
SUEZ: A Distributed Safe Execution
Environment for System Administration Trials

Doo San Sim and V. N. Venkatakrishnan – University of Illinois, Chicago

ABSTRACT

In this paper, we address the problem of safely and conveniently performing ‘‘trial’’
experiments in system administration tasks. System administrators often perform such trial
executions that involve installing new software or experimenting with features of existing
software. Often such trials require testing of software that run on multiple hosts. For instance,
experimenting with a typical client-server application requires understanding the effect of the
actions of the client program on the server. We propose a distributed safe execution environment
(DSEE) where such tasks can be performed safely and conveniently. A DSEE performs one-way
isolation of the tasks run inside it: the effects of the client and the server are prevented from
escaping outside the DSEE, and therefore are prevented from interfering with the processes
running outside the DSEE. At the end of the trial execution, a DSEE allows clear inspection of the
effects of running the task on all the hosts that are involved in the task execution. Also, a DSEE
allows the changes to the ‘‘committed,’’ in which case the actions become visible outside the
DSEE. Otherwise, they can be ‘‘aborted’’ without affecting the system in any way. A DSEE is an
ideal platform through which a system administrator can perform such trials without the fear of
damaging the system in any manner. In this paper, we present the design and implementation of a
tool called SUEZ that allows a system administrator to create and use distributed safe execution
environments. We have experimented with several client-server applications using our tool. By
performing these trials in a DSEE, we have found configuration vulnerabilities in our trials that
involve some commonly used client-server applications.

Introduction

System administrators and desktop users en-
counter various situations in their day-to-day activity
that require them to download, install and run applica-
tions on their machines. One of the most common
tasks is that of a ‘‘trial’’ run of a piece of software that
the administrator. Such a trial is typically done if a
system administrator has no prior experience in using
that piece of software, but there are several other rea-
sons for such a trial execution.

• Understanding actions of a program. Often,
system administrators would like to study the
impact of executing a particular command on
their system. More importantly, they often
would like to exercise a particular option in a
program, and see the observable effects of exer-
cising that option. For instance, when exercis-
ing an option in a particular program, the
administrator would like to know the direct and
indirect effects of using that option. The abun-
dance of binary programs and programs
equipped with graphical user interfaces (as
opposed to script based installations) often
compound this difficulty, as a lot of critical sys-
tem changes happen ‘‘behind the scenes.’’

• Testing compatibility with existing configura-
tions Often a system administrator wonders
whether installation of an application will work
(co-operatively) with existing packages and

configurations. Another issue she is concerned
about is about the security of user data that is
handled by the application, and whether the
data handled by the application is adequately
protected through file permissions.

• Experimenting with new software. Often users
download freeware/shareware from various
Internet sources. These software may be
untrusted or faulty and hence it is important to
understand the effects of these software. Hence,
system administrators may wish to perform
several walk-throughs of these tools to ensure
that they do not create any new problems
related to security and/or interoperability.

• Patch testing. Application of software patches
and updates too early may leave the system
with potential interoperability issues created
due to the updates. Another issue is with possi-
ble bugs in the patches/updates. (This is usually
the reason updates are delayed much).

Often the user1 performs the above tasks while facing
the need for an environment that allows convenient
study of the impact of such tasks. By impact on the sys-
tem, we refer to issues related to general operation,
interoperability with existing applications and security.

While the goal is to understand the actions of a
program in a networked system, we note that users are

1In this paper, we use the terms user and system administra-
tor interchangeably, unless otherwise mentioned.

20th Large Installation System Administration Conference (LISA ’06) 161

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

not interested in every action of a program, but only
those actions whose effects they perceive as relevant to
system interoperability and security. This requires that
we abstract away from internal actions of a program,
(such as function calls and assignments to local vari-
ables), and focus on observable actions of a program.
Some examples of such actions are a) addition of new
users b) modification to user files c) changes to local
configuration files d) changes to boot time scripts.

To understand the impact of such changes on a
host, Safe Execution Environments (SEE) were pro-
posed in [15, 23] and for the Windows platform in
[25]. A SEE uses one-way isolation to effect contain-
ment of the tasks run inside the SEE. Processes run-
ning outside the SEE do not see the changes made by
the tasks run inside the SEE. At the end of execution,
one can examine the changes made to the SEE envi-
ronment, and decide whether to keep them or discard
them and return to the original state.

A SEE is a highly effective environment to per-
form system administration trials that involve a single
host. However, for tasks that are distributed over a set
of networked hosts it is not directly suitable. A typical
example is a client-server application where any action
triggered by a client may change the system state on
the server host. In this case, to understand the changes
on the server that were triggered by the actions of the
client, we need a distributed environment. This paper
presents the design and implementation of a SUEZ, a
tool that allows for creating distributed safe execution
environments(DSEE) to assist in system administra-
tion trials.

Let us consider a simple system administration
example that involves remote administration of printer
software. The Common UNIX Printing System
(CUPS) [1] allows remote administration of printers
using a specialized port on the printer server (TCP
port 631). Now, on loading the printer web interface
page from the print server, the user is presented with
several options related to adding and managing print-
ers and jobs. Each of these options triggers a specific
change in the printer server. For instance, adding a
printer requires changes in the server on the printer
driver file /etc/cups/ppd, and changes to the /etc/printcap
that lists the printers. All these changes take effect
when the user executes the command to add a printer.
In order to know the specific changes made by a com-
mand, the system administrator is left with two
options. The first one is to read manuals and other
forms of documentation. The second one is the use of
low level system tools. While some may argue that
these are be viable options in the case of a well-known
application such as CUPS, they are unsuitable in the
case of new/experimental software, software updates
and patches.

Thus, understanding the key impacts of installing a
software package/patch requires the following abilities:

1. To make the observable effects of an action on
a host transparent to the user: In the above
example, the action is the choice selection
(through the menu displayed by the browser) to
add a printer.

