
CANDID: Preventing SQL Injection Attacks using
Dynamic Candidate Evaluations

Sruthi Bandhakavi
University of Illinois

Urbana-Champaign, USA

sbandha2@uiuc.edu

Prithvi Bisht
University of Illinois

Chicago, USA

pbisht@cs.uic.edu

P. Madhusudan
University of Illinois

Urbana-Champaign, USA

madhu@cs.uiuc.edu

V. N. Venkatakrishnan
University of Illinois

Chicago, USA

venkat@cs.uic.edu

ABSTRACT

SQL injection attacks are one of the topmost threats for ap-
plications written for the Web. These attacks are launched
through specially crafted user input on web applications that
use low level string operations to construct SQL queries. In
this work, we exhibit a novel and powerful scheme for auto-
matically transforming web applications to render them safe
against all SQL injection attacks.

A characteristic diagnostic feature of SQL injection at-
tacks is that they change the intended structure of queries
issued. Our technique for detecting SQL injection is to dy-
namically mine the programmer-intended query structure on
any input, and detect attacks by comparing it against the
structure of the actual query issued. We propose a simple
and novel mechanism, called Candid, for mining program-
mer intended queries by dynamically evaluating runs over
benign candidate inputs. This mechanism is theoretically
well founded and is based on inferring intended queries by
considering the symbolic query computed on a program run.
Our approach has been implemented in a tool called Can-
did that retrofits Web applications written in Java to defend
them against SQL injection attacks. We report extensive
experimental results that show that our approach performs
remarkably well in practice.

Categories and Subject Descriptors

K.6 [Security and Protection]: Unauthorized access; H.3
[Online Information Services]: Web-based services

General Terms

Security, Languages, Experimentation

Keywords

SQL injection attacks, retrofitting code, symbolic evalua-
tion, dynamic monitoring.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

1. INTRODUCTION
The widespread deployment of firewalls and other perime-

ter defenses for protecting information in enterprise infor-
mation systems in the last few years has raised the bar for
remote attacks on networked enterprise applications. How-
ever, such protection measures have been penetrated and
defeated quite easily with simple script injection attacks,
of which the SQL Command Injection Attack (SQLCIA)
is a particularly virulent kind. An online application that
uses a back end SQL database server, accepts user input,
and dynamically forms queries using the input, is an attrac-
tive target for an SQLCIA. In such a vulnerable application,
an SQLCIA uses malformed user input that alters the SQL
query issued in order to gain unauthorized access to the
database, and extract or modify sensitive information.

SQL injection attacks are extremely prevalent, and ranked
as the second most common form of attack on web applica-
tions for 2006 in CVE (Common Vulnerabilities and Expo-
sures list [18]). The percentage of these attacks among the
overall number of attacks reported rose from 5.5% in 2004
to 14% in 2006. The recent SQLCIA on CardSystems So-
lutions [15] that exposed several hundreds of thousands of
credit card numbers is an example of how such attack can
victimize an organization and members of the general pub-
lic. By using Google code search, analysts have found several
application programs whose sources exhibit these vulnera-
bilities [2]. Recent reports suggest that a large number of
applications on the web are indeed vulnerable to SQL in-
jection attacks [25], that the number of attacks are on the
increase, and is on the list of most prevalent forms of at-
tack [15, 27].

Research on SQL injection attacks can be broadly clas-
sified into two basic categories: vulnerability identification
approaches and attack prevention approaches. The former
category consists of techniques that identify vulnerable lo-
cations in a web application that may lead to SQL injection
attacks. In order to avoid SQL injection attacks, a program-
mer often subjects all inputs to input validation and filter-
ing routines that either detect attempts to inject SQL com-
mands or render the input benign [5, 20]. The techniques
presented in [29, 16] represent the prominent static analy-
sis techniques for vulnerability identification, where code is
analyzed to ensure that every piece of input is subject to
an input validation check before being incorporated into a
query (blocks of code that validate input are manually an-
notated by the user). While these static analysis approaches
scale well and detect vulnerabilities, their use in addressing
the SQL injection problem is limited to merely identifying

potential unvalidated inputs. The tools do not provide any
way to check the correctness of the input validation rou-
tines, and programs using incomplete input validation rou-
tines may indeed pass these checks and still be vulnerable
to injection attacks.

A much more satisfactory treatment of the problem is
provided by the class of attack prevention techniques that
retrofit programs to shield them against SQL injection at-
tacks [12, 26, 19, 21, 30, 13, 9, 24]. These techniques of-
ten require little manual annotation, and instead of detect-
ing vulnerabilities in programs, offer preventive mechanisms
that solve for the programmer the problem of defending the
code against injection attacks.

Relying on input validation routines as the sole mecha-
nism for SQL injection defense is problematic. Although
they can serve as a first level of defense, it is widely
agreed [14] that they cannot defend against sophisticated
attack techniques (for instance, those that use alternate en-
codings and database commands to dynamically construct
strings) that inject malicious inputs into SQL queries.

A more fundamental technique to the problem of defend-
ing SQL injection comes from the commercial database world,
in the form of PREPARE statements. These statements allow a
programmer to declare (and finalize) the structure of every
SQL query in the application. Once issued, these statements
do not allow malformed inputs to further influence the SQL
query structure, thereby avoiding SQL vulnerabilities alto-
gether. This is in fact a robust mechanism to prevent SQL
injection attacks. However, retrofitting an application to
make use of PREPARE statements requires manual effort in
specifying the intended query at every query point, and the
effort required is proportional to the complexity of the web
application.

The above discussion raises a natural question: Could
we automatically infer the structure of the programmer-
intended query structures at every query issue point in the
application? A positive answer to this question will address
the retrofitting problem, thereby providing a robust defense
for SQL injection attacks.

In this paper we offer a solution, dynamic candidate eval-
uation, a technique that automatically (and dynamically)
mines programmer-intended query structures at each SQL
query location, thus providing a robust solution to the
retrofitting problem. Central to our approach are two sim-
ple but powerful ideas: (1) the notion that the symbolic
query computed on a program path captures the intention
of the programmer, and (2) a simple dynamic technique
to mine these programmer-intended query structures using
candidate evaluations.

Based on these ideas, we build a tool called Can-
did (CANdidate evaluation for Discovering Intent
Dynamically). Candid retrofits web applications written
in Java through a program transformation. Candid’s nat-
ural and simple approach turns out to be very powerful for
detection of SQL injection attacks. We support this claim
by evaluating the efficacy of the tool in preventing a large
set of attacks on a class of real-world examples.
This paper makes the following contributions:

• The dynamic candidate evaluation approach for min-
ing the structures of programmer-intended queries.

• A formal basis for this dynamic approach using the
notion of symbolic queries.

• A fully automated, program transformation mecha-
nism for Java programs that employs this technique,
with a discussion of practical issues and resilience to
various artifacts of Web applications.

• A comprehensive evaluation of the effectiveness of at-
tack detection and performance overheads.

The problem of SQL injection is one of information flow
integrity [7, 22]. The semantic notion of data integrity re-
quires that untrusted input sources (i.e., user inputs) must
not affect trusted outputs (i.e., structure of SQL queries con-
structed). Notions of explicit information flows that track
a relaxed version of the above data integrity problem are
suitable for this problem. Such solutions have been imple-
mented by mechanisms such as tainting [21, 19, 30] and
bracketing [24]. Our solution is structurally very different
from these approaches and we present detailed comparisons
in the section on related work.

