CMV: Automatic Verification of Complete Mediation
for Java Virtual Machines’

A. Prasad Sistla V.N.Venkatakrishnan

Michelle Zhou Hilary Branske

Department of Computer Science
University of Illinois at Chicago
sistla, venkat, yzhou, hbranske@cs.uic.edu

ABSTRACT

Runtime monitoring systems play an important role in sys-
tem security, and verification efforts that ensure that these
systems satisfy certain desirable security properties are grow-
ing in importance. One such security property is complete
mediation, which requires that sensitive operations are per-
formed by a piece of code only after the monitoring system
authorizes these actions. In this paper, we describe a veri-
fication technique that is designed to check for the satisfac-
tion of this property directly on code from Java standard li-
braries. We describe a tool CMV that implements this tech-
nique and automatically checks shrink-wrapped Java byte-
code for the complete mediation property. Experimental
results on running our tool over several thousands of lines of
bytecode from the Java libraries suggest that our approach is
scalable, and leads to a very significant reduction in human
efforts required for system verification.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls Verification

General Terms

Security, Verification

Keywords

Runtime Monitoring, Complete Mediation

1. INTRODUCTION

Systems that perform runtime monitoring for enforcing
security properties play an important role in securing com-
puting infrastructures. A wide variety of computing systems
employ runtime monitoring mechanisms: operating systems,
authorization systems, language interpreters are some key

*This research is supported in part by NSF grants (CNS-
0716584), (CNS-0551660) and (CCF-0742686).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIACCS 08, March 18-20, Tokyo, Japan

Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

examples. Research efforts to verify the correctness of the
implementation of these systems are of paramount impor-
tance, as these efforts ensure that these systems are trust-
worthy, and are therefore of significant research interest.

The Java programming platform is an instance of a sys-
tem that employs runtime monitoring. Designed to run un-
trusted mobile programs, the Java environment has achieved
widespread acceptance due to reasons of platform indepen-
dence and security. Platform-independence was achieved by
proposing a platform independent bytecode format executed
by a platform-specific Java virtual machine (JVM). Security
was achieved providing a customizable security architecture
for executing these applications. The implementation of the
security mechanism was achieved through runtime monitor-
ing of accesses [16] to system resources such as the filesystem
and networking.

Security in the JVM is designed to handle code that may
come from different code sources, and a customizable policy
assigns each of these code sources with a set of permissions.
The mapping of code sources to different permission sets
allows the JVM to mediate accesses based on this policy.
The enforcement of this authorization policy cannot be left
to the underlying operating system, which has no context to
distinguish between operations done by the JVM from the
operations done by the applications running above it.

The JVM thus is responsible for mediating access to oper-
ations to various underlying resources. The operations that
implement this mediation are implemented in the Java sys-
tem libraries. Although specifics vary for each virtual ma-
chine implementation, typical virtual machines implement
the security sensitive operations that access resources as na-
tive methods (i.e., those implemented in platform dependent
code) in the corresponding library class. Mediation to such
resources is done through calls to the JVM security subsys-
tem, by calling the SecurityManager class. !

A typical piece of code that calls the SecurityManager is:

public FileInputStream(FileDescriptor £d0Obj) {
SecurityManager security =
System.getSecurityManager();
if (security != null) {
security.checkRead(£d0bj); }
... /* sensitive native operation */

}

In recent versions of the JVM, the SecurityManager is a
wrapper class for another class called the AccessController,
which implements the stack inspection procedure. We do
not distinguish between the SecurityManager and the Ac-
cessController in this paper.



This code sequence from the FileInputStream class looks
for an instantiated SecurityManager object. If one exists, it
calls the SecurityManager, which then checks whether the
current calling sequence has privileges to perform the file
read operation.

It is worth noting that a JVM that runs on a browser al-
ways has an instantiated SecurityManager (for applets), and
therefore security checks are enabled by default. In contrast,
for a stand-alone VM, only the security subsystem is invoked
(typically through a command-line switch to the Java inter-
preter), the JVM mediates policy based access to sensitive
resources.

Whenever a native operation is invoked, the code performs
a call to the SecurityManager that employs a procedure called
stack inspection which checks whether the current code con-
text (i.e., the different code sources in the calling sequence)
has the permission to perform the given operation.

The trustworthiness of the implementation of the stack
inspection mechanism depends on the validity of two key
properties of the implementation:

o Complete mediation The security manager is consulted
in any request from the application code that leads to
execution of a security sensitive operation.

e Stack inspection implementation correctness At run-
time, the security manager correctly implements the
stack inspection procedure by checking whether each
of the code sources in the calling sequence has the re-
quested permission.

Assurance about the latter property requires verifying the
correctness properties of the implementation of the stack
inspection. While this is theoretically feasible, fully auto-
mated verification of this piece of stock code is limited by
challenges in current formal verification technology. A more
practical approach is to verify models (obtained by abstrac-
tion of system behavior) of the stack inspection procedure
which are more amenable to verification. One such effort
was carried out by using a belief-logic based approach by
Wallach and Felten [30]. Since the code that implements
stack inspection is localized in a set of methods, one can
employ human assisted methods for verification that involve
some automated components such as theorem provers (such
as [23]).

The former property, known as complete mediation [25], is
equally important in the context of assuring trustworthiness
of JVM security. More specifically, we can state the property
as follows:

Property 1. (Complete Mediation) When the
SecurityManager is instantiated, a security semsitive opera-
tion is never performed without consulting the
SecurityManager.

The focus of this paper is on automated verification meth-
ods that provide assurance about the satisfaction of the com-
plete mediation property by (an implementation of) a Java
virtual machine.

Although the system call interface in an operating system
presents a view that the JVM presents to Java application
programs, verification of the complete mediation property
for the system call interface is a relatively easier task. This is
because the system call interface localizes the authorization
checks on the system call at the system call boundary, and
hardware-based support guarantees that the application can

transfer to the kernel only through this boundary. Since the
checks are localized (in the code at the boundary), manual
verification efforts are a possibility. In contrast, in a JVM
like implementation, each of the individual library classes
performs sensitive native operations, and guards these na-
tive operations through security checks. In a JVM, several
hundreds of methods perform these operations, and enforce-
ment is done purely at the software layers. Any manual ef-
forts that require verification of several thousands of lines of
code (across hundreds of methods) spanned by these opera-
tions would be tedious if not impossible, and their correct-
ness would be unreliable. Automatically guaranteeing that
the authorization operations cannot be bypassed (due to the
absence of checks) is therefore a critical problem.

There have been a number of efforts to verify similar secu-
rity properties in the security community [4, 6, 27, 2]. This
is, to the best of our knowledge, the first effort in providing
large-scale verification assurance about complete mediation
for Java library classes. In this paper, we discuss and evalu-
ate JVM implementations for UNIX-like operating systems
(such as Solaris, Linux, FreeBSD), where resource access
operations are implemented in the JVM as native methods
using POSIX-style system calls or library functions.