2. To make transparent the observable effects of
these actions on other hosts in the network:
This corresponds to changes to the files
/etc/cups/ppd and /etc/printcap in the printer
server.

3. To see the ‘‘difference’’ between the state of the
system in all affected hosts before the action
and after it: For the above example, this
requires us to identify the above-mentioned
files before and after the add-printer action, and
any changes to system objects in the filesystem
client (in this case there are none).

4. To correlate the above three to arrive at a com-
plete understanding of the actions of the soft-
ware under scrutiny: This requires us to log the
temporal sequence of actions performed on
both the client and server in a unified view.

5. In the event of the system administrator is not
satisfied with the results, restore the state of the
system to that before that of the start of installa-
tion (i.e., undo the effect of observable actions).
The un-doing capability is needed to perform
any experimentation on real systems.

Related Work

In this section, we discuss related work that are
available as options to the system administrator. We
first state the requirements of any system that would
satisfy our objectives 1) to 5) given above.

1. Allow the task to execute to completion. In
order to study the effects of a trial execution,
we must allow the application to execute to
completion. This will ensure that the results of
a trial execution match the results of a real exe-
cution when the application is actually installed
and deployed.

2. Tr a c k the effect of the task on multiple hosts.
During execution, a task may further trigger
changes to system objects in other hosts, as
given in the CUPS example above. This sug-
gests that any approach that addresses this prob-
lem must have support for distributed monitor-
ing, thereby tracking and correlations the actions
of a program on other hosts on the network.

3. Support customizable unified logging. The tem-
poral sequence of operations that result in
changes to the objects in various hosts need to
logged in a central location, where they can be
analyzed. In addition, to focus on events of
interest to the system administrator, the logging
system must be simple enough to support cus-
tomizable filters to reduce the size and com-
plexity of evaluating them.

162 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

4. Ability to undo the effects of actions of a pro-
gram. This is required to ensure that the system
can be restored to its original state before the
program was executed.

Below, we discuss the related work by grouping them
into various categories. At the end of this section, we
discuss the suitability of each approach category in
matching the the above requirements.

Logging based approaches A typical approach
way to understand the effects of executing a particular
software is through the use of logging [2]. The system
administrator can enable the logging options present in
the software, and then inspect the logs after the opera-
tion to have an understanding of the actions of the soft-
ware. The problem with this approach is that it is com-
pletely dependent on the developer of the software sys-
tem/patch to log its actions. Thus this is is not very
dependable option as many software systems are written
without logging features. Of course, with experimental
software this approach clearly will not work. Also, an
approach purely based on logging will make the job of
reverting the system back to original state quite tedious,
error-prone and in some cases, impossible.

Use of program tracing tools A second approach
is to use tools such as ltrace [10] and strace [4] to
study the actions of a piece of software. While this
approach may reveal the effects of running or upgrad-
ing an application, one sees the effects of the software
after it has finished execution, when the applications
actions have already affected the system. It may be too
late, as recovery actions may involve clean-up actions
such as restoring files from backups, or removing
user-ids created by the application. Approaches such
as sandboxing [14, 13, 18, 22, 7, 19] do not work too,
as they simply restrict the execution of the software,
rather than allowing it to run completely in order to
study its actions. Use of package managers such as
RPM and dpkg may simplify the problem of uninstalla-
tion; but they do not offer any help in understanding
the effects of software that are already installed. Fur-
thermore, package managers are inapplicable if the
software is distributed in binary or source forms.

VM based approaches A third approach is to use
special machines [16, 12] or even virtual machines [5,
11 , 24] for studying the effects of a particular piece of
software. In order to correctly track the effects of the
system, machines and special hardware have the prob-
lem of accurate environment reproduction, where the
system configuration on the virtual machine environ-
ment needs to accurately reflect the one on the produc-
tion environment. Such accurate environment reproduc-
tion is crucial to ensure that the system behavior on the
VM is same as that on the production system. Another
possibility is make use of snapshot features in modern
virtual machines such as VMware. However, these
snapshots tend to give the difference of the actions of
the entire set of processes running on the system and
not the programs the user wishes to focus on.

Recovery-oriented approaches Although recov-
ery from failures is not the primary goal of our
approach, we do provide facilities for recovery in case
of a task failure. The Recovery-Oriented Computing
(ROC) project [20] is developing techniques for fast
recovery from failures, focusing on failures due to
operator errors. [8] presents an approach that assists
recovery from operator errors in administering a net-
work server, with the specific example of an email
server. The recovery capabilities provided by their
approach are more general than those provided by
ours. The price to be paid for achieving more general
recovery capabilities is that their approach is applica-
tion specific. In contrast, through a DSEE we provide
a general task-independent framework for trou-
bleshooting and recovery.

Discussion Note that sandboxing based
approaches do not fully support the objective of allow-
ing a task to run to completion (point a) above), as
they block actions of a program based on the policy.
So using sandboxing, we have no way of learning the
complete effects of a piece of software. Logging based
systems allow the applications to run with complete
freedom, but do not support undoing of actions (point
d) above). File versioning systems [17, 21] and virtual
machine based snapshot approaches may satisfy undo-
ing at a more general level, but not based on a pro-
gram or specific actions of a program and therefore do
not satisfy point d) above. Furthermore, they do not
directly support point b) and c) above. On the other
hand, executing a task in a DSEE will address all the
objectives a) to d) above.

Paper Organization This paper is organized as
follows. In the next section, we discuss the concept of
one-way isolation that serves as the basis for our
approach for building DSEEs. We then discuss the
design details of our framework for building DSEEs
followed by the routing enhancements to automati-
cally provide the redirection facility for network oper-
ations. We explicate a message handling subsystem
that we implemented for communication between var-
ious DSEEs. We present a system evaluation by per-
forming various trials using our system and discuss
the performance costs followed by a conclusion.

One-way Isolation

Our approach builds on the one-way isolation
approach presented in [15, 23]. We briefly review the
one-way isolation approach that we employ to create
distributed safe execution environments (DSEE).