The paper is organized as follows. In Section 2 we infor-
mally present our approach through an example. We present
the formal basis for the idea of deriving intended query
structures in Section 3. Section 4 presents the program
transformation techniques used to compute programmer-
intended query structures. Section 5 presents the functional
and performance evaluation of our approach through ex-
periments on our tool Candid. Related work on other ap-
proaches is discussed in Section 6, and Section 7 concludes
with a brief discussion.

2. OVERVIEW OF CANDID

2.1 An example
To illustrate SQL injection, let us consider the web appli-

cation given in Figure 1. The application is a simple online
phone book manager that allows users to view or modify
their phone book entries. Phone book entries are private,
and are protected by passwords. To view an entry, the user
fills in her user name, and chooses the Display button. To
modify an entry, she chooses the Modify button, and enters
a different phone number that will be updated in her record.
If this entry is left blank, and the modify option is chosen,
her entry is deleted. The program that processes the input
supplied by the form is also shown in Figure 1. Depending
on the display/modify check-box and depending on whether
the phone number is supplied or not, the application issues
a SELECT, UPDATE, or DELETE query.

The inputs from the HTML form are directly supplied to
procedure process-form, and hence the application is vul-
nerable to SQL injection attacks. In particular, a malicious
user can supply the string “John’ OR 1=1 - -” for the user-
name, and “not-needed” for the password as inputs, and
check the display option, which will make the program issue
the SQL query (along Path 1):

SELECT * from phonebook WHERE username=’John’ OR

1=1 - -’ AND password=’not-needed’

This contains the tautology 1=1, and given the injected
OR operator, the SELECT condition always evaluates to true.
The sub-string “--” gets interpreted as the comment oper-
ator in SQL, and hence the portion of the query that checks
the password gets commented out. The structure of the
original query that contained the “AND” operator is now

void process-form(string uname, string pwd, bool modify,
string phonenum) {

if (modify == false){ /* Path 1. only display */
query = "SELECT * from phonebook WHERE username = ’" +

uname + "’ AND password = ’ " + pwd + "’";
}
else{ /* modify telephone number */
if (phonenum == "") /* Path 2. delete entry */

query = "DELETE from phonebook WHERE username=’" +
uname + "’ AND password = ’" + pwd + " ’ ";

else /* Path 3. update entry */
query = "UPDATE phonebook SET phonenumber =" + phonenum +

"WHERE username = ’ " + uname +
"’ AND password = ’" + pwd + "’";

}
sql.execute(query);
}

Figure 1: Approach overview

changed to a query that contained an “OR” operator that
uses a tautology. The net result of executing this query is
that the malicious user can now view all the phone book en-
tries of all users. Using similar attack queries, the attacker
can construct attacks that delete phone number entries or
modify existing entries with spurious values. A program
vulnerable to an SQL injection attack is often exploitable
further, as once an attacker takes control of the database,
he can often exploit it (for example using command-shell
scripts in stored procedures in the SQL server) to gain ad-
ditional access.

In order for an attack to be successful, the attacker must
provide input that will ultimately affect the construction of
a SQL query statement in the program. In the above exam-
ple, the user name “John’ OR 1=1 --’ ” is an attack input,
whereas the input name “John” is not. An important obser-
vation that is used in SQL PREPARE statements, and also in
recent work [9, 24] is that a successful attack always changes
the structure of the SQL query intended by the program-
mer of the application. For the example given above, the
attack input “John’ OR 1=1 --’” results in a query structure
whose condition consists of an “OR” clause, whereas the cor-
responding query generated using non-attack input “John”
has a corresponding “AND” clause. Detecting change in
query structure that departs from the one intended by the
programmer is therefore a robust and uniform mechanism
to detect injection attacks.

The problem then is to learn the structure of programmer-
intended PREPARE query structures for various query issuing
locations in the program. If this can be accomplished, then
during program execution, the syntactic structures of the
programmer-intended query and the actual query can be
compared in order to detect attacks.

Several options are available to learn programmer intended
queries. One approach is to construct valid query struc-
tures from safe test inputs [26]. The problem with a purely
testing-based strategy is that it may miss some control paths
in the program and may not be exhaustive, leading to re-
jection of valid inputs when the application is deployed.
Another possibility is to use static analysis techniques [12]
to construct the programmer-intended queries for each pro-
gram point that issues a query. The effectiveness of static
analysis is dependent on the precision of the string analysis
routines. As we show the related work section (Section 6),

precise string analysis using static analysis is hard, especially
for applications that use complex constructs to manipulate
strings or interact with external functions to compute strings
that are used in queries.

2.2 Our approach
To deduce at run-time the query structure intended by a

programmer, our high-level idea is to dynamically construct
the structure of the programmer-intended query whenever
the execution reaches a program location that issues a SQL-
query. Our approach is to compute the intended query by
running the application on candidate inputs, that are self-
evidently non-attacking. For the above example, the can-
didate input for variable name set to “John” and the vari-
able modify set to false, elicits the intended query along the
branch that enters the first if-then block (Path 1) in Fig. 1.
In order for a candidate input to be useful, it must satisfy
the following two conditions:

1. Inputs must be benign. The candidate input must be
evidently non-attacking, as envisioned by the program-
mer while coding the application. The queries con-
structed from these inputs, therefore, will not be at-
tack queries.

2. Inputs must dictate the same path in a program. An
actual input to the program will dictate a control path
to a point where a query is issued. To deduce the
programmer-intended query structure for this partic-
ular path (i.e., the control path), the candidate inputs
must also exercise the same control path in the pro-
gram.

Given such candidate inputs, we can detect attacks by
comparing the query structures of the programmer-intended
query (computed using the candidate input) and the possible
attack query.

The above discussion suggests the need for an oracle that,
given a control path in a program, returns a set of benign
candidate inputs that exercise the same control path. This
oracle, if constructed, may actually offer us a clean solution
to the problem of deducing the query structure intended by
the programmer. Unfortunately, such an oracle is hard to
construct, and is, in the general case, impossible (i.e., the
problem of finding such candidate inputs is undecidable).

P ::= defn ; stmt; sql.execute(s0) (program)
defn ::= int n | str s | input int In | input str Is | defn ; defn (variable declaration)
stmt ::= stmt ; stmt | n := ae | s := se | skip |

while (be) {stmt} | if (be) then {stmt} else {stmt} (statement)
ae ::= c | n | fi(t1, . . . , tk) (arithmetic expressions)
se ::= cstr | s | gi(t1, . . . , tk) (string expressions)
be ::= true | false | hi(t1, . . . , tk) (boolean expressions)

where n ∈ I, s ∈ S , c ∈ Z is any integer constant, cstr is any string constant,
each ti is either ae, be or se, depending on the parameters for fi, gi, hi, respectively.

Figure 2: A simple while language

(See [11] and references therein for recent work on testing
database applications using incomplete solutions based on
constraint-solving and random testing.)

The crux of our approach is to avoid the above problem
of finding candidate inputs that exercise a control path, and
instead derive the intended query structure directly from the
same control path. We suggest that we can simply execute
the statements along the control path on any benign candi-
date input, ignoring the conditionals that lie on the path.
In the above example, Path 1 is taken for the attack input
John’ OR 1=1 --’. We can execute the statements along that
path, in this case the lone SELECT statement, using the be-
nign input “John” and dynamically discover the programmer
intended query structure for the same path.

