A Secure Composition Framework for Trustworthy
Personal I nformation Assistants'

V.N. Venkatakrishnan
Department of Computer Science
University of Illinoisat Chicago
venkat @s. ui c. edu

Abstract— In this paper, we provide a framework that sup-
ports composition of individual agents that enables users to
accomplish complex tasks that would otherwise be labori-
ous and difficult with mere use of traditional keyword based
search engines. A key benefit of our approach is that in the
framework the personal information handled by the agent
system is guaranteed to be free from accidental leakage
to websites that are not trustworthy, thereby ensuring the
privacy of end-user data. We describe our approach with
a prototype example which suggests that such highly us-
able, trustworthy agent systems can be built and deployed
quickly with modest implementation efforts.

1 INTRODUCTION

The growth in the number of users who routinely use the
web to search for information on goods and services con-
tinues unabated. In this expanded use of the web it is not
uncommon for end users to view the web as a database and
search for information in ways that cannot be directly ac-
complished by traditional keyword-based web search en-
gines, e.g., “make a list of used Jaguar cars advertised in
New York City area, such that each car is a 1999 or later
model, has good safety ratings, and its selling price is less
than its Blue Book value™. Answers to such queries are of
considerable interest, since they provide valuable informa-
tion to compare and contrast competing products and ser-
vices. However, answering such complex queries requires
extracting and integrating information from multiple sites
into one coherent view.

*This research is supported by an ONR grant N000140110967 and a
NSF grants 020877 and 00985154 and a research grant from Computer
Associates.

Wei Xu

I.V. Ramakrishnan R. Sekar
Department of Computer Science
Stony Brook University

{wei xu, ram sekar}@s. sunysb. edu

1.1 Motivating example

Let us consider a typical travel planning scenario. Suppose
that a user plans to have a trip to Las Vegas from New York.
She wants to buy an air ticket from a budget airline such
as JetBlue or SouthWest after comparing the schedule and
prices of the flights offered by these two airlines. Let us
suppose that she also needs to book a hotel room near her
destination address, and get the driving directions from the
airport to the hotel. Surely users can directly go to these
individual web sites and do all of this effort themselves.
However, this process is rather inconvenient and tedious
(involving a lot of user interactions such as clicking follow-
up links, involving repeated input of query conditions).

The deployment of several travel portal web sites (e.g. Ex-
pedia.com, Orbitz.com) which provide an integrated inter-
face for on-line reservations of air tickets and hotel rooms
and other travel services has eased the burden on this effort.
Two important disadvantages make these portal efforts less
desirable:

o Difficulty of customization. One drawback of such
portal sites is that they are usually rigid in the choices
of search engines that are deployed and the sites that
are visited, and do not offer facilities for customiz-
ing the search engines or the set of sites visited to
the user’s choice. For instance, information of flights
from airlines such as JetBlue and SouthWest are usu-
ally not included in these portal sites such as Expe-
dia or Orbitz. In addition, users may also have their
own preferences in choosing hotel or driving direction
searching engines.

e No certification of security. Usually, almost all of
these portals give almost no technical certification that
the privacy of information that is being supplied to the
portal site is indeed kept private. Note that there are
of course legal assurances that are provided, and cer-
tification of encryption schemes that are used in the
process of transmission of data, but none of these give
any assurance about how private data is being used
in the portal. In the absence of any such assurance
mechanism, users would prefer to use their credit card

information only at the time of purchase, and will pre-
fer not to store their private information in such portal
based websites.

To address the first issue, agent systems such as Personal
Information Assistants [1] are beginning to emerge. PIAs
are software robots (otherwise popularly refereed to as web
agents, shop-bots, etc) that can navigate web sites and ex-
tract information automatically on behalf of a user or a sys-
tem. Users can now delegate complex keyword searches
(e.g., Google), parametric queries (e.g. part number infor-
mation at Texas Instruments), or web-site wide harvesting
activities (e.g. bids from e-bay) to PIAs. Thus, they enable
users to rapidly access rich, real-time information from one
or more web sources without having to locate the sites
or even know the source of the information, and without
requiring active co-operation from information providers
owning the Web servers. Users only need to provide the
PIA with searching conditions and payment information
once, the PIA will automatically navigate to the relevant
sites and fetch the desired searching results, such as the
prices and schedule of different flights from different air-
lines, the location and compare price of the nearby hotels,
and display the results after finishing all these tasks.