Isolation of a set of tasks refers to the property
that disallows the effects of such tasks from being
made available until its completion. In database sys-
tems, isolation is one of the ACID properties. The
main objective in using isolation in our approach is to
effect containment of the trial execution task per-
formed inside the isolated environment. Any operation
that is only ‘‘reads’’ the system (i.e., one that reads the

20th Large Installation System Administration Conference (LISA ’06) 163

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

system state but does not write/modify it) may be per-
formed by SEE processes. It also means that ‘‘write’’
operations should not be permitted to change the state
of the system. There are two options to implement the
environment such that isolation is achieved: one is to
restrict the operation, i.e., disallow its execution. The
second option is to redirect the operation to a different
resource that is invisible outside the safe execution
environment. To maintain the correctness of the
resource access operations, it is important to maintain
the redirection for subsequent operations (such as
writes) from the program. Below, we discuss both
restriction and redirection for performing system
administration trials.

Through restriction, an operation initiated by a
process is prevented from completion. When this hap-
pens, an exception may be returned to the process. To
implement restriction, we need to know the set of
operations that may affect the state of the system.
However, in the context of performing trial execu-
tions, an approach purely based on restriction is not
likely to be very successful as it will prevent applica-
tions from running successfully to completion. For
instance, a program may intend to perform a network
operation by opening and socket and listening to mes-
sages on that socket. If this operation is restricted, this
program will not be able to successfully receive mes-
sages. Most non-trivial client-server applications will
fail for similar reasons. Hence, in our approach we
resort to restriction only if the other redirection option
is not likely to provide successful results.

The other choice for implementing isolation is
through redirection. In redirection, any operation that
accesses a resource is redirected to another resource
that is unavailable to the rest of the system. For
instance, when a file modification operation is per-
formed by a SEE process, a copy of the original file
may be created in a ‘‘private’’ area of the filesystem,
and the modification operation is performed on this
copy. Redirection does not suffer from the same prob-
lem as restriction and the SEE process is likely to suc-
cessfully run to completion under redirection.

Tw o forms of redirection are possible: static or
dynamic. Static redirection requires the source and tar-
get objects to be specified in advance of the operation,
in fact before the SEE process is executed. For
instance, one may statically specify that operations to
bind a socket to a port p should be redirected to an
alternate port p′. Similarly, one may specify that opera-
tions to connect to a port p on host h should be redi-
rected to host h′ (which may be the same as h) and port
p′. However, such static redirection becomes hard to
implement when the number of possible targets is too
large to be specified in advance or if a SEE process
performs a large number of such operations that are
distinct. For instance, it may be hard to predict the
number and location of files on a server that may be
accessed or modified by a client operation. Moreover,

such modification operations have indirect side effects
that involve dependencies between such object, e.g.,
the file operations on the server involve changes to the
directories these files reside in. A redirection opera-
tion that ignores the effect on these directories simply
will not work. In such case, dynamic redirection where
the target for redirection is determined dynamically
during execution.

In this paper, by using such redirection, we show
how to build distributed SEEs (DSEE), where pro-
cesses executing within SEEs on multiple hosts can
communicate with each other. Such distributed SEEs
are particularly useful for safe execution of a network
server application, whose testing would typically
require accesses by nonlocal client applications.
(Note, however, that this approach for distributed
SEEs works only when all cross-SEE communications
take place directly between the SEE processes, and not
through other means, e.g., indirect communication
through a shared NFS directory.)

In our current implementation, system call inter-
position is used to implement restriction and static re-
direction. We restrict all modification operations other
than those that involve the file system and the net-
work. In the case of file operations, all accesses to nor-
mal files are permitted, but accesses to raw devices
and special purpose operations such as mounting file
systems are disallowed.

In terms of network operations, we permit any
network access that can be dynamically redirected.
This entails any local network operation such as a ser-
vice request from a host in the network. Dynamic redi-
rection is currently supported in our implementation
for a number of commonly used network services.

After the trial execution is over, the system
administrator can examine the results of the trial exe-
cution. If the results are satisfactory, she can commit
the results back to the file systems on the respective
hosts that run the DSEE. Commit criteria for such exe-
cutions have been developed in [23]. In this paper, we
do not discuss criteria for committing. Instead, our
focus is solely on construction of DSEEs and perform-
ing system administration experiments with them.

Our Approach

Figure 1 shows the a network-level overview of
SUEZ. There are two main components in SUEZ that
are responsible for creating a DSEE. They are a) a
host level monitor that runs on each SUEZ host and b)
a network redirector that runs on the main router. Each
host under SUEZ has a host monitor component. This
host monitor is responsible for isolating any local
operation or remote operation. Such host-level isola-
tion component resides on all the other hosts that are
similar in the network, and the isolation environments
in all these hosts collectively form a DSEE isolation
context. The host monitor also runs a messaging ser-
vice that it uses to communicate with other DSEEs.

164 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

The router has a component of SUEZ that per-
forms transparent network level host and service redi-
rection. The use of transparent host and service redi-
rection allows the user of the system to run experi-
ments without having to know the network and service
requirements of the task to be performed in advance.
Each host monitor logs its actions, and these logs are
integrated in a log server. The log server presents the
temporal sequence of operations performed during the
trial execution.

Figure 1: A network view of SUEZ.

Host Monitor

Figure 2 presents a detailed view of the host
monitor. Each host-level monitor is built on top of the
isolation module present in [15]. These monitors are
used for tracking observable behaviors of programs
running on their hosts and tracking changes to file-
system state. As shown in Figure 1, similar monitors
run of every host used in our system, and communi-
cate with each other for the purposes of logging soft-
ware actions.

In a typical client-server interaction, an action
from a client triggers an action in the server. Hence
these monitors communicate with each other to pre-
cisely track the commands executed in the server in
response to the actions of the client. We therefore have
two broad components in a monitor. The first one that
addresses isolation of processes running locally under
the monitor, corresponding to host-level isolation. The
other component is for communicating with similar
monitors running on other hosts such that network
level isolation is achieved. This is shown in Figure 2
by the division of host and network level components.

