomes a full blown ARMAX model
Rauch—Tung-Striebel algorithm and is repeated here in a fomﬁsummary when derivative constraint '

suitable for identification [10], [11]:
Bryv—s = b+ Kon(Brsiyv—s — ) sign(jn) = sign(fn(6n))

K, =P(P+ Q)" or when the magnitude constraint
Paps = Pot BnBogayno = o= Qu)o sign(yn) = sign(yn (6,))
wheref,, and P, are the results obtained from the forward-

in-time EKF and wherénm_l contains the backward filtereddo not_hold, |dent|f|pat|on IS tempora_mly halted u.ntll t_he
L : . constraints hold again. We do not claim mathematical rigor
model coefficients and®,|y_; is an estimate of the model

- . . . but simply provide an intuitively straight
coefficient covariance matrix. As Gelb pointed out, the true PY P - il ghtforward method_to
) . . . : prevent runaway coefficient estimates. Note that the magnitude
interpretation of P, |x_, or equivalently P, is dubious for : : i )
; . . constraint can also be used in case of systems with a fixed but
nonlinear time varying systems [11]. He suggests to use ; o . .
. . - unknown delay time. If the delay time is estimated incorrectly
Monte-Carlo simulations to probe the model coefficient space ' . . N . .
: ; . one will, depending on tha priori noise covariance estimates,
for possibly better solutions. Most importantly, one should use - Lo . .
S : either observe variations in linear coefficient estimates that
common sense in interpreting the data. : ! . .
are correlated with the input signal or that the magnitude
constraint does not hold for extended periods of time. In fact
it is worthwhile to explore how the average duration that the
The RDI algorithm as it is presented above does not takenstraint does not hold relates to the necessary delay time
into account that the delay time estimates may converge t@@rection (this was not pursued here).
wrong value because of the multimodality of the cost function Even with the above constraints the RDI has been observed
with respect to delay time [19]. Furthermore, if the delay tim&® produce misleading results when: i) the true delay time
estimate is incorrect, the linear coefficients will not converge tthanges too fast for the time constant of the identifier; ii) the
the correct values (and vise versa). Here we present monitote delay time makes a jump greater than half the period

to determine when divergence into a local instead of globaf the bandwidth of the observations hence causing the delay

F. Constraints on the Recursive Delay Time Identifier
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time to jump out of the global convergence zone; and iijelay time itself. However, as systems and their models
the initial delay time estimate is off by more than half thkbecome more complex, identifiability becomes more of a
period of the bandwidth of the observations which places problem especially if different components of the model are
outside the global convergence zone. The first case candide to realize the same behavioral characteristics. The optimal
solved by increasing the delay time noise variance in the moa®eintrol model for human operators [6] is a prime example; for
coefficient covariance matrig) (i.e., diagonal entry). While instance, the neuromuscular dynamics can to a large degree
the third case simply requires re-estimation of the initial delalso be modeled by the cost assigned to changes in applied
time, the second case poses a real problem in that it requiresantrol. As shown in the following section, delay time can be
artificially induced jump in the delay time estimate such that ihodeled in different ways thereby complicating its estimation.
falls in the global convergence zone again. Such large changes

are generally caused by a malfunction in which case the whole IV. SIMULATION

system dynamics can change and one may as well reinitializel.o gain insight into the RDI’s abilities and limitations, a
the identifier and restart the identification at that time ste ’

ith t of model Hicient estimat I dmulation was designed to look at the interaction between
WIth a new set of model coetlicient estimates as we asa‘aélay time and model coefficient estimation in a time varying
coefficient estimation noise covariance matfxwith large

) . S inear m.
diagonal entries to reflect the uncertainty in these new mo glea syste
coefficient settings. As a general rule, if the constraints do n
begin to hold for a significant portion of the time, a new set o _ _ _
initial estimates should be tried. Again common sense shouldThe simulation was performed on a first order ARMA model
be used in selecting these model coefficient estimates. = (bo + brg~L)g .