The idea of executing the statements on a control path,
but not the conditionals along it, is, to the best of our knowl-
edge, a new idea. It is in fact a very intuitive and theoret-
ically sound approach, as shown by our formal description
in the next section. Intuitively, when a program is run on
an actual input, it exercises a control path, and the query
constructed on that path can be viewed as a symbolic ex-
pression parameterized on the input variables. A natural
approach to compute the intended query is then to substi-
tute benign candidate inputs in the symbolic expression for
the query. This substitution is (semantically) precisely the
same as evaluating the non-conditional statements on the
control path on the candidate input, as shown in the next
section.

3. FORMALANALYSIS USINGSYMBOLIC

QUERIES
In this section, we formalize SQL injection attacks and,

through a series of gradual refinements and approximations,
we derive the detection scheme used by Candid. In order to
simplify and concentrate on the main ideas in this analytic
section, we will work with a simple programming language.

We first define a simple while-programming language (see
Fig. 2) that has only two variable domains: integers and
strings. We fix a set of integer variables I and a set of string
variables S , and use n, ni, etc., to denote integer variables
and s, sj , etc., to denote string variables. A subset of these
are declared to be input variables using the keyword input,
and is used to model user-inputs to a web application.

Let us also fix a set of functions fi each of which take a tu-
ple of values, each parameter being a string/integer/boolean,
and return an integer. Likewise, let’s fix a set of functions gi

(respectively hi) that take a tuple of string/integer/boolean
values and return a string (respectively boolean). A spe-
cial string s0 is the query string, and a special command
sql.execute(s0) formulates an SQL-query to a database; we

will assume that the query occurs exactly once and is the
last instruction in the program. The syntax of programs is
given in Fig. 2. The semantics is the natural one (and we
assume each non-input integer variable is initialized to 0 and
each non-input string variable is initialized to the null string
ǫ).

Note that the functions fi, gi, and hi are native functions
offered by the language, and include arithmetic functions
such as addition and multiplication, string functions such
as concatenation and sub-string, and string-to-integer func-
tions such as finding the length of a string.

For example, if concat is a function that takes two strings
and concatenates them, then a string expression of the form:

concat(“SELECT * FROM employdb WHERE name=’”, s)

denotes the concatenation of the constant string with the
variable string s. For readability, however, we will represent
concatenation using ‘+’ (eg. “SELECT * FROM employdb

WHERE name=’” + s).
The formal development of our framework will be inde-

pendent of the functions the language supports. For the
technical exposition in this section, we will assume that all
functions are complete over their respective domains.

Program P
input int n; input str s; str s0;
if (n = 0) then ;; Path 1

{s0:=“SELECT * FROM employdb WHERE name=’
”+s+“’ ”}
else ;; Path 2
{s0:=“SELECT * FROM employdb WHERE name=”’+s+

“ ’ AND status=’cur’ ”};
sql.execute(s0)

Figure 3: An example program

Figure 3 illustrates a program that will serve as the run-
ning example throughout this section. The program takes an
integer n and a string s as input, and depending on whether
n (which could be a check-box in a form) is 0 or not, forms a
dynamically generated query s0. Note that the query struc-
tures generated in the two branches of the program are dif-
ferent. The input determines the control path taken by the
program, which in turn determines the structure of the query
generated by the program.

3.1 SQL injection defined

Let us assume a standard syntax for SQL queries, and define
two queries q and q′ to be equivalent (denoted q ≈ q′) if the

parse structures of the two queries is the same. In other
words, two queries are equivalent if the parse trees of q and
q′ are isomorphic.

Let P be a program with inputs I =
〈In1, . . . Inp, Is1, . . . Isq〉. An input valuation is a function v

that maps each Inj to some integer and maps each Isj to
some string. Let IV denote the set of all input valuations.
For any input valuation v, the program P takes a unique
control path Runv (which can be finite, or infinite if P

doesn’t halt). We will consider only halting runs, and hence
Runv will end with the instruction sql.execute(s0). Note
that the path Runv, and hence the structure of the query
s0, could depend on the input valuation v (e.g., due to
conditionals on input variables as in Fig. 3).

Intuitively, the input valuations are partitioned into two
parts: the set of valid inputs V which are benign, and the
complement V of invalid inputs, which include all SQL in-
jection attacks. A definition of SQL injection essentially
defines this partition.

The primary principles on which our definition of SQL
injection is based on are the following:

• (P1) the structure of the query on any valid valuation
v is determined solely by the control path the program
takes on input v.

• (P2) an input valuation is invalid iff it generates a
query structure different from the structure determined
by its control path.

The principle (P1) holds for most practical programs that
we have come across as well as any natural program we
tried to write. An application, such as the one in Figure 3,
typically will generate different query structures depending
on the input (the input value of the variable n, in this case).
However, these query structures are generated differentially
using conditional clauses that check certain values in the
input (typically check-boxes in Web application input), as in
in Figure 1. As shown in our comparison studies in Section 6,
(P1) is actually a more general principle than the underlying
ideas suggested in earlier works [12, 24].

Let v be an input and π = Runv be the path the program
exercises on it. By (P1), we know that there is a unique
query structure associated with π. (P2) says that every
invalid input disagrees with this associated query structure.
As mentioned in the earlier section, PREPARE statements are
based on (P2). Moreover, (P2) is a well-agreed principle in
other works on detecting SQL injection [9, 24]. Given the
above principles, we can define SQL injection.

Let us first assume that we have a valid representation
function VR : IV → V , which for any input valuation v, as-
sociates a valid valuation v′ that exercises the same control
path as v does, i.e., if VR(v) = v′, then Runv = Runv′ . In-
tuitively, the range of VR is a set of candidate inputs that are
benign and exercise all feasible control paths in the program.
This function may not even exist and is hard to statically or
dynamically determine on real programs; we will circumvent
the construction of this function in the final scheme.

Now we can easily define when an input v is invalid: v is
invalid iff the structure computed by the program on v is
different from the one computed on VR(v).

Definition 1. Let P be a program and VR : IV → V be
the associated valid-representation function. An input valu-
ation v for P is an SQL-injection attack if the structure of

the query q that P computes on v is different from that of
the query q′ that P computes on VR(v) (i.e., q 6≈ q′).

Turning back to our example in Fig. 3, the input v : 〈n←
0; s← “Jim ′ OR 1 = 1 − −′′〉 is an SQL-injection attack
since it generates a query whose structure is:

SELECT ? FROM ? WHERE ?=? OR ?=?

while its corresponding candidate input VR(v) = v1 : 〈n←
0; s←“John”〉 exercises the same control path and generates
a different query structure:

SELECT ? FROM ? WHERE ?=?

Alternate definition using symbolic expressions

Let us now reformulate the above definition of SQL injection
in terms that explicitly capture the symbolic expression for
the query at the end of the run Runv. Intuitively, on an in-
put valuation v, the program exercises a path that consists
of a set of assignments to variables. The symbolic expression
for a variable summarizes the effect of all these assignments
using a single expression and is solely over the input vari-
ables 〈In1, . . . Inp, Is1, . . . Isq〉.

For example, consider the input v : 〈n← 0 and s← “Jim’
OR 1=1- -” 〉 for the program in Fig 3. This input exercises
Path 1, and the SELECT statement is the only statement along
this path. The symbolic expression for the query string s0

on this input at the point of query is Symπ(s0):

“SELECT * FROM employdb WHERE name=’ ”+s+“ ’ ”

Definition 2 (Symbolic expressions). Let U be a
set of integer and string variables, and let π be a sequence of
assignments involving only variables in U . Then the sym-
bolic expression after π for any integer variable n ∈ V is an
arithmetic expression, denoted Symπ(n), and the symbolic
expression for a string variable s ∈ V is a string expression,
denoted Symπ(s). These expressions are defined inductively
over the length of π as follows:

• If π = ǫ (i.e., for the empty sequence),
Symǫ(n) = n if n ∈ I

= 0 otherwise
Symǫ(s) = s if s ∈ I

= ǫ otherwise

• If π = π′.(n′ := ae(t1, . . . , tk)), then
Symπ(n) = Symπ′(n), for every n ∈ U , n 6= n′

Symπ(n′) = ae(Symπ′(t1), . . . , Symπ′(tk))
Symπ(s) = Symπ′(s), for every s ∈ U .