Verifying the complete mediation property for the JVM
is actually a problem in open system verification. An open
system is one which exports a set of methods that is called
by the environment (i.e., client application code). The code
for the environment itself is not available, unlike a closed
system where the entire system code (i.e., libraries plus the
application code) is available. Therefore techniques that ad-
dress such a problem must assume an all powerful adversary
capable of making any sequence of calls to security sensitive
operations in the library. Specifically in case of the JVM,
the problem is about designing an adversary that is capable
of making accesses to security sensitive operations without
being mediated by a SecurityManager.

In this paper, we describe the following contributions:

e We present a scalable model checking technique for
this open system verification problem. This technique
automatically checks whether there are paths in a VM
implementation that will allow an application class
to access a sensitive resource bypassing the security
checks. The heart of our approach is based on a com-
positional checking procedure that computes method
summaries.

e We implemented our algorithm in a tool that we call
CMV (Complete Mediation Verifier) to directly ana-
lyze bytecode implementation of classes.

e We present an experimental evaluation of our tool with
two highly used JVMs, the HotSpot VM (from SUN
Microsystems) and the Harmony VM (from Apache
Foundation).

This paper is organized as follows: We survey related work
in Section 2. Section 3 presents our main technical contri-
butions including illustrations of the key aspects of the prob-
lem and the formalism behind approach. Section 4 discusses
the details of the implementation of this approach. Exper-
imental results are discussed in Section 5. We conclude in
Section 6.



2. RELATED WORK

Java was built as a platform for secure execution of mobile
code, and it employs runtime monitoring [16] for authorizing
access to resources. It is to be noted that there is extensive
work on frameworks for ensuring mobile code security such
as proof-carrying code [22], model-carrying code [26] and
proof-linking [12].

Model Checking The problem of verifying complete me-
diation in a runtime monitoring system such as Java can be
expressed as a problem in model checking [7]. By express-
ing the complete mediation problem in temporal logic, one
can indeed use general purpose model checkers [4, 17, 18, 8,
5, 6] for checking this property. The advantage of general
purpose model checking tools is that they handle verifica-
tion of arbitrary user-specified properties that are express-
ible in temporal logic like formalisms. In this paper, the
techniques we have developed have been specialized to the
complete mediation property. Property specific customiza-
tion enables the technique to be scalable to a large code base
such as the Java system libraries.

The research effort closest to our work is by Jensen et
al. [19]. Their work also gives model checking based meth-
ods for checking security properties in Java code. In this
approach, the property to be verified is specified in a tem-
poral logic interpreted over the calling stack sequence. In
their system, we can express the authorization property by
asserting that every caller on the called stack has the per-
mission to execute the current sensitive operation, thus en-
abling static verification of permission checking for the given
set of classes. However, using their approach one cannot as-
sert that every sensitive operation is preceded by a security
check, because the security check operation returns (and is
no longer in the call stack) when the sensitive operation is
performed. Since their work requires the complete calling se-
quence for verification of the property, they can only check
closed systems (i.e., including all application code). In con-
trast, our approach is intended for verifying open systems,
which further implies that every closed system that employs
this verified library will satisfy the complete mediation prop-
erty.

Static Analysis Several static analysis techniques have
been used in the past in large scale bug finding [9, 27, 21] and
for access rights analysis [20]. Closely related to our work are
works by Zhang et al. [31] and by Fraser et al. [13]. [31, 13]
both use type qualifiers to check the authorization proper-
ties in C programs. This involves introducing type qualifiers
for arguments to sensitive operations, and the system checks
these properties using type qualifier inference. They demon-
strated their work over similar large code bases such as the
SE-Linux and MINIX kernels. However, their approach as-
sumes that there are variables that are common to sensitive
operations and security checks, and in several instances in
Java code base this assumption does not hold. Although one
can modify the programs by introducing additional variables
(as was done in [31] to avoid limitations with flow insen-
sitive type qualifiers), this may introduce large changes to
programs. For instance, if the security checks and sensi-
tive operations are present in different methods, this may
require changes to the type signatures of all the methods in
the called sequence and /or duplication of code of methods.

Retrofitting code for authorization There have been

efforts for retrofitting code for enforcing authorization prop-
erties, for Java [11, 10, 29] as well as for servers written in C
that perform authorization [14]. Naccio [11] is a system for
Java code that takes an abstract description of resources and
permissions and generates code that enforces this property.
Retrofitting code is a complimentary effort, that enables the
end user to enforce authorization properties on source code.
In contrast, ours is a verification effort that checks shrink-
wrapped software code distributed by software vendors. In
fact, retrofitting needs to be employed only in the situations
when verification efforts like ours identify possible unsafe
methods.

3. OUR APPROACH

3.1 Anillustrative example

In this section, we present a running example that we will
use to illustrate the main ideas. This example shown in Fig-
ure 1 involves three illustrative example methods Meth_X,
Meth Y and Meth_-Z (or simply X, Y and Z) whose code
was modeled based on methods in the Java standard library.
These methods perform the (native) call openFileOrDir,
which is a sensitive operation, and another two sensitive op-
erations fsStatFile, fsStatDirectory. All the three sensitive
operations require FilePermission to read the file associated
with the pathname parameter.

The idiom for consulting the security manager is given in
the code for Y and Z. After getting the current
SecurityManager object, the code checks if it is initialized
(non-null). The checkPermission method proceeds to check
whether all the callers in the calling sequence have
FilePermission to read the file associated with the path-
name, required for executing any of the sensitive operations:
openFileOrDir, fsStatFile, fsStatDirectory.

Notice that X is the only public method in the library.
Since X calls Y or Z, and subsequently performs
openFileOrDir, it is important to ensure that the security
manager is consulted in every path that leads to this opera-
tion. This property holds in the path that contains the call
to Y. However, the SecurityManager is not consulted in one
of the paths after Z is called, as the else branch in Z does
not consult the security manager.

In this paper, we focus on the design and implementation
of an automated analysis technique to identify such paths by
statically analyzing Java code. We want to design a proce-
dure that will, when given a method M, analyze the method
(and all the methods called by M in its transitive closure)
and ask if such paths exist. Since we propose using a sound
analysis for this problem, when the analysis procedure gives
a “no” answer then this definitely implies that there are
no such bad behaviors. If the analysis procedure gives a
“yes” answer then there may or may not be such a compu-
tation. In this case, the analysis can output a sequence of
statements, a possible witness (sometimes called a counter
example), whose execution may create such a computation.
A more detailed, possibly manual or semi-automatic, exam-
ination of the witness can be done to check if the path is
feasible in practice (in this case a false alarm), or ascertain
if this is a security vulnerability.

