DEICS: Data Erasure In Concurrent Software

Kalpana Gondi, A. Prasad Sistla, and V.N. Venkatakrishnan

Department of Computer Science, University of Illinois, Chicago

A well known tenet for ensuring unauthorized leaks of sensitive data such as pass-
words and cryptographic keys is to erase (”zeroize”) them after their intended use in any
program. Prior work on minimizing sensitive data lifetimes has focused exclusively on
sequential programs. In this work, we address the problem of data lifetime minimization
for concurrent programs. We develop a new algorithm that precisely anticipates when
to introduce these erasures, and develop an implementation of this algorithm in a tool
called DEICS. Through an experimental evaluation, we show that DEICS is able to
reduce lifetimes of shared sensitive data in several concurrent applications (over 100k
lines of code combined) with minimal performance overheads.

1 Introduction

Improper handling of data in C programs can often lead to its disclosure to unauthorized
principals. This is because such sensitive data can often be stolen through various low-
level attacks that C programs are prone to. The recent Heartbleed vulnerability [6] in
OpenSSL is one such example. This security hole rendered millions of organizations on
the Internet vulnerable to data theft attacks as it facilitated the risk of sensitive data be-
ing read from a OpenSSL connection through a buffer over-read. Such risks of sensitive
data being stolen can be minimized if the program erased sensitive data that remained
in memory beyond its intended use in the program.

Prior Work: The security issues in not erasing sensitive data in C programs are well
documented in the systems community [17,18,23]. As documented in these works, a
number of online and offline attacks could result from sensitive data that is resident in
memory beyond its lifetime. In [23], authors had proposed an approach to minimize
such disclosure of data in applications written in C through program analysis and trans-
formation. The main idea is to identify the “first no use” points ( First-No-Use) for
any piece of sensitive data and introduce a zeroing instruction immediately before those
points. The implementation of their approach was tested on several C programs and was
demonstrated to work on large applications. One main limitation of their approach is
that it cannot handle concurrent applications.

Problem Setting: In this paper, we consider the problem of sensitive data-lifetime min-
imization for concurrent applications. Implementing and understanding a concurrent
application is relatively more difficult for a programmer due to the added complexity
of programming such applications. While programming such applications, it is possible
that a programmer may ignore other security considerations such as zeroing sensitive
data after their intended use in the program. A recent low-level vulnerability (CVE-
2011-0992) [1] in the popular Mono application (which implements the Silverlight API
for Linux) allows remote attackers to obtain sensitive information that is unauthorized.
Specifically, threads in Mono were not properly cleaned up upon finalization, so if one



thread was resurrected, it would be possible to observe the pointer to freed memory,
leading to unintended information disclosure.

Such risk of disclosure would have been minimized by zeroing sensitive data values

after use. Since a significant number of programmers are not aware [26] of these subtle
security issues, we consider the problem of retrofitting a concurrent program with ze-
roing instructions that minimizes the lifetime of sensitive data used by that application.
Challenges: In order to minimize data lifetime, one must analyze the lifetime of sensi-
tive data in concurrent programs. The non-determinism involved in thread interleavings
leaves a challenge for a static analysis to precisely reason the order of shared memory
accesses by different threads. In general, programmers try to make use of locks to access
any shared data to avoid conflicts in updating and accessing the data. Thus, any analysis
should also keep track of all such synchronization constructs used in the program while
accessing any shared data (i.e., the number of locks used for accessing a shared data).
The erase instructions that would be introduced by our analysis should also be well
guarded by such locks. The number of threads that may access a shared data could be
dynamic in nature. Often, it is not feasible to assume the number of threads statically.
For example, if a thread is invoked within a loop, our analysis should also consider a
possible interleaving of a thread with itself.
Our Approach: Our approach is to transform concurrent applications with zeroing in-
structions (memset instructions in C) to erase shared data so that the exposure of data
is minimized. The main challenge in doing this is to determine whether an erase in-
struction for a shared data object can be safely introduced at a given program point,
by considering all possible concurrent executions of threads. The main contribution of
this paper is to address the abovementioned challenge by introducing a formal notion
of RacyPairs, which assists in determining whether a given erasure for a shared object
is safe or not. In addition, we give an algorithm to effectively compute RacyPairs, by
leveraging existing work [19] on concurrent dataflow analysis using a race-detection
engine. Our approach is implemented in a tool called DEICS, which transforms given
concurrent C program into an equivalent C program with reduced lifetime of sensi-
tive data used in the program. DEICS exclusively handles shared data and minimizes
its lifetime by inserting erase instructions in a conservative way. By conservative we
mean that any piece of shared data will not be erased by our approach if there can be a
potential access by some thread in the program.