G. Application 1—a1gt

Besides determining the correct model order, selectingthvith fixed linear coefficients and a time varying delay time
priori model coefficient covariance matrx and the observa- dn_z dp—1 + wy,. Note tha_tq _IndICf’:lteS a unit shift operator
tion noise varianceR is often difficult [17]. A few guidelines (¢~ 7n = rm—1). The bandlimited time serief-, }, {v,} and
specifically geared to the identification of time varying systerdgvn } were obtained by applying an ideal lowpass filter (using
are presented here. First, the covariance mafixn the the Fast Fourier Transform and its inverse) on normally dis-
RDI equations is split up intaQ, for the delay time and tributed signals. The cutoff frequency and standard deviation
Q. for all the linear coefficients. Since the delay time i€or {r»} were respectively set to 1.0 Hz and 2.0. Rer.},
expressed in terms of fractional time steg, also has to be they were set to 3.0 Hz and 0.01, and for,,} to 0.3 Hz
expressed in terms of the sampling interval after decimati@fd 0-1. In the noise free simulations, discussed betow,
(e, Ty = \To). was set to zero. The zero’'s and pole’s associated with the

For the RDI (or any recursive identifier) to return mean?RMA model's cutoff frequencies were respectively set to
ingful model coefficient estimates of an adapting systerfl;75 and 1.25 Hz and a unit dc-gain was used. The simulation
its bandwidth should exceed the bandwidth of adaptatid¥S run at a sampling frequency of 600 Hz and subsampled
mechanisms. In other words, the RDI should be able to traBk 80 Hz to produce fractional delay times. While decimation
changes in model coefficients with minimal lag. This caff the input and output signals as well as the AR coefficients
always be accomplished by increasing the diagonal elemeffCt the effective output noise variance [39], it suffices here
(variances) of the priori model coefficient covariance matrixt0 know that the resulting, was about 0.3; this includes the
Q. Estimating thea priori noise variances2,, in model fact that identification of the linear coefficients was performed
coefficientd(:) requires knowledge about the maximum rat@t @ 15 Hz sampling rate (decimation factoof 4) while input
per time step (after decimation) at whid:) is expected signal magnitude and derivative estimation (i.e., interpolation)
to vary (call this A§(i)). The variance oB(i) after n time was based on the 60 Hz rate. The true values for the linear
steps equalsio?,, whereby o2, is the variance of the coefficients weres; = 0.59,bp = 1.51 andb; = —1.10.
Gaussian random variabléw(i),} in the update equation Negative delay time, as indicated in the figures, represents
O(i)n = O(i)n_1 + w(i), [41]. By Settingo,(;) 1o A8(), Q anticipation. One can think of these delay time fluctuations
becomesAA(:)2. If the resulting coefficient time seri’es ex-8S caused by a mechanism that scans the input signal without

hibits large segments with monotone increases or decreagggw'ng whether it fgeds the past, present or future to the
the respective variance may have been set too low. Similarg,mro!ler' thus causing the system to effec;twely respond
if the coefficient fluctuates wildly around some visible mea a tlme advanced or delayed reprgsentaﬂon of.the trye
trend, the variance was most likely over estimated. Finallf!Put signal. The RDI is used to estimate these time-shift
since only the ratia}/R has an effect on convergence rate [uctuatlons.
the resulting variance of the estimation error can be used to )
normalize R to this value and adjust the diagonal entries - Analysis
() accordingly [40]. Since the linear coefficients were fixe@c was set to the
Finally, it is important to realize that the RDI, just like thesmall value 1.0e-@(/ is the identity matri¥. In case a linear
EKF itself, can be applied to systems with multiple inputsoefficient was assumed to be known, its initial value was set
and/or outputs as well as systems with nonlinearities beyotalthe correct value and the corresponding diagonal entry in

.t Specification
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Fig. 2. RDI model coefficient estimations from a noise-free simulation.

. . Fig. 4. RDI model coefficient estimations from a simulation with induced
(Qc was set to zero. Because the delay time standard deviatiBervation noise.

was set to 0.1 time steps based on a 600 Hz sampling rate plus

the fact that the final identification update rate was 15@Z, time estimates do not appear to be severely biased under any of
becamel00.1* = 0.4. Finally, R was set to 0.1 in the noisy the conditions. We believe that the reason for these biased MA
cases and td.0c—4 in the noise-free cases. Identification wagoefficient estimates lies in the fact that they also approximate
applied under four conditions: fractional delay times. Since it is only an approximation, we

* noise free with known MA-coefficients (Fig. 1); would not expect such a bias under noise free conditions
* noise free with unknown MA-coefficients (Fig. 2); because the delay time estimate provides a more accurate
* noisy with known MA-coefficients (Fig. 3); solution. This is supported by the fact that Figs. 1 and 2