We point out that use of automatic program analysis to
identify potentially unsafe methods, and using human as-
sisted methods with the help of the witness generated can
result in considerable savings of human efforts. In addition,



public void Meth_X(
String pathname, int x) {
0: if (x == 0){ 0:
1: Meth_ Y (pathname);
1: if (sm != null) {
else { 2:
2: Meth_Z (pathname);

//sensitive-op

private void Meth_Y (String pathname) {
SecurityManager sm =
System.getSecurityManager(); | 3:

sm.checkPermission(FilePermission
(pathname, "read”));

fsStatFile(pathname); //sensitive-op

3: openFileOrDir(pathname);

}

private void Meth_Z(String pathname) {
0:  if (pathname.endsWith(”/”)){
1: SecurityManager sm =
System.getSecurityManager();
2: if (sm != null) {
sm.checkPermission(FilePermission
(pathname, "read”));

// sensitive-op

4: fsStatDirectory(pathname);
else {
5: // other operations

Figure 1: An example that involves sensitive operations

the absence of any witnesses can be used to certify that the
system possesses the complete mediation property. In our
experiments, we have been able to analyze methods in the
order of several thousands of lines of code, while keeping the
false positives in the order of tens of methods. Specialized
techniques can be developed for addressing these false posi-
tives, and careful manual effort can be employed to rule out
bugs.

3.2 Challenges for Verification

Verifying the software implementation of the Java access
control is a important problem. The main challenge is to
design a procedure that scales to several thousands of meth-
ods present in the JVM libraries. Scalability demands the
following two characteristics in any solution.

o Compositionality In the above example, in the context
of analyzing method X, we have to analyze methods Y
and Z. In some other context, we may need to analyze
methods Y and Z. In this case, we should be able to
reuse the results of the first analysis. This property
of being able to (re)use the results of the analysis of
individual methods, is the compositionality property,
and is a key concern in the design of scalable methods
for security verification.

e Low Complexity A naive approach that looks for con-
trol paths in all possible method sequences in the li-
brary will fail due to the enormous size of the Java
library, which has several thousands of methods. The
space complexity of such a naive control flow analysis
can be exponential in the sum of the sizes of the meth-
ods in the Java library, as explained later. For the size
of the Java library, even polynomial methods are not
good enough, as cubic or even quadratic algorithms
can be expensive.

The procedure we describe in the next section satisfies
these two important properties.

3.3 Technical Approach

Problem Scope We assume that we are given the set of
security sensitive operations and the Java permissions re-
quired for performing these operations. We also assume

that we are given a set of method definitions that is self
contained, i.e., the definition (body code) of all methods in-
voked by any method is also present in the set. The only
exception is the source for sensitive native methods, which
we do not analyze.

For each public method M among them, we want to check
the following property: does there exist a call sequence of
methods starting with M, that invokes a sensitive operation
without consulting the SecurityManager before the operation?
Since the method is public, it can be called from any appli-
cation class, and therefore we call such a method M a risky
method. Our task is to identify such risky methods in the
Java standard library. In the rest of this section, we intro-
duce our approach of computing these summaries through
gradual refinement of ideas.

A first approach To identify such paths we can statically
analyze the code of library classes. A first approach to veri-
fying whether a given method M that operates on a sensitive
resource respects complete mediation is to start with the
control flow graph (CFG) of the method and look for paths
in it that lead to the sensitive operation without calling the
SecurityManager. Figure 2 gives the CFGs for methods X,
Y, and Z presented in Figure 1.

To handle procedure calls made by method M, we can
extend the above method by extending the CFG of M with
inline expansion of the CFGs of all the methods called by
M. We can then analyze every path in the resulting graph
(called the expanded CFG or ECFG(M)) that leads to a
sensitive operation.

The above naive method may actually work for small code
bases. However, it has two main drawbacks. The first draw-
back relates to the case where recursion is present among
methods in the library, where it is well known that inline
expansion will not work. For instance, the presence of two
or more mutually recursive methods will result in an infinite
expanded graph.

Secondly, due to the inline expansion, in general, even if
there is no recursion, the size of ECFG(M) can be expo-
nential in the sum of sizes of the methods. Thus a method
that constructs the ECFG(M) is not scalable for large code
bases. Our aim, therefore is to analyze the code base without
constructing ECFGs.

Method Summaries To analyze the code base without




constructing ECFGs, our approach needs to reuse the results
of analysis of a method. In our approach, the results of
analyzing each method is stored in its method summary (One
of the earliest works that employed procedure summaries
is [24]). Intuitively, the summary of a method M denotes
the effect of a call to M by any other method for checking
the presence of security checks. The heart of our approach
involves a novel procedure for computing (and reusing) these
summaries for verification.

We classify the nodes of the control flow graph of a method
M into the following types: entry node, return node, secu-
rity check, sensitive operation, method invocation and neu-
tral node. The first five are self-explanatory, neutral nodes
are those that do not fall into any of the first five types.

3.3.1 Computing summaries

The summary of a method M is a 2-tuple that contains
two following components:

e Presence of paths that do not have security checks This
component of the summary reflects the existence of
paths from the entry node of M to a return node that
do not contain any security check. If such a path exists
in a method, then we include the insecure_path in
the first component of summary(M). We say that a
method is all_path_secure if insecure_path is not in
the first component of summary(M).

e Presence of unguarded sensitive operations If there is
a path in the expanded control flow graph from the
entry node to a sensitive operation without the pres-
ence of a security check before that operation, then
our approach will include the label bad in the sec-
ond component of summary(M). We call a method
good if the label bad is not in the second component
of summary(M).

Thus we can have the following four types of summaries:
(insecure_path, bad), (insecure_path, L), (1 bad), (L, 1).

The method summaries of X, Y and Z in Figure 1 are
given at the bottom of Figure 2. For instance, method Y is
all_path_secure and good, and Z 1is good but not
all_path_secure. Consequently, X, which calls Y and Z
along different paths, is bad. We also wish to note that
a method may be bad, but still can be all_path_secure; this
is because it may contain a path having a sensitive operation
that is followed by a security check.

For a method M, we define the boolean function
insecure_path(M) to be true if it contains the label
insecure_path in its first component. In a similar fashion, we
can define the boolean function bad(M). We can also define

good(M) (which is simply not bad(M) and all_path_secure(M)

(which is same as not insecure_path(M)).

Our objective is then to compute for each method the
two components (corresponding to insecure_path and bad)
of the summary. Our approach computes these summaries
by analyzing the individual CFGs of these methods.

Observation 1 Let M; be a method for which bad(M) is
true. Let M2 be a method that calls M;. Then note that,
we can effectively replace this method invocation node in
CFG(M;) with a sensitive operation node while computing
the bad summary of M (i.e., the second component).

The above observation says that calling the method M;
for which bad(M) is true is effectively (i.e., for the purposes

of computing bad summaries) equivalent to performing a
sensitive operation. Note that calling M; does not however
add bad to the summary of M2 because there may have been
a preceding security check in the body of Ms before the call
to M1 .

Observation 2 Let M; be a method for which
insecure_path(M) is true. Let M> be a method that calls
M;. Then note that, we can effectively replace this method
invocation node in CFG(Mz) with a neutral node while
computing the insecure_path summary of M, (i.e., the first
component).

Observation 3 Let M; be a method for which
all_path_secure(My) is true and bad(My) is false. Let My
be a method that calls M;. Then note that, we can replace
this method invocation node in CFG(M>) with a security
check node in computing the bad summary of M, (i.e., the
second component).