Furthermore, the underlying technology behind such sys-
tems can be tailored to drive portals such as Orbitz.com
that were mentioned earlier. Henceforth, we do focus only
on PlAs and do not discuss portal based approaches any
further in this paper.

This brings us to the second issue of data security and pri-
vacy that is addressed in this paper. Note that PIAs are
attractive from a security viewpoint, as they facilitate de-
centralization of private data: Users can keep their private
data in their own systems and allow the PIAs to access and
provide such data to commercial sites only when necessary,
as opposed to the idea of storing them in a third party web-
site that they may not have full confidence in.

There are two crucial aspects to security that confronts the
deployment of such PIAs.

o Information privacy. Suppose a user wishes to deploy
the airline reservation P1A to make travel reservations
on the web. The important question is the following:
Can the user provide sensitive data such as her credit
card and other personal information (such as pass-
words to websites) to such a PIA, and have some as-
surance about its trustworthiness? In another instance,
can a PIA that merely fetches information (and does
not conduct any e-commerce transactions) be trusted
to keep the user’s profile information private?

e PIA Integrity. In addition to these confidential-
ity issues, there is a (second) trustworthiness aspect
of PIAs. They may base their purchase decisions

by deriving information from sites that may be un-
trusted. Although the agents themselves may come
from trusted sources, the information that is supplied
to them from websites may not be trustworthy. Fur-
thermore, this information may be used in a crucial
decision by the PIA. To cite an example, an agent may
derive information about certain stocks from some
sites that may offer advice on buying stocks. However,
this information may not be completely trustworthy,
and thus must not be directly used in purchase deci-
sions.

Sensitive Data
Tracker

Untrusted Site PIA Interpreter

Blocker

Web Sour ces

Figure 1: Framework architecture

In addition, by “gluing” such agents together (agent com-
position), one can construct higher-level PIAs by combin-
ing the behaviors of individual agents. For example one can
envision the travel reservation PIA to be composed from
two agents for obtaining fares from JetBlue and South-
West, plus a hotel reservation agent, and a distance query-
ing agent for Mapquest.com and so on. To build a travel
planning application as described before, we need to com-
pose all these individual agents together. In this paper, we
present a framework that provides secure composition of
such agents. (For the remainder of this paper, we shall use
the term agent for referring to those that query a single do-
main, and the term P1A for the composite program).

The security community has been investigating with pro-
gram analysis techniques for securing programs from such

information leaks [6]. Existing techniques for analysis of
programs (such as type analysis [10, 4]) are not particularly
suitable in the case of PIAs, mainly due to the fact that PIAs
are highly data driven. To address these issues, we propose
a technique based on program transformation to enforce
confidentiality policies at runtime. The individual agents
and the composition PIA code are first examined through a
static analysis, and then the PIA code is transformed with
in-line checks that track the flow of sensitive information
to websites visited by the (composed) PIA. Whenever a po-
tential information leak is detected that is not in accordance
with the user’s security policy, the activities of the PIA are
aborted, and an exception is raised.

Figure 1 gives an overview of our framework. The indi-
vidual agents are represented by ovals in the center of the
figure. These agents are glued together using the PIA com-
position code. The PIA interpreter executes each individual
agent by sending the corresponding web requests. Two ad-
ditional components are part of our security infrastructure:

e Sensitive Data Tracker. This component is part of the
P1A composition code, and consists of in-lined checks
that track the use of sensitive information supplied by
the user.

e Untrusted Site Blocker. This component is part of the
PIA interpreter. This component makes use of the se-
curity policy that is in force, which states the domains
that are trusted by the user. If sensitive data is supplied
to a site that is not in the list of domains mentioned
in the policy, then this component restricts access to
those websites and prevents the PIA from performing
any further actions.