To the best of our knowledge, DEICS is the first known approach in the literature to
bring data lifetime reduction technique to the realm of concurrent programs. This paper
makes the following contributions:

o A formal notion of RacyPairs that suggests when a given erasure is safe

An algorithm to effectively compute RacyPairs using race detection engines

Implementation of the algorithm in the form of a tool called SWIPE

A detailed evaluation of our approach by transforming over 100k lines of C appli-
cations (combined, with the largest application consisting of 57k LOC).

The rest of the paper is organized as follows: Section 2 presents the challenges of
introducing erase instructions for data lifetime minimization in concurrent applications
with an illustrative example. We explain our approach in section 3. The main algorithm



behind our transformation scheme is described in section 4. Section 5 provides a
detailed evaluation of our approach on set of real-life concurrent applications written in
C. Section 6 presents the related work and we conclude in section 7.

2 Running Example

Example: Figure 1 gives a simplified version of producer-consumer example imple-
mented using threads. In this program, the server thread accepts the connection from
the client and collects the Request and places it in a shared memory (here the request
variable declared at line 2) for the worker thread to process the same.

Threads are created in the main function (which is the main thread) at lines 40
and 41 and all the three threads run in parallel starting from line 42. Shared variable,
request (defined at line 2) is accessed by server and worker threads and its access
is protected by a lock variable lockv for synchronization purpose. After receiving the
request from client, the server thread, puts it in request at line 9 and logs the request
at line 10. The worker thread reads the same data on line 25. (Let us ignore line 25a for
the moment as it is not part of the original but belongs to the transformed program that
we will explain shortly). After processing request on line 25, it is no longer required in
the program, but remains available in the rest of the worker thread and may be to other
threads (lines 26-37 in worker, lines 12-21 in server, and lines 42-53 in main). Note that
the actual execution at line 25 will depend on thread interleavings in general.

22 int worker(){

1 DEFINE LENGTH 20; /% Worker thread to process
2 char xrequest; request x/
3 mutex_type lockv; 23 lock(&lockv);
/x Server thread accepts 24 if (request != NULL){
connection 25 process ( request );
and collects client HTTP requests // read( request )
*/ 25a: memset( request, 0, LENGTH );
4 int server( ){ 26 }
5 char xlocaldata ; 27 unlock(&lockv);
6 lock(&lockv); 28 // generating response : Lines 28 — 36
7 request = malloc(LENGTH); 37}
8 localdata = getRequestfromUser (); 38  int main(){
9  strepy (request, localdata, LENGTH); 39 mutex_init (&lockv);
10 log(request); //read(request) 40 thread_create ( server );
11 unlock(&lockv); 41 thread_create (worker);
12 // do other work : Lines 12— 20 42 // do some other work : Lines 42 — 52;
21} 53}

Fig. 1: Running example with erase instructions introduced for shared data.



3 Approach

Transformed Example: We first show how our approach transforms the original pro-
gram given in figure 1. Our transformation simply introduces an erase for the shared
variable request after line 25 since request is no longer required after line 25 in worker
thread. This is accomplished using the call to memset introduced by our approach in
line 25a. Note that, here we only highlight the erasure of shared data. Erasures for local
variables within each function / thread could be introduced using the approach from
existing work [23], and we do not discuss the erasure of locals further in our technical
approach.

Main Idea: Our approach to minimize lifetime of shared data in concurrent applications
is to identify a location in the application, after which a particular definition of shared
data is no longer required. If a shared definition is available at a location in a thread and
is no more required further in that thread or any other thread running in parallel, we can
safely erase such data after that location. Since execution of threads is not predictable
statically, we adopt a conservative approach that, for each definition of a variable, iden-
tifies program locations after which no other thread accesses that definition. Note that,
we use the word definition, to differentiate between a variable and its values at different
times during the program execution. A shared variable can hold multiple definitions in a
program. Our analysis treats each definition of a shared variable separately and tries to
erase the contents of each definition after its intended use in the program (and thereby
minimizes the exposure of data between definitions).