• If π = π′.(s′ := se(t1, . . . , tk)), then
Symπ(n) = Symπ′(n), for every n ∈ U

Symπ(s′) = se(Symπ′(t1), . . . , Symπ′(tk))
Symπ(s) = Symπ′(s), for every s ∈ U , s 6= s′.

For an input valuation v, let πv denote the set of assign-
ments that occur along the control path Runv that v in-
duces, i.e., πv is the set of statements of the form n := ae

or s := se executed by P on input valuation v. Then the
symbolic expression for the query s0 on v is defined to be
Symπv

(s0).
Observe that for any program P and input valuation v, the

value of any variable x computed on v is Symπv
(x). That

is, the value of any variable can be obtained by substituting
the values of the input variables in the symbolic expression
for that variable.

Note that if v and v′ induce the same run, (i.e., Runv =
Runv′), then πv = πv′ , and hence the symbolic expression
for the query computed for v is precisely the same as that
computed for v′.

We can hence reformulate SQL injection as in Def 1 pre-
cisely as:

Definition 3. Let P be a program and VR : IV → V be
the associated valid-representation function. An input val-
uation v for P is an SQL-injection attack if the symbolic
expression for the query, exp = Symπv

(s0) when evaluated
on v has a different query structure than when evaluated on
VR(v) (i.e., exp(v) 6≈ exp(VR(v))).

Consider the benign candidate input: v1 : 〈n←0 and s←
“John”〉 corresponding to the input v : 〈n←0 and s← “Jim’
OR 1=1- -” 〉 for the program in Fig 3 as they exercise the
same path (Path 1). The symbolic expression for s0 on this
valid input at the point of query is Symπ(s0):

“SELECT * FROM employdb WHERE name=’ ”+s+“ ’ ”

Note that the conditionals that are checked along the control
path are ignored in this symbolic expression. Substituting
any input string for s tells us exactly the query computed by
the program along this control path. Consequently, we infer
that the input v is an SQL-injection attack since it follows
the same path as the valid input above, but the structure
of the query obtained by substituting s← “John” in the
symbolic expression is different from that obtained by sub-
stituting s← “Jim’ OR 1=1- -”.

Observe that the solution presented by the above defini-
tion is hard to implement. Given an input valuation v, we
can execute the program P on it, extract the path followed
by it, and compute the symbolic expression along v. Now if
we knew another valuation v′ that exercised the same control
path as v does, then we can evaluate the symbolic expres-
sion on v and v′, and check whether the query structures
are the same. However, it is very hard to find a valid input
valuation that exercises the same path as v does.

Approximating the SQL injection problem

The problem of finding for every input valuation v, a cor-
responding valid valuation that exercises the same path as
v does (i.e., finding the function VR) is a hard problem.
We now argue that a simple approximation of the above
provides an effective solution that works remarkably well in
practice.

We propose to simply drop the requirement that v′ exer-
cises the same control path as v. Instead, we define VR(v)
to be the valuation vc that maps every integer variable to
1 and every string variable s to av(s), where ai denotes a
string of a’s of length i. That is, vc maps s to a string of a’s
precisely as long as the string mapped by v.

We note that vc is manifestly benign and non-attacking for
any program. Hence substituting this valuation in the sym-
bolic query must yield the intended query structure for the
control-path executed on v. Consequently, if this intended
query structure does not match the query the program com-
putes on v, then we can raise an alarm and prevent the query
from executing.

The fact that the candidate valuation vc may not follow

the same control path as v is not important as in any case
we will not follow the control path dictated by vc, but rather
simply substitute vc in the symbolic expression obtained on
the control path exercised on v. Intuitively, we are forcing
the program P to take the same path on vc as it does on
v to determine the intended query structure that the path
generates. We will justify this claim using several practical
examples below.

Consider our running example again (Fig. 3). The pro-
gram on input v : 〈n← 0, s← “Jim ′ OR 1 = 1 − −′′〉 exe-
cutes the if-block, and hence generates the symbolic query
exp:

“SELECT * FROM employdb WHERE name=’” + s+“ ’ ”

Substituting the input values in this expression yields

Q1: SELECT * FROM employdb WHERE name=’Jim’ OR 1=1- -’

Consider the valuation vc : 〈n←1, s← “aaaaaaaaaa” 〉. The
program on this path follows a different control path (going
through the else-block), and generates a query whose struc-
ture is quite unlike the query structure obtained by pursuing
the if-block. However, substituting vc in the symbolic ex-
pression exp yields

Q2: SELECT * FROM employdb WHERE name=’aaaaaaaaaa’

which is indeed the correct query structure on pursuing the
if-block. Since the query structures of Q1 and Q2 differ, we
detect that the query input is an SQL-injection attack. Note
that an input assigning 〈n← 0, s← “Jane”〉 will match the
structure of the candidate query.

The above argument leads us to an approximate notion
of SQL injection:

Definition 4. Let P be a program, and v be an input
valuation, and vc the benign candidate input valuation corre-
sponding to v. An input valuation v for P is a SQL-injection
attack if

• the symbolic expression exp for the query string s0

on the path exercised by v results in different query
structures when evaluated on v and vc (i.e., exp(v) 6≈
exp(vc)).

The above scheme is clearly implementable as we can build
the symbolic expression for the query on the input to the
program, and check the structure of the computed query
with the structure of the query obtained by substituting
candidate non-attacking values in the symbolic query. How-
ever, we choose a simpler way to implement this solution: we
transform the original program into one that at every point
computes values of variables both for the real input as well
as the candidate input, and hence evaluates the symbolic
query on the candidate input in tandem with the original
program.

4. THE CANDID TRANSFORMATION
In this section, we discuss the transformation procedure

for the dynamic candidate evaluation technique described
in the earlier section. We accomplish this using a simple
program transformation of the web application.

For every string variable v in the program, we add a vari-
able vc that denotes its candidate. When v is initialized
from the user-input, vc is initialized with a benign candi-
date value that is of the same length as v. If v is initialized

Transformer

Instrumented

Web application

Original

Program

Instrumented

Web application

Source
SQL Database

HTTP

request

SQL parse tree

Checker

Figure 4: Overview of Candid (a) offline view (b) run-time view

by the program(e.g. by a constant string like an SQL query
fragment), vc is also initialized with the same value. For
every program instruction on v, our transformed program
performs the same operation on the candidate variable vc.
For example, if x and y are two variables in the program,
the operation:

“SELECT * FROM employdb WHERE name=” + x + y

results in the construction of a query, or a partial query
string. The transformer performs a similar operation imme-
diately succeeding this operation on the candidate variables:

“SELECT * FROM employdb WHERE name=” + xc + yc

The operation on the candidate variables thus mirror the
operations on their counterparts. The departure to this
comes in handling conditionals, where the candidate compu-
tation needs to be forced along the path dictated by the real
inputs. Therefore, our translator does not modify the con-
dition expression on the if-then-else statement. At run-
time, the conditional expression is then only evaluated on
the original program variables, and therefore dictates can-
didate computation along the actual control path taken by
the program. The transformation for the while statements
are similar.

