
One-way Isolation: An Effective Approach for
Realizing Safe Execution Environments∗

Weiqing Sun Zhenkai Liang R. Sekar V.N. Venkatakrishnan†

Department of Computer Science, Department of Computer Science,
Stony Brook University. University of Illinois at Chicago.

{wsun,zliang,sekar}@cs.sunysb.edu venkat@cs.uic.edu

Abstract

In this paper, we present an approach for realizing a safe ex-
ecution environment (SEE) that enables users to “try out”
new software (or configuration changes to existing soft-
ware) without the fear of damaging the system in any man-
ner. A key property of our SEE is that it faithfully repro-
duces the behavior of applications, as if they were running
natively on the underlying host operating system. This is ac-
complished via one-way isolation: processes running within
the SEE are given read-access to the environment provided
by the host OS, but their write operations are prevented from
escaping outside the SEE. As a result, SEE processes cannot
impact the behavior of host OS processes, or the integrity of
data on the host OS. Our SEE supports a wide range of
tasks, including: study of malicious code, controlled exe-
cution of untrusted software, experimentation with software
configuration changes, testing of software patches, and so
on. It provides a convenient way for users to inspect sys-
tem changes made within the SEE. If the user does not ac-
cept these changes, they can be rolled back at the click of
a button. Otherwise, the changes can be “committed” so
as to become visible outside the SEE. We provide consis-
tency criteria that ensure semantic consistency of the com-
mitted results. We also develop an efficient technique for
implementing the commit operation. Our implementation
results show that most software, including fairly complex
server and client applications, can run successfully within
the SEE. The approach introduces low performance over-
heads, typically below 10%.

∗This research is supported in part by an ONR grant N000140110967
and an NSF grant CCR-0208877.

†Research conducted when the author was a graduate student in the
Department of Computer Science, Stony Brook University.

1. Introduction

1.1. Motivating Applications

System administrators and desktop users often encounter
situations where they need to experiment with potentially
unsafe software or system changes. A high-fidelity safe
execution environment (SEE) that can support these activ-
ities, while protecting the system from potentially harmful
effects, will be of significant value to these users. Applica-
tions of such SEE include:

• Running untrusted software. Often, users execute
downloaded freeware/shareware or mobile code. The
risk of damage to the user’s computer system due to
untrusted code is high, yet a significant fraction of
users seem to be willing to take this risk in order to
benefit from the functionality offered by such code. An
SEE can minimize security risks without negating the
functionality benefits provided by such software.

• Vulnerability testing. System administrators may be
interested in probing whether a system is susceptible to
the latest email virus, worm or other attacks. A high-
fidelity SEE can allow them to perform such testing
without the risk of compromising production systems.

• Software updates/patches. Application of security
patches are routinely delayed in large enterprises in or-
der to allow time for compatibility and interoperability
testing. Such testing is typically done after shutting
down production systems for extended periods, and
hence may be scheduled for weekends and holidays.
In contrast, a high-fidelity SEE can allow testing of
updates to be performed without having to shutdown
production systems. These concerns apply more gen-
erally to software upgrades or installations as well.

• System reconfiguration. Administrators may need to
reconfigure software systems, and would ideally like
to “test out” these changes before deploying them on
production systems. This is currently accomplished
manually, by saving backup copies of all files that may



be modified during reconfiguration. An SEE will auto-
mate this process, and moreover, avoid pitfalls such as
overlooking to backup some of the modified files.

1.2. SEE Requirements and the Need for New Ap-
proach

In order to support the kinds of applications mentioned
above, an SEE must provide the following features:

• Confinement without undue restrictions on functional-
ity. The effects of process execution within an SEE
should not “escape” the SEE and become visible to
normal applications running outside. Otherwise, one
cannot rule out the possibility of SEE processes alter-
ing the operation of other applications running on the
same system or elsewhere in the network. Such con-
finement can be achieved using access control restric-
tions, e.g., by prohibiting all operations that modify
files or access the network. However, such restrictions
will prevent most applications from executing success-
fully within an SEE.

• Accurate environment reproduction. For SEEs to be
useful in the above applications, it is essential that the
behavior of applications be identical, whether or not
they operate within the SEE. Since the behavior of an
application is determined by its environment (contents
of configuration or data files, executables, libraries,
etc.), it is necessary to reproduce, as accurately as pos-
sible, the same environment within the SEE as the en-
vironment that exists outside SEE.

• Ability to commit results. In many of the above ap-
plications, including untrusted software execution and
software or system updates, a user would like to re-
tain the results of activities that were successful. Thus,
the SEE must provide a mechanism to “commit” the
results of activities that took place within it. A suc-
cessful commit should have the same effect as if all of
the operations carried out within the SEE actually took
place outside.

Most existing approaches for safe execution do not satisfy
these requirements. For instance, sandboxing techniques
achieve confinement, but do so by severely restricting func-
tionality. Virtual machines (VMs) and related approaches
[3, 36] relax access restrictions, but do not offer any support
for environment reproduction or committing. File version-
ing systems [26, 40, 39, 16, 5, 23, 25, 31, 19] can provide
rollback capabilities, but they don’t provide a mechanism to
discriminate among changes made by different processes,
and hence cannot support selective rollback of the effects of
untrusted process execution.

The concept of isolation has been proposed as a way to
address the problem of effect containment for compromised
processes in [8, 13, 28]. [13] developed the concept of one-
way isolation as an effective means to isolate the effects
of running processes from the point they are compromised
(or suspected of being compromised). They also develop
protocols for realizing one-way isolation in the context of
databases and file systems. However, they only provide a
high-level treatment, and do not address practical issues that
arise in implementing such an approach for COTS applica-
tions running over commodity OSes.

In our previous work [12], we addressed some of these is-
sues and developed a user-level tool for isolating the effects
of COTS applications on the Linux OS. The focus of that ef-
fort was on untrusted software execution, and on a solution
that was realized entirely at the user level. Such a solution
does not require OS changes or even administrative privi-
lege to install or use the tool. However, in order to achieve
a completely user-land solution, [12] compromises on per-
formance as well as generality. In particular, the approach
suffers from high overheads that can be over 100% in some
instances. Moreover, isolation semantics cannot be faith-
fully reproduced for operations that concern file meta-data
such as permissions and ownership. For directories, isola-
tion is achieved using an ad-hoc approach that is hard to
implement and provides semantics that is inconsistent with
that of files. Finally, no systematic solution to the commit
problem is provided. The approach developed in this pa-
per addresses all these drawbacks. Moreover, it generalizes
the approach so that isolation can be provided for non-file
operations, e.g., certain classes of network accesses.

1.3. Approach Overview

The SEEs described in this paper are based on the con-
cept of one-way isolation. Whereas VMs generally employ
two-way isolation between the host environment and the en-
vironment that exists within a VM, one-way isolation makes
the host environment visible within the SEE. In this sense,
the SEE processes can (and do) see the environment of their
host system, and hence accurate reproduction of environ-
ment is assured. However, the effects of SEE processes
are isolated from outside applications, thereby satisfying the
confinement requirement.

In our approach, an SEE is created to run a process whose
effects are to be shielded from the rest of the system. One
or more such SEEs may be active on the host OS. Any
children created by processes within an SEE will also be
confined to that SEE, and will share the same consistent
view of system state. Typically, a user will start a com-
mand shell within a new SEE, and use this shell to carry out
tasks such as running untrusted programs. She may also run



helper applications, such as image or document viewers, or
arbitrary utility applications to examine the resulting sys-
tem state. Finally, if she wants to accept the changes made
within the SEE, she can commit the results. The commit
process causes the system state, as viewed inside the SEE,
to be merged with the state of the host OS. We present con-
sistency criteria aimed at ensuring the correctness of the re-
sults of the commit process.

Our approach is implemented using interposition at the
system call and virtual file system layers, and hence does
not require any changes to applications that run inside the
SEE. Even complex tasks such as compilation and installa-
tion of large software packages, and execution of complex
client and server applications can be carried out success-
fully within the SEE. This is because our approach places
few restrictions on operations performed by most applica-
tions. In particular, no restrictions are placed on file ac-
cesses, except in the case of access to special devices. Net-
work operations that correspond to “read” operations, such
as querying a name server, can be permitted as well. Net-
work accesses that correspond to “write” operations can be
permitted when the target of the communication satisfies
one of the following conditions:

• it is an application running within an SEE, possibly on
a different host, or

• it is a special-purpose “proxy” that is layered between
the application and the service accessed by it, and can
buffer the write actions until commit time.

The key challenge in implementing such proxies is that even
though they buffer certain operations, they should provide
a consistent view of system state to the SEE applications.
Specifically, if an SEE process “writes” to such a proxy and
subsequently performs a “read” operation, the proxy should
return the result that would have been returned if the write
operation had actually been carried out.