Introduction of an erase operation is safe only when the erase (which is a write
operation) does not influence a read in another thread. Consider the running example
given in figure 1. If we introduce an erase for request in worker thread after line 25, we
can clearly see that there is no parallel read that is influenced by it and is therefore safe.
On the other hand, if the request is erased in server thread after line 10, the worker
thread may get a zero value for access at line 25, and is therefore not safe.

One may be tempted to identify parallel reads that may get influenced by the write
we introduce by checking for data-races ! caused by our write. However, absence of
such data-races does not guarantee that our writes do not influence a parallel read. For
example, in the running example given in 1, there was a last access for the request
in the server thread at line 10. Even though, the request is last accessed at line 10 in
server thread, it may still be required in worker thread based on the execution order.
However, a race-detector may not identify the write we may introduce (before line 11)
as a data-race, as all the accesses are protected by the locks. This leaves us with a
challenge to keep track of all the accesses to shared variable irrespective of the program
being data-race free.

Alternatively, mere presence of parallel reads should not prevent the introduction of
erasures. In the running example given in figure 1, there is a definition for the shared
variable request inside the worker thread at line 9. Introducing erasure for the shared
data request in the worker thread before line 26 does not influence the value read
in server thread at line 10 (because of the definition at line 9), irrespective of thread

There are various types of races as explained in [35], but we use a fairly general notion of a data-race which simply
happens when two threads that access and modify shared data at the same time without any protection mechanism.



interleavings. Therefore our analysis should be more precise to check if the parallel
reads in other threads are actually influenced by our erasure.

3.1 Approach Overview

Given two threads 7'1 and 72 (and the non-determinism in their interleaving during
execution), we need to ensure that for a shared data, the erasure point identified in
thread 7'1 is safe, i.e., thread 72 will not need this data anymore. One simple way is
to analyze thread T2 to check if there are any read operations on the shared data. As
observed earlier, it is not sufficient to check for parallel reads, we should also consider
other writes which may actually influence those reads (in the running example given in
figure 1, the read for request in server thread at line 10 depends only on the definition
at line 9 and does not get influenced by any write in worker thread ). However, if we can
identify a location [ in thread 72 which would get influenced by our write in thread 7'1,
and an actual read operation in 7'2 is reachable from [ without another write operation
in between, then the actual read is influenced by our write. To identify such locations
that would get influenced by our erasure (i.e., write operations), we can make use of
a pseudo-read at those locations and check for a data-race (in particular, Write (our
erasure)-Read (pseudo-read) races). We use the term pseudo-reads for imaginary reads,
which are just used to query the race-detection engine, but are not actual reads in the
program. Then, our analysis can be reduced to the problem of identifying critical pairs
of locations (I, ") specified as follows - [ is location in a thread where a pseudo-read of
the shared data is in race with the write we introduced, and I’ is another location which
consists of an actual read operation on the same shared variable, and I’ is reachable
from [ without another definition to this shared variable in between. Absence of such
critical pairs confirm that we can safely introduce erasures.

We explain our approach with the help of the running example given in figure 1.
Consider the erase of the shared variable request in worker thread at new line 25a as
shown in the figure 2.

22 int worker(){
/x Worker thread processing request */
23 lock(&lockv);
24 if (request != NULL){
25 process (request );  // read( request )
25a: memset( request, 0, LENGTH ); // write( request )
26
27 unlock(&lockv);
28  // generating response :@ Lines 28 — 36
37}

Fig. 2: Erasing shared data request in worker thread
We now introduce pseudo-reads for the shared variable request after line 5 and line

11 in the server thread as shown in the figure 3. Querying a race-detection engine
identifies the pseudo-reads after lines 5 and 11 in server thread to be in race with the
write at line 25a in worker thread. Note that we show pseudo-read instructions only
after lines 5 and 11. Pseudo-reads after lines ranging from 6-10 will not be in race with



4 int server (){

5 char xlocaldata ;
pseudo—read(request);

6  lock(&lockv);

7 request = malloc(LENGTH);

8 localdata = getRequestfromUser ();

9 strepy (request, localdata, LENGTH);
10 log(request ); // read( request)
11 unlock(&lockv);

pseudo—read(request );
11 // do other work : Lines 12 — 20
21 }

Fig. 3: Erasing shared data request in server thread

the write we introduced at line 25a as these lines are inside a lock region (The number
of pseudo-read instructions to be considered in a thread can be optimized as explained
in section 4).