The above three observations allow us to compute the bad
and insecure_path summaries of a set of methods easily. In
the absence of recursion, we can sort the methods based on
their reverse invocation sequence; (i.e., if M calls M; then
M, appears in earlier in the sequence). Such a sequence can
be constructed using the reverse topological sort of the call
graph of all methods.

The first method M; in this sequence calls no other meth-
ods. Therefore, we can compute its summary by analyzing
all its paths. We move on to Ma, which is next in the re-
verse invocation sequence. While computing insecure_path
summary of My, if insecure_path(M) is true, then we can
effectively consider M; to be a neutral node (Observation 2).
Similarly, while computing bad summaries of Ma, if bad(M)
is true, we can replace the call node to M; with a sensitive
operation node (Observation 1). If all_path_secure(M) is
true, and bad(M;) is not true, we can replace the call node
to My with a security check (Observation 3). In a simi-
lar manner, we can successively compute the insecure_path
and bad summaries for all the methods in the sequence, and
then identify bad methods that are public. These methods
are risky, as they provide a direct path from application code
to a sensitive operation.

The above algorithm is also very efficient, and one can
show that the total running time of this algorithm is linear
in the sum of the size of the methods analyzed.

3.3.2 Handling recursion

Unfortunately, the approach that was described above will
not work in the case of recursive calls. In the case with
recursion, we will not be able to uniquely sort the methods in
their reverse invocation order, as the call graph will contain
cycles due to recursion.

The standard approach to deal with recursion involves
iteratively computing summaries for the procedure until the
computation converges to a fixed point. Such an approach
will compute the summaries, but the worst case running
time of this procedure will be of order O(N * M) where N
is the number of methods and M is the sum of the sizes of
all the methods analyzed, thus making it highly inefficient.

3.3.3 A new efficient solution

We have devised a new solution that computes the sum-
maries for the recursive case that is highly efficient. The
running time of this new procedure is still linear in the sum
of the sizes of methods analyzed, effectively equaling the



B
©

Summary(X) = <insecure_path, bad>

Summary(Y) =<1 1>  Summary(Z) = <insecure_path, L >

Entry node

Security check
Sensitive operation

Return node

\
’

1200®

Method invocation

’

1O

'
\

Neutral node
Edge in a bad path

== =p Edge in ainsecure path

checkNull edge that is
removed. Will be explained
in Section 4.

Figure 2: Control flow graphs for the example in Figure 1

running time of the algorithm for non-recursive case that
was described earlier. We describe the procedure for com-
puting the summary for a procedure below.

Checking for insecure paths To determine if method M
has insecure_path, we perform a search of CFG(M) check-
ing for the existence of a path, that does not contain a se-
curity check from its entry node to its return node. This
search starts from the entry node and operates as follows.
Whenever we encounter a node that is a neutral node or is
a sensitive operation, we continue the search from its suc-
cessors. Whenever we encounter a security check node, we
do not proceed beyond that node but explore other nodes.
This is because the path we are looking for is an insecure
path and therefore cannot contain a security check.

Whenever we encounter a method invocation node u that
invokes method M’, and insecure_path is in summary(M'),
then we continue the search from the successor nodes of .
This is because there is a path without a security check, in
the expanded control flow graph of M passing through M’,
from the entry node of M to u and its successors. On the
other hand, if insecure_path is not in summary(M'), we
put node u on a waiting queue, WQ(M'), associated with
M'. Whenever M’ is determined to have an insecure path,
at that point, the search of CFG(M) is resumed from node
u. Whenever a return node is encountered in the search of
CFG(M), we include insecure_path in its summary and at
this time we examine all entries in WQ(M). For each node
v on this queue, we do as follows. If insecure_path is already
in the summary of the method containing v then we ignore
v; otherwise, we continue the search from node v.

The above intuitive procedure is implemented as shown
in Figure 3 and can be explained further as follows. For
each node u of a control flow graph, we associate a binary
flag w.visited which by default set to false and set to true
when first encountered. We also assume that u.successors
gives a list of successors of u, also u.method the name of
the method to which u belongs. With each method M, we
maintain a set WQ(M) as indicated earlier. The search
algorithm maintains a set data structure ). Essentially, Q
is the set of nodes that need to be explored. It is initialized

to be the set of entry nodes of all the methods and each such
node is marked as visited. The algorithm is self explanatory.
The correctness of the algorithm of Figure 3 is stated by the
following lemma.

Lemma 1:

1. For every node u placed on @, there exists a path in
ECFG(u.method) from the entry node of u.method to
u such that none of the nodes on the path (excepting
u) is a security check.

2. For every method M, insecure_path is added to
summary(M) iff there is a path not containing a secu-
rity check from the entry node of M to a return node
of M in ECFG(M).

Complexity Analysis In the above algorithm, it is easy to
see that each node of a control flow graph is placed on @) at
most once if it is a node other than a method invocation; a
node which is a method invocation is placed on @ at most
twice (the second time is when it is removed from WQ(M")
where M’ is the method invoked by the node). Hence the
complexity of the above algorithm is linear in the sum of the
sizes of the control flow graphs of all the methods.

Algorithm for determining bad methods Now, we
present the algorithm for determining bad methods, which is
executed after the algorithm for insecure paths terminates.
We perform a search of the CFG(M), for each method M,
looking for a path from the entry node to a sensitive oper-
ation without a security check before it. We use the same
data structures as given above which are initialzed similarly.
The search of the control flow graphs of all the methods is
done at the same time using the set data structure Q. The
only difference is in processing of a node u when it is re-
moved from Q. Let us say that u.method is M. If u is a
neutral node then search is continued from its successors. If
v is a security check or a return node then it is ignored.

If u is a method invocation that invokes method M’ then
the following actions are taken. First observe that there is
a path, not containing any security check, from the entry
node of M to u. (If there were a check, then we would




Initialze();
For each method M
Set summary(M) to be (L, L);
While Q # 0 {
Remove a node u from Q;
If insecure_path(u.method) : Continue;
Perform one of the following steps based on type of u
u is a sensitive operation or a neutral node :
For each v in w.successors
If v.visited = false
v.wisited = true, add v to Q;
u is a return node :
add insecure_path to summary(u.method),
For each v in WQ(u.method)
if ! insecure_path(v.method) add v to Q;
set WQ(u.method) to the empty set;
u is a method invocation to method M’ :
If insecure_path(M'")
For each v in w.successors
If v.visited = false
v.wvisited = true, add v to Q;
Else add u to WQ(M");
u is a security check : Continue;}

Procedure Initialize() {

Q =0

For each method M
wWQ(M) := 0;
For each node u in CFG(M)

w.visited := false;

Add the entry node u of M to @,
u.visited = true ; }

Figure 3: Algorithm for computing insecure_path
summaries

have skipped the check and therefore wouldn’t have reached
u.) So if M’ is bad then M is also bad and is marked so.
However, if M’ is not currently marked as a bad, then we
need to mark M as bad if and whenever M’ is determined to
be bad. To do this, we place node M on the waiting queue of
M, which is WQ(M") (note that WQ(M') contains method
names not nodes as is the case in case of the algorithm for
determining insecure_path).