1.4. Paper Organization

The rest of this paper is organized as follows. Section 2
presents an overview of our approach. Section 3 describes
our file system proxy, namely, the Isolation File System
(IFS). Section 4 discusses the criteria and the procedure for
committing changes made to the file system. Other aspects
of our approach are discussed in Section 5. Section 6 pro-
vides an evaluation of the functionality as well as the per-
formance of our approach. Related work is discussed in
Section 7, followed by concluding remarks in Section 8.

2. Design of Secure Execution Environment

The two functions of our SEE are (a) to provide one-way
isolation, and (b) to support commit operation. These two
aspects of SEE are described in more detail below.

2.1. Achieving One-way Isolation

The primary goal of isolation in our approach is effect
containment: preventing the effects of SEE processes from
affecting the operation (or outcome) of processes execut-
ing outside the SEE1. This means that any “read” operation
(i.e., one that queries the system state but does not modify
it) may be performed by SEE processes. It also means that
“write” operations should not be permitted to affect system
state. There are two options in this context: one is to re-
strict the operation, i.e., disallow its execution. The second
option is to redirect the operation to a different resource that
is invisible outside the SEE. Once a write operation is redi-
rected, it is important that subsequent read operations on the
same resource be redirected as well.

By restriction, we mean that an operation is prevented
from execution. An error code may be returned to the pro-
cess, or the operation may be silently suppressed and a suc-
cess code returned. In either case, restriction is easy to im-
plement — we need only know the set of operations that
can potentially alter system state. The main drawback of
restriction is that it will likely prevent applications from ex-
ecuting successfully. For instance, if a program writes a
file, it expects to get back the same content at a later point
in the program when the file is read. However, an approach
based on restriction cannot do this, and hence most non-
trivial applications will fail to run successfully under such
restriction. For this reason, restriction is a choice of last
resort in our approach.

By redirection, we mean that any operation that modifies
some component of the host environment is instead redi-
rected to a different component that is not accessed by the
host OS processes. For instance, when an SEE process tries
to modify a file, a copy of the original file may be created
in a “private” area of the file system, and the modification
operation redirected to this copy. Redirection is intended
to provide a consistent view of system state to a process,
thereby allowing it to run successfully.

Redirection can be static or dynamic. Static redirection
requires the source and target objects to be specified man-
ually. It is ideal for network operations. For instance, one
may statically specify that operations to bind a socket to a
port p should be redirected to an alternate port p′. Simi-

1Note that we are interested in confinement [11] from the point of view
of system integrity, rather than confidentiality. As such, we do not deal
with with issues such as covert channels.



larly, one may specify that operations to connect to a port
p on host h should be redirected to host h′ (which may
be the same as h) and port p′. By using such redirection,
we can build distributed SEEs, where processes executing
within SEEs on multiple hosts can communicate with each
other. Such distributed SEEs are particularly useful for safe
execution of a network server application, whose testing
would typically require accesses by nonlocal client appli-
cations. (Note, however, that this approach for distributed
SEEs works only when all cross-SEE communications take
place directly between the SEE processes, and not through
other means, e.g., indirect communication through a shared
NFS directory.)

Static redirection becomes infeasible if the number of
possible targets is too large to be enumerated in advance.
For instance, it is hard to predict the files that may be ac-
cessed by an arbitrary application. Moreover, there are
dependencies among operations on different file objects,
e.g., an operation to create a file has the indirect effect of
changing the contents of the directory in which the file is
created. Simply redirecting an access on the file, without
correspondingly modifying accesses of the directory, won’t
work. To handle such complexities, our approach supports
dynamic redirection, where the target for redirection is de-
termined automatically during the execution of SEE pro-
cesses. However, the possibility of hidden dependencies
means that the implementation of dynamic redirection may
have to be different for different kinds of objects. Specifi-
cally, in our SEE architecture, dynamic redirection is sup-
ported by service-specific proxies. Currently, there is a
proxy for file service, and we envision proxies for other ser-
vices such as WWW or email.

In our current implementation, system call interposition
is used to implement restriction and static redirection. We
restrict all modification operations other than those that in-
volve the file system and the network. In the case of file
operations, all accesses to normal files are permitted, but ac-
cesses to raw devices and special purpose operations such
as mounting file systems are disallowed. In terms of net-
work operations, we permit any network access for which
static redirection has been set up. In addition, accesses to
the name server and X-server are permitted. (In reality, SEE
processes should not get unrestricted access to X-server, but
our current implementation provides no mechanism to mon-
itor and enforce policies on access to X-server.)

Dynamic redirection is currently supported in our imple-
mentation for only file system accesses. It is realized using
a proxy called the Isolation File System (IFS), which is de-
scribed in detail in Section 3.

2.2. Committing Changes

There are two key challenges in committing: one is to
ensure consistency of the resulting system state; the other
is efficiency — to reduce the space and time overheads for
logging and re-running of operations to a level that pro-
vides good performance. Below, we provide a high-level
overview of the issues involved in commit.

The key problem in terms of consistency is that a re-
source accessed within the SEE may have been indepen-
dently accessed outside of the SEE. This corresponds to
concurrent access on the same resource by multiple pro-
cesses, some within SEE and some outside. One possible
consistency criterion is the serializability criterion used in
databases. Other consistency criteria may be appropriate as
well, e.g., for some text files, it may be acceptable to merge
the changes made within the SEE with changes made out-
side, as long as the changes involve disjoint portions of the
file. A detailed discussion of the issues involved in defining
commit criteria is presented in Section 4.1.

There may be instances where the commit criteria may
not be satisfied. In this context, we make the following ob-
servations:

• There is no way to guarantee that results can be com-
mitted automatically and produce consistent system
state, unless we are willing to delay or disallow exe-
cution of some applications on the host OS. Introduc-
ing restrictions or delays on host OS processes will de-
feat the purpose of SEE, which is to shield the host OS
from the actions of SEE processes. Hence this option
is not considered in our approach.

• If the results are not committed, then the system state
is unchanged by tasks carried out within the SEE. This
means that these tasks can be rerun, and will most
likely have the same desired effect. Hopefully, the
conflicts were the results of infrequent activities on the
host OS, and won’t be repeated this time, thus enabling
the results to be committed.

• If retry isn’t an option, the user can manually resolve
conflicts, deciding how the files involved in the con-
flict should be merged. In this case, the commit cri-
teria identifies the files and operations where manual
conflict resolution is necessary.

As a final point, we note that if a process within an SEE
communicated with another process executing within a dif-
ferent SEE, then all such communicating SEEs need to be
committed as if they were part of a single distributed trans-
action. Currently, our implementation does not support dis-
tributed commits. Our approach for committing the results
of operations performed within a single SEE is described in
Section 4.



3. Isolation File System (IFS)

3.1. High-Level Overview

In principle, a file system can be viewed as a tree struc-
ture. Internal nodes in this tree correspond to directories or
files, whereas the leaves correspond to disk blocks holding
file data. The children of directory nodes may themselves
be directories or files. The children of file nodes will be disk
blocks that either contain file data, or pointers to file data.

This view of file system as a tree suggests an intuitive
way to realize one-way isolation semantics for an entire file
system: when a node in the original file system is about to
be modified, a copy of this node, as well as all its ances-
tors, is created in a “private” area of the file system called
temporary storage. The write operation, as well as all other
subsequent operations on this node, are then redirected to
this copy.

In essence, we are realizing isolation using copy-on-
write. Although the copy-on-write technique has been used
extensively in the context of plain files, it has not been stud-
ied in the context of directories. Realizing IFS requires us
to support copy-on-write for the entire file system, includ-
ing directories and plain files.

In our approach, copy-on-write on directories is sup-
ported using a shallow-copy operation, i.e., the directory
itself is copied, but its entries continue to point to objects in
the original file system. In principle, one can use shallow-
copy on files as well, thus avoiding the overhead of copying
disk blocks that may not be changed within the IFS. How-
ever, the internal organization of files is specific to particu-
lar file system implementations, whereas we want to make
IFS to be file-system independent. Hence files are copied in
their entirety.

IFS is implemented by interposing file system operations
within the OS kernel at the Virtual File System (VFS) layer.
VFS is a common abstraction in Unix across different file
systems, and every file system request goes through this
layer. Hence extensions to functionality provided at VFS
layer can be applied uniformly and transparently to all un-
derlying file systems such as ext2, ext3 and NFS.

We realize VFS layer interposition using the stackable file
system approach described in [37]. In effect, this approach
allows one to realize a new file system that is “layered” over
existing file systems. Accesses to the new file system are
first directed to this top layer, which then invokes the VFS
operations provided by the lower layer. In this way, the new
file system extends the functionality of existing file systems
without the need to deal with file-system-specific details.