There is an actual read for the shared data request inside the server thread at line
10, which is reachable from the pseudo-read after line 5. However, it cannot generate a
critical pair as there is a definition for request at the line 9 that is on the control flow
path from line 5 to line 10. Also, for the pseudo-read after line 11, there is no actual
read on request in server thread reachable from it. In this scenario, the set of critical
pairs is empty for the write at line 25. Therefore, we can introduce the erase instruction
for the shared variable request inside the thread worker.

Now let us consider the introduction of an erasure for the shared data request in
server thread immediately after line 10. However, a pseudo-read after line 22 in the
worker thread will be in race with this write on request after line 10, furthermore
there is an actual read at line 25 that is reachable from line 22 without any re-definition
of request in between. Hence, the pair (22,25) forms a critical pair and we cannot
introduce erase for request in the server thread after line 10.

3.2 Technical Description

System Model We formalize the intuitive description given before using a subset of C
language with concurrency constructs given in Table 1. Table 1 gives the syntax of the
executable part a program or a function. Declaration of a function is given by specifying
the function name, return type, the formal parameters, and the function body specified
using the syntax of table 1. The labels of statements in all the functions including
the main function are assumed to be distinct. We use sv to represent a typical shared
variable and [ckv to represent a typical lock variable used for synchronization.

In a program P, threads (represented using ¢ in the language shown in Table 1)
are created by invoking the call thread(t). Thread invocations are different from nor-
mal function calls. They represent a parallel execution during runtime. Functions in the
program are classified into two distinct sets called ordinary functions and thread
functions. A thread function is only invoked when a thread is created (i.e., using the



P:=3S; [PROGRAM]
S &k *px =FE [ASSIGN1]
| . x =E [ASSIGN2]
| I: px = [ASSIGN3]
| I: if E then S else S endif [IF-ELSE]
| I: while E do S done [LooP]
| .S ;S [LIST]
| I: exit [EXIT]
| I return [x | px] [RETURN]
| I lock (Ickv) [LoCK]
| I unlock (Ickv) [UNLOCK]
| I: thread (t) [THREAD-CREATE]
E:d x| &x| *px | E bop E

| call f(E, ..., E) [EXPRESSION]

Table 1: A small subset of C language with concurrency constructs

call thread(t)). Whereas an ordinary function is not invoked in a thread creation state-
ment. Inside a function, ordinary functions or other thread functions can be invoked.

Assumptions: We assume that ordinary functions invoked in distinct thread functions
are different, i.e., the same ordinary function is not invoked in more than one thread
function. We assume that there is no recursion. In this model by inlining all the ordinary
function invocations, we can convert the program into a form that contains only the main
function and thread functions. (The inlining of functions is assumed only for simplicity
of presentation. Our actual algorithm does not do this. Instead it computes function
summaries as in SWIPE [23] and uses them wherever a function is invoked.) The bodies
of the main function and the thread functions invoke only thread functions.

We treat all the global variables as shared variables (similar to [39]). Authors of
[23,38,10,9,40] assume that a pointer variable in the program accesses the data within
its allocated memory bounds. We make similar assumptions about pointer variables for
our analysis.

A definition is a statement that updates the value of a variable, such as an assign-
ment statement or a library call that reads external values and assigns it to a parame-
ter. A definition is denoted by a unique identifier id. Standard definitions of Aliases,
must_de finitions, may_aliases, succ, and preds are adopted from SWIPE [23]. A
definition of a variable x/sv at location [ is a must_de finition if the left hand side of
the assignment consists of x/sv or *p for a pointer variable p where *p aliases only to
x/sv at location .