This paper is organized as follows: In Section 2 we give
a brief background about agent creation and deployment.
Section 3 describes the compositional framework, and Sec-
tion 4 discusses our approach for ensuring trustworthiness
of PIAs. In Section 5, we present an evaluation of our pro-
totype implementation. Section 6 discusses related work,
and we conclude in Section 7.

2 WINAGENT SYSTEM

We first see how each individual agent can be created. Our
agent build environment is the WinAgent system for cre-
ating and executing agents which can extract structures
and organize the data from these pages in user-specified
presentation format (such as HTML, XML, Text, WML,
VoiceXML). More importantly the end user can create and
execute agents using just a web browser. Essentially the
user needs only highlight in the browser examples of data
of interest in a web page and the links to be followed and/or
forms to be filled to reach this page. From the highlighted
examples the system creates an agent by “learning” navi-
gation and extraction expression. In this section we will

present an overview of how to create and execute an agent
in the WinAgent system. A more detailed description of
the WinAgent system can be found in [1].

2.1 Building a agent

The WinAgent system consists of an agent builder through
which a user can create a navigation map for a web site.
The agent builder is embedded as a tool bar in Internet Ex-
plorer. Resembling a VVCR, there are five buttons (“Get
Item”, “Get Region”, “Record”, “Stop”, “Play”) on the tool
bar, through which users can interact with the system for

creating and interpreting navigation maps.

The agent creation is initiated when the “Record” button is
clicked. From now on until the “Stop” button is clicked, the
user’s actions are monitored and recorded in the navigation
map. Using the “Get Region” button the user specifies the
region of interest by highlighting it on the page. The user
uses the “Get Item” button to select an example item of in-
terest. The algorithms used in the agent builder for creating
navigation maps by learning from a user’s web browsing
and interactions are described in [1].

This navigation map encodes information about how to
navigate to pages of interest in a web site, and consists of
a collection of page-maps that specify how to extract data
needed from these pages.

2.2 Launching the agent

Users can use the “Play” button on the agent builder tool-
bar, or the independent agent manager, to specify a naviga-
tion map and launch the agent interpreter on this map.

The agent interpreter interprets this navigation map by au-
tomatically navigating to the web site, following specified
links, filling out forms and extracting the targeted data from
the pages as specified in the page-maps. The output of the
interpreter is an XML document with attribute names that
were supplied by the user when the agent was created.

2.3 Presentation of extracted data

The raw data extracted from the agent is organized as an
XML document in a hierarchical fashion. At level one of
the output tree, there are objects corresponding to the first
level of navigation. These objects contain their extracted
attributes as children. They also contain level two objects
corresponding to the second level of traversals and extrac-
tions and so on.

The WinAgent system supports transforming such a nested
XML into one of many desired presentation formats,
such as comma-separated records, VoiceXML, HTML, etc.
Such transformations on XML are expressed using XSLT
stylesheets. A generic GUI framework is provided for
rapidly creating such XSLT’s, with an interface for users
to plug in a specific formatting module for transformation.

3 COMPOSITION

Let us revisit the PIA example again. As we already noted,
the PIA queries the websites for Southwest Airlines and
JetBlue Airways and retrieves the lowest fare and also re-
trieves the lowest hotel fare at the destination city. Now,
it is a waste of effort to build a complete monolithic PIA
exclusively for doing this set of tasks. We would like to
build individual agents that retrieve information from each
of the above websites, and then compose them to achieve
the overall functionality. The decomposition of the func-
tionality into individual agents has the following benefits:

e Enables composability and re-use. Individual PI1As
can be built for various websites and then composed
together in a variety of situations. Consider an-
other P1A application that synchronizes one’s personal
schedule against reservation availability for Southwest
flights. Now the agent that obtains reservation infor-
mation from southwest.com can be re-used in this sit-
uation by composing it with another agent program
that operates on the user’s personal schedule. One can
imagine a “portal” of such agents that is available for
composition and implementation of more PIAs.

e Eases creation and deployment. As already men-
tioned, one of the main features of the WinAgent sys-
tem is that the creation of individual agents through
macro recording facilities. It is simpler when such
creation of PIAs is restricted to one website, so that
the extraction toolbar could be used effectively for
this purpose, instead of burdening the agent creator
with multiple websites and matching schemes. In ad-
dition, the logic that is part of the composition code
is de-coupled from the actual pattern-matching logic
that is part of the agent system, and hence results in a
clean, extensible and lightweight design of the WinA-
gent system.

