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Introduction
Whether in technical or in business publications, graphical displays seem to take two forms: the

garish or the inscrutable.  The icon of the garish is the 3-D pie chart.  The icon of the inscrutable is the

banner and stub table of means.  There are cures for these afflictions, but not without price.  Good design

and clear presentation do not impress people.  Garishness and inscrutability do.  The displays in this paper

are not "power graphics."  But they communicate clearly.

We will look first at displays of the distribution of a single variable.  Then we will examine two

variable and multi-variable displays.  This paper is not an exhaustive survey.  Nor is it systematic.  The

topics chosen have been overlooked in more general discussions of graphic presentation.  And the general

theme is that, whenever possible, display the raw data.

Single variable graphs
Figure 1 contains the most common single variable display: the histogram.  The data are life

expectancies in 17 countries for males and females, compiled by the World Health Organization.  An

advantage of the histogram is that data

within the categories created by the bars

can be counted.  It is, in effect, a graphical

tabulation.  Its close relative, the bar chart,

is a tabulation in which the bars are

discrete, or separated.  Bar charts are

relatively easy to construct; the categories

are already intrinsic to the data.

Histograms are difficult.  We must decide

on the number of categories before

constructing them.  Figure 2 shows how the

shapes of histograms can be seemingly

arbitrarily manipulated by choosing

different bar widths and sliding the base

scale on the same data.  There are

guidelines for making intelligent choices

for the bar widths (or, concomitantly, the number of bars), but not for their location on the base scale

(Sturges, 1926; Doane, 1976; Scott, 1979).  What seems obvious in elementary statistics books ("pick

about 15 bars and fill them") is not.  Viewers who may be aware that the number of bars can affect the

shape of a histogram often don't realize that the location of the cutpoints can affect it more.  More

generally, statistics package users don't always understand that categorizing quantitative variables like age

Figure 1. Histogram of life expectancies



can affect statistical conclusions.  Deciding to make the lowest category boundary 32 instead of 40 can

change the distribution of the data in the categories even when the category widths are held constant.

An antidote is to tabulate the

raw data.  Instead of choosing

cutpoints on a scale, we can take the

most significant decimal digits of the

data and display them together with

the next digit.  Figure 3 shows this

display, called the stem-and-leaf

diagram.  It was invented by Tukey

(1977) as a form of tally which could

be done with paper and pencil.

Actually, unlike many statistical and

graphical procedures, programming it

on a computer is more difficult than

doing it by hand.  Good stem-and-leaf programs make intelligent decisions about picking the digits to

make the display compact.  Notice that we can now see the raw data.  The leftmost digit of each number

appears to the left of the display.  The next digit (regardless of how many trailing digits there are) is to the

right.  At the top, for example, there is one value (44).

The next line shows another value (46).  The third line

shows two values (51, 54).  By counting the "leaves"

(digits on the right) we can tell how many values there

are for each "stem" (digits on the left).  There are 34

leaves in all, the total count in our sample.

Digits look crude; histogram bars look somehow

more mathematical and formal.  But the histogram bars

are nothing more than tallies.  We can make the digits

little squares and then the histogram and stem-and-leaf

diagram would look the same.  For large samples, the

digits in the stem-and-leaf diagram can be reduced in

size.  When counting becomes difficult, we can add a

count scale.

There is another way to display the density of a

batch of data when we are less concerned with counting.

Figure 4 illustrates this display: the kernel density (Silverman, 1986).  The kernel density is immune to

the scale shift problem.  It is also not susceptible to the bar width problem because it has no bars.  The

shape of the smooth can be influenced by the choice of a smoothing window width, however.  Changing

this width can make the kernel density look more or less smooth.  Like the histogram, however, there are

statistical guidelines for choosing a width.

The drawback of the kernel estimator, however, is that the data values are concealed.  We cannot

count values or see their location, as with the stem-and-leaf diagram.  Consequently, the kernel estimator

should be a supplement to other density displays and not a replacement.

Figure 2. Histograms of life expectancies with different bar
widths (horizontal dimension) and different locations of

cutpoints on the same scale (vertical dimension)
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Figure 3. Stem-and-leaf

diagram of life expectancy

data



There is another display which

allows us to see both the raw data and

the smooth: a dot-box plot.  Tukey

(1977) introduced the box or schematic

plot along with the stem-and-leaf

diagram.  Its advantage is that the

fractiles of the data, particularly the

median and quartiles, can be seen.  Its

disadvantage is that it conceals the shape

of the distribution.  Bimodal and

unimodal distributions can have the

same box plot.