In our analysis, we treat a shared variable sv as a formal parameter. Throughout our
analysis we differentiate between local data and shared/global data. We also identify
different definitions of sv.

Intra-procedural Analysis: DEICS first computes a control flow graph (CFG) for
each thread function in the program. The CFG represents each instruction of the pro-
gram as a node. For each definition (including the definitions of shared variables which
are added as formals) denoted by id, DEICS computes all the nodes where the def-



inition ¢d is reachable inside the function. We call this set as Reachability(id) (as
defined in [23]). We split the Reachability(id) set into three different sets named
UsePoints(id), NoUse(id) and ErasePoints(id). UsePoints(id) is the set of nodes
where a definition id is required and NoUse(id) is the set of nodes where the def-
inition ¢d is available but not required. For a given definition ¢d, a transition from
UsePoints(id) to NoUse(id) is the place where we can introduce erase instructions
for id. We call this set of nodes as ErasePoints(id) before which we may be able to
safely introduce erase instructions (similar to [23]).

During our analysis, we identify each local variable x of each thread function. For
each definition id of this local variable x, at each location [ in ErasePoints(id) we
can safely introduce erase instructions before [ provided there is no global pointer p
pointing to z, i.e., for each global pointer variable p, *p does not alias x.

From here onwards, we describe the approach for erasures of definitions of shared
variables. As explained earlier, in the running example of figure 1, we treat the shared
variable request as an implicit formal parameter to each of the functions (server,
main, and worker). There is exactly one definition, which is at line 9, for the location
pointed to by request. We let request_id denote this definition. Our analysis as given
by SWIPE [23] for the server thread, computes ErasePoints(request_id) = 11 and
for the worker thread it computes, ErasePoints(request_id) = 26.

Once the ErasePoints(id) is computed for shared variables in each thread, our
analysis needs to check that if introducing these erasures before the lines in ErasePoints(id)
would effect the reads in other threads. For each definition of a shared variable sv de-
noted by ¢d, we consider the introduction of dummy writes (i.e., erasures) for sv, before
each location in the set ErasePoints(id) of a thread function. For each such dummy
write, denoted by DummyWrite(id), our analysis computes the set
RacyPairs(DummyWrite(id)) defined below, of critical pairs discussed earlier.

Definition 1. For each dummy write DummyWrite(id) of a definition of a shared vari-
able sv, denoted by id, RacyPairs(DummyWrite(id)) is the set of all pairs (1,1') of
locations in some thread function t such that a pseudo-read immediately after location
l would be in race with the dummy write DummyWrite(id), and there is a path from [ to
" in the CFG of t such that there is no must_de finition of sv on this path, and there
is a read of sv atl'.

Existence of at least one element in RacyPairs(DummyWrite(id)) indicates that it
may not be safe to introduce DummyWrite(id). However, absence of such pairs guaran-
tee that we can safely introduce Erase(id) for shared data at the location of DummyWrite(id).
As explained in section 3.1, for the running example of Figure 1, the set
RacyPairs(DummyWrite(request_id)) is empty if DummyWrite(request_id) denotes
the dummy write on the variable request just before line 26 in the worker thread. Hence
this erase statement for request can be safely introduced before line 26. On the other
hand, if DummyWrite(request_id) denotes the dummy write before the line 11 in the
server thread then the pair (22,25) € RacyPairs(DummyWrite(request_id)). Thus an
erase statement for request cannot be introduced just before line 11.

Inter-procedural Analysis: When ordinary functions are involved we use the sum-
mary of the function at each invocation. We follow the approach given in SWIPE to



compute summaries of ordinary functions. For thread functions, we do not require the
computation of such summaries since we use RacyPairs(DummyWrite) for determin-
ing whether erase instructions for shared variables can be safely introduced in thread
functions.