Further more, if M’ han an insecure path then there is a
path without a security check, in the expanded control graph
of M, from the entry node of M, passing through nodes of
CFG(M'), to the successors of u. Thus we need to continue
the search beyond u for a bad path. Lastly, if u is a sensitive
operation then this implies that there is a bad path from the
entry node of M to u. In this case, we add the label bad to
summary(M). In this case, we need to mark all the methods
waiting on M directly or transitively as bad. This is accom-
plished by the procedure MarkAsBad() which invokes pro-
cedure Compute_ Waiting. Compute W aiting(M) (whose
code is not given) computes all the methods that are di-
rectly or transitively waiting on M by taking a union of all
methods in WQ(M) and all the methods that are waiting
on the methods in WQ(M) and so on. The soundness of
the algorithm is stated by the following lemma.

Initialze();
while Q # 0 {
Remove a node u from Q;
If bad(u.method) : Continue;
Perform one of the following steps based on type of u
u is a neutral node :
For each v in u.successors
If v.visited = false
v.wisited = true, add v to Q;
u is a sensitive operation :
MarkAsBad(u);
u is a method invocation to method M’ :
If bad(M')
MarkAsBad(u),
Continue;
Else add u.method to WQ(M');
If insecure_path(M'")
For each v in u.successors
If v.visited = false
v.wisited := true, add v to Q;
u is a security check or a return node : Continue;}

// same as in figure 3

Procedure MarkAsBad(u){
Z = Compute W aiting(u.method) U {u.method};
For each M in Z
add bad to summary(M),
set WQ(M) to the empty set;}

Figure 4: Algorithm for computing bad summaries

Lemma 2:

1. For every node u placed on @, there exists a path in
ECFG(u.method) from the entry node of u.method to
the u such that none of the nodes on the path (except-
ing u) is either a security check or a sensitive operation.

2. For any method M, label bad is added to summary(M)
iff there is a path without any security checks from the
entry node of M to a sensitive operation in ECFG(M).

Complexity The complexity of the algorithm is linear in
the sum of the sizes of the control flow graphs of all the
methods. To see this, observe that each node in the control
flow graph of a method is added to @ at most once. Also
the sum of the sizes of WQ(M) for all M is bounded by
the number of method invocation nodes in all the methods.
Also, each entry in WQ(M) is processed at most once, that
is when the label bad is added to summary(M). Thus, we
see that the complexity of the algorithm is linear in the sum
of the sizes of all the control flow graphs.

Modification to compute summaries on-the-fly In the above
presentation of the approach, we first execute the algorithm
that computes insecure_path summaries for every method
and then execute the algorithm for identifying bad public
methods. However we can modify the approach so that we
first invoke the algorithm for identifying bad public meth-
ods, and during its execution, invoke the algorithm for com-
puting insecure_path summaries for each method on a de-
mand driven basis. This modified approach avoids unneces-
sary checks for insecure paths.

A more detailed comparison to SLAM The Bebop model
checker [3] of the SLAM toolkit [4] is a general purpose



model checker for verifying temporal properties of binary
programs with procedures and has complexity linear in the
sum of sizes of the control flow graphs of the methods. Be-
bop tracks the data values in addition to analyzing the con-
trol flow graphs, while we only deal with control flow graphs.
Bebop also computes summaries during the model checking
process in the form of summary edges. The summary edges
are associated with method invocation nodes, i.e., once for
each call. On the other hand, our summaries are associ-
ated with methods. Since the same method may be called
from multiple points, associating summaries with methods is
more efficient. Further more, call nodes which are preceded
by security checks are never processed in our method.

Generating a witness If a method M is bad, then a wit-
ness for this can be computed by modifying the above algo-
rithm as follows. In this case, a path leading to a node per-
forming a sensitive operation is output as a compressed wit-
ness when such a node is reached in the search of CFG(M).
This is achieved by maintaining a parent pointer with each
node u that points to the node from which w is visited
first. The path leading to the node u from the entry node
of M is obtained by travesring along the parent pointers.
(Note that the length of such a path is bounded by the
size of the method M.) A similar witness is computed if
insecure_path(M) is true. In this case the witness is a path
starting with the entry node of M and ending with a return
node of M. We call these paths as compressed witnesses
since they may contain nodes which are method invocations.
If a method M’ is invoked at a node on a compressed wit-
ness, then it has to be the case that insecure_path(M') is
true. For each such method M’, we would have generated
a similar compressed witness for M’ when its summary was
computed. Since only one compressed witness is necessary
for each method that is bad and one such witness for each
method that is has insecure_path, the sum of the sizes of all
such compressed witnesses is only linear in the sum of the
sizes of all the methods. We can show that the complexity of
the resulting algorithm is still linear in the sum of the sizes
of all the methods. Using such compressed witnesses, an
actual witness path in the extended control flow graph can
be generated; such a path can be of exponential length and
needs not be generated explicitly for debugging purposes.

Handling multiple permissions So far we have only dealt
with the case of a single sensitive resource. However, there
are multiple sensitive resources in a JVM such as files and
network operations, and Java security checks (such as
checkRead (for FilePermission) and checkConnect (for
SocketPermission)) corresponding to these resources. There-
fore we modify the summaries to store the security check
that was used to compute these summaries. In addition, if a
method summary includes a security check that we are not
currently looking for, we simply ignore this security check
node and treat it as a neutral node. For instance, if we
are checking the File resources, and encountering a method
M whose summary represents its paths that contain the
SocketPermission security check, then we treat any call to
this method as a neutral node.

4. IMPLEMENTATION

Our implementation is based on bytecode analysis and
transformation using the Soot framework [28]. Bytecode

verification has the advantage that it retains the high level
structure of the source code, while allowing us to directly
verify stock library bytecode as distributed by the software
vendors.

Identifying Sensitive operations. Our work in this pa-
per describes a technique that checks for the satisfaction of
the complete mediation property, when given a set of sen-
sitive operations and their corresponding security checks.
Identifying these sensitive operations in code is an orthog-
onal problem, that has been studied using techniques such
as specification mining [1], and more recently, using concept
analysis [15].

Our experimental evaluation considered sensitive opera-
tions that were implemented as native methods. For in-
stance, in the HotSpot VM, such sensitive operations are
implemented differently for each OS platform, and we have
analyzed the implementation for the Linux and Solaris oper-
ating systems. We first identified the set of native operations
directly from the type signatures of these methods. We fur-
ther manually examined the native code to these methods,
by looking at the C source code implementation, to ascer-
tain whether these perform sensitive operations such as sys-
tem calls. The above step completely identifies all sensitive
operations that access resources that are managed by the
underlying operating systems.

However, there are other forms of sensitive resources that
are purely manged by the Java virtual machine. For in-
stance, any property such as java.vendor is a resource man-
aged internally in the JVM, and access to this resource re-
quires the corresponding java.util.PropertyPermission from
the calling context. For the purpose of analyzing code that
accesses these additional resources, our technique can be
augmented with specification mining techniques such as those
described in [1, 15].