In the reminder of this section, we describe the
host monitor.

The objective of our monitoring system is to
identify observable events that are triggered by the
execution of a program across the entire system
administrative boundary. At the level of a host system,
this requires us to monitor the observable actions of a
set of processes. These actions are ultimately effected

through system calls, and hence, system call interposi-
tion is our primary monitoring approach. Each host
level monitor intercepts the system calls of the appli-
cations that are running under its purview.

Operating System

System Call Interceptor

NetworkHost
DSEE Process1 DSEE Process2

Config
Module

Logging
Module

 Filesystem
Isolation

Control
Channel

Service
Handler

Routing
Handler

Figure 2: A host view of a DSEE.

The file system module tracks changes made by
the software that is run under the DSEE. The file sys-
tem module is based on our past work on one-way iso-
lation [15, 23]. Isolation is achieved by intercepting
and redirecting file modification operations made by
the process running on the host so that they access a
‘‘modification cache.’’ This modification cache is
invisible to other processes in the system. (This
ensures that in the event the system administrator does
not like the changes made by the software, it can be
safely removed from the system without any side
effects.) To ensure a consistent view of system state,
the results of file read operations made by the process
are modified to incorporate the contents of the modifi-
cation cache. On termination of the process, the sys-
tem log contains entries from the modification cache
for user to inspect these files to determine if the modi-
fications are acceptable. Otherwise, they can com-
pletely undo the changes through the trial execution.

Managing network connections When a process
is being monitored, it may make connections to other
hosts on the network. Once such a connection is initi-
ated, the Control Channel Module (CCM) initiates the
monitoring required at the other end of the connection.

20th Large Installation System Administration Conference (LISA ’06) 165

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

Based on the nature of network connectivity
(client/server), this module will communicate with its
counterpart on the other end of the connection. If the
program tries to connect to the network, CCM informs
the router of this event which will result in creation of
new routing path to the other hosts. There is no global
network state stored at a single point for network
actions since all other distributed monitors handle them
co-operatively. CCM just passes appropriate control
messages to the relevant components. We describe the
routing module in more detail in the next section.

network-op-isolation-module() {
switch(new-route){

case ROUTE-UP:
client-addr = get-address-of-client();
target_addr= get-requested-address();
if (target-addr) already on network break

else
new-host = find-available-host();
map new-host to client-addr;
send new-routing-up message to new-host;
get network-portion of the requested address.
new-device = get-available-devcie();
boot new--device.

break;
case DEL-ROUTE:

client = get-address-of-host();
find list of hosts assigned for client.
send del-routing-path message to the host.
new-device= get-device-name(routing-path);
release host resources;
release network device();
shutdown device ();
break;

}
}

Figure 3: Algorithmic sketch of the routing module.

Dynamic service start/monitoring Recall the
CUPS example, where the actions from a browser
affect the configuration settings on the print server. In
this case, the monitor on the remote host needs to be
alerted to monitor the service that receives this
request. If the service is not already running and if the
SERVICE_UP message is received, then the system
allows the service to be started on demand. This is
accomplished by using the database of services avail-
able in the system. In case the service is already run-
ning (i.e., started through the previous step), then the
monitor detects this and dynamically attaches itself to
the service process. If the service is not already run-
ning, it starts the service process.

Log Module The log module generates logs
depending on various configuration options and filters.
These logs reside on the individual hosts. Using the
system call output information itself as the log is not
very useful as it may contain excessive information.
The log module transforms the system call log infor-
mation to a more user friendly form. Since the logs
can be output can be quite long, customizable filters
can be written for the logs to inspect specific actions.

For instance, the log can be customized retain infor-
mation only about filesystem operations and network
operations. For filesystem operations, it contains the
file object name. For network operations, the service
type and address related to the connection is retained.
A log generator can be used to merge logs from vari-
ous hosts to produce unified view logs.

Routing Module

A process that is run may connect to a network
service on the local network. Isolation of this opera-
tion can be done statically or dynamically. Performing
network-level isolation using static redirection
requires that the system administrator knows the
requirements of the software system that she is experi-
menting with. Guessing the requirements can soon
become tedious or can impact the usability of the
approach. Instead, our approach involve dynamic redi-
rection of network service requests. Such dynamic re-
direction is configurable for specified network ser-
vices. One question that arises in the same context is
that of an application contacting an Internet host. In
this case, providing complete isolation while allowing
the application to run is not possible, as it is hard to
emulate the functioning of an arbitrary network ser-
vice. In this case, there are two options. One is to dis-
able such requests, for the sake of security. Since our
approach is built using system-call interposition, this
is feasible. The other option is to only isolate the
actions of the client at the host level. Of course, the
disadvantage is this option is that reproduction of the
entire behavior of the application is not possible, as the
server side behavior is not reproduced accurately. This
is acceptable as there is generally no easy solution to

166 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

the problem of studying an experimental/untrusted soft-
ware that tries to connect to an outside host.

Dynamically setting up routes and services
requires redirection of network service requests, that
are established using dynamic route generation and
dynamic service redirection. We will describe the
route generation in this section, and service redirection
in the next subsection.

message-loop() {
while(true) {

waitfor-command();
dispatch-command();

}
}

dispatch-command {
case NEW-ROUTE-UP:

/* set up new route */
break;

case DEL-ROUTE:
/* delete route and release resources */
break;

case SERVICE-UP:
/* bring up the network service */
break;

case SERVICE-DOWN:
/* shutdown network service */
break;

case NEW-HOST-UP:
/* add host info to host list */
break;

case QUERY-HOST:
Query host list ;
break;

case START-TRACING:
/* start recording operations */
break;

case STOP-TRACING:
/* stop recording operations */
break;

}

Figure 4: Various messages received by the message handler.