3.2. Design Details

The description in the previous section presented a sim-
plified view of the file system, where the file system has a
tree-structure and consists of only plain files and directories.
In reality, UNIX file systems have a DAG (directed acyclic
graph) structure due to the presence of hardlinks. In addi-
tion, file systems contain other types of objects, including
symbolic links and special device files. As mentioned ear-
lier, IFS does not support special device files. An exception
to this rule is made for pty’s and tty’s, as well as pseudo
devices like /dev/zero, /dev/null, etc. In these cases,
access is redirected to the corresponding device files on the
main file system. A symbolic link is simply a plain file,
except that the content of the file is interpreted as the path
name of another file system object. For this reason, they
don’t need any special treatment. Thus, we need only de-
scribe how IFS deals with hard links (and the DAG structure
that can result due to their use.)

When the file system is viewed as a DAG, its internal
nodes correspond to directories, and the leaves correspond
to files. As mentioned earlier, the IFS does not look into the
internal structure of files, and hence we treat them as leaf
objects in the DAG. All nodes in the DAG are identified
by a unique identifier called the Inode number. (The in-
ode number remains unique across deletion and recreation
of file objects.) The edges in the DAG are links, each of
which is identified by a name and the Inode number of the
object pointed by the link. This distinction between nodes
and links in the file system plays a critical role in every as-
pect of IFS design and implementation.

Figure 1 illustrates the operation of IFS. The bottom layer
corresponds to a host OS file system. The middle layer is
the temporary storage to hold modified copies of files and
directories. The top layer shows the view within IFS, which
is a combination of the views in the bottom two layers. Note
that the ordering of the bottom two layers in the figure is sig-
nificant: the view contained in the temporary storage over-
rides the view provided by the main file system.

The temporary storage area is also known as “private stor-
age area” to signify that fact that it is not to be accessed
by the host OS. In order to support efficient movement of
files between the two layers, which is necessary to imple-
ment the commit operation efficiently, it is preferable that
the temporary storage be located on the same file system
as the bottom layer. (If this is not possible, then temporary
storage can be on a different file system, with the caveat that
committing will require file copy operations as opposed to
renames.) Henceforth, we will use the term main file sys-
tem to denote the bottom layer and IFS-temporary storage
(or simply “temporary storage”) to refer to the middle layer.



/

a
 b


c
 d


/

a
 b


c
 d


/

a
 b


c
 d


/

a
 b


c
 d
 e


/

a


c


/

a


c
 d
 e


/

a
 b


c
 d


/

a
 b


c
 d


Combined View


Temporary

Storage


Main File System


1. Initial state
 2. After modifying file /a/c
 3. After creating file /a/e


IFS file object
 Stub file object
 Full file object


Figure 1. Illustration of IFS Layout on Modification Operations

In addition to storing private copies of files modified
within the SEE in the temporary storage, the IFS layer also
contains a table that maintains additional information nec-
essary to correctly support IFS operation. This table, which
we call as inode table, is indexed by the inode numbers of
file system objects. It has a field indicating that whether the
inode corresponds an object in temporary storage (temp) or
an object the main file system (main). Further, if it is an
object in the temporary storage, the flag indicates whether
it is a stub object (stub). A stub object is simply a refer-
ence to the version of the same object stored in the main file
system. In addition, auxiliary information needed for the
commit operation is also present, as described in Section 4.

In our IFS implementation, copy-on-write of regular files
is implemented using normal file copy operations. In partic-
ular, when a plain file f is modified for the first time within
the SEE, a stub version of all its ancestor directories is cre-
ated in temporary storage (if they are not already there).
Then the file f is copied into temporary storage. From this
point on, all references to the original file will be redirected
to this copy in temporary storage.

After creating a copy of f , we create an entry in the inode
table corresponding to the original version of f on the main
file system. This is done so as to handle hard links correctly.
In particular, consider a situation when there is a second
hard link to the same file object, and this link has not yet
been accessed within IFS. When this link is subsequently
accessed, it will be referencing a file in the main file system.
It is necessary to redirect this reference to the copy of f in
temporary storage, or otherwise, the two links within IFS
that originally referred to the same file object will now refer
to different objects, thereby leading to inconsistencies.

The copy-on-write operation on directories is imple-
mented in a manner similar to that of files. Specifically,
a stub version of the directory’s ancestor nodes are first
created in temporary storage. Next, the directory itself is
copied. This copy operation is a shallow copy operation, in
that only a stub version of the objects listed in the directory
are created.

We illustrate the operation of IFS using the example
shown in Figure 1. Suppose that initially (i.e., step 1 in
this figure), there is a directory a and a file b under the root
directory in the main file system, with files c and d within
directory a. Step 2 of this figure illustrates the result of
modifying the file /a/c within the SEE. The copy-on-write
operation on /a/c first creates a stub version of the ancestor
directories, namely, / and /a. Then the file /a/c is copied
from the main file system to the temporary storage. Sub-
sequent accesses are redirected to this copy in temporary
storage.

The third step of Figure 1 shows the result of an operation
that creates a file /a/e within the SEE. Since this changes
the directory a by adding another file to it, a shallow copy
of the directory is made. Next, the file e is created within
the directory. The combined view of IFS reflects all these
changes: accesses to file /a/c and /a/e are redirected to
the corresponding copies in the temporary storage, while
accesses to file /a/d will still go to the version in the main
file system.



4. Implementation of IFS Commit Operation

At the end of SEE execution, the user may decide either
to discard the results or commit them. In the former case,
the contents of IFS are destroyed, which means that we sim-
ply delete the contents of temporary storage and leave the
contents of the main file system “as is.” In the latter case,
the contents of the temporary storage need to be “merged”
into the main file system.

When merging the contents of temporary storage and
main file systems, note that conflicting changes may have
taken place within and outside the IFS, e.g., the same file
may have been modified in different ways within and out-
side the SEE. In such cases, it is unclear what the desired
merge result should be. Thus, the first problem to be ad-
dressed in implementing the commit operation is that of
identifying commit criteria that ensure that the commit op-
eration can be performed fully automatically (i.e., without
any user input) and is guaranteed to produce meaningful re-
sults. We describe possible commit criteria in Section 4.1.
Following this, we describe an efficient algorithm for com-
mitting results in Section 4.2.

If the commit criteria is not satisfied, then manual rec-
onciliation of conflicting actions that took place inside the
SEE and outside will be needed. The commit criteria will
also identify the set of conflicting files and operations. At
this point, the user can decide to:

• abort, i.e., discard the results of SEE execution. This
course of action would make sense if the activities per-
formed inside SEE are longer be relevant (or useful) in
the context of changes to the main file system.

• retry, i.e., discard the results of SEE execution, cre-
ate a new SEE environment, redo the actions that were
just performed within the SEE, and then try to com-
mit again. If the conflict were due to activities on the
host OS that are relatively infrequent, e.g., the result
of a cron job or actions of other users that are unlikely
to be repeated, then the retry has a high probability
of allowing a successful commit. (Note that the retry
will likely start with the same system state as the first
time and hence will have the same net effect as the first
time.)

• resolve conflicts, i.e., the user manually examines the
files involved in the conflict (and their contents) and
determines if it is safe to commit; and if so, what the
merged contents of the files involved in the conflict.
The commit criteria will identify the list of files in-
volved in the conflict and the associated operations, but
the rest of the steps need to be performed manually.

4.1. Commit Criteria

The commit criteria is a set of rules which determine
whether the results of changes made within an SEE can be
committed automatically, and lead to a consistent file sys-
tem state. Since the problem of consistency and commit-
ting has been studied extensively in the context of database
transactions, it is useful to formulate the commit problem
here in the terms used in databases. However, note that
there is no well-defined notion of transactions in the con-
text of IFS. We therefore identify the entire set of actions
that took place within SEE in isolation as a transaction Ti

and the entire set of actions that took place outside of the
SEE (but limited to the actions that took place during the
lifetime of the SEE) as another transaction Th.

There are several natural choices for commit criteria:

• Noninterference. This requires that the actions con-
tained in Ti be unaffected by the changes made in
Th and vice-versa. More formally, let RS(T ) and
WS(T ) denote respectively the set of all filesystem
objects read and written by a transaction T , respec-
tively. Then, noninterference requires that

RS(Ti) ∩ WS(Th) = φ

RS(Th) ∩ WS(Ti) = φ

WS(Ti) ∩ WS(Th) = φ

The advantage of this criteria is that it leads to very
predictable and understandable results. Its drawback
is that it is too restrictive. For instance, consider a con-
flict that arises due to a single file f that is written in Th

and read in Ti. Also suppose that f was read within the
SEE after the time of the last modification operation on
f in Th. Then it is clear that Ti used the modified ver-
sion of f in its computation, and hence it need not be
aborted, yet the noninterference criteria will not permit
Ti to be committed.