We shall use some formalism to introduce the composi-
tion framework. We can construe every agent program
as a function that maps a set of inputs to a set of out-
puts. Let (i1,49,1is3,...,i,)denote a set of inputs to an in-
dividual agent A. Then let the corresponding outputs be
(01,02,03,...,0,). Now each of the individual inputs
can come from the following types: integer, real,
string, array, record. Now, each composition can
be understood as a function that maps the outputs of agent
A to inputs of agent B.

The composition constructs are written in a simple, imper-
ative language that uses the above-mentioned primitive and
complex types. The language includes the following con-
structs: basic arithmetic, logical expressions, facilities for
string matching and editing, loops and procedure calls.

Such compositions can be achieved in different ways us-
ing semi-automatic or manual approaches. [5] presents
one such approach for composition. We do not discuss as-
pects of automating this composition in this paper, and, in
the following section focus on the security aspects of our
framework.

4 ENFORCING PRIVACY AND INTEGRITY

Before describing our approach to securing PIAs, we
present an assumption that underly our approach. Note
that the PIAs themselves are not obtained from untrusted
sources, and our effort is only in the direction of adding
trustworthiness to an already existing agent framework, and
to prevent any accidental disclosure of sensitive informa-
tion. It would be very difficult, if not impossible to address
security issues if the PIAs themselves are untrusted. Also,
as mentioned earlier, the decentralized nature of PIAs make
them a compelling alternative to portal based approaches
for handling private data, and our efforts are in the direc-
tion of making them more trustworthy.

To achieve this, two critical problems, privacy and integrity,
must be addressed. To protect privacy, the sensitive infor-
mation should be prevented from being sent to untrusted
sites; while to protect integrity, the computation of trust-
worthy data should not be comprised by data from un-
trusted sources. Privacy and integrity in in fact are duals
of each other [6], . Being very closely related any solution
that is suitable for privacy can be modified to address in-
tegrity as well, as shown in [6]. In this section, we present
techniques to ensure privacy protection, and sketch how in-
tegrity can similarly be addressed.

4.1 Sensitive datatracker

Our approach is to use a program transformation technique
to transform the composition code for detecting policy vi-
olations. Runtime updates and checks are inserted into the
transformed code and are used to track information flows.
Our transformation is based on the transformation tech-
nique proposed in [9], where we also prove the correctness
of the transformation with respect to the non-interference
property [3], which ensures that the confidential informa-
tion cannot be leaked to untrusted outputs.

In our approach, two security levels: high and low, are de-
fined for the variables in the composition code. The high
variables represent sensitive data (e.g., credit card numbers,
social security numbers). The low variables represent un-
trusted sites or data coming from such untrusted sites (e.g.
a map search engine that should not take any credit card
numbers), and hence any assignment of sensitive informa-
tion to these variables constitutes a policy violation.

Information flows are tracked at runtime through the use
of security variables. The security variables are auxiliary
variables that are inserted by the transformation for each

program variable and used for recording the current run-
time security level of their own corresponding program
variables. When an execution reaches an assignment state-
ment to a low variable, the value contained in the security
variable corresponding to the source variable is examined
for the presence of sensitive data (i.e. whether the secu-
rity variable value is high). If such sensitive data is indeed
present, an error is generated, and the execution of the PIA
is terminated.

The simple idea illustrated above would work only for ex-
plicit flows in which data flows through various assignment
statements. On entering a conditional branch, there is an
implicit flow of information from the conditional to all the
variables assigned in both the branches. To compute this
set of variables a preliminary static analysis is used. The
transformation then makes use of the result of this analy-
sis.

The analysis computes the following: for any expression e,
var(e) is the set of all variables that are used in the expres-
sion. Theif Sdenotes a (possibly compound) statement,
the set upd(S) denotes all the variables that get assigned in
the statement S. The analysis computes a conservative up-
per bound in case a precise estimation of the set of variables
that are updated is not possible.