Function calls are transformed by adding additional ar-
guments for candidate samples. Due to the type safety
guarantees of our target language (Java), we only maintain
candidates for string variables. We also do not transform
expressions that do not involve string variables. For those
expressions that involve use of non-string variables in string
expressions, we directly use the original variable’s values for
the candidate.

The transformation for the SQL query statement
sql.execute calls a procedure compare-parse-trees that
compares the real and candidate parse trees. This procedure
throws an exception if the parse trees are not isomorphic.
Otherwise, the original query is issued to the database.

Figure 4 gives the transformed code for the program illus-
trated in Figure 1. The actual transformation rules for the
while language presented in the previous section is presented
in Figure 6.

Our tool, Candid, is implemented to defend applications
written in Java, and works for any web application im-
plemented through Java Server Pages or as Java servlets.
Figure 4 gives an overview of our implementation. Candid
consists of two components: an offline Java program trans-

former that is used to instrument the application, and an
(online) SQL parse tree checker.

The program transformer is implemented using the
SOOT [23] Java transformation tool. The SQL parse-tree
checker is implemented using the JavaCC parser-generator.

4.1 Resilience of CANDID
The transformation of programs to dynamically detect in-

tentions of the programmer using candidate inputs as pre-
sented above is remarkably resilient in a variety of scenarios.
We outline some interesting input manipulations Web appli-
cations perform, and illustrate how Candid handles them.
Several approaches in the recent literature for preventing
SQL injection attacks fail in these simple scenarios (see Sec-
tion 6).

Conditional queries. Conditional queries are differential
queries constructed by programs depending on predicates
on the input. For example, a program may form different
query structures depending on a boolean input (such as in
Fig 1), or perhaps even on particular values of strings. The
candidate input may not match the real queries on these
predicates, and hence may take a different path than the
real input. However, in the Candid approach, conditionals
are always evaluated on the real inputs only, and hence the
candidate query is formed using the same control path the
real input exercises. An illustrative example: consider a pro-
gram that issues an INSERT-query if the input string mode is
“ADD” and issues a DELETE-query if mode is “MODIFY”.
For a real query with mode=“ADD”, the candidate query will
assign mode=“aaa” which, being an invalid mode, may actu-
ally cause the program to throw an exception. However,
the test for mode is done on the real string and hence the
candidate query will be an INSERT-query with appropriate
values of the candidate input substituted for the real input
in the query.

Input-splitting. Programs may not atomically embed in-
puts into queries. For example, a program may take an input
string name, which contains two words, such as “Alan Tur-
ing”, and may issue a SELECT query with the clauses
FIRSTNAME=’Alan’ and LASTNAME=’Turing’. In this case,
the candidate input is a string of a’s of length 11, and though
it does not have any white-space, the conditional on where
to split the input is done on the real query, and the can-
didate query will have the clauses FIRSTNAME=’aaaa’ and

LASTNAME=’aaaaaa’, which elicits the intended query struc-
ture.

void process-form(string uname, string uname_c, string pwd, string pwd_c, bool modify,

string phonenum, string phonenum_c) {

if (modify == false){ /* Path 1. only display */

query = "SELECT * from phonebook WHERE username = ’" +

uname + "’ AND password = ’ " + pwd + "’";

query_c = "SELECT * from phonebook WHERE username = ’" +

uname_c + "’ AND password = ’ " + pwd_c + "’";

}

else{ /* modify telephone number */

if (phonenum == ""){ /* Path 2. delete entry */

query = "DELETE from phonebook WHERE username=’" + uname + "’ AND password = ’" + pwd + " ’ ";

query_c = "DELETE from phonebook WHERE username=’" + uname_c + "’ AND password = ’" + pwd_c + " ’ ";

}

else{ /* Path 3. update entry */

query = "UPDATE phonebook SET phonenumber =" + phonenum + "WHERE username = ’ " + uname +

"’ AND password = ’" + pwd + "’";

query_c = "UPDATE phonebook SET phonenumber =" + phonenum_c + "WHERE username = ’ " + uname_c

+ "’ AND password = ’" + pwd_c + "’";

}

}

compare-parse-trees(query,query_c); /* throw exception if no match */

sql.execute(query);

}

Figure 5: Transformed source for the example in Figure 1

Grammar Production Definition of the function Γ()
defn → int n { int n } (1a)

| str s { str sc; str s } (1b)
| defn1 ; defn2 { Γ(defn1) ; Γ(defn2) } (1c)
| input-int n { input-int n } (1d)
| input-str s { input-str s ; str sc := str-candidate-val(s) } (1e)

stmt → skip { skip } (2a)
| s := se { sc := Γ(se) ; s := se } (2b)
| n := ae { n := ae } (2c)
| stmt1 ; stmt2 { Γ(stmt1); Γ(stmt2) } (2d)
| if be stmt1 else stmt2 { let t-stmt1 = Γ(stmt1) in

let t-stmt2 = Γ(stmt2) in
if be t-stmt1 else t-stmt2 } (2e)

| while be stmt1 { let t-stmt1 = Γ(stmt1) in
while be t-stmt1 } (2f)

ae → c { c } (3a)
| n { n } (3b)
| fi(t1,. . .,tk) { fi(t1,. . .,tk) } (3c)

se → cstr { cstr } (3d)
| s { sc } (3e)
| gi(t1,. . .,tk) { gi(Γ(t1),. . .,Γ(tk)) } (3f)

be → false { false } (3g)
| true { true } (3h)
| hi(t1,. . .,tk) { hi(t1,. . .,tk) } (3i)

sql.execute(se) → sql.execute(se) { let t-se = Γ(se) in
compare-parse-trees(se,t-se); sql.execute(se) } (4)

Figure 6: Transformation to compute candidate queries

Preservation of lengths of strings. The method of forc-
ing evaluation of candidate inputs along the control path
taken by the real input may at first seem delicate and prone
to errors. An issue is that the operations performed on the
candidate path may raise exceptions. The most common
way this can happen is through string indexing: the pro-
gram may try to index into the i’th character of a string,
and this may cause an exception if the corresponding string
on the candidate evaluation is shorter than i. This is the
reason why we choose the candidate inputs to be precisely
the same length as the real inputs. Moreover, for all relevant
string operations we can show that the lengths of the real
and candidate strings are preserved to be equal. More pre-
cisely, consider a function g that takes strings and integers
as input and computes a string. The function g is said to be
length preserving, if the length of the string returned by g as
well as whether g throws an exception depends only on the
lengths of the parameter strings and the values of the inte-
ger variables. All string functions in the Java String class
(such as concatenation and substring function) are in fact
length-preserving. We can show that the strings for can-
didate variables are precisely as long as their real variable
counterparts across any sequence of commands and calls to
length-preserving functions. Therefore, they will not throw
any exception on the candidate evaluation. In all the exper-
iments we have conducted, the candidate path never raises
an exception.

External functions and stored queries. Candid also
handles scenarios where external functions and stored queries
are employed in a program. When an external function ext

(for which we do not have the source) is called, as long as
the function is free of side-effects, Candid safely calls ext

twice, once on the real variables and once on the candidate
variables. Methods such as tainting are infeasible in this
scenario as tracking taints cannot be maintained on the ex-
ternal method; however, Candid can still keep track of the
real and intended structures using this mechanism.

Stored queries are snippets of queries stored in the database
or in a file, and programs use these snippets to form queries
dynamically. Stored queries are commonly used to maintain
changes to the database structure over time and to reflect
changes in configurations. Changes to stored queries pose
problems for static methods as the code requires a fresh
analysis, but poses no problems to Candid as it evaluates
attacks dynamically on each run.