* noisy with unknown MA-coefficients (Fig. 4). show no difference in delay time estimates (exact in both
To identify a partially known system, diagonal entries(qa  cases). Furthermore, a close look at the delay time estimates
that correspond to the known coefficients are simply set o Figs. 3 and 4, shows that the dashed line (estimated delay
zero. This approach does not work for the optimal smoothtme) in Fig. 4 is always slightly lower than the one in Fig. 3
since P 4+ @, which is inverted, no longer has full rank.confirming the assertion that the MA coefficients also model
This problem can be circumvented by subtracting the knovénportion of the delay time. If we would increase ta@riori
portion of the output from the observed output and removingise in the MA coefficients (i.e(.), oscillations in these
the known coefficients from the model thus reducing thevefficients would be observed with periods corresponding to
model order [42]. Since this solution was not applied here, thige time it takes the true delay time to increase or decrease
smoother was not activated in any of these identification rungy one sampling interval. Similar concerns hold for low
bandwidth systems in which the AR coefficients can accurately
model pure delay (pole slightly beyond the bandwidth). For

In general, both noise free conditions resulted in highligh-bandwidth systems, Box and Jenkin’s approach to first
accurate delay time as well as linear coefficient estimatiglentify the AR coefficients followed by the MA and delay
(Figs. 1 and 2). Also, identification with noisy observationime may offer some advantage [29]. It is important to realize
resulted in meaningful estimates with known MA coefficientthat these issues are general concerns that simply become more
(Fig. 3) but the case with unknown MA coefficients produceiiportant in the RDI because two competing mechanisms are
highly biased linear coefficient estimate (Fig. 4). The delayorking simultaneously to approximate the pure delay time. At

C. Results and Discussion
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Fig. 5. lllustration of the gap-postview display. The box at the bottom of the Time [s]

screen is controlled by lateral mouse movements. The track is shown from

time t — 1.0 at the top of the screen to— gap at the point closest to the Fig. 6. RDI model coefficient estimations from a typical result of the manual
box. The box is displayed at current timeThe time axis was not displayed postview tracking task with time varying gap between the control element
during the experiments. and the visible part of the track.

higher noise levels, it is more difficult to differentiate betweeand screen update rate were 36 Hz. The gap signal was

a truly pure delay and a lag introduced by a pole or zero welbtained by adding 500 ms to the delay time signal from the

outside the system’s bandwidth. Since the true pole of tipeevious simulation experiment and multiplying the result by

simulated system lies outside the input signal bandwidth, tf0s8 to avoid a gap greater than 1.0 s. The resulting gap signal

may have caused the slight bias in Figs. 3 and 4. bandwidth is 0.18 Hz. The bandwidth of the input signal came
Aside from these competing mechanisms in delay tinte (replay of the 1.0 Hz input signal from previous simulation,

representation, the RDI's own time constants, as dictated bsiginally designed for 60 Hz, at 36 Hz) 0.6 Hz.

thea priori covariance matrix settings, play an important role.

The delay time estimate (dashed line) always lags the trBe Identifier Initialization

delay time (solid line) in Figs. 3 and 4 thus in some instancesTnq closed loop system was assumed to be well described
causing substantial errors. This is not observed in Figs. 1 w a pure-gain pure-delay model. Such an assumption may
2 be_caus_e_ of the significantly small_er vaIueR)holc_h makes ot hold for compensatory, error regulating control because of
the |d_ent|f|er much more responsive (see Section ”I'G' QUability related to the feed back loop. However, the postview
selecting? and K). Overall, we see excellent delay time€yispiay used here enables accurate perception of the reference
tracking. track thus making highly accurate open-loop tracking highly
plausible especially for the relatively low bandwidth input
signal (0.6 Hz) used here.

By applying the RDI to human tracking data, we take it into Here, @, was set to 0.5Q). to 1.0e-6, andR to 0.5. This
a more practical realm with less controlled system adaptatiomslects a highly variable delay time, a rather constant gain and
and noise structures. This section and the next are not meargubstantial amount of observation noise. While the optimal
to provide an in-depth analysis of human adaptation; theyoother was turned off for the simulations, it was turned
are meant to demonstrate the RDI's potential in helping ttm here to improve model coefficient estimates (minimize

V. TIME VARYING GAP-POSTVIEW TRACKING TASK

characterize and understand human adaptation. dynamical lag). Furthermore, to determine the RDI's response
to a highly inaccurate initial delay time estimate, it was set to
A. Experimental Design 0 ms even though the initial gap was about 400 ms.