Using the results of the analysis, the program is trans-
formed such that, on entering a conditional branch, the
value of the security variable corresponding to the condi-
tion expression (associated with enclosing nested condi-
tionals), is stored in a variable called pc,., that is used
to track implicit flows. For all assignments that happen in-
side both branches, the security variables of the left-hand
side expressions are updated with the value of the implicit
flows, that is obtained by a disjunction with pcg,.. Thus,
Ppcauz INCludes the combined effect of the enclosing condi-
tionals and loops. When a conditional branch is exited, the
value of pc,,,. is restored to its previous value that existed
before entering the branch.

For all the variables that are represent sensitive input data or
trusted sites, their security variables are initialized to true.
All the other security variables are initialized to false. More
details on the transformation and its proof of correctness
are available in [9].

4.2 Untrusted site blocker

To prevent a trusted agent from accidentally leaking sen-
sitive information to untrusted sites, the PIA interpreter
is modified to include a component called untrusted site
blocker. This component refers to the current security pol-
icy which lists domains that are trusted by the user. During
the interactions between agents and sites, this component
examines the sensitivity level of every field of data in each
form which will be supplied by a agent to any untrusted
sites. If the untrusted site blocker detects that any sensi-

tive data is being supplied to a site that is not in the list
of domains mentioned in the policy, then the untrusted site
blocker restricts access to those websites and prevents the
PI1A from performing any further actions.

5 EVALUATION

1 || o|B|e| @8[] »|

s

Payment Details | seatch
Field Value Sensitivity [foo

Credit Card Type [Mostercerd |
Credit Card Number [suesessnsas |®

e.

Expiry Month 12 r Help
Expuy Year 2005 r
Done | cancel

Figure 2: Specifying data sensitivity

[R Southwest Airlines Payment] = =

o «|2| 0B a8z »
ERERCTRETTTTT a1
v
PURCHASE
Southwest Airlines Payment and Passenaer Information
Form Approval x
© Unloss you complete the information J
nas been succe Let them know you are on your way.
MME it Bnerary nd dashes
© Ifyou choose o anter our RO REWS end a copy of your travel dimerary to as many as four e-mail addresses -
(ote: Tnneraies do not cortam confidential biling mformation)
Who is Traveling? [[
Passenger 1 Fust Name: Las
v = [
1 Ertermg e Fape Rewards merber mamos 5
1 days aterthe conphetionof g, nd yourw ¥ WChASE Summary
eacing zeros. Exarple 12345678 Ttem Description Due N
Apply Ticketiess Travel™ Funds Arr Total amount, including tax, that will be charged to your credit card $635
s s e prenan & Before completing your purchase, please very your Passenger Mames are correct. Changes to
Passenger Names after selecting the T Want To Purchase This Air Travel" button could result it
_ ViewendApply | R
Need help
R |Want To Purchase This Air Travel | Gt booking
Credn C, Over arel)
Crodn Card: Nuber: fravel
MosterCard -
65321 s 8
Credit Card Holder nt 14 | of ¢
Fst Name: 3
v [Ramaksishnen
Address:
700 EestLoop Rd
[L2180C Chepin Apts
cny:
Stony Brook
state:

Figure 3: Approving sensitive data transmission

We have implemented the motivating travel planning PIA
as a prototype application of our secure composition frame-
work using the WinAgent system. Figure 2 shows the in-
terface for users to specify the data sensitivity level, while
Figure 3 shows the review screen where users can decide
whether or not to approve the sensitive data transmission.

A demo video of this prototype application is available
at [11].

Building such a composition PIA seems complex, but in
our efforts found it to be a relatively simple job. It only
took 1-4 minutes to create each of the individual agents us-
ing the WinAgent agent builder. To compose these agents
together, we had to understand their inputs and outputs and
the comparison logic, thus it took about three hours to man-
ually write the composition code. It is quite straight-ford to
transform the composition code to track information flows
based on the rules of each kind of statement in the program,
and we spent about one hour on this. Of course, the foun-
dation for this rapid prototyping and development was the
WinAgent system consisting of the builder and interpreter
which has been operational for the past one and half years.