• Serializability. This criteria requires that the effect of
concurrent transactions be the same as if they were ex-
ecuted in some serial order, i.e., an order in which there
was no interleaving of operations from different trans-
actions. In the context of IFS, there are only two possi-
ble serial orders, namely, TiTh and ThTi. Serializabil-
ity has been used very successfully in the context of
database transactions, so it is a natural candidate here.
However, its use in SEE can lead to unexpected re-
sults. For instance, consider a situation where a file f

is modified in Ti and is deleted in Th. At the point of
commit, the user would be looking at the contents of f

within the SEE and would expect this result to persist
after the commit, but if the serial order TiTh were to be
permitted, then f would no longer be available! Even



worse, its contents would not be recoverable. Thus, se-
rializability may be too general in the context of SEE:
if results were committed automatically when Ti and
Th were serializable, then there is no guarantee that
the resulting system state would be as expected by the
user of the SEE.

• Atomic execution of SEE activities at commit time. If
the state of main file system after the commit were as
if all of the SEE activities took place atomically at the
point of commit, then it leads to a very understandable
behavior. This is because the contents of the main file
system after the commit operation will match the con-
tents of the IFS on every file that was read or written
within the IFS. The atomic execution criteria (AEC)
is a restriction of serializability criterion in that only
the order ThTi is permitted, and the order TiTh, which
led to unexpected results in the example above, is not
permitted.

Based on the above discussion, we use AEC as the criteria
for automatic commits in SEE. In all other cases, the user
will be presented with a set of files and directories that vio-
late the AEC, and the user will be asked to resolve the con-
flict using one of the options discussed earlier (i.e., abort,
redo, or manually reconcile).

In addition to providing consistent results, a commit cri-
teria should be amenable to efficient implementation. In
this context, note that we don’t have detailed information
about the actions within Th. In particular, the UNIX file
system maintains only the last read time and write time for
each file system object, so there is no way to obtain the list
of all read and write actions that took place within Th, or
their respective timestamps. We could, of course, maintain
such detailed information if we intercepted all file opera-
tions on the main file system and recorded them, but this
conflicts with our design goal that operations of processes
outside SEE should not be changed in any way. On the other
hand, since we do intercept all file accesses within the IFS,
we can (and do) maintain more detailed information about
the timestamps of the read and write operations that took
place within the SEE. Thus, an ideal commit criteria, from
an implementation perspective, will be one that leverages
the detailed timestamp information we have about Ti while
being able to cope with the minimal timestamp information
we have about Th. It turns out that AEC satisfies this condi-
tion, and hence we have chosen this criteria as the basis for
fully automated commits in IFS.

In order to determine whether AEC is satisfied, we need
to reason about the timestamps of operations in Th and Ti

and show that their orders can be permuted so that all op-
erations in Th occur before the operations in Ti, and that
this permutation does not change the semantics of the oper-
ations. We make the following observations in this regard:

• Any changes made within the SEE are invisible on the
main file system, so the results of operations in Th

would not be changed if all Ti operations were delayed
to the point of commit.

• A read operation R(f) performed in Ti can be delayed
to the point of commit and still be guaranteed to pro-
duce the same results, provided the target f was un-
changed between the time R was executed and the time
of commit. This translates to requiring that the last
modification time of f in the main file system precede
the timestamp of the first read operation on f in Ti.

• The results of a write operation W (f) performed in
Ti is unaffected by any read or write operation in Th,
and hence it can be delayed to commit time without
changing its semantics.

Based on the observations, we conclude that AEC is satis-
fied if:

the earliest read-time of an object within the IFS
occurs after the last modification time of the same
object on the main file system.

Note that the latest modification time of an object on the
main file system is given by the mtime and ctime fields
associated with that object. In addition, we need to maintain
the earliest read-time of every object within the IFS in order
to evaluate this criteria.

A slight explanation of the above criteria is useful in the
context of append operations on files. Consider a file that
is appended by an SEE process is subsequently appended
by an outside process. Both appends look like a write op-
eration, and hence the above commit criteria would seem to
indicate that it is safe to commit results. But if this were
done, the results of the append operation performed outside
IFS would be lost, which is an unexpected result. Clearly,
if the SEE process were run at the time of commit, then no
information would have been lost. However, this apparent
problem is clarified once we realize that an append opera-
tion really involves a read and then a write. Once this is
taken into account, a conflict will be detected between the
time the file was read within IFS and the time it was mod-
ified outside, thereby causing the AEC criteria to be vio-
lated. More generally, whenever a file is modified within
IFS without completely erasing its original contents (which
is accomplished by truncating its length to zero), we treat
this as a read followed by a write operation for the purposes
of committing, and handle the above situation correctly.

4.1.1 Improvements to AEC

The above discussion of AEC classifies operations into
two kinds: read and write. The benefit of such an approach
is its simplicity. Its drawback is that it can raise conflicts



even when there is a meaningful way to commit. We illus-
trate this with two examples:

• System log files are appended by many processes.
Based on earlier discussion about append operations
on files, the AEC criteria won’t be satisfied whenever
an SEE process appends an entry e1 to the log file and
an outside process subsequently appends another entry
e2 to the same file. Yet, we see that the results can eas-
ily be merged by appending both e1 and e2 to the log
file.

• Directories close to the root of the file system are al-
most always examined by SEE process as part of look-
ing up a file name in the directory tree. Thus, if any
changes were to be made in such directories by out-
side processes, it will lead to AEC being violated. Yet,
we see that a name lookup operation does not conflict
with a file creation operation unless the name being
looked up is identical to the file created.

These examples suggest that AEC will permit commits
more often if we distinguished among operations at a finer
level of granularity, as opposed to treating them as read and
write operations. However, we are constrained by the fact
that we don’t have a complete record of the operations ex-
ecuted by outside processes. Therefore, our approach is to
try to infer the operations by looking at the content of the
files. In particular, let fo denote the (original) content of a
file system object at the point it was copied into temporary
storage, and fh and fi denote the content of the same file
in the main file system and the IFS at the point of commit.
We can then compute the difference δ

f
h between fo and fh,

and the difference δ
f
i between fo and fi. From these differ-

ences, we can try to infer the changes that were made within
and outside SEE. For instance, if both δ

f
h and δ

f
i consist of

additions to the end of the file, we can infer that append op-
erations took place, and we can apply these differences to
fo.

In the case of directories, the situation is a bit simpler.
Due to the nature of directory operations, δf

h will consist of
file (or subdirectory) creation and deletion operations. Let
Fh denote the set of files created or deleted in δ

f
h , and let

Fi be the set of names in this directory that were looked up
in Ti. This information, as well as the time of first lookup
on each of these names, are maintained within the IFS. Let
Fc = Fh ∩ Fi. Now, we can see that the AEC criteria will
be satisfied if either one of the following conditions hold:

• Fc = φ, or

• the modification time of fo precedes all of the lookup
times on any of the files in Fc.

In the first case, none of the names looked up (i.e., “read”)
within the SEE were modified outside, thus satisfying AEC.

In the second case, conflicts are again avoided since all of
the lookups on conflicting files took place after any of the
modification operations involving them in the main file sys-
tem.

We point out that inferring operations from the state of
the file system can be error-prone. For instance, it is not
possible to distinguish from system state whether a file a

was deleted or if it was first renamed into b and then deleted.
For this reason, we restrict the use of this approach to log
files and directories. In other cases, e.g., updates of text
files, we can use this technique with explicit user input.

4.2. Efficient Implementation of Commit

After making a decision on whether it is safe to commit,
the next step is to apply the changes to the main file system.
One approach in this context is to traverse the contents of
the temporary storage and copy them into the main file sys-
tem. However, this simple approach does not always pro-
duce expected results. Consider, for instance, a case where
a file a is first renamed to b and then modified. A simple
traversal and copy will leave the original version of a as
is, and create a new file b whose contents are the same as
in the temporary storage. The correct result, which will be
obtained if we redo all the (write) operations at the point
of commit, will leave the system without the file a. Thus,
the simple approach for state-based commit does not work
correctly.

The above example motivates a log-based solution: main-
tain a complete log of all successful modifications opera-
tions that were performed within the SEE, and replay them
on the main file system at the point of commit. This ap-
proach has the benefit of being simple and being correct
in terms of preserving the AEC semantics. However, its
drawback is that it is inefficient, both in terms of space and
time. In the worst case, the storage overhead can be arbitrar-
ily higher than an approach that uses state-based commit-
ting. For instance, consider an application that creates and
deletes many (temporary) files. The state-based approach
will need to store very few files in temporary storage, but
a log-based approach will need to store all the write op-
erations that were performed, including those on files that
were subsequently deleted. Moreover, redoing the log can
be substantially more expensive than state-based commit,
since the latter can exploit rename operations to avoid file
copies altogether.

The above discussion brings forth the complementary
benefits of the two approaches. The first approach makes
use of the accumulated modification results on file system
objects, thus avoiding the expense associated with the main-
tenance and redoing of logs. The second approach, by main-
taining logs, is able to handle subtle cases involving file re-



names. In our implementation of the commit operation, we
combine the benefits of both.