Dynamic route generation is established using a
specialized route handler module, that dynamically
establishes a routing path between the host running the
program and the target host. Such dynamic redirection
has several possible options – the use of forwarders
that do IP masquerading such as IP tables and IP
chains. However, if the application specific functional-
ity (such as any internal tables) is dependent on the
target IP address, then such forwarding mechanisms
may break programs. Open source redirectors are
available, however, they do not support every kind of
TCP/UDP connection. Also, using a redirector
requires the same to be installed on the all the target
hosts. The approach we have taken is to modify the
routing table dynamically on the router to forward the
connections to the target network/host.

To enable redirection of connections, the host
needs to configure the IP address of the target host
(that runs the network service) dynamically. In our
implementation, this is accomplished by establishing a
virtual network interface on the target host. This vir-
tual network interface is enabled using IP aliasing.

For a minimal set up for testing client-server im-
plementations, our system needs one router and at least
two machines, one that initiates a service request and
the other that accepts such requests. (These can be set
up in an inexpensive fashion using virtual machines, a
topic we will discuss below.) If each of the machines
needs to be on a different subnet, then the router should
have a network interface on each subnet. Furthermore,
IP forwarding needs to be enabled in the kernel state of
the router. Our router module is required to be running
on the router and on the host accepting service requests.
This is needed to change routing tables dynamically.

Let us look at a typical client-server interaction
between a client and a web server on our system.

1. A client invokes connection request to the ser-
vice that either runs on the network or is not yet
available.

2. The Control channel module on the client inter-
cepts this event and notifies the routing module
(running on the router) of the address for this
connection request.

3. Upon receiving this request, the router checks
whether there exists an already running web
server on the network. If so, it returns and the
CCM informs this service-related information
to a the service handler on a machine running
server. If the service is already running on the
server, the client can start exchanging mes-
sages. If not, the service handler starts the ser-
vice. If the network path is not established it
proceeds to the next step.

4. The routing module on the machine receiving
the message from the router boots up a new vir-
tual network interface with the address.

5. The router chooses appropriate address for a
new routing path and boots this new interface.

6. From this point onwards, all communication is
transparently redirected through this newly
established path between client and server.

The routing module is explained in Figure 3. The
state maintained in the router consists of available
Ethernet devices and addresses of hosts running. Dur-
ing the initialization of the router module, devices’
name need to be given to the module as parameters.
When a new host comes up on the network, it registers
its address with the router module. The router module
maintains a vector of such addresses. Whenever a task
is complete, the network interfaces allocated for the
routing path are brought down, and the returned to the
pool of resources for future use.

Message Handler

Often, the focus of attention on a particular trial
execution is in executing one or more features of an
application. In this case, a user may want to only focus

20th Large Installation System Administration Conference (LISA ’06) 167

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

on this operation and ignore other operations of the
system. A message handler is made available on each
client to start and stop tracing the operations made by
the trial execution. A typical use scenario is as fol-
lows: When the user would like to focus on exercising
a feature in the application, before exercising this fea-
ture, she can instruct the client DSEE to send a
START_TRACING message. All the DSEEs will record
the subsequent operations made by the task. After the
user is done, she can send a STOP_TRACING message
that will stop recording the operations of the task.
When tracing is stopped, the set of actions that were
recorded between the START_TRACING and STOP_
TRACING messages capture observable effects of the
operations in this window.

Additionally, the message handler also deals with
messages from other DSEE components. These mes-
sages are about routing information and services regis-
tration. On receiving these messages, the message
handler invokes the appropriate handlers. The
responses to messages received are shown in the com-
mands exercised by the message handler in Figure 4.
For example, when it gets NEW-ROUTE-UP or DEL-
ROUTE messages, it invokes routing module to boot
up or shutdown routing paths respectively.

If the application running in the DSEE is
untrusted, it may send false messages to the message
handlers on the other hosts. For this purpose, the
default policy enforced by the system call interceptor
is to disallow any such messages on the control chan-
nel that is maintained by the host monitors.

Support for virtual machine hosts Vi r t u a l
machines can result in creation of inexpensive hosts on
demand, and our approach is designed to take advan-
tage of the use of virtual machines. Our prototype
implementation uses VMware virtual machines [5],
where creation/loading of virtual network interface and
virtual network groups can be easily done on demand.

Experimental Evaluation

Before describing the experiments performed with
SUEZ, we describe our experimental set up. We also
describe the configuration options available to the user.

Setup

• Virtual network setup The network set up has
one router and two subnets. Since we used
VMware to create hosts on the network, this
required creation of three virtual machines.

• Router setup To act as a router, the kernel value
for IP_FORWARD should be 1. This router has
three network interfaces, one on the physical
network, and the other two for subnets A
(192.168.1.X) and B (192.168.2.X).

• Message handler setup The message handler on
the router is set up with available device names
and addresses. Above case, available device on
subnet B is bound to 192.168.2.1.

• Server Host monitor setup A SUEZ host moni-
tor (with its associated message handler) is
launched on a machine on subnet B to act as
host available for service. To this, HOSTMODE
value need to be set in the config file. At the
starting of this host information will be sent to
the message handler.

• Client Host setup A SUEZ monitor with
ROUTEMODE value set in the appropriate config
file for the a machine on subnet A. ROUTE-
MODE config variable is explained below.

From this point onwards, if the client program
tries to connect to a service, with SUEZ with ROUTE-
MODE set, the connection will be transparently for-
warded to host in subnet B.

Configuration Parameters

The following configuration flags need to be set
on the hosts in the network.

1. ROUTEMODE – If this value is set, SUEZ will
intercept all network connections before the
client program get connected to its original des-
tination. Eventually, the connection will be
transparently forwarded to a machine that hosts
the corresponding service.

2. HOSTMODE – To automatically configure an ip
address and start the required service dynami-
cally as on host, one would set this value in
SUEZ. If this flag is set, the host monitor in
SUEZ will send host address to the appropriate
message handler.