5. IMPLEMENTATIONANDEVALUATION

Transformation. The automated transformation was im-
plemented for Java byte-code using an extension to the SOOT
optimization framework [23]. SOOT provides a three-address
intermediate byte-code representation, Jimple, suitable for
code analysis and optimization. Class files of the uninstru-
mented applications were processed using the SOOT frame-
work with CANDID to generate instrumented class files for
deployment.

The transformer handles all fifteen types of Jimple state-
ments e.g., InvokeStmt, AssignStmt, etc. If a statement is
found to be acting on, producing or leading to String type
objects, the transformer adds appropriate statements to per-
form candidate evaluation; for example, identity statements
are used to pass parameters to methods. For user defined

Application LOC Servlets SCL

Employee Dir 5,658 7 (10) 23
Bookstore 16,959 3 (28) 71
Events 7,242 7 (13) 31
Classifieds 10,949 6 (14) 34
Portal 16453 3 (28) 67
Checkers 5421 18 (61) 5
Officetalk 4543 7 (64) 40

Table 1: Applications from the test suite

methods, corresponding to each String parameter, a candi-
date parameter is added to the method signature and an
identity statement is inserted in the method body for pa-
rameter passing.

As mentioned earlier, we compare the parse trees of the
real and candidate queries for attack detection. It is worth-
while to mention here that even the slightest mismatch of
the parse trees is detected as an attack.

Application examples. We evaluated our technique us-
ing a suite of applications that was obtained from an inde-
pendent research group [12]. This test suite contained seven
applications, five of which are commercial applications: Em-
ployee Directory, Bookstore, Events, Classifieds and Por-
tal. These are available at http://www.gotocode.com. The
other two applications, Checkers and Officetalk, were devel-
oped by the same research group. These applications were
medium to large in size (4.5KLOC - 17KLOC).

Table 1 summarizes the statistics for each application.
The number of servlets in the second column gives the num-
ber exercised in our experiment, with the total number of
servlets in brackets. Our goal was to perform large-scale
automated tests (as described below), and some servlets
could only be accessed through a complex series of inter-
actions with the application that involved a human user,
and therefore were not exercised in our tests. The column
SCL reports the number of SQL Command Locations, which
issue either a sql.executeQuery (mainly SELECT statements)
and sql.executeUpdate (consisting of INSERT, UPDATE or DELETE
statements) to the database. Immediately preceding this
command location, the Candid instrumentation calls the
parse tree comparison checker.

Attack Suite. The attack test suite was also obtained from
the authors of [12]. It consists, for each application, both
attack and non-attack inputs that test several kinds of SQL
injection vulnerabilities. Overall, the attack suite contains
30 different attack string patterns (such as tautology-based
attacks, UNION SELECT based attacks [14]), that were
constructed based on real attacks obtained from sources
US/CERT and CERT/CC advisories. Based on these at-
tack strings, the attack test suite makes use of each servlet’s
injectible web inputs.

The test suite also contained non-attack (benign) inputs
that tested the resilience of the application on legitimate
inputs that “look like” attack inputs. These inputs contain
data that may possibly break the application in the face of
SQL input validation techniques.

Experiment setup. Our objective was to deploy two ver-
sions of each application: (1) an original uninstrumented

VM1 VM2

Tester

1

2

3

4

ATTACK ERRORBENIGN FP

Figure 7: Testbed Setup

version and (2) a Candid protected version. Also, to sim-
ulate a live-test scenario, we wanted to deploy attacks si-
multaneously on each of these two versions and observe the
results. We wanted the original and instrumented versions
to be isolated from each other, so that they do not affect the
correctness of tests. For this reason we decided to run them
on two separate machines.

In order that the state of the two machines be the same
at the beginning of the experiments, we adopted the fol-
lowing strategy: On a host RedHat GNU / Linux system,
we created a virtual machine running on VMware also run-
ning RedHat EL 4.0 guest operating system. We then in-
stalled all the necessary software in this virtual machine: the
Apache webserver and Tomcat JSP server, MySQL database
server, and the source and bytecode of all Java web ap-
plications (original and instrumented versions) in our test
suite. Through an automated script, we also populated the
database with tables required by these applications. After
configuring the applications to deployment state, we cloned
this virtual machine by copying all the virtual disk files to
another host machine with similar configurations. This re-
sulted in two machines that were identical except for the
fact that they ran the original and instrumented versions of
the web applications.

Figure 7 illustrates the testbed setup. The original appli-
cation was deployed on virtual machine VM1 and the instru-
mented application was deployed on virtual machine VM2.
A third machine (“Tester”) was used to launch the attacks
over HTTP on the original and instrumented web applica-
tions, and also was used to immediately analyze the result.
For this purpose, a suite of Perl scripts utilizing the wget

command were developed and used. The master script that
executed the attack scripts ran the following sequence, as
shown in the Figure 7: (1) it launched the attack first on
the original application and (2) recorded the responses. It
then (3) launched the attack on the instrumented applica-
tion and (4) recorded the responses. After step (4), another
post-processing script compared the output from the two
VMs and classified the result into one of the following cases
(a) the attack was successfully detected by the instrumented
application (b) the instrumented application reported a be-
nign string as an attack (c) the instrumented application
reported a benign string as benign (d) errors were reported
by the original or instrumented application.

Attack evaluation. We ran the instrumented application
with the attack suite, and the results are summarized in

Application Input Succ. FPs/ Parse
attemp. Attacks Non- Errors

attacks
(Benign)

EmployeeDir 7,038 1529/1529 0/2442 3067
Bookstore 6,492 1438/1438 0/2930 2124
Events 7,109 1414/1414 0/3320 2375
Classifieds 6,679 1475/1475 0/2076 3128
Portal 7,483 2995/2995 0/3415 1073
Checkers 8,254 262/262 0/7435 557
Officetalk 6,599 390/390 0/2149 4060

Table 2: Attack Evaluation results

Figure 8: Performance Overhead

Table 2. The second column lists the number of input at-
tempts, and the third lists the number of successful attacks
on the original application. The number of attacks detected
by the instrumented application is shown in the same col-
umn. The fourth column shows the number of non-attack
benign inputs and any false positives for the instrumented
application. Candid instrumented applications were able to
defend all the attacks in the suite, and there were zero false
positives.

The test suite we received had a large number of attack
strings that resulted in invalid SQL queries and are reported
in column 5. We used a standard SQL parser based on
SQL ANSI 92 standard, augmented with MYSQL specific
language extensions. To ensure the correctness of our parser
implementation, we verified that these queries were in fact
malformed using an online SQL Query formatter [1].

Performance evaluation. For testing the performance
impact we used the web application benchmarking tool JMe-
ter [6] from Apache Foundation, an industry standard tool
for measuring performance impact on Java web applications.

We computed the overhead imposed by the approach on
one servlet that was chosen from each application, and pre-
pared a detailed test suite for each application. As typi-
cal for web applications, the performance was measured in
terms of differences in response times as seen by the client.
The server was on a Red Hat Enterprise GNU / Linux ma-

chine with a 2GHz Pentium processor and 2GB of RAM,
that ran in the same Ethernet network as the client. Note
that this scenario does not have any network latencies that
are typical for many web applications, and is therefore an
indicator of the worst case overheads in terms of response
times.

For each test, we took 1000 sample runs and measured
the average numbers for each run, with caching disabled
on the JSP / Web/ DB servers. The results are shown in
Figure 8. The figure depicts the time taken by the original
application, the transformed code, and also the transformed
code without the parser component.