Filtering non-sensitive classes. For the sake of efficiency,
we can exclude certain classes that do not handle sensitive
resources. For this purpose, we wrote a scanner that in-
spects a class for the presence of the SecurityManager (or
AccessController) or sensitive operations in any of its meth-
ods. If the above condition is not met, then the scanner
concludes that the class does not manage sensitive resources,
and therefore filters this class from the analysis. The scan-
ner works on the premise that most of the Java library code
is correct, and this code can be used to identify sensitive
resources managed by it. Note that the filtered class may
still call public methods of other classes that handle sensi-
tive resources; in this case, this class is similar to an client
application class from a verification point of view.

One exception to the above scanning condition occurs in
the case of inner member classes. For instance, if class B is
a inner member class of class A, then we ignore class B only
if class A is being ignored.

Pruning the CFG for analysis For each method, we first
construct its CFG, where each line of bytecode in the method
is a node in the CFG. Several pre-processing pruning steps
are done to the CFG before it is analyzed. The first case
concerns the paths that do not need to be analyzed. In every
call to the SecurityManager, there is a check for the security
manager being non-null (as shown in the code examples in
Figure 1). Since the complete mediation property (Property
1), requires that security manager be non-null, we delete the




checkNull edge (and therefore the path) that checks for the
SecurityManager being null before starting our analysis.

Privileged Operations Java allows a form of privilege es-
calation through the use of the doPrivileged {S} construct
where s is a code segment that performs privileged opera-
tions. In this case, any security check performed inside S
only considers the code context since the doPrivileged com-
mand is executed. Since we are only checking the (trusted)
libraries, this means that the code context since the call to
the doPrivileged operation has all the permissions to per-
form sensitive operations inside S. Also any security checks
performed inside S cannot guarantee that sensitive opera-
tions, performed after S outside the scope of the doPrivileged
method, have the required permissions. Hence we can ignore
any security checks performed inside S. Thus, we handle the
above doPrivileged command by replacing it with an invo-
cation of a method M, whose body is s, and which is good
and is not all path secure.

Significance of Context information Consider the in-
vocation of a public method M on an object O by the appli-
cation program. The object O must have been constructed
before this invocation of M by executing a constructor for
its class. It is possible that this constructor method per-
formed a security check that involves the same permission
required for the currently requested sensitive operation. One
might be tempted to think that this SecurityManager check is
enough for performing sensitive operations inside M. How-
ever, in general, this is not correct. This is because the code
context inside M may be different from the code context
when the security check was invoked inside the object con-
structor; for example, after constructing object O, the ap-
plication program may have invoked code from other code
sources that are active at the time when M was invoked and
hence at the time the sensitive operation was performed.
Thus any sensitive operation performed in the execution of
a public method M should be preceded by a security check
before the operation, but after the invocation of the method
M. Our algorithm and the implementation have been de-
signed keeping in mind the significance of this context infor-
mation.

4.1 Other implementation issues

In this section, we discuss the limitations of our current
prototype implementation and we discuss concrete ideas for
improving the prototype to handle exceptions and method
overriding.

Exceptions Exceptions can trigger special paths, in the
program, resulting in additional paths from each method
call instruction to the nearest enclosing catch block or to
the caller. For handling exceptions, the standard control
flow graph that we have needs to be modified in the follow-
ing ways. For each method call, additional edges need to be
created. An edge needs to be introduced from the method
call node to the catch block enclosing the call node, if such
a block exists. Furthermore, an edge is introduced from the
method invocation node to a new return node that returns
to the calling method of the current procedure being ana-
lyzed. This is to model an exception not handled by the
enclosing catch block. Similarly, for any throw statement
node enclosed in a try block, we add a new edge to the en-
closing catch block. Also, if there are any rethrow nodes in

the enclosing catch block, we will replace that node by a
return node.

Once these additional edges are introduced, then our origi-
nal method for computing summaries to identify risky meth-
ods will still be applicable.

Method Overriding Recall that a method of a base class
can be overridden by the corresponding method of a sub-
class. The choice of this method is based on the object’s
type, which is only available at runtime. We propose a sim-
ple transformation to the method of the base class. Specif-
ically, let us say M is the method of the base class being
overloaded, and M;j, Mas, ..., M, are overloading meth-
ods in subclasses. Then we can transform the code of M
by adding the n-way non-deterministic branch statement at
the start of the body of M, that makes a call to each one
of these overriding methods. Once this branch statement is
introduced, our original method for computing summaries
will still be applicable in the presence of method overriding.

Making the above transformations to the methods and
CFGs are simple and straightforward, which will be incor-
porated in a subsequent version of our prototype. In the
following section, we present the experimental results ob-
tained with the current prototype.

S. EXPERIMENTAL EVALUATION

In this section, we present our the results of the exper-
iments that were performed with CMV. Most of CMV is
written in Java code using the API provided by Soot, while
some of the support scripts used in it are written in Perl.

Experimental Setup Two commercial off-the-shelf Java
VMs were experimented in our verification effort using CM'V.
They are the HotSpot JVM, distributed by SUN Microsys-
tems, and the Harmony VM, an open-source JVM produced
by Apache Foundation. While the former is the most pop-
ular JVM implementation, the latter is being used in sev-
eral industrial strength projects by the Apache Foundation.
Verification efforts on these VMs therefore benefit several
million end-users of these VMs. We verified the input out-
put and network (java.o and java.net) subsystems, and
the class class in java.lang subsystem on both these VMs.
These subsystems have several classes, and several hundreds
of methods.

The methodology employed in our experiment was as fol-
lows: We run CMV on a class, which in turn calls Soot
to analyze the class in whole program mode, which enables
analysis of all methods called by methods of this class. The
results of this analysis are summarized in a table, which is
consulted when analyzing other classes and methods sub-
sequently. The results were taken on a machine running
Ubuntu distribution of GNU / Linux, on a machine run-
ning the AMD Athlon processor 2Ghz processor with 2GB
physical memory.

Results Figure 5 gives the set of results for the HotSpot
VM, and Figure 6 for Harmony VM. The second column
identifies the package that the class reported in the first
column belongs to. The third column gives the number of
methods defined in the class. The fourth column reports
the number of concrete methods (i.e. non-abstract and non-
native methods). This is the number of methods in this class
that will be analyzed.