We refer to our approach as state-based commit. For files,
the commit action used in our approach involves simply re-
naming (or copying) the file into the main file system. For
operations related to links, it records a minimal set of link-
related operations that captures the set of links associated
with each file system object. In this sense, one can think
of the approach as maintaining “condensed” logs, where re-
dundant information is pruned away. For instance, there
is no need to remember operations on a file if it is subse-
quently deleted. Similarly, if a file is renamed twice, then
it would be enough to remember the net effect of these two
renames. To identify such redundancies efficiently, our ap-
proach partitions the logs based on the objects to which they
apply. This log information is kept in the inode table de-
scribed earlier.

Operations that modify the contents of a file or change
metadata (such as permissions) on any file system object are
not maintained in the logs, but simply applied to the object.
In effect, the state of the object captures the net effect of all
such operations, so there is no need to maintain them in a
log. Thus, only information about file or directory creation
and deletion, and those that concern addition or removal of
links are maintained in the log. In addition, to simplify the
implementation, we separate the effects of creating or delet-
ing file system objects from the effect of adding or deleting
links. This means that the creation of a file would be repre-
sented in our logs by two operations: one to create the file
object, and another to link it to the directory in which the
object is created. Similarly, a rename operation is split into
an operation to add a link, another to remove a link, and a
third (if applicable) to delete the file originally referenced
by the new name. As in previous sections, file objects in-
volved in these operations are identified by inode numbers
rather than path names.

Specifically, the log contains one of the following opera-
tions:

• create and delete operations denote respectively the
creation of a file or a directory, and are associated with
the created file system object.

• addlink and rmlink operations denote respectively the
addition and deletion of a link from a directory to a file
system object. These operations are associated with
the file system object that is the target of the link, and
have two operands. The first is the inode number of the
parent directory and the second is the name associated
with the link.

The effect of some of these operations is superceded by
other operations, in which case only latter operations are
maintained. For instance, a delete operation supercedes a

create operation. An rmlink operation cancels out a preced-
ing addlink with the same operands.

In addition to removing redundant operations from the
logs, we also reorder operations that do not interfere with
each other in order to further simplify the log. In this con-
text, note that two valid addlink operations in the log associ-
ated with any file system object are independent. Similarly,
any addlink operation on the object is independent of an rm-
link operation. (Both these statements are true only when
we assume that operations that are superceded or canceled
by others have already been removed from the log.)

Based on this discussion, we can see that a condensed log
associated with a file system object can consist of operations
in the following order:

• zero or one create operation. Since the file system ob-
ject does not exist before creation, this must be the first
operation in the log, if it exists.

• zero or more rmlink operations. Note that multiple rm-
link operations are possible if the file system object
was originally referenced by multiple links. Moreover,
the parent directories corresponding to these rmlink
operations must all have existed at the time of creation
of SEE, or otherwise an addlink operation (to link this
object to the parent directory) must have been executed
before the rmlink. In that case, the addlink and rm-
link operations would have cancelled each other out
and hence won’t be present in the condensed log.

• zero or more addlink operations. Note that multiple
addlink operations are possible if the object is being
referenced by multiple links. Also, there must be at
least one addlink operation if the first operation in the
log is a create operation.

• zero or one delete operation. Note that when a delete
operation is present, there won’t be any addlink opera-
tions, but there may be one or more rmlink operations
in the log.

Given the condensed logs maintained with the objects in the
inode table, it seems straightforward to carry out the com-
mit operation. The only catch is that we only have the rel-
ative ordering of operations involving a single file system
object, but lost information about the global ordering of op-
erations across different objects. This raises the question as
to whether the meanings of these operations may change as
a result. In this context, we make the following observa-
tions:

• Creation and deletion operations do not have any de-
pendencies across objects. Hence the loss of global
ordering regarding these operations does not affect the
semantics of these operations.

• Rmlink operation depends upon the existence of parent



directory, but nothing else. This means that as long as
it is performed prior to the deletion of parent directory,
its meaning will be the same as is it was executed in
the global order in which it was executed originally.

• Addlink operation depends on the creation of the par-
ent directory (i.e., the directory in which the link will
reside) and the target object. Moreover, an addlink
operation involving a given parent directory and link
name has a dependency on any other rmlink operation
involving the same parent directory and link names.
This is because the addlink operation cannot be per-
formed if a link with the same name is present in the
parent directory, and the execution of rmlink affects
whether such a link is present. Thus, the effect of ad-
dlink operations will be preserved as long as any par-
ent directory creation, as well as relevant rmlink oper-
ations are performed before.

Among operations that have dependency, one of the two
possible orders is allowable. For instance, an rmlink opera-
tion cannot precede the existence of either the parent direc-
tory or the target of the link. Similarly, an addlink operation
cannot precede an rmlink operation with the same parent
directory and name components. (Recall that we have de-
composed a rename operation into rmlink (if needed), ad-
dlink and an object delete (if needed) operations, so it can-
not happen that an addlink operation is invoked on a par-
ent directory when there is already another link with the
same name in that directory.) This means that even though
the global ordering on operations has been lost, it can be
reconstructed. Our approach is to traverse the file system
within the temporary storage, and combine the condensed
logs while respecting the above constraints, and then exe-
cute them in order to implement the commit step.

Atomic Commits. As mentioned before, the committing of
modifications should be done atomically in order to guaran-
tee file system consistency. The natural way to do atomic
operations is through file-locking: to prevent access to all
the file system objects that are to be modified by the com-
mitting process. We use Linux mandatory locks to achieve
this. Immediately before the committing phase, a lock is
applied to the list of to-be-committed files, so that other
processes do not gain access to these files. Only when the
committing is completely done, the locks on these files are
released.

5 Discussion

In the previous two sections, we discussed aspects of IFS,
our filesystem proxy. In this section, we discuss how the
other components of SEE fit together, including the compo-
nents that support restriction, network level redirection, and
user interface.

Implementing Restriction at System Call Layer. The
actions of SEE processes are regulated by a kernel-resident
policy enforcement engine that operates using system call
interposition. This enforcement engine generally enforces
the following policies in order to realize SEEs:

• File accesses. Ensure that SEE processes can access
only the files within the IFS. Access to device spe-
cial files are not allowed, except for “harmless” devices
like tty’s and /dev/null.

• Network access. Network accesses for which an ex-
plicit (static) redirection has been set up are allowed.
The redirection may be to another process that exe-
cutes within a different SEE, or to an intelligent proxy
for a network service. (Note that network file ac-
cess operations do not fall in this category — they are
treated as file operations.)

• Interprocess communication (IPC). IPC operations are
allowed among the processes within the same SEE.
However, no IPC may take place between SEE and
non-SEE processes. An exception to this rule is cur-
rently made for X-server access. (To be safe, we
should restrict X-server accesses made by SEE appli-
cations so that they don’t interfere with X-operations
made by non-SEE applications. However, our imple-
mentation does not currently have the ability to enforce
policies at the level of X-requests.)

• Signals and process control. A number of operations
related to process control, such as sending of signals,
are restricted so that a process inside an SEE cannot
interfere with the operation of outside processes.

• Miscellaneous “safe” operations. Most system calls
that query system state (timers and clocks, file system
statistics, memory usage, etc.) are permitted within
the SEE. In addition, operations that modify process-
specific resources such as timers are also permitted.

• Privileged operations. A number of privileged opera-
tions, such as mounting file systems, changing process
scheduling algorithms, setting system time, and load-
ing/unloading modules are not permitted within SEE.

Note that the exact set of rules mentioned above may not
suit all applications. For instance, one may want to disallow
all network accesses for an untrusted application, but may
be willing to allow some accesses (e.g, DNS and WWW)
for applications that are more trusted. To support such cus-
tomization, we use a high-level, expressive policy specifi-
cation language called BMSL [29, 34] in our implemen-
tation. This language enables convenient specification of
policies that can be based on system call names as well
as arguments. The kinds of policies that can be expressed
include simple access control policies, as well as policies
that depend on history of past accesses and/or resource us-



age. In addition, the language allows response actions to
be launched when policies are violated. For instance, it can
be specified that if a process tries to open a file f , then it
should be redirected to open another file f ′. Efficient en-
forcement engines are generated by a compiler from these
policy specifications. More details about this language and
its compiler can be found in [34].

In our experience, we have been able to specify and en-
force policies that allow a range of applications to function
without raising exceptions, and the experimentation section
describes some of our experiences in this regard.

Support for Network Operations. Support for network
access can be provided while ensuring one-way isolation
semantics in the following cases:

• access to services that only provide query (and no up-
date) functionality, e.g., access to domain name service
and informational web sites, can be permitted by con-
figuring the kernel enforcement engine so that it per-
mits access to certain network ports on certain hosts.