3. REMOTELOG(ULOG) – In order to make a uni-
fied log, each host monitor traces and collects
the events of interest. If this value is set in con-
fig file, each event of interest will be logged.
When these events are merged into to one log,
only events of interest will be made viewable in
the unified log.

In addition, a list of available devices available
to setup new routing paths on the router is provided as
input to the router module through a config file.

In the following section, we present an experi-
mental evaluation of using our approach. Our evalua-
tion consists of two parts: the first is a system evalua-
tion, which was about applying the system to study the
execution of several system and application software
tools. The second part is a performance evaluation of
our system.

We analyzed the installation and execution of
several applications in DSEEs created using our sys-
tem. Below we describe four candidates from our
experiments.

Address Book leak in SquirrelMail Squirrelmail is
a Mail User Agent (MUA) package written in PHP4.
Being a web based user agent, it interacts with a web-
server in addition to a mail server. The functionality of
the program is triggered through many links and buttons

168 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

on the web page interface. For SquirrelMail, since the
interface is web-based, we tried to understand the func-
tionality that interacts solely with the web server, as
opposed to that which also interacts with the mail
server. Understanding the nature of information stored
in a web server is critical as the protection of data stored
in a web server is an important issue. So we installed
Squirelmail with its default configuration in a DSEE,
and observed the actions during installation.

After the installation, we tested the various
options in Squirrelmail by trying out the various
options in the web interface. One such interface is the
address book interface that allows a user to add or
remove entries from his address book. Once that inter-
face was tried, the results of the system pointed to file
modifications on the web server. We observed that the
default configuration resulted in placing the data sub-
directory that holds the address book information
under the top-level Squirrelmail directory. If this URL
is known, an arbitrary user can access the (private)
address book information of any other user. The URL
is normally known to any user of the system, and is
easily guessable if one knows the presence of a Squir-
relmail installation on a server. This directory needs to
be protected from being directly accessible in order to
protect the privacy address book information.

Our tool enabled us to correlate the action of cre-
ating an address book entry on the client to the loca-
tion that it was stored in the server and therefore
uncover the vulnerability of address book information
leak. Changing the access permissions for the direc-
tory subsequently solved this problem.

Remote web server upgrading Several systems
exist that perform upgrades/installation from a remote
machine. For instance, Webmin [9] is one such tool.
The primary purpose of such tools is to simplify desk-
top administration. Although this purpose is achieved
by such tools, they do not provide a way to recover
from any problems during installation. For instance, if
the installation of a package using a remote adminis-
tration tool is not successful it is difficult to recover
from such errors. Configuration files that are overwrit-
ten may be lost during the installation process. (Using
a backup procedure, the system administrator can save
these files, but this requires knowing in advance which
files are being overwritten). Using our approach, we
can perform the installation without the fear of damag-
ing the system in any way, and then finally inspect the
system to see if the changes made by the installation
are desirable, and then commit these changes. If the
installation does not proceed as expected, they can go
back to the original state of the system.

To study the use of the Webmin administration
tool, we upgraded the apache web server program
from a remote client machine (in a DSEE). We
upgraded the http package (that contains the apache
web server) version 2.0.55 to http-2.0.58 through the

Webmin tool remotely. After the installation, we tested
whether the installation process worked fine by testing
the new version of the web server. Also, we observed
for any modifications to existing files. In both cases,
there were no problems resulting from the installation.
Hence these changes were successfully committed
into our system.

Debugging Mgboard Configuration Mgboard [6]
is web-based message board on apache with php.
Mgboard uses an internal flat-file database rather than
an external SQL database such as mySQL. Using
Mgboard, a user can post articles and upload files to the
website. In interactive programs such as Mgboard, it
would be a tedious task to identify misconfigurations.
For example, the files that store system configuration
data for Mgboard needs to be group-writable and other
when create database file (for public writing). As server-
side scripts are hard to debug, any misconfigurations in
Mgboard (which is indirectly powered by the Phpadmin
program) are hard to detect. Also it is difficult to know
which actions (such as addition/update of posts) are
affected by this misconfiguration. However with the use
of a DSEE, it is easy to know which actions were trig-
gered (specifically, which files were executed) and
thereby reason through the CGI script operations.

To check this, we performed two experiments. In
the first experiment, we intentionally planted certain
misconfigurations in the remote client, by introducing
file permission errors. In the second experiment, using
a web client, we created a new page on the web server.
While posting an article from the client on to the
server, using our tool, we observed creation of tempo-
rary files in the /tmp directory of the server. This
helped us to investigate the possibility of a local race
condition vulnerability that could result through the
creation of this temporary file. Such a race condition
could happen if arbitrary users can overwrite this file.
Such reasoning is possible with our system as the uni-
fied log presents the temporal sequence of such
actions and writing custom filters can identify and
‘zoom in’ on the error.

Configuration errors in Proftpd ProFTPD [3] is a
ftp server written for use on a UNIX-like operating
system. A ftp server allows the remote user to perform
operations on remote file systems, and even send site-
specific commands. It is therefore important to test the
software installation and check for the potential
actions of the server when it interacts with a client.
Occasionally the settings may dictate account users or
even anonymous users can inquire or change file sys-
tems explicitly by using remotely issued commands.

We tried this as a candidate example for testing
the ProFTPD server. We observed that on installation,
the system executes an init script, which results in two
main actions: creation of user and group ids for the
server. Another configuration file that was created was
the /usr/local/etc/proftpd.conf. Also during our installa-
tion, the server was configured to restrict users’ access

20th Large Installation System Administration Conference (LISA ’06) 169

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

with DefaultRoot in proftpd.conf but an accidental sys-
tem configuration error resulted in the option #Default
Root . When the service was started, we exercised the
gftp client to change the working directory to the root
directory and store a file. The usual expectation on
part of the server administrator was to have the file
stored in user home root, but due to this misconfigura-
tion it triggered a permission error. In this case, the
unified view log shows actual action sequence with
operations on the file system starting from operations
on the client to the server. It pinpointed the source of
the error to the DefaltRoot option. Such configuration
errors can be debugged effectively with our approach,
which allows one to focus specifically on the results of
a particular action in a program.