The goal here was to design an experiment in which the
human delay time would change in a predictable fashion thirs
enabling us to verify the RDI's estimates on a data set with The great similarity between the estimated delay time and
human induced noise which may not necessarily be Gaussidie gap length (Fig. 6) shows that the RDI does not break
The experiment consisted of a subject sitting in front of a 19-idown when exposed to human induced noise which may not
monitor on which a winding track was displayed between theecessarily be Gaussian. If the naive subject (MG) had simply
top of the screen (1.0 s postview) and some distance abglaced the marker at the lateral position of the bottom of the
the bottom of the screen where a user controlled marker (bax3ible portion of the track, the delay time and gap would
was displayed (Fig. 5). This resulted in a blank space betweesve been identical. However, if the subject would have been
the marker (0.0 s postview) and the point where the traelble to perfectly predict the track’s intersection point with the
disappears into this gap. The gap was always greater tt@mrent time line, his delay time would have been around zero.
0.0 s and never exceeded 1.0 s. The marker moved laterdgither case seems to apply. For the 0.6 Hz bandwidth input
in unison with the mouse movements (i.e., pure-gain systertrack, it is reasonable to assume that humans, using mostly
The task was to keep the marker on the spot where the trdickear extrapolation, are capable of predicting its future fairly
would intersect the 0.0 s postview or current time line thusccurately up to about one-eighth of the period of the highest
forcing the subject to extrapolate across the gap. The samplfrgquency component in the signal which corresponds to 0.2 s

Results and Discussion
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in this experiment. The data in Fig. 6 indicates a 0.2 s differ- »
ence between gap and delay suggesting that our subject may
indeed have applied simple linear extrapolation across the gap. _
Whether the small fluctuations of the estimated delay time
are true or a result of the identifier can be determined by
varying (0, and fixing it at the value below which this “high”
frequency noise is eliminated. Going too far down will cause
the RDI to loose track (often signified by a sudden jump)
and produce meaningless estimates. As mentioned earlier, this
approach to tune th& and matrices was also suggested by
Bryson and Ho in [40]. e ‘ ‘ ‘
During the first 10 s, the RDI correctly recovers from the 0 5 10 15 20 25 20 35 40
highly inaccurate initial delay time estimate. As was discussed Time [s)
earlier, recovery from an initial delay time error greater than
half the period associated with the input signal bandwidth may 400
not result in correct convergence. 150 |
The gap in this experiment finds many counter parts in the
world of tele-operation [43]. It is expected that embedding
the RDI in adaptive controllers for systems with time varying ~ *%

Delay [ms]

delay time, such as distributed virtual reality with variable Z 200 |
. . . . . = I
transmission delays, will result in enhanced man-machine g | 5,
interaction since it provides estimates about the amount of oo &
prediction required in presenting the visuals. '
0.50
000 L e
VI. CRITICAL TRACKING TASK 0 5 10 15 2 25 30 35 40
Time {s]
A. Experimental Design Fig. 7. RDI model coefficient estimations from a time varying manual

.. . . . tracking task modeled after Jex’s critical tracking task.
The critical tracking task (CTT) was originally designed by 9 9

Jexetal. in the 1960’s and used to estimate a human operator’s . o
effective delay time [13]. The goal in this compensatory: dentifier Initialization
tracking task was to keep a gradually becoming more unstableNo particular rigor has been adopted to optimize the se-
first order plant under control. At the point of control lossection of thea priori covariance matrice$) and R. The
(i.e., when the tracking error exceeded a set value), thmain goal was to see whether the RDI would confirm the
hypothesized that the human operator's effective delay tirhgpothesis that subjects reduce their delay time and gain as
and the instability leve{\) were each other’s reciprocal. Truethe instability level increases and therefore not always operate
reciprocity would only be reached in the event of zero gaat the maximum of their ability. In accordance with Jex’s
and phase margin control, which is humanly impossible. Frediction, the human operator was modeled as a pure-gain
maintain control, subjects have to lower their gain and delgure-delay system. Heré}, was set to 0.5¢). to 0.05, and
time as the instability increases to preserve maximal gain aRdto 0.5. Again, the optimal smoother was left on.
phase margins. ) )