When this PIA is used to compare prices and book air tick-
ets and hotel rooms for booking this business trip, the user
first needs to input the source/destination addresses, her
credit card information, and the sensitivity levels of these
data. After that, the PIA will automatically navigate to the
relevant sites and retrieve the desired flight/hotel informa-
tion. The user then will get selection windows to make
choices from the search results and proceed through the
P1A’s transaction approval windows to complete the reser-
vations. This whole process of using the PI1A takes about 4
minutes and 10 mouse clicks, and the user needs to fill in 3
forms with 12 fields in total (including source/destination
addresses and credit card information). In contrast, if the
user herself manually browses these web sites and com-
pletes the same searches and reservations, she needs to have
more than 40 mouse clicks, fill in more than 10 forms using
the same 12 fields of data, and input the URL of these web
sites multiple times. In addition, the user has to remember
the sites (so that the results obtained are available for book-
ings at a later instant) and manage multiple browser win-
dows which could become cumbersome and tedious. From
this, we can see the PIA greatly eases the user’s burden of
unnecessary manual interactions with various web sites for
retrieving information of her interest, and provides nearly
the same level of assurance in handling the user’s personal
information.

6 RELATED WORK

Although there are several agent systems [5, 2, 7] that sup-
port composition of individual agents, we believe that the
current work is the first to look at data security issues in an
agent-composition setting. For instance, SWORD [5] uses
a rule based expert system to guide the composition, how-
ever, no assurance argument of security of the composite
service is provided.

The security community has been investigating with pro-
gram analysis techniques for securing programs from such
information leaks [6]. Existing techniques for analysis of
programs (such as type analysis [10, 4]) are not particu-

larly suitable in the case of PIAs, mainly due to the fact that
P1As are highly data driven.In [8], Huang et al., provide a
mechanism for addressing data security in PHP programs
through static analysis and runtime monitoring. Their ap-
proach involves a typing based solution that is in fact more
expressive than the previous approaches. However, the ex-
pressiveness in their approach does not scale to avoid false
positives in information flows such as implicit information
flows.

7 CONCLUSION

In this paper, we presented a framework for secure compo-
sition of agent to enable creation and deployment of PIAs.
A unique aspect of our framework is in addressing data
security through the use of program analysis and runtime
monitoring techniques. We illustrated our approach with a
prototype example that suggests that our approach is suit-
able for a wide variety of emerging web applications.

Acknowledgements We would like to thank Akshat Khan-
delwal, Anupama Lolage, Priyanka Vasudevan and Jayant
Kashyap, for assistance with various aspects of the Wina-
gent system implementation.

REFERENCES

[1] A. Gandhre, P. Santhanagopalan, P. Singh, D. Ramavat, I.V. Ramakrishnan,
and H. Davulcu. Creating and managing personal information assistants via a
web browser: The WinAgent experience. In Workshop on Information Inte-
gration on the \\eb, Toronto, August 2004.

[2] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrapper construction
system for web information sources. In International Conference on Data
Engineering (ICDE), San Diego, CA USA, February 2000.

[3] John McLean. Proving noninterference and functional correctness using
traces. Journal of Computer Security, 1(1), 1992.

[4] A.C. Myers. JFlow: Practical mostly-static information flow control. In ACM
Symposium on Principles of Programming Languages (POPL), January 1999.

[5] Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for web
service composition. In Eleventh World Wide Web Conference (Web Engineer-
ing Track), Honolulu, Hawaii, May 2002.

[6] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areasin Communications, 21(1), January 2003.

[71 A. Sahuguet and F. Azavant. Building intelligent web applications using
lightweight wrappers. Data Knowledge Engineering, 36(3):283-316, 2001.

[8] Securing Web Application Code through Static Analysis and Runtime Protec-
tion. Yao-wen huang and fang yu and christian hang and chung-hung tsai and
der-tsai lee and sy-yen kuo. In Thirteenth World Wide Web Conference, New
York City, 2004.

[9] V.N. Venkatakrishnan. Enforcement Techniques for Expressive Security Poli-
cies. PhD thesis, Stony Brook University, 2004.

[10] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security (JCS), 4(3):167-187, 1996.
demos.

[11] Personal information assistants website and on-line

http://www.Imc.cs.sunysb.edu/~winagent.