Performance Evaluation

The second part of our evaluation is the of the
performance of our system with several client-server
applications.

We describe the experimental setup first. We used
several virtual machines hosted in machine for all our
experiments. The machine is an AMD Sempron 2400+
CPU with 2 GBytes memory, running the Red Hat
Enterprise Linux distribution. The virtual machines
also run the RedHat Enterprise 4. Each virtual machine
instance runs SUEZ with router and service handler,
and any associated client or server programs.

Figure 5: Client-side overheads.

We classify the performance measurement exper-
iments into three categories:

• Client-side overheads. These overheads in the
client side may result from the monitoring over-
head through SUEZ.

• Server side overheads. These overheads result
from the monitoring overhead at the server.

• Network delays. These are overheads introduced
due to the routing and service isolation in SUEZ.

• Service and program launching overheads.
Since the service redirection and service pro-
gram startup are done on demand, this may
introduce additional overheads during the start
of a session.

We discuss all the overheads in detail below.

Client-side overheads We recall that our system
uses system call interposition at the client to track the
actions of the client, and any possible communication
messages to the server. Such interception facilities are
implemented using ptrace mechanisms available in the
Linux operating system. We have measured the perfor-
mance as a ratio of the combined system and user time
and compared them for the following situations: a)
without any monitoring b) with the use of our monitor-
ing mechanism. Figure 5 shows the performance over-
heads at the client. The performance numbers show
overall execution times with and without the monitor.

In the figure, we have measured the performance
of four desktop clients while performing the experi-
ments mentioned in the previous section. The results
show that the overhead due to system call interposition
vary for various clients ranging from 68 to 325%. The
difference in overhead is due to the frequency of sys-
tem calls invoked by these different clients. In addi-
tion, an entirely a user-level mechanism such as ptrace
suffers from moderate to high overheads [15]. These
high overheads due to the context switching associated
with the process that performs the monitoring. A ker-
nel level mechanisms typically has overheads in the
range of 10-15% as evidenced by earlier work on ker-
nel level mechanisms for one-way isolation [23].

Server-side overheads For servers, we measure the
overheads differently. Since most servers continue to
run even after servicing client requests, it is not possible
to measure the overheads in a manner similar to that of

170 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

the clients. To measure the overheads on the server, we
have measured the mean response time of the server at
each client. Recall that our system monitors the system
calls made from the client, and on a connect system call,
sets up routing paths and starts the corresponding ser-
vices. Therefore, the response time is measured (at the
client) as the difference from first connect system call
to first or last recv call on each client’s log.

Figure 6 shows the mean response times at the
client. This response time indicates the steady state
overhead, i.e., the overhead without the following two
causes 1) any (one-time) routing overhead in the com-
putation of the virtual routing path and 2) overheads
from automatic start of the corresponding network ser-
vice. As shown in the figure, the response times for var-
ious server programs are within a factor of two. For
trial installation purposes we consider such overheads
acceptable. Moreover, a kernel level patch to the isola-
tion mechanism will reduce the response time overhead.

Route Computation Overhead

In order to create a dynamic routing path, new
network interfaces are needed to be initialized on the
router and the server host respectively. Delays are
introduced at the router (in the control channel module
implementation) to find any available hosts for assign-
ment of new IP address.

Figure 6: Server response times.

We compute the overheads for CUPS, Webmin,
Proftpd, Sendmail and CVS. overhead also as the dif-
ference between mean server response time at the
client, with and without route computation. In order to
measure this overhead introduced by the dynamic route
computation and the service handler, we obtained the
following measurements of the programs used in our
experiment. These are a) the relative mean response
time without the system, b) with the use of isolation but
not using routing and service function on servers and c)
with host-level isolation and the use of dynamic routing
and service handling. The performance for all the seven

applications that were used in the server side overhead
experiments (described above) were measured. The
time stamps on the client were recorded in the log for
each network and file related operation. For web based
programs, the mean time difference from first connect
to first recv system call was measured. For sendmail,
the difference between the first connect to last socket
write was measured. For proftpd the difference between
the first and second connect system calls made (the
first call is made for getting the data channel for the
file transfer). For CVS, the mean time to create the
.cvspass was measured.

We measured the delays introduced due to the
routing process. This delay does not depend on the
specific application that was used. We measured this
delay as a average delay as perceived by the client. The
mean delay introduced due to the router (as perceived
by the client) was measured to be 0.125 seconds.

Routing and Service Launching Overhead

Once a host receives a request for a service, it
needs to start the service and subsequently the server
responds to the request. We measured the service
launching time for each of the server applications
tested. We measured this as an average delay per-
ceived by each client. Also, to avoid routing delays
from entering the picture, we set static routes from the
client to the server. These are the delays for the server
applications: sendmail (3.8 s), apache (3.8 s), Proftp
(2.2 s), and Webmin (1.6 s).

We note that services can be started using inetd,
and may not result in overheads when the client con-
tacts the server host for the first time. Such service
programs can be traced dynamically (i.e., attached to
the monitoring process). This will result in much lesser
overheads. We also note that at the time of interception
of the original network operation, the route is created
and the service is launched transparently before the
actual connection request from the client is sent.

20th Large Installation System Administration Conference (LISA ’06) 171

SUEZ: A Distributed Safe Execution Environment . . . Sim & Venkatakrishnan

Conclusion

A set of questions that the system administrator
typically has when performing any trial execution are:

• During the trial experiment, does this piece of
software cause conflicts with other packages
such as overwriting configuration files?

• After installation of a package, does it work co-
operatively well with existing software within
the entire network?

• Does any of the features of a piece of software
malfunction, even though it may seem to work
well apparently?