Here we repeated this experiment. The subject's task was Results and Discussion
to minimize lateral movements of a cross displayed in the Data from our naive subject (MG) is shown in Fig. 7. The
middle of a computer screen via mouse control. The trial wégp panel shows human operator delay time estimates for two
terminated when the cross deviated from the center by maliéferent trials while the bottom panel shows the corresponding
than a screen width. A 36 Hz update rate was maintaineghin estimates. These data do indeed show the trends predicted
As disturbance input to the system, the 1.0 Hz bandwidby Jexet al. The delay time drops “gradually” to about 150 ms
input signal from the gap-postview experiment was used but &s the gain drops to about 1.5. Jex in [13] assumed a 110 ms
magnitude was first reduced by a factor of 100. The instabilitwer limit for a human’s effective delay time and a gain
level increased linearly from zero at a rate of 0.11/s. of about 1.5 at the instability levels reached by our subject

The goal here is to illustrate that the RDI can be usgB8.9 and 4.5). The two depicted trials show very similar
to enhance our understanding about human adaptation duraaptation profiles. It is interesting to note that the thin gain-
these kinds of tracking tasks, especially since to the best of dme increases toward the end of this trial which may have
knowledge no other methods have successfully been applezised premature loss of control. Other trials show similar
to human operator data in which the observed system exhilii#gsminal values, only the path at which the gain and delay
substantial adaptations over relatively short periods of time. time reached these values differed suggesting variability in the
depth analysis on CTT and other time varying manual trackinigne course of adaptation. Even the two trials shown here show
tasks will be reported elsewhere. marked differences. For example, the thin delay-line reaches
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a plateau after about 15 s upon which the variability seemmich lower than the Nyquist frequency is obtained with the
to decrease indicating that control was forced into a corner falowing two approximating polynomials

suggested by Jeat al. On the o_ther hand, the_ thl_c_k delay-line Fz) = 1.52% — 2,522 + 1, € [0,1]

shows much more fluctuation in an overall significantly lower 5 )
delay. Such differences were expected because control is easy 9(z) ==0.5z"+ 252" —dz +2,  x€[l,2]

at low instability levels thus allowing the human operator t@ctimation of the signal value at time+ d, whered € [0, 1),
control “well enough” under a wide range of gain and phasg pased on sample values at time steps 1,7,n + 1, and
margins (i.e., gain and delay time settings). In fact, from the 5 Note that the time: + d is central to these three time
thick delay-line data in Fig. 7, it appears that the tolerance jfyeryals. It is easily verified that the respective weights are
control was tlghteqed after e_1bout 20 s based on the relatlv%lM +d), f(d), f(1—d), andg(2 — d). The arguments are the
sudden decrease in delay time. . . distances betweem+ d and the respective sample times. The
The suggested usefuness of the RDI in tracking & humggyt that the integral over 2 to 2 is exactly one, means that no
operator's time varying model coefficients is extremely enggnal power is dissipated in the interpolation (i.e., filtering)

couraging in that it may open doors to answer many N&Y¥¥ocess. The value Cffn+d is now found with
guestions and hypothesis about human adaptation. Attention

no longer has to be focused on adaptation to sudden lafgera = 9(1+d)z,—1+f(d)zn+f(1=d)Tpt1+9(2—d)Tpn 2.
changes because of analysis constraints [7], [44]—-[46], but
be directed to the effect of more gradual changes.

One important component in many human operator models ;Ln-l—d =¢'(1+d)zn_1 + f(d)zn+ f(1—d)
is remnant. Human controller remnant is defined as that portion g (2—de
of the human output that is not related to the system input g 2
by the input/output describing function [47]. One source ofihere the prime stands for derivative.
remnant is attributed to a human operator’s involuntary time- Boer compared seven interpolation schemes on their ac-
varying behavior. To determine the magnitude of this effeatpracy in magnitude and derivative estimation, including the
the RDI can be used to quantify that portion of remnant causkear, quadratic and cubic polynomial interpolation methods

e derivative of the sampled signalat-d is calculated with

Tn+1

by these unintended adaptations. as well as two others that approximate the sinc function [39].
They were all applied to an analytically known signal (sum
VII. CONCLUSIONS of sinusoids) with uniform power and a 1.0 Hz bandwidth.

A new approach to recursively identify a linear system’gven though the third order polynomial interpolation showed
time varying delay time and linear coefficients was introducethe best results in the magnitude estimates, the bicubic inter-
This RDI is based on the EKF and uses a bicubic interpolgolation was superior in estimating the derivative. A practical
tion scheme to provide subsample magnitude and derivati@iew of many approximation and interpolation methods can
estimates of the observations. The encouraging results ke found in [48].
simulated as well as manual tracking data suggest that the
imposed differentiability constraint on the observations was of ACKNOWLEDGMENT
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