4 Algorithm and Implementation

4.1 Algorithm

Algorithm 1 shows the outline of our approach which we have implemented into the
tool DEICS. The algorithm is divided into four major steps. For simplicity of presenta-
tion the algorithm is given assuming that there is no recursion and all ordinary functions
are inlined as explained in section 3 (the algorithm can be easily modified to avoid in-
lining the ordinary function and also to handle recursion by using function summaries
as given in [23]).
Algorithm 1: DEICS Implementation
Notation: f - thread function, id - unique identifier for a definition ¢ - empty set

for each f do
attach shared variable to formals set;

for each definition id do

1 Compute Reachability(id);
Spilt Reachability(id) into UsePoints(id) and NoUse(id) ;
Compute ErasePoints(id) ;
introduce Erase(id) for all local variables;

end

end

for each definition id of shared variable do
for each ErasePoints(id) do

2 ‘ introduce DummyWrite(id) before;

end
end
for each DummyWrite(id) do
3 ‘ Compute RacyPairs(DummyWrite(id));
end
for each function f do
for each definition id of shared variable do
if RacyPairs(DummyWrite(id)) = ¢ then
4 ‘ introduce Erase(id);
end
end
end

Step 1: As mentioned in the approach, the first step is to treat each global variable as for-
mal variable. We then identify definitions and aliases using fix-point computation. For
each definition of local variables and formal variables, the set Reachability is com-
puted considering aliases. The Reachability is then split into two sets UsePoints
and NoUse. Note that the UsePoints set consists of all the locations where the def-
inition is actually used and also the locations, which need to retain the definition for



an actual use at later point in the program. Summaries of ordinary functions are used
wherever they are invoked in the program to cover the inter-procedural analysis. The
ErasePoints set is computed for the locations where the definitions can be erased.
All the local definitions can be erased at the appropriate ErasePoints if there is no
global pointer p such that *p aliases to the variable of definition.

Step 2: For each definition id of shared variable, or a definition whose alias is a shared
variable, we introduce DummyW rite(id) before each location in the set ErasePoints(id)
computed in step 1. Dummy writes are introduced first and actual erases are introduced
based on our analysis on the changed program with dummy writes.

Step 3: We compute RacyPairs(DummyWrite(id)) using the technique outlined in
approach section 3. For each shared variable corresponding to definition id, pseudo-
reads are inserted and race-detection engine is invoked to identify racy pseudo-reads
and RacyPairs(DummyWrite(id)) is computed.

Step 4: We then transform the program by introducing erase instructions in place
of those DummyWrite(id) whose corresponding set RacyPairs(DummyWrite(id)) is
empty. We provided a discussion on how one can prevent the compiler from optimizing
our erasing instructions in [23].

4.2 Implementation

In our implementation, we assume that all global variables are shared variables, treated
as additional formal variables to any function. We perform a sequential analysis to com-
pute Reachability sets for all the definitions within each function along with the
definitions of shared variables in the form of formal variables. Following the method
explained in section 3, we then compute UsePoints and NoUse points by splitting the
reachability set. We compute ErasePoints for all definitions inside each function and
erase all the local data that is not being pointed to by any of the global/shared variables.

Our implementation captures the effect of introducing erasures for the shared data
at ErasePoints by leveraging on existing concurrent data flow analysis. In particular,
we use and build on the RADAR [19] framework for concurrent program analysis.
RADAR is a data-flow analysis framework which converts a sequential analysis into the
one that is sound for concurrent programs. This framework has a built-in race-detection
engine (RELAY), which identifies racy accesses on shared data.

A straightforward use of RADAR approach does not suffice for our purpose of data

erasure. This is because, in RADAR, the main focus is on writes performed by all the
threads. Whereas, our analysis introduces writes. RADAR considers write-write races
in addition to write-read races. However, we only need to consider the later type of
races, more specifically, races between dummy writes and pseudo-reads that are intro-
duced.
Dummy Writes for Potential Erasures: We modified the RADAR framework to intro-
duce dummy writes for shared data before the set ErasePoints(id) as indicated earlier.
In addition, pseudo-reads are introduced. These dummy writes are treated as original
writes during the analysis inside RADAR. For each definition id of shared variable,
instead of computing the set RacyPairs(DummyWrite(id)), our analysis computes a
superset of RacyPairs which we call Weak RacyPairs that we explain below.
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WeakRacyPairs: WeakRacyPairs is a set of pairs of locations (I,1’) specified as
follows : [ is location in a thread where a pseudo-read of the shared data is in race
with the write we introduced, and !’ is another location which consists of an actual read
operation on the same shared variable, and I’ is reachable from /. Note that, the original
criterion of the absence of redefinition of shared variable in the path between [ and I’
for RacyPairs, is relaxed for the computation of Weak RacyPairs.