Figure 8 indicates that instrumented applications without
SQL parser calls had negligible overhead over the original
applications (also optimized for performance using SOOT),
when compared to uninstrumented applications.

Figure 8 also indicates that instrumented applications with
SQL parser code had varying overheads and ranged from
3.2% (for Portal application) to 40.0% (for OfficeTalk appli-
cation). These varying overheads are mainly attributed to
varying numbers of SQL parser calls in the tested control
path e.g., Bookstore application invoked SQL parser code 7
times for the selected page, whereas Portal application only
invoked it once. OfficeTalk application’s high percentage
overhead is attributed to the fact that client response time
for the uninstrumented application is very small (5ms) when
compared to other applications (23ms - 39ms). This appli-
cation’s actual execution time is dwarfed by factors like class
load time and resulted in the higher overhead for the instru-
mented application. In other applications actual execution
time is considerable, and thus the overheads are significantly
less.

The above results clearly show that Candid’s overheads
are quite acceptable. The vanilla SQL parser that we built
using the JavaCC parser generator is bulky for online use
and contributes to most of the overhead. Notably, the two
class files of SQL parser we used are large– 54KB and 21KB–
and are frequently loaded. The performance can be im-
proved with a lighter, hand coded SQL parser that is signifi-
cantly smaller in size. Also, by performing flows-to/reachability
analysis, we can avoid transformations of string operations
that do not contribute to the query.

6. COMPARISONWITHRELATEDWORK
There has been intense research in detection and preven-

tion mechanisms against SQL injection attacks recently. We
can classify these approaches broadly under three headings:
(a) coding practices that incorporate defensive mechanisms
that can be used by programmers, (b) vulnerability detec-
tion using static analysis techniques that warn the program-
mer of possible attacks, and (c) defense techniques that de-
tect vulnerabilities and simultaneously prevent them.

Defensive coding practices include extensive input valida-
tion and the usage of PREPARE statements in SQL. Input vali-
dation is an arduous task because the programmer must de-
cide the set of valid inputs, escape special characters if they
are allowed (for example, a name-field may need to allow
quotes, because of names like O’Niel), must search for al-
ternate encodings of characters that encode SQL commands,
look for presence of back-end commands, etc. PREPARE state-
ments semantically separate the role of keywords and data
literals. Using PREPARE statements is very effective against
attacks and is likely to become the standard prevention

mechanism for freshly written code; augmenting legacy pro-
grams to prepare statements is hard to automate and not
viable. Two similar approaches, SQL DOM [17] and Safe
Query Objects [10], provide executable mechanisms that en-
able the user to construct queries that isolate user input.

Vulnerability detection using static analysis

There are several approaches that rely solely on static anal-
ysis techniques [16, 29] to detect programs vulnerable to
SQLCIA. These techniques are limited to identifying sources
(points of input) and sinks (query issuing locations), and
checking whether every flow from a source to the sink is
subject to input validation ([16] is flow-insensitive while [29]
is flow-sensitive). Typical precision issues with static analy-
sis, especially when dealing with dynamically constructed
strings, mean that they may identify several such illegal
flows in a web application, even if these paths are infeasible.
In addition, the user must manually evaluate and declare
the sanitizing blocks of code for each application, and hence
the approach is not fully automatable. More importantly,
the tools do not in any way help the user determine whether
the sanitization routines prevent all SQL injection attacks.
Given that there are the various flawed sanitization tech-
niques for preventing SQL injection attacks (several myths
abound on Internet developer forums), we believe there are
numerous programs that use purported sanitization routines
that are not correct, and declaring them as valid sanitiz-
ers will result in vulnerable programs that pass these static
checks.

Defensive techniques that prevent SQLCIA

Defensive techniques that prevent SQL injection attacks are
significantly different from vulnerability analysis as they
achieve the more complex (and more desirable) job of trans-
forming programs so that they are guarded against SQL
injection attacks. These techniques do not demand the pro-
grammer to perform input validation to stave off injection
attacks, and hence offer effective solutions for securing appli-
cations, including legacy code. We discuss three approaches
in detail below; for a more detailed account of various other
techniques and tools, including paradigms such as instruc-
tion set randomization [8], proxy filtering of input, and test-
ing, we refer the reader to a survey of SQL injection and
prevention techniques [14].

Learning programmer intentions statically. One ap-
proach in the literature has been to learn the set of all in-
tended query structures a program can generate and check
at run-time whether the queries belong to this set. The
learning phase can be done statically (as in the AMNESIA
tool [12]) or dynamically on test inputs in a preliminary
learning phase [26]. The latter has immediate drawbacks:
incomplete learning of inputs result in inaccuracies that can
stop execution of the program on benign inputs.

A critique of AMNESIA: Consider a program that takes in
two input strings nam1 and nam2, and issues a select query
that retrieves all data where the name-field matches either
nam1 or nam2. If nam2 is empty, then the select query issues a
search only for nam1. Further, assume the program ensures
that neither nam1 nor nam2 are the string “admin” (prevent-
ing users from looking at the administrators entries). There
are two intended query structures in this program:

“SELECT * FROM employdb WHERE name=’” + nam1 + “’”

“SELECT * FROM employdb WHERE name=’” + nam1 + “’” +

“OR name=’” + nam2 + “’”

with the requirement that neither nam1 nor nam2 is “admin”.
We tested the Java String Analyser (the string analyzer

used in AMNESIA [12] to learn query structures statically
from Java programs) on the above example. First, JSA de-
tected the above two structures, but could not detect the
requirement that nam1 and nam2 cannot be “admin”. Con-
sider now an attack of the program where nam1 = “John’ OR

name=’admin” and nam2 is empty. The program will gener-
ate the query:

SELECT * FROM employdb WHERE name=’John’

OR name=’admin’

and hence retrieve the administrator’s data from the database.
Note that though the above is a true SQL injection attack,
a tool such as AMNESIA would allow this as its structure
is a possible query structure of the program on benign in-
puts. The problem here is of course flow-sensitivity: the
query structure computed by the program must be com-
pared with the query structure the programmer intended
along that particular path in the program. Web application
programs use conditional branching heavily to dynamically
construct SQL queries and hence require a flow sensitive
analysis. The Candid approach learns intentions dynami-
cally and hence achieves more accuracy and is flow-sensitive.

Dynamic Tainting approaches. Dynamic approaches
based on tainting input strings, tracking the taints along
a run of the program, and checking if any keywords in a
query are tainted before executing the query, are a powerful
formalism for defending against SQL injection attacks.

Four recent taint platforms [19, 21, 30, 13] offer compelling
evidence that the method is quite versatile across most real-
world programs, both in preventing genuine attacks and in
maintaining low false positives. The taint-based approach
fares well on all experiments we have studied and several
common scenarios we outlined in Section 4.1.

Our formalism is complimentary to the tainting approach.
There are situations where the candidate approach results
in better accuracy compared to the taint approach. Typ-
ical taint strategies require the source code of the entire
application to track taint information. When application
programs call procedures from external libraries or calls to
other interpreters, the taint based approach requires these
external libraries or interpreters to also keep track of taint-
ing or make the assumption the return values from these
calls are entirely tainted. The second choice may negatively
impact tainting accuracy. In our approach, we can call the
functions twice, one for the real input and one for the candi-
date input, which works provided the external function does
not have side-effects.