• Is it safely deployable in the network? Does it
violate the network privacy and security poli-
cies? Does it install files in hidden locations?

The system we describe in this paper, called
SUEZ, is designed to support assist a system admin-
istrator in answering these questions. To achieve this
our system employs one-way isolation of local and
remote operations inside a distributed safe execution
environment. In addition to satisfying main goal of
providing support for study and experimentation with
software, our approach has numerous other benefits. It
requires no access to source code of the applications
that need to be studied; it is cost-effective in being
able to utilize virtual machine technology for dynami-
cally configuring hosts and routes, and customizable
to various situations that one may encounter in system
administration practice. We believe that our approach
has the potential to be applicable in several day to
operations involving system trials, reverse engineering
and troubleshooting.

Acknowledgments

We thank Zhenkai Liang, Weiqin Sun and R.
Sekar for many discussions about the implementation
of distributed isolation operations that formed the
basis for writing this paper. We also thank our shep-
herd Narayan Desai and the anonymous referees for
reading our text and providing many useful sugges-
tions that have improved the contents this paper.
Finally, we acknowledge Rob Kolstad’s help with
typesetting of the manuscript.

Author Biographies

Doo San Sim is a graduate student in Computer
Science at University of Illinois at Chicago. His
research interests are in computer security, mainly in
addressing security in software installations. He can
be reached by email at dsim2@uic.edu .

Dr. V. N. Venkatakrishnan is an Assistant Profes-
sor of Computer Science at the University of Illinois at
Chicago. He is currently co-director of the Center for
Research and Instruction in Technologies for Elec-
tronic Security (rites.uic.edu). His main research area
is computer and network security. Specific research
areas include malware detection, software security and

personal information privacy. He is available by email
at venkat@cs.uic.edu .

Bibliography

[1] Common UNIX printing system, http://www.cups.
org .

[2] Controls the system log, Man pages.

[3] Professional FTP, http://www.proftpd.org .

[4] Strace, http://www.liacs.nl/˜wichert/strace .

[5] Vmware, http://www.vmware.com .

[6] A web board not using Sqldb, http://www.php
school.com .

[7] Acharya, A., and M. Raje, ‘‘Mapbox: Using
parameterized behavior classes to confine appli-
cations,’’ USENIX Security Symposium, 2000.

[8] Brown, A. and D. Patterson, ‘‘Undo for opera-
tors: Building an undoable e-mail store,’’
USENIX Annual Technical Conference, 2003.

[9] Cameron, J., A web-based interface for system
administration for UNIX, http://www.webmin.
com .

[10] Cespedes, J., A library call tracer, Man pages.

[11] Chen, P. M. and B. D. Nobl, ‘‘When virtual is
better than real,’’ Proceedings of Workshop on
Hot Topics in Operating Systems, 2001.

[12] Chiueh, T., H. Sankaran, and A. Neogi, ‘‘Spout:
A transparent distributed execution engine for
java applets,’’ International Conference on Dis-
tributed Computing Systems (ICDCS), 2000.

[13] Dan, A., A. Mohindra, R. Ramaswami, and D.
Sitaram,’ Chakravyuha: A sandbox operating
system for the controlled execution of alien code,
Technical report, IBM T.J. Watson research cen-
ter, 1997.

[14] Goldberg, I., D. Wagner, R. Thomas, and E. A.
Brewer, ‘‘A secure environment for untrusted
helper applications: confining the wily hacker,’’
USENIX Security Symposium, 1996.

[15] Liang, Z., V. Venkatakrishnan, and R. Sekar,
‘‘Isolated program execution: An application
transparent approach for execution of untrusted
programs,’’ ACSA Computer Applications Secu-
rity Conference (ACSAC), Las Vegas, December,
2003.

[16] Malkhi, D. and M. K. Reiter, ‘‘Secure execution
of java applets using a remote playground,’’ Soft-
ware Engineering, Vol. 26, Num. 12, 2000.

[17] Muniswamy-Reddy, K.-K., C. P. Wright, A. P.
Himmer, and E. Zadok, ‘‘A versatile and user-
oriented versioning file system,’’ Proceedings of
USENIX Conference on File and Storage Tech-
nologies, 2004.

[18] Prevelakis, V. and D. Spinellis, ‘‘Sandboxing
applications,’’ Proceedings of Usenix Annual
Technical Conference: FREENIX Track, 2001.

[19] Provos, N., ‘‘Improving host security with sys-
tem call policies,’’ 2002.

172 20th Large Installation System Administration Conference (LISA ’06)

Sim & Venkatakrishnan SUEZ: A Distributed Safe Execution Environment . . .

[20] Recovery-oriented computing, http://roc.cs.berkeley.
edu .

[21] Santry, D. J., M. J. Feeley, N. C. Hutchinson, and
A. C. Veitch, ‘‘Elephant: The file system that
never forgets,’’ Proceedings of Workshop on Hot
Topics in Operating Systems, 1999.

[22] Scott, K. and J. Davidson, ‘‘Safe virtual execu-
tion using software dynamic translation,’’ Pro-
ceedings of Annual Computer Security Applica-
tions Conference, 2002.

[23] Sun, W., Z. Liang, V. N. Venkatakrishnan, and R.
Sekar, ‘‘One-way isolation: An effective
approach for realizing safe execution environ-
ments,’’ NDSS, 2005.

[24] Whitaker, A., M. Shaw, and S. Gribble, ‘‘Denali:
Lightweight virtual machines for distributed and
networked applications,’’ Proceedings of USE-
NIX Annual Technical Conference, 2002.

[25] Yu, Y., F. Guo, S. Nanda, L. Lam, and T. Chiueh,
‘‘A feather-weight virtual machine for windows
applications,’’ Proceedings of the 2nd ACM/
USENIX Conference on Virtual Execution Envi-
ronments (VEE’06), 2006.

20th Large Installation System Administration Conference (LISA ’06) 173