Emptiness of the set Weak RacyPairs confirms that we can safely introduce era-
sures and therefore is still sound.

Reducing Invocations of Race-detection Engine: Instead of introducing pseudo-reads
at each program location, the program can be divided into race equivalence regions. A
representative program location is chosen from each region to introduce pseudo reads.
A race equivalence region is a region in the program where the raciness behavior is same
throughout the region. For the running example given in figure 1, instead of introducing
pseudo-reads at each location in the server thread, it is sufficient to introduce pseudo-
reads after lines 5,6 and 11. For each definition of shared variable inside a function,
after identifying a representative location for each race equivalence region, a pseudo
read is introduced for that definition using the modified RADAR framework.

We give a detailed evaluation of this implementation by transforming various con-
current applications in next section.

5 Evaluation

We implemented our tool DEICS in Ocaml using the CIL [34] and RADAR.
Applications: Using our tool, we transformed five multi-threaded applications written
in C. The common feature of all these applications is that they use Pthreads library
for the multi-threading functionality. Of the five, three of the applications (zebedee [5],
retawq [41], mtdaapd [2]), handle sensitive data such as ftp passwords and database
records. In order to further illustrate the precision and performance aspects of DEICS,
we chose two additional applications (pfscan [3], knot [11]) from the RADAR bench-
marks suite [4].

Application| Size |no.of|Xfrmtion Application| #of | #of |erasures|| #of |erasures
(LOC) funcs | time(sec) globs|thrds| globs ||locals| locals
pfscan 1259 | 24 15 pfscan 18 2 11 156 114
knot 2255 | 56 21 knot 43 6 10 62 160
zebedee | 11682 220 55 zebedee | 61 3 928 3776 | 2465
mtdaapd |57102| 637 | 3150 mtdaapd | 326 | 5 176 5359 | 3755
retawq | 38750| 638 | 2753 retawq 444 | 2 342 3511 | 4387
Table 2: application size and Table 3: Effect of transformation on Applica-
transformation time taken tions

Table 2 shows the application sizes and transformation time taken. The largest
application consists of 57K lines of code (LOC). Column 2 in table 2 shows how
DEICS scales well to transform applications from 1K LOC to 57K LOC, whose sum of
lines of code is more than 100K. Total number of functions in each application is given
in column 3 and the transformation time taken for each application is shown in column
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4. We observed a correlation between the number of functions and transformation time.
The transformation time includes the time taken by race-detection engine as well.

5.1 Effectiveness

Table 3 shows the effect our transformation. For each application (shown in column 1),
we identified the number of global variables (excluding pthread mutex variables) which
is shown is column 2 of the table 3. Minimum number of threads required to run each
application is also shown (column 3). The effect of our approach is given in column 4
as the number of erases introduced for globals. For a given global, there can be more
than one definition and for each definition there can be more than one erase point as the
size of ErasePoints set can be greater than one. For example, in zebedee application,
there are only 61 globals, but number of erasures are 928. We observed that, there is
a switch case in the program with different cases and the globals are getting erased in
each case of the switch statement. Also, DEICS introduces erases for globals before
all termination points in the program, covering all possible paths an execution can take.
The number of local variables in each application is shown in column 5. The number of
erasures DEICS introduced for definitions of local variables is shown in column 6 of
table 3.

We also evaluated the effectiveness of our tool to check if the erasures are intro-
duced for sensitive information in local and shared global variables. For the appli-
cation zebedee, DEICS erased sensitive information such as keys used for data en-
cryption. In the text-based browser application retawg, most of the global data has al-
ready been erased by the developer. For the sensitive data like, FTP_login_password and
current_keymap _keystr, the application has erase instructions. DEICS also introduced
erases at the same location. This clearly shows that, by introduction of such erase in-
structions in an application, DEICS reduces the data exposure by introducing erases
automatically. The audio media server application mtdaapd, uses the database to store
the music information which is retrieved by the users connected to the server. DEICS
introduced erasures for the global shared variables, which contain sensitive information.
After analyzing each application, it is clear that, most of the applications do handle sen-
sitive data in local and shared variables and erasure of such data is important.
Precision: We illustrate the utility and precision of DEICS using pfscan and knot ap-
plications. The pfscan application already had free instructions for some sensitive ob-
jects. DEICS introduced erase instructions for these objects much before these free
instructions, thus reducing the exposure of the data. For the knot application, DEICS
our manual review of certain key program variables indicates that DEICS is precise in
identifying the erase points for data held in these variables.