• communication with processes running within other
SEEs can be supported by redirecting network ac-
cesses appropriately. This function is also provided by
the kernel enforcement engine.

• accesses to any service can be allowed, if the access
is made through an intelligent proxy that can provide
isolation semantics.

Currently, our implementation supports the first two cases.
Use of distributed SEEs provides an easy way to permit iso-
lated process to access any local server — one can simply
run the server in isolation, and redirect accesses by the iso-
lated process to this isolated server. However, for servers
that operate in a different administrative domain, or servers
that in turn access several other network functions, running
the server in isolation may not always be possible. In such
cases, use of an intelligent proxy that partially emulates the
server function may be appropriate.

Intelligent proxies may function in two ways. First, they
may utilize service-specific knowledge in filtering requests
to ensure that only “read” operations are passed on to a
server. Second, they may provide some level of support
for “write” operations, while containing the effects within
themselves, and propagating the results to the real server
only at the point of commit. For instance, an email proxy
may be implemented which simply accepts email for deliv-
ery, but does not actually deliver them until commit time.
Naturally, such an approach won’t work in the case when a
response to an email is expected.

Another limitation of our current implementation is that
it does not provide support for atomic commits across dis-
tributed SEEs.

User Interface. In this section, we describe the support
provided in our implementation for users to make decisions
regarding commits.

Typically, an SEE is created with an interactive shell run-
ning inside it. This shell is used by the user to carry out
the tasks that he/she wishes to do inside the SEE. At this
point, the user can use arbitrary helper applications to ana-
lyze, compare, or check the validity of the results of these
tasks. For instance, if the application modifies just text files,
utilities like diff can point out the differences between the
old and new versions. If documents, images, video or audio
files are modified, then corresponding document or multi-
media viewers may be used. More generally, users can em-
ploy the full range of file and multimedia utilities or cus-
tomized applications that they use everyday to examine the
results of SEE execution and decide whether to commit.

Before the user makes a final decision on committing, a
compact summary of files modified within the SEE is pro-
vided to the user. If the user does not accept the changes,
she can just roll them back at a click of button. If she ac-
cepts the changes, then the commit criteria is checked. If
it is satisfied, then the commit operation proceeds as de-
scribed earlier. If not, the user may still decide to proceed
to commit, but this is supported only in certain cases. For
instance, if the whole structure of the file system has been
changed outside the SEE during its operation, there won’t
be a meaningful way to commit. For this reason, overrid-
ing of commit criteria is permitted only when the conflict
involves a plain file.

Recall that SEEs may be used to run untrusted and/or ma-
licious software. In such cases, additional precautions need
to be taken to ensure that this software does not interfere
with the helper applications, subverting them into providing
a view of system state that looks acceptable to the user. In
particular, we need to ensure that untrusted processes can-
not interfere with the operation of helper application pro-
cesses, or modify the executables, libraries or configura-
tion files used by them. To ensure this, helper applications
can be run outside of the SEE, but having a read-only ac-
cess to the file system view within the IFS using a special
path name. This approach ensures that the helper applica-
tion gets its executable, libraries and config files from the
host file system. Another advantage of doing this is that
any modifications to the system state made by helper ap-
plications do not clutter the user interface that reports file
modifications that were carried out within the SEE. (While
it may seem that helper applications are unlikely to mod-
ify files, this is not true. For instance, running the bash
shell causes it to update the .bash history file; running a
browser updates its history and cache files; and so on.)



6. Evaluation

In this section, we present an evaluation of the function-
ality and performance of our SEE implementation.

6.1. Evaluation of Functionality

Untrusted applications. We describe two applications
here: a file renaming utility freeware called rta [33], which
traverses a directory tree and renames a large number of
files based on rules specified on the command line, and
a photo album organizer freeware called picturepages

[30]. These applications ran successfully within our SEE.
Our implementation includes a GUI that summarizes files
modified in the SEE so as to simplify user’s task of decid-
ing whether the changes made by the application are accept-
able. Using this GUI, we checked that the modifications
made by these applications were as intended: renaming of
many files, and creation of several files and/or directories.
We were then able to commit the results successfully.

To simulate the possibility that these programs could
be malicious, we inserted an attack into picturepages

that causes it to append a new public key to the file
.ssh/authorized keys. (This attack would enable the
author of the code to later log into the system on which
picturepages was run.) Using our GUI, it was easy to
spot the change to this file. The run was aborted, leaving
the file system in its original state.

Malicious code. Email attachments and WWW links are
a common source of viruses and other malware. We used an
SEE to protect systems from such malware. Specifically, we
modified the MIME type handler configuration file used by
Mozilla so that executables, as well as viewers launched to
process documents (e.g., ghostscript and xpdf) fetched
over the Internet, were run within SEE. We fetched sample
malicious PostScript and Perl code over the network using
this approach. This code was executed inside the SEE. Us-
ing our GUI, we were able to see that these programs were
performing unexpected actions, e.g., creating a huge file
in the user’s home directory. These actions were aborted.
Also, at the time of writing this paper, there are several im-
age flaw exploits (JPEG virus) that have captured the at-
tention of many researchers. Running such image viewers
inside an SEE will help eliminate this potential danger, be-
cause any malicious activity from the exploits will be iso-
lated from affecting the main system.

Some kinds of malicious code are written to recognize
typical sandbox environments, and if so, not display their
malicious behavior. This can cause a user to develop trust
in the code and then execute it outside of sandbox, when
the malcode will deliver its payload. With our approach,
we point out that running the code inside SEE does not in-

cur significant inconvenience for the user, thereby making
it easy for the user to always use it. In this case, the code
will always display benign behavior.

Software installation. Another experiment performed a
trial installation of mozilla browser. During the installa-
tion, an incorrect directory name /usr/bin was chosen as
the location for installation, instead of the default directory
/usr/local/mozilla. Under normal circumstances, this
causes Mozilla to copy a number of files into /usr/bin,
thereby “polluting” the directory. After running the pro-
gram in an SEE, the user interface indicated that a large
number of files (some are non-executables) were added to
/usr/bin, which was not desirable. Aborting this installa-
tion, we ran the installation program a second time, this time
with /usr/local/mozilla as the location for installa-
tion. At the end of installation, we restarted the browser, and
visited several sites to make sure that the program worked
as expected. (For this experiment, the system call restric-
tion layer was modified to allow all WWW accesses.) Fi-
nally, we committed the installation, and from that point on,
we were able to use the new installation of the browser suc-
cessfully, outside of SEE.

Upgrading and testing a server. Specifically, we wanted
to upgrade our web server so that it can support SSL. We
started a command shell under SEE, and used it to up-
grade the apache software installation. We then ran the
new server. To enable it to run, we used static redirection
for network operations, so that a bind operation to port 80
was redirected to port 3080. We then ran a browser that
accessed this server by connecting to this port. We veri-
fied that the new server worked correctly. Meanwhile, the
original server was still accessible to every one. Thus, SEE
allowed the software upgrade to be tested easily and conve-
niently, without having to shutdown the original server.

After verifying the operation of the new server, we at-
tempted to commit the results. Unfortunately, this produced
conflicts on some files such as the access and error log files
used by the server. We chose to ignore updates to such out-
put files that were made within the SEE, and commit only
the rest of the files, which could be done successfully.

6.2. Performance Evaluation

All performance results reported in this paper were ob-
tained from a laptop running Red Hat Linux 7.3 with a
1.0GHz AMD Athlon4 processor, 512MB memory and a
20GB, 4200rpm IDE hard disk. The primary metric was
elapsed time.



ghostview tar postmark Am−utils

Pe
rc

en
ta

ge
 o

f 
O

ve
rh

ea
d 

(%
)

Overhead for applications running in SEE

Commit
Isolation

 0

 5

 20

 15

 10

 0

 1

 2

 3

 4

 5

2−clients 16−clients 30−clients

Pe
rc

en
ta

ge
 o

f 
D

eg
ra

da
tio

n 
(%

)

Degradation for httpd server running in SEE

Average Response Time
Connection Rate

(a) Utility applications (b) Apache httpd server

Figure 2. Performance Results for Program Execution in SEE

For performance evaluation, we considered the following
classes of examples:

• Utility programs. In this category, we studied
ghostview and tar utilities. Specifically, we per-
formed ghostview on a 31M file, with no file modi-
fication operations; and tar to generate a tarball from
a 26M directory, and the only modification operations
involved was the creation of this archive. From Fig-
ure 2, we can see a 3-12% overhead incurred for such
applications during isolation phase, and a negligible
commit time overhead.