Dynamic Bracketing approaches. Buehrer et al. [9] pro-
vide an interesting approach where the application program
is manually transformed at program points where input is
read, and the programmer explicitly brackets these user in-
puts (using random strings) and checks right before issuing
a query whether any SQL keyword is spanned by a brack-
eted input. While this is indeed a very effective mechanism,
it relies on the programmer to correctly handle the strings

at various stages; for example if the input is checked by a
conditional, the brackets must be stripped away before eval-
uating the conditional.

In [24], the authors propose both a formalization and an
automatic transformation based on the above solution. The
formalism is the only other formal definition of SQL in-
jection in the literature, and formalizes changes of query
structure using randomized bracketing of input. The au-
tomatic transformation adds random meta-characters that
bracket the input, and adds functions that detect whether
any bracketed expression spans an SQL-keyword. However,
the formalism and solution set forth in [24] has several draw-
backs:
• The solution of meta-bracketing may not preserve the

semantics of the original program even on benign inputs. For
example, a program that checks whether the input is well-
formed (like whether a credit card number has 16 digits)
may raise an error on correct input because of the meta-
characters added on either side of the input string. There
are several other scenarios outlined in Section 4.1 where the
scheme fails: conditional querying (where say a string input
determines the query structure, but would fail with meta-
brackets), input splitting (since the input word would span
across keywords), etc. Adding meta-characters only after
such checks are done in the program is feasible in manual
transformation [9] (though it would involve tedious effort),
but is very hard to automate and sometimes impossible (for
example if properties of the input are used later in the pro-
gram, say when the input gets output in a tabular form
where the width of tables depends on the length of the in-
puts).
• The above problems are in fact deep-rooted in the for-

malism developed in [24], which considers an overly simple
notion of an application program that essentially takes in
the input, applies a single filter function on it, and concate-
nates them to form a query. Program constructs such as
conditionals and loops are ignored and is the source of the
above problem (formally, a function applied on a bracketed
input can behave very differently than when applied on the
real input). Our formalism is much more robust in this re-
gard and the definition of SQL injection in Definition 1 and
Definition 3 are elegant and accurate definitions that work
on realistic programs.

In summary, we believe that the dynamic taint-based ap-
proach and the Candid approach presented in this paper are
the only techniques that promise a real scalable automatic
solution to dynamically detect and prevent SQL injection
attacks.

7. CONCLUSIONS
We have presented a novel technique to dynamically de-

duce the programmer intended structure of SQL queries and
used it to effectively transform applications so that they
guard themselves against SQL injection attacks. We have
also shown strong evidence that our technique will scale to
most web applications.

At a more abstract level, the idea of computing the sym-
bolic query on sample inputs in order to deduce the inten-
tions of the programmer seems a powerful idea that prob-
ably has more applications in systems security. There are
many approaches in the literature on mining intentions of
programmers from code as such intentions can be used as

specifications for code, and detection of departure from in-
tentions can be used to infer software vulnerabilities and
errors [4, 3, 28]. The idea of using candidate inputs to
mine programmer intentions is intriguing and holds much
promise.

Acknowledgements: This research is supported in part by
NSF grants (CNS-0716584), (CNS-0551660), (IIS-0331707),
(CNS-0325951), and (CNS-0524695). We thank William
Halfond and Alessandro Orso for providing us their test suite
of applications and attack strings. Thanks are due to Tejas
Khatiwala, Mike Ter Louw, Saad Sheikh and Michelle Zhou
for their suggestions on improving the draft. Finally, we
thank the anonymous referees for their feedback.

8. REFERENCES
[1] Online SQL syntax checker.

http://www.wangz.net/gsqlparser/sqlpp/sqlformat.htm.

[2] Sutton, M. How prevalent Are SQL Injection
vulnerabilities? Internet Bulletin, Oct 2006.

[3] Alur, R., Cerný, P., Madhusudan, P., and Nam,
W. Synthesis of interface specifications for JAVA
classes. In POPL (2005), pp. 98–109.

[4] Ammons, G., Bod́ık, R., and Larus, J. R. Mining
specifications. In POPL (2002), pp. 4–16.

[5] Anley, C. Advanced SQL injection in SQL server
applications, White paper, Next Generation Security
Software Ltd. Tech. rep., 2002.

[6] Apache. The JMeter project.
http://jakarta.apache.org/jmeter/.

[7] Biba, K. J. Integrity considerations for secure
computer systems. Tech. Rep. ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA, Apr. 1977.

[8] Boyd, S. W., and Keromytis, A. D. Sqlrand:
Preventing SQL injection attacks. In ACNS (2004),
pp. 292–302.

[9] Buehrer, G., Weide, B. W., and Sivilotti, P.
A. G. Using parse tree validation to prevent SQL
injection attacks. In SEM (2005).

[10] Cook, W. R., and Rai, S. Safe query objects:
statically typed objects as remotely executable
queries. In ICSE (2005), pp. 97–106.

[11] Emmi, M., Majumdar, R., and Sen, K. Dynamic
test input generation for database applications. In
International Symposium on Software Testing and
Analysis (ISSTA’07) (2007), ACM.

[12] Halfond, W., and Orso, A. AMNESIA: Analysis
and Monitoring for NEutralizing SQL-Injection
Attacks. In ASE (2005), pp. 174–183.

[13] Halfond, W., Orso, A., and Manolios, P. Using
Positive Tainting and Syntax-Aware Evaluation to
Counter SQL Injection Attacks. In FSE (2006),
pp. 175–185.

[14] Halfond, W. G., Viegas, J., and Orso, A. A
Classification of SQL-Injection Attacks and
Countermeasures. In SSSE (2006).

[15] Secureworks press release. Internet news report, July
2006. http://www.secureworks.com/press/20060718-
sql.html.

[16] Livshits, V. B., and Lam, M. S. Finding security
vulnerabilities in Java applications with static
analysis. In USENIX Security Symposium (2005).

[17] McClure, R. A., and Krüger, I. H. SQL DOM:
compile time checking of dynamic SQL statements. In
ICSE (2005), pp. 88–96.

[18] MITRE. Common vulnerabilities and exposures list.
http://cve.mitre.org/.

[19] Nguyen-Tuong, A., Guarnieri, S., Greene, D.,
Shirley, J., and Evans, D. Automatically hardening
web applications using precise tainting. In SEC
(2005), pp. 295–308.

[20] O. Maor and A. Shulman. SQL injection signatures
evasion. White paper, Imperva. Tech. rep., 2002.

[21] Pietraszek, T., and Berghe, C. V. Defending
against injection attacks through context-sensitive
string evaluation. In RAID (2005).

[22] Sabelfeld, A., and Myers, A. C. Language-based
information-flow security. IEEE JSA, (2003).

[23] Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot/.

[24] Su, Z., and Wassermann, G. The essence of
command injection attacks in web applications. In
POPL (2006), pp. 372–382.

[25] Dark reading security analysis. Internet, September
2006. http://www.darkreading.com/document.asp?
doc id=103774&WT.svl=news1 3.

[26] Valeur, F., Mutz, D., and Vigna, G. A
learning-based approach to the detection of SQL
attacks. In DIMVA (2005), pp. 123–140.

[27] Top five vulnerabilities. IT management security
report. http://www.computerweekly.com/Articles/
2004/04/16/201840/Top+five+threats.htm.

[28] Weimer, W., and Necula, G. C. Mining temporal
specifications for error detection. In TACAS (2005),
pp. 461–476.

[29] Xie, Y., and Aiken, A. Static detection of security
vulnerabilities in scripting languages. In USENIX
Security Symposium (2006).

[30] Xu, W., Bhatkar, S., and Sekar, R.
Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In 15th
USENIX Security Symposium (2006).