5.2 Performance

We measured the performance overhead of transformed applications (shown is figure
4). We ran our experiments on x86 Linux platform with configuration of 8 GB of mem-
ory and a 3 GHz AMD Phenom processor. To capture the execution time, we ran each
application multiple times with the same input and using same number of threads. For
each application, we used minimum set of required threads during the execution of
original and transformed program (this varied between 2 and 6 threads).
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Fig. 4: Performance overhead of concurrent applications

The overhead caused due to the erase instructions for sensitive data in global vari-
ables as well as local variables of individual functions In this case, the maximum run-
time overhead is less than 8% and average is around 5%.

Another set of experiments are conducted to measure the overhead due to erasing
only shared / global data (without erasing local data) (measuring only the overheads
of the work reported in this paper). In this case, the runtime overhead ranged from
0.3% to 0.7%, averaging 0.5%. We show this in Figure 4 (black bars). We observe
that transforming applications with a tool like SWIPE would also have the overhead of
around 5%. Our transformation in DEICS to erase shared data adds only an additional
performance overhead of 0.5% to minimize the lifetime of shared data.

6 Related Work

Data Lifetime Minimization There have been various works in this area of data life-
time minimization in the systems community by employing techniques from operating
systems [24,25,13,8,31,18]. Our approach uses program transformation techniques. In
addition, we handle concurrent programs which is not handled by prior work.

Static Analysis of Concurrent Applications: There are tools and frameworks devel-
oped to perform dataflow analysis [20,19]. In [32,22,39,20], a graph to represent the
parallelism is built and a modified version of sequential analysis is performed. [21,14]
provide a generic approach for static analysis of concurrent programs. Qadeer et. al.
proposed a technique to transform concurrent programs to sequential programs [36]
for finding errors in concurrent programs. All these works mainly focus on identifying
bugs in programs. Our objective of minimizing sensitive data lifetimes is different from
all of the above works.

Garbage Collection and Region-based Management Our approach for reducing sen-
sitive data-lifetimes is related to approaches for garbage collection.A key difference
between our approach and garbage collection is that our approach uses a tight, dynamic
criterion for erasing sensitive data whereas garbage collectors use a more relaxed crite-
ria. We could augment such a garbage collector with memory erasing routines to ensure
that freed objects are erased in memory. However, such a solution may still be impre-
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cise in addressing our goal, namely to erase contents of sensitive memory immediately
after their lifetime. By calling the garbage collector more often, this gap can be nar-
rowed, however, this frequent calling can introduce overheads that are unpredictable.
Free-me [27] aims to insert deallocation instructions by conservatively estimating ob-
ject lifetimes.

Extensive work in the area of region-based memory management has been per-

formed [37,7,28,12,42]. The main goal of these works is to have an economic usage of
memory and reduce the need for invoking garbage collector. A region based approach
could be used for erasing sensitive data, however it might result in poor precision.
Data Erasure and Memory Safety Chong et.al [16,15] provide a formal treatment to
information erasure in their paper. Their approach is targeted towards new applications,
whereas our approach can transform existing applications as well. Memory manage-
ment techniques have been proposed to minimize the risk of data exposure [8,31].
However data lifetime minimization is not achieved with these approaches.
Privilege Separation Approaches such as [29,33,30,43] rely on changes at operating
system and hardware level to maintain the sensitive data separately so that there are no
privilege escalation attacks. Our approach focuses on modifying applications to have
built-in mechanisms for minimizing data exposure.

7 Conclusion

In this paper, we presented an approach to minimize lifetime of data in concurrent ap-
plications. Our approach is implemented as a tool called DEICS, which automatically
transforms concurrent programs with instructions to erase data after its intended use.
Our tool is based on static analysis to minimize the runtime overhead. We have evalu-
ated a set of real world concurrent applications written in C to show its effectiveness.
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