• Servers. We measured the performance overhead on
the Apache web server using WebStone [35], a stan-
dard web server benchmark. We used version 2.5 of
this benchmark, and ran it on a separate computer that
is connected to the server through a 100Mbps network.
We ran the benchmark with two, sixteen and thirty
clients. In the experiments, the clients were simulated
to access the web server concurrently. They randomly
fetch html files whose size is from 500 bytes to 5M.
The benchmark was run for a duration of 30 minutes,
and the results were averaged across ten such runs. The
results are shown in Figure 2.

• File system benchmarks. We used Postmark [9] and
Am-Utils [18] benchmarks to get the benchmark data
for IFS. Postmark is a file system benchmark to mea-
sure the performance for file system used by Internet
applications, such as email. In this experiment, we
configured Postmark to create 500 files in a file pool,
with file sizes ranging from 500 bytes to 500KB. A to-
tal of 2000 file system operations were performed. In
total, 1515 files were created, 1010 files read, 990 file
written, and 1515 files deleted. The tests were repeated
ten times. The results are as depicted in figure 2. Over-
all, a 18% performance degradation is observed, and
commit overhead is near zero. Am-Utils is a CPU-
intensive benchmark result by building the Am-Utils

Log-based Commit State-based Commit
Time Time Speedup

ghostview 0.03 0.03 1
tar 0.14 0.03 4.7

postmark 225 0.07 3214.3
Am-utils 16.9 0.35 48.3

Figure 3. Comparison for Log-based Commit
and State-based Commit. All numbers are in
seconds.

package, which contains 7.6M lines of C code and
scripts. The building process creates 152 files and 19
directories, as well as 6 rename and 8 setattr opera-
tions. We ran this experiment in both original file sys-
tem and IFS. The results, shown in Figure 2, indicate
a low isolation overhead of under 2% and a negligible
commit overhead.

In addition, we also collected results in Figure 3 to show
the efficiency of our state-based commit approach. An im-
plementation that used log based committing was compared
with our state based committing implementation, and the
performance of both of the approaches were compared for
applications such as tar, postmark and Am-utils. The
results project the advantage of using a state based commit
approach, particularly illustrating the advantage of having
accumulative effects for file objects. For instance, the large
number of temporary files created then deleted in Am-utils
compilation and all the files created then deleted in Post-
mark execution, are not considered in the committing stage
as candidates, while log-based commit still needs to per-
form the whole set of operations (e.g. write) to all these
files, so there is a significant difference between the two ap-
proaches in terms of commit time.



7. Related Work

Sandboxing. Sandboxing based approaches [7, 6, 1, 21,
27, 22] involve observing a program’s behavior and block-
ing actions that may compromise the system’s security.
Janus [7] incorporates a proc file system based system call
interposition technique for the Solaris operating system. A
more recent version has been implemented on Linux, and
uses a kernel module for interposition. Chakravyuha [6]
uses a kernel interception mechanism. MAPbox [1] is a
sandboxing mechanism where the goal is to make the sand-
box more configurable and usable by providing a template
for sandbox policies based on a classification of application
behaviors. [21] creates the policy sandbox for programs
(such as web browser) by first tracking the file requests
made by the programs. This approach, however, requires
a training phase, in which users need to run the programs
using “normal” inputs, so that the policy sandbox can cap-
ture a complete set of files accessed by the programs. But
in the case of untrusted code, the choice of such inputs may
not be clear. Safe Virtual Execution (SVE) [27] uses Soft-
ware Dynamic Translation, a technique for modifying bi-
naries as they execute, is used to implement sandboxing.
Systrace [22] is a sandboxing system that notifies the user
about all system calls that an application tries to execute and
then uses the response from the user to generate a policy for
the application.

The main drawback of sandboxing based approaches is
the difficulty of policy selection, i.e, determining what ac-
tions are permissible for a given piece of software. Note that
malicious behavior may not only involve accessing unau-
thorized resources, but also accessing authorized resources
in unauthorized ways. For instance, a program that creates
a compressed version of a file may instead create a file that
contains no useful data, which is equivalent to deleting the
original file. It is unlikely that a practical system can be de-
veloped that can allow users to conveniently state policies
that allow write access to the file while ensuring that the file
is replaced with its compressed version. In contrast, an SEE
permits manual inspection, aided by helper applications, to
be used to determine if a program behaved as expected. This
approach is much more flexible. Indeed, it is hard to imag-
ine that tasks such as verifying whether a software package
has been installed properly can even be formally specified
using any sandbox-type policy.

[28, 38] extend sandboxing by allowing operations to be
disallowed silently, i.e., by returning a success code to the
program. The goal of the approaches is deception, i.e.,
making a malicious program believe that it is succeeding
in its actions so as to observe its behavior. In our termi-
nology, these approaches use restriction rather than redirec-
tion. As we observed earlier, use of restriction is likely to

break many benign applications, as well as alert malicious
applications very quickly to the effect that their actions are
not succeeding. For instance, if a write operation is silently
suppressed, the application can easily detect this by reading
back the contents.

Isolation approaches. Two-way isolation between a host
and guest operating system forms the basis of security in
virtual machine based approaches for realizing SEEs. The
“playground” approaches developed for Java programs in
[15, 4] also belong to this general category — untrusted pro-
grams are run on a physically isolated system, while their
display is redirected to the user’s desktop. Note that the
file system on the user’s computer cannot directly be ac-
cessed on the playground system, which means that there is
two way isolation being employed in this case. Covirt [3]
proposes that most of applications be run inside virtual ma-
chine instead of host machines. Denali [36] is another vir-
tual machine based approach that runs untrusted distributed
server applications. As outlined in the introduction, all the
above approaches suffer from the difficulty of environment
reproduction, and also in committing the changes back to
the original system. As a result, they do not provide a help-
ful approach for the applications discussed in the introduc-
tion.

[13] was the first approach to present a systematic devel-
opment of the concept of one-way isolation as an effective
means to isolate the effects of running processes from the
point they are compromised. They developed protocols for
realizing one-way isolation in the context of databases and
file systems. However, they do not present an implemen-
tation of their approach. As a result, they do not consider
the research challenges that arise due to the nature of COTS
applications and commodity OSes. Moreover, they do not
provide a systematic treatment of issues related to consis-
tency of committed results.

In our previous work [12], we developed a practical ap-
proach for secure execution of untrusted software based on
isolation. The focus of this effort was on developing a tool
that can be easily installed and used by ordinary users that
may not have administrative access to a computer. It is im-
plemented entirely at the user level, and does not require
any changes to the OS kernel. In order to achieve this ob-
jective, [12] compromises on performance as well as gen-
erality. In particular, the approach suffers from high over-
heads that can be over 100% in some instances. Moreover,
isolation semantics cannot be faithfully reproduced for cer-
tain operations that involve meta-data such as permissions
and ownership. For directories, isolation is achieved using
an ad-hoc approach that is hard to implement and its se-
mantics is inconsistent with that of file updates. Finally,
no systematic solution to the commit problem is provided.



The approach developed in this paper addresses all these
drawbacks by implementing isolation within the kernel at
the VFS layer. Moreover, it shows how the approach can
be generalized so that isolation can be provided for non-file
operations, e.g., certain classes of network accesses.

Recovery-oriented systems. The Recovery-Oriented
Computing (ROC) project [24] is developing techniques
for fast recovery from failures, focusing on failures due
to operator errors. [2] presents an approach that assists
recovery from operator errors in administering a network
server, with the specific example of an email server. The
recovery capabilities provided by their approach are more
general than those provided by ours. The price to be
paid for achieving more general recovery capabilities is
that their implementation needs to be application spe-
cific, and hence will have to be tailored for each specific
application/service. In contrast, we provide an application-
independent approach. Another important distinction is
that with our approach, consistency of system state can
be assured whenever the commit proceeds successfully.
With the ROC approach, which does not restrict network
operations, there is no way to prevent the effects of network
operations from becoming so widely distributed in the
network they cannot be fully reversed. In the case of email
service, they allow a certain level of inconsistency, e.g.,
redelivering an email that was previously read and deleted
by a client, and expect the user to manually resolve this
inconsistency. This potential for inconsistency is traded in
favor of eliminating the risk of commit failures.

File system approaches. Elephant file system [26] is
equipped with file object versioning support, and supports
flexible versioning policies. [5, 23, 25, 31, 19] use check
pointing technique to provide data versioning. [16] imple-
ments VersionFS, a versatile versioning file system. They
use a stackable template file system as ours, and use a sparse
file technique to reduce storage requirements for storing
versions of large files. While all of these approaches pro-
vide the basic capability to rollback system state to a pre-
vious time, such a rollback will discard all changes made
since that time, regardless of whether they were done by a
malicious or benign process. In contrast, the one-way iso-
lation approach implemented in this paper guarantees se-
lective rollback of the actions of processes run within the
SEE without losing the changes made by benign processes
executing outside of the SEE.

