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ABSTRACT

We introduce a method for organizing high-dimensional multivari-
ate displays and for guiding interactive exploration through high-
dimensional data.
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1 INTRODUCTION

Visualization is a centuries-old field. Visual analytics is relatively
new. What distinguishes visual analytics from ordinary visualiza-
tion is the active role played by the computer in the presentation
of information to the viewer. We have, for the first time, a mar-
riage of analytic statistical algorithms and visual presentation in an
interactive environment. Before visual analytics, exploring high-
dimensional data with widgets like rotation controls, slice-and-dice
tools, filter sliders, lensing tools, and real-time brushes was a hap-
hazard enterprise. Exploring raw high-dimensional data with such
tools (an idea introduced by John Tukey) necessarily falls prey to
the curse of dimensionality.

By contrast, visual analytics offers the prospect of guided ex-
ploration. Given interactive tools and underlying analytic compo-
nents, a user can explore views of high-dimensional data that are
highlighted by statistical algorithms. The result is the blending of
the strengths of each approach: the analytic spotlight of statistical
models, and the inferential floodlight of visual exploration.

We need visual analytics for three principal purposes.

• Checking raw data for anomalies. Anomalies in raw data in-
clude outliers caused by coding errors, sensor malfunctions,
extreme environmental conditions, and other factors. Anoma-
lies also include missing values, which may occur randomly
or deterministically. And anomalies may include biases due
to response sets, ceiling and floor effects, and history and mat-
uration effects. These biases can affect the shape of distribu-
tions assumed in data analysis.

• Exploring data to discover plausible models. We call this
exploratory data analysis (EDA), a term invented by John
Tukey [46]. EDA is not a fishing expedition. We explore data
with expectations. We revise our expectations based on what
we see in the data. And we iterate this process.
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• Checking model assumptions. Checking model assumptions
requires plotting residuals and other diagnostic measures.
These plots are often specialized, in order to asses distribu-
tional assumptions.

All three of these tasks are well-documented in the statistical
literature. Outliers, missing data, and other anomalies are covered
in [7][6][37][29]. EDA is discussed in [46][48]. Model diagnostics
are presented in [2][5][9][14].

These tasks are more difficult for high-dimensional data. To ex-
plore a point distribution or diagnose the fit of a multivariate model,
we need to find ways to characterize the distribution. Our character-
ization cannot be so constrained (as in, for example, a single low-
dimensional projection like principal components or MDS) that we
cannot find anomalies or detect local structure. And our characteri-
zation cannot be so general (as in parallel coordinates or scatterplot
matrices) as to overwhelm us with complexity.

We have chosen instead to characterize a point distribution by
constructing pairwise orthogonal views of points and then charac-
terizing the points in these views. Pairwise views polynomially ex-