The dot-box plot solves this

problem by displaying the box and data

against the same scale.  Figure 5 shows

this plot for the life expectancy data.

Notice that the dot values are symmetrically distributed about the center line.  This type of dot plot

(without the box) has been popular in the medical literature for several years.

Two-variable graphs
The most common two dimensional continuous variable data display is the scatterplot.  Figure 6

shows an example for the life expectancy data.  We

have plotted the data for males against those for

females.  Enhancing scatterplots with smooths can

sometimes reveal hidden structure.  Like the dot-box

plot, we can see the smooth and the raw data.

Figure 7 shows the same scatterplot with a two

dimensional kernel superimposed.  This kernel

reveals the skewness in the joint and marginal

distributions of the data.  The eye can focus on either

aspect of the display.

Unlike the kernel smooth for the histogram,

the kernel is used here only to enhance perception of

the data, not to conceal it.  The contour lines are

light enough so that the data remain visible.

Figure 8 shows how powerful this smoothing

and data display can be.  These data are birth and death rates per year per 100,000 people for 75 selected

Figure 4. Kernel density of life expectancy data

Figure 5. Box-dot plot of life expectancy data

Figure 6. Scatterplot of male against
female life expectancy



countries.  The bivariate kernel contours are

superimposed to show the joint sample

distributions.  Selected points are labeled.  The

zero population growth line at the left of the

plot separates countries like Hungary, which

are losing population, from countries like

Guatemala, which are gaining rapidly.  This

graph reveals a disturbing nonlinearity and

bimodality in world health statistics.

Developed nations show varying birth rates but

relatively low death rates.  Underdeveloped

nations have extremely high birth rates and

high death rates.  Some graphs elude

parsimonious mathematical modeling.  This is

an example.

Multivariable graphs
Most people think of 3-D displays when considering multivariable graphs.  These are the popular

graphs in computer magazines and they certainly sell software.  There are even occasions when they can

prove useful, particularly when the overall shape of a distribution or smoothing surface is of interest.  As

Becker and Cleveland (1991) have pointed out, however, statistical graphics are not the business of

creating real life scenes.  Scientific visualization is fashionable now and has extensive and important

applications.  In statistics, however, we gain more by displaying multivariate data directly rather than by

attempting to smooth them into some recognizable scene.

One of the most useful statistical displays is the scatterplot matrix (SPLOM).  Like tree displays,

SPLOMS are easy for non-statisticians and people who have difficulty with spatial relationships to

understand.  They are simply arrays of scatterplots.  By placing all possible scatterplots in a single display,

SPLOMs help us to see overall structure.

Figure 7. Scatterplot of male vs. female life
expectancy with kernel smooth

Figure 8. Bivariate kernel density of birth and death rates



Figure 10 shows a SPLOM of our birth and death data, with an additional variable - health

expenditures for each of the countries in U.S. adjusted dollars.  The histograms on the diagonal indicate

that the HEALTH data should be logged to reduce the positive skewness.  Figure 10 shows the same

SPLOM after the transformation.

Now let's look at some enhancements of these scatterplots.  Figure 11 shows the bivariate kernel

densities superimposed on the same SPLOM.  Now we see the bimodality apparent in Figure 8, but it

enters the other cells as well.  In addition, we have used stripe plots in the diagonal cells instead of

histograms.  Like dot plots, these density displays reveal the distribution of the actual data points.

Figure 10. SPLOM with histograms.

Figure 10. SPLOM of logged HEALTH



Other enhancements can be used to reveal different aspects of the bivariate structure.  One of the

more valuable trend enhancers is LOWESS (Cleveland, 1981).  This nonlinear smoother is robust to

outliers, so it is a good way to detect nonlinear trend in the bulk of the data.  Figure 12 shows LOWESS

curves superimposed on the same SPLOM.  Notice the substantial nonlinearities.  Journal editors would

do well to require authors to submit SPLOMs whenever they perform analyses based on covariance or

correlation matrices.  This policy would improve replicability by showing that the data are normally

distributed.

Figure 11. SPLOM with bivariate kernel

Figure 12. SPLOM with LOWESS



Conclusion
The graphs presented here are only a small sample of the kind which can be produced with a good

statistical graphics package.  All are black and white, although color has its uses.  Particularly in

presentations, color can be especially effective in distinguishing categories.  Symbols in scatterplots can be

drawn with different primary colors to reveal subgroups of the data, for example.  In general, however,

well designed black and white graphs can convey information succinctly and clearly.  And if the data are

displayed in the same graph whenever possible, it will be more difficult to deceive or convey the wrong

impression.
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