Repairable File System [40, 39] makes use of version-
ing file system to bring repair facility to a compromised file
server. Fastrek [20] applies the similar approach to protect
databases. These approaches can attribute changes to mali-
cious or benign process executions, and allow a user to roll-
back changes selectively. However, since the changes made

by (potentially) compromised processes are not contained
within any environment, “cascading aborts” can become a
problem. Specifically, a benign process may access the data
produced by a compromised process, in which case the ac-
tions of the benign process may have to be rolled back, as
well as the actions of processes that used the results of such
a benign process and so on. The risk of such cascaded aborts
should be weighed against the risk of not being able to com-
mit in our approach. Thus, this approach as well as the ROC
approach mentioned above are more suitable when the like-
lihood of rollbacks is low, and commit failures cannot be
tolerated.

Loopback file system [14] can create a virtual file system
from existing file system and allow access to existing files
using alternative path name. But this approach provides no
support for versioning or isolation.

3D file system [10] provides a convenient way for soft-
ware developers to work with different versions of a soft-
ware package. In this sense, it is like a versioning file sys-
tem. It also introduces a technique called transparent view-
pathing which is based on translating file names used by a
process. It gives a union view of several directory struc-
tures thus allowing an application to transparently access
one directory through another’s path. As it is not designed
to deal with untrusted applications, it needs the cooperation
from the application for this mechanism to work. TFS [32]
is a file system in earlier distributions of Sun’s operating
system (SunOS), which allowed mounting of a writable file
system on top of a read-only file system. TFS also has a
view similar to 3DFS, where the modifiable layer sits on top
of the read only layers. [17] describes a union file system
for BSD, that allows “merging” of several directories into
one, with the mounted file system hiding the contents of the
original directories. The union mount will show the merger
of the directories and only the upper layer can be modi-
fied. All these file systems are intended for software de-
velopment, with the UnionFS providing additional facilities
for patching read only systems. However, they do not ad-
dress the problem of securing the original file system from
untrusted/faulty programs; nor do they consider problems
such as data consistency and commit criteria.

8. Summary

In this paper, we presented an approach for realizing safe
execution environments. We showed that the approach is
versatile enough to support a wide range of applications. A
key benefit of our approach is that it provides strong consis-
tency. In particular, if the results of isolated execution are
not acceptable to a user, then the resulting system state is
as if the execution never took place. On the other hand, if
the results are accepted, then the user is guaranteed that the



effect of isolated execution will be identical to that of atom-
ically executing the same program at the point of commit.
We also discussed alternative commit criteria that exploit
file semantics to reduce commit failures.

Our approach makes minimal modifications to the kernel
in the form of modules that provide file system isolation and
policy enforcement. It requires no changes to applications
themselves. Our functional evaluation illustrates the use-
fulness of the approach, while the performance evaluation
shows that the approach is efficient, and incurs overheads
typically less than 10%.

References

[1] A. Acharya and M. Raje. Mapbox: Using parameterized
behavior classes to confine applications. In Proceedings of
USENIX Security Symposium, 2000.

[2] A. Brown and D. Patterson. Undo for operators: Building
an undoable e-mail store. In Proceedings of USENIX An-
nual Technical Conference, 2003.

[3] P. M. Chen and B. D. Nobl. When virtual is better than real.
In Proceedings of Workshop on Hot Topics in Operating
Systems, 2001.

[4] T. Chiueh, H. Sankaran, and A. Neogi. Spout: A transpar-
ent distributed execution engine for java applets. In Pro-
ceedings of International Conference on Distributed Com-
puting Systems, 2000.

[5] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett,
W. A. Mason, and R. N. Sidebotham. The episode file sys-
tem. In Proceedings of the USENIX Winter 1992 Technical
Conference, 1992.

[6] A. Dan, A. Mohindra, R. Ramaswami, and D. Sitaram.
Chakravyuha: A sandbox operating system for the con-
trolled execution of alien code. Technical report, IBM T.J.
Watson research center, 1997.

[7] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications: con-
fining the wily hacker. In Proceedings of USENIX Security
Symposium, 1996.

[8] S. Jajodia, P. Liu, and C. D. McCollum. Application-level
isolation to cope with malicious database users. In Pro-
ceedings of Annual Computer Security Applications Con-
ference, 1998.

[9] J. Katcher. Postmark: A new file system benchmark. Tech-
nical Report TR3022, Network Applicance Inc., 1997.

[10] D. G. Korn and E. Krell. A new dimension for the unix file
system. Software: Practice & Experience, 20(S1), 1990.

[11] B. W. Lampson. A note on the confinement problem. Com-
munications of the ACM, 16(10):613–615, 1973.

[12] Z. Liang, V. Venkatakrishnan, and R. Sekar. Isolated pro-
gram execution: An application transparent approach for
executing untrusted programs. In Proceedings of Annual
Computer Security Applications Conference, 2003.

[13] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion confine-
ment by isolation in information systems. In Proceedings
of IFIP Workshop on Database Security, 1999.

[14] Loop back file system. Unix man page.

[15] D. Malkhi and M. K. Reiter. Secure execution of java ap-
plets using a remote playground. Software Engineering,
26(12), 2000.

[16] K.-K. Muniswamy-Reddy, C. P. Wright, A. P. Himmer, and
E. Zadok. A versatile and user-oriented versioning file sys-
tem. In Proceedings of USENIX Conference on File and
Storage Technologies, 2004.

[17] J.-S. Pendry and M. K. McKusick. Union mounts in 4.4bsd-
lite. In Proceedings of 1995 USENIX Technical Conference
on UNIX and Advanced Computing Systems, 1995.

[18] J. S. Pendry, N. Williams, and E. Zadok. Am-utils user
manual, 6.1b3 edition, july 2003. http://www.am-utils.org.

[19] Z. Peterson and R. Burns. Ext3cow: The design, imple-
mentation, and analysis of metadata for a time-shifting file
system. Technical Report. HSSL-2003-03, Hopkins Stor-
age Systems Lab, Department of Computer Science, Johns
Hopkins University, 2003.

[20] D. Pilania and T. Chiueh. Design, implementation, and
evaluation of an intrusion resilient database system. In Pro-
ceedings of International Conference on Dependable Sys-
tems and Networks, 2003.

[21] V. Prevelakis and D. Spinellis. Sandboxing applications.
In Proceedings of Usenix Annual Technical Conference:
FREENIX Track, 2001.

[22] N. Provos. Improving host security with system call poli-
cies. In Proceedings of USENIX Security Symposium, 2003.

[23] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proceedings of USENIX Conference
on File and Storage Technologies.

[24] Recovery-oriented computing. http://roc.cs.berkeley.edu.

[25] W. D. Roome. 3dfs: A time-oriented file server. In Pro-
ceedings of the USENIX Winter 1992 Technical Conference,
1991.

[26] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C.
Veitch. Elephant: The file system that never forgets. In
Proceedings of Workshop on Hot Topics in Operating Sys-
tems, 1999.

[27] K. Scott and J. Davidson. Safe virtual execution using soft-
ware dynamic translation. In Proceedings of Annual Com-
puter Security Applications Conference, 2002.

[28] R. Sekar, Y. Cai, and M. Segal. A specification-based ap-
proach for building survivable systems. In Proceedings
of National Information Systems Security Conference, Oct
1998.

[29] R. Sekar and P. Uppuluri. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications. In
Proceedings of USENIX Security Symposium, 1999.

[30] K. Sitaker. Picturepages software.
http://www.canonical.org/picturepages/.



[31] C. Soules, G. Goodson, J. Strunk, and G. Ganger. Metadata
efficiency in a comprehensive versioning file system. In
Proceedings of USENIX Conference on File and Storage
Technologies, 2002.

[32] Translucent file system, 1990. SunOS Reference Manual,
Sun Microsystems.

[33] T. Tiilikainen. Rename-them-all, linux freeware version.
http://linux.iconet.com.br/system/preview/8622.html.

[34] P. Uppuluri. Intrusion Detection/Prevention Using Behav-
ior Specifications. PhD thesis, Stony Brook University,
2003.

[35] Webstone, the benchmark for web servers.
http://www.mindcraft.com/webstone.

[36] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applica-
tions. In Proceedings of USENIX Annual Technical Con-
ference, 2002.

[37] E. Zadok, I. Badulescu, and A. Shender. Extending file sys-
tems using stackable templates. In Proceedings of USENIX
Annual Technical Conference, 1999.

[38] M. Zalewski. Fakebust, a malicious code
analyzer. http://www.derkeiler.com/Mailing-
Lists/securityfocus/bugtraq/2004-09/0251.html.

[39] N. Zhu. Data versioning systems. Tech-
nical report, Stony Brook University,
http://www.ecsl.cs.sunysb.edu/tech reports.html.

[40] N. Zhu and T. Chiueh. Design, implementation, and evalu-
ation of repairable file service. In Proceedings of Interna-
tional Conference on Dependable Systems and Networks,
2003.