1) () (3) 4 () (6) M| ¥ @ o[ a1
JVM Java # Meth. in Total New Real
class package JVM class | Concrete | Meth. | LOBC | Good | APS | Risky | Risky | Risky
File java.io 54 54 708 12058 650 53 10 10 0
FileInputStream java.io 17 10 40 459 40 3 0 0 0
FileOutputStream java.io 18 12 42 486 42 5 0 0 0
ObjectInputStream java.io 68 65 219 3748 197 3 5 3 0
ObjectOutputStream | java.io 59 57 146 2302 146 4 0 0 0
RandomAccessFile java.io 47 36 66 775 66 2 0 0 0
Authenticator java.net 15 15 21 204 21 4 0 0 0
CookieHandler java.net 5 3 11 160 11 1 0 0 0
DatagramSocket java.net 40 40 151 2047 123 10 23 22 0
HttpURLConnection | java.net 19 17 23 231 23 1 0 0 0
InetAddress java.net 42 41 152 1875 148 5 1 0 0
MulticastSocket java.net 18 18 583 9018 520 41 26 14 0
NetworkInterface java.net 19 14 542 8194 498 34 9 0 0
ProxySelector java.net 6 4 45 540 44 5 1 0 0
ResponseCache java.net 5 3 11 160 11 1 0 0 0
ServerSocket java.net 32 32 158 1932 154 15 1 0 0
Socket java.net 61 61 710 11033 664 40 9 0 0
SocksSocketImpl java.net 25 25 679 11085 633 41 9 0 0
URLClassLoader java.net 17 17 539 8021 496 42 10 1 0
URLConnection java.net 60 59 612 9128 569 41 9 0 0
URL java.net 36 36 682 11663 624 38 10 0 0
java.lang.Class java.lang 112 84 758 11049 699 49 21 11 0
Figure 5: Experimental Results from HotSpot VM

€] () (3) 4 () (6) M1 ® @ 1o | (a1

Java # Meth. in Total New Real
JVM class package JVM class | Concrete | Meth. | LOBC | Good | APS | Risky | Risky | Risky
File java.io 76 53 3076 53506 3075 121 0 0 0
FileInputStream java.io 13 13 2929 50340 2928 105 0 0 0
FileOutputStream java.io 13 13 2937 50396 2936 110 0 0 0
ObjectInputStream java.io 84 74 3001 51885 3000 106 0 0 0
ObjectOutputStream | java.io 71 62 2989 51499 2988 106 0 0 0
RandomAccessFile java.io 42 42 2974 51173 2973 106 0 0 0
Authenticator java.net 15 15 2942 50428 2941 109 0 0 0
CookieHandler java.net 6 4 2929 50297 2928 106 0 0 0
DatagramSocket java.net 39 39 3029 51627 3027 114 0 0 0
HttpURLConnection | java.net 17 15 2948 50637 2947 108 0 0 0
InetAddress java.net 60 53 3090 53838 3087 105 0 0 0
MulticastSocket java.net 19 19 3026 51636 3024 118 0 0 0
NetworkInterface java.net 13 12 2934 50405 2933 105 0 0 0
ProxySelector java.net 6 4 2929 50300 2928 106 0 0 0
ResponseCache java.net 8 6 2931 50302 2930 105 0 0 0
ServerSocket java.net 29 29 3039 51696 3037 117 0 0 0
Socket java.net 58 58 3091 52442 3089 118 0 0 0
URLClassLoader java.net 28 28 3169 54427 3168 107 0 0 0
URLConnection java.net 53 52 2987 50955 2986 111 0 0 0
URL java.net 36 36 3024 52574 3023 107 0 0 0
java.lang.Class java.net 62 62 65 163 65 0 0 0 0

Figure 6: Experimental Results from Harmony VM

The fifth column reports the total number of methods
called by this class, computed through a transitive closure,
excluding the filtered methods. (This is the number of nodes
in the call graph). The sixth column reports the total num-
ber of lines of bytecodes (LOBC) analyzed (each instruction
in bytecode counted as one line). This number is the actual
lines of code being analyzed for all the methods given in
the fifth column. The seventh, eighth and ninth columns re-
port the number of good, all_path_secure (APS) and risky
methods (a risky method is one that is public and not good).
These numbers are computed for all the methods analyzed
(given in fifth column).

In column nine, the number of risky methods reported
are for the entire set of methods that are analyzed, includ-
ing ones for which summaries have already been computed.
For instance, the analysis of ObjectInputStream results in no
new risky methods, even though the number reported is five.
To show this, the number of risky methods that are newly
computed in the analysis of the class is shown in column

ten. This value for the analysis of ObjectInputStream is zero.
The eleventh column shows the number of real risky meth-
ods identified after semi-automatically (i.e., manual anal-
ysis with our tool support described later) analyzing the
risky methods in column ten with the witness. A real risky
method is a risky method that has at least one feasible bad
path in practice (not a false alarm).

Summary of results From the results we see that a large
fraction of the methods are good. These are methods that
are certified to have a security check before any sensitive
operation. Overall, in the HotSpot VM, we have found 61
risky methods and in the Harmony VM we have no risky
methods.

For instance, a total of 1520 methods were analyzed in
the HotSpot VM. 1520 is the cardinality of the set of all
methods being analyzed in the fifth column in Figure 5,
which resulted in 61 risky methods. Only these 61 methods
need to be analyzed further, resulting in a reduction in two




java.net.URL:
void <init>(URL, String)

O O O

java.io.ObjectinputStream:
java.lang.Object readObject()

Method format:
<Declaring class Name>:
<Return Type> <MethodName(param list)>

Bold highlights risky methods
O O O represents other risky methods

AW rd
w
java.io.ObjectInputStream:

java.lang.Class
resolveClass(ObjectStreamClass)

java.net.URL:
java.net.URLStreamHandler
getURLStreamHandler(String)

java.net.DatagramSocket:
void createlmpl()

A g ¥
<java.lang.Class: java.lang.Class:
java.lang.Class forName(String) java.lang.Class
\ forName(String,boolean, ClassLoader)
P

java.lang.Class:
java.lang.Class
forNameO(String, boolean, ClassLoader)

Figure 7: Analysis of risky methods

orders of magnitude. In the Harmony VM, a total of 3928
methods are analyzed, none of these methods was reported
as risky.

We consider the reduction in the amount of human effort
required to perform this entire effort quite significant. We
also provide automation support for manually analyzing the
risky methods that we describe below.

Tool support for manual analysis of results Recall that

each risky method is a bad method that is public. As indi-
cated earlier, corresponding to each bad method we generate
a compressed witness. Such a compressed witness for a bad
method My is a sequence of nodes in the CFG of My ending
in a sensitive operation, or ending in node that invokes an-
other method say M;. In the later case, M; itself is a bad
method whose witness ends in a sensitive operation within
M; or ends in call to another bad method M. Correspond-
ing to each bad method My, we construct a chain of methods
Mo, ..., M} such that there is a path in the expanded con-
trol flow graph of My that goes through nodes of all these
methods ending in a sensitive operation in Mj. All such
chains corresponding to risky methods are arranged as a for-
est so that the root nodes of the trees in the forest are the
bad methods where the sensitive operations are performed
without an a-priori security check. Such root methods can
be automatically identified from the witnesses of the risky
methods. These root methods need to be manually analyzed
in more detail. This additional step further minimizes the
number of methods needed to be manually analyzed.

For the HotSpot VM, all the witnesses of risky methods
can be arranged as an (inverted) tree shown in Figure 7. For
the sake of space, we show only a portion of the tree close to
the root bad methods. This figure shows that all of these 61
risky methods in HotSpot VM are due to a private native
method name forNameO declared in java.lang.Class. This is
a method that returns a Class object associated with a given
class, using the class loader supplied as argument. Since
returning the Class object can be sensitive, the VM needs to
perform a security check.

There are two methods through which forName0 can be
directly accessed. The code of both methods are given in
Figure 8.

Both forName methods are public and have path(s) from

public static Class forName(String className)
throws ClassNotFoundException {
return forNameO(className,
true, ClassLoader.getCallerClassLoader());

public static Class forName(String name, boolean initialize,
ClassLoader loader) {
if (loader == null) {

SecurityManager sm = System.getSecurityManager();

if (sm != null) {
ClassLoader ccl = ClassLoader.getCallerClassLoader();
if (ccl !'= null) {

sm.checkPermission(..);

}

}

return forNameO(name, initialize, loader); //native

}

Figure 8: forName() code snippet from Hotspot VM

entry node to forName0 without security check. For example,
in the second forName, a path exists when if (load == null)
doesn’t fall through. The existence of such a path results
both methods to be summarized as (inscure_path, bad), and
also risky since they are public. The remaining 59 public
methods are reported to be risky because they invoke one
of the risk forName methods directly or indirectly.

After analyzing the code of both forName methods manu-
ally, we have determined that they are not real risky meth-
ods. By passing a null loader to forName0, the caller requests
the class to be loaded via the bootstrap class loader, which
is sensitive. Thus the VM needs to be consulted before load-
ing the class. The absence of a null loader being passed to
the class is the case when the VM has already assigned a
loader for the class, and therefore there is no requirement
for a security check.

After this analysis, we manually updated the forName
methods summary from bad to not bad (i.e., empty bad sum-
mary), and our resulting verification run shows that there
are zero real risky methods in the HotSpot VM, as shown
in column 11 of the results table.

Analysis Time Performance For all the classes tested, the
average time taken by CMV to analyze each class was 74
seconds. The bulk of the time spent is in CFG construction



that requires going through methods from several different
classes. Ours is a static verification technique, these val-
ues are acceptable, also considering the fact that our pro-
totype implementation is currently not optimized for time
and space. We are currently exploring an on-the-fly tech-
nique that combine CFG construction with the procedure
that computes bad and insecure summaries.

Summary In summary, the results suggest that our ap-
proach is highly suitable for verification efforts involving
large code bases such as the Java standard libraries. These
results suggest the approach taken by CMYV is scalable and
practically useful.

6. CONCLUSION

In this paper, we have presented an approach for checking
the complete mediation property for the Java class libraries.
Our approach is compositional and is of time complexity
linear in the size of the libraries, and hence is scalable for
analyzing large libraries, even in the presence of recursive
methods. We have implemented this approach in a tool
called CMV and used it in checking the complete mediation
property for the Java libraries of two widely used JVMs:
HotSpot and Harmony. Our experimental results indicate
that our approach is scalable and can lead to large reduction
in human efforts required for system verification.

7. REFERENCES

[1] G. Ammons, R. Bodik, and J. Larus. Mining specifications. In
ACM Symposium on Principles of Programming Languages
(POPL), 2002.

[2] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In IEEE
Symposium on Security and Privacy (SSP), May 2002.

[3] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In 7th International SPIN Workshop
on SPIN Model Checking and Software Verification, London,
UK, 2000.

[4] T. Ball and S. K. Rajamani. The SLAM toolkit. In Computer
Aided Verification CAV, New York-Berlin-Heidelberg, July
2001.

[5] G. Brat, K. Havelund, S. Park, and W. Visser. Java
PathFinder: Second generation of a Java model checker. In
Post-CAV 2000 Workshop on Advances in Verification, July
2000.

[6] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In ACM conference
on Computer and Communications Security (CCS), 2002.

[7] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic
specification. In ACM Transactions on Programming
Languages and Systems (TOPLAS), 1986.

[8] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. BANDERA: extracting finite-state
models from Java source code. In 22nd International
Conference on Software Engineering (ICSE), Limerick,
Ireland, June 2000.

9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

28]

[26]

[27]

(28]

[29]

(30]

(31]

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler
extensions. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

U. Erlingsson and F. B. Schneider. IRM enforcement of java
stack inspection. In IEEE Symposium on Security and
Privacy, Oakland, California, May 2000.

D. Evans and A. Tywman. Flexible policy directed code safety.
In IEEE Symposium on Security and Privacy, Oakland,
California, may 1999.

P. W. L. Fong and R. D. Cameron. Proof linking: Distributed
verification of java classfiles in the presence of multiple
classloaders. In USENIX Java Virtual Machine Research and
Technology Symposium (JVM’01), 2001.

T. Fraser, J. Nick L. Petroni, and W. A. Arbaugh. Applying
flow-sensitive cqual to verify minix authorization check
placement. In PLAS ’06: Proceedings of the 2006 workshop
on Programming languages and analysis for security, New
York, NY, USA, 2006.

V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code
for authorization policy enforcement. In SP’06: Proceedings of
the 2006 IEEE Symposium on Security and Privacy,
Oakland, California, USA, May 2006.

V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining security
sensitive operations in legacy code using concept analysis. In
ICSE’07: Proceedings of the 29th International Conference
on Software Engineering, Minneapolis, Minnesota, USA, May
2007.

L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going beyond the sandbox: An overview of the new security
architecture in the java development kit 1.2. In USENIX
Symposium on Internet Technologies and Systems, December
1997.

T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula,

G. Sutre, and W. Weimer. Temporal-safety proofs for systems
code. In Computer Aided Verification CAV, 2002.

G. Holzmann. The model checker spin. IEEE Transactions on
Software Engineering, 1997.

T. Jensen, D. Le Metayer, and T. Thorn. Verification of
control flow based security properties. In IEEE Symposium on
Security and Privacy, 1999.

L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for Java. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA 2002), 2002.

D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In USENIX Security Symposium,
2001.

G. Necula. Proof-carrying code. In ACM Symposium on
Principles of Programming Languages (POPL), 1997.

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining specification, proof checking, and model
checking. In Computer-Aided Verification, CAV ’96, New
Brunswick, NJ, 1996.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995.

J. Saltzer and S. M.D. The protection of information in
computer systems. proceedings of the IEEE, September 1975.
R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and

D. C. DuVarney. Model carrying code: A practical approach
for safe execution of untrusted applications. In ACM
Symposium on Operating Systems Principles (SOSP), 2003.
U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format-string vulnerabilities with type qualifiers. In USENIX
Security Symposium, 2001.

R. Vallée-Rai and L. H. et al. SOOT - a Java optimization
framework. In Proceedings of CASCON 1999, pages 125-135,
1999.

V.N. Venkatakrishnan, R. Peri, and R. Sekar. Empowering
mobile code using expressive security policies. In New Security
Paradigms Workshop (NSPW), 2002.

D. S. Wallach and E. W. Felten. Understanding java stack
inspection. In 1998 IEEE Symposium on Security and
Privacy, 1998.

X. Zhang, A. Edwards, and T. Jaeger. Using cqual for static
analysis of authorization hook placement. In USENIX Security
Symposium, 2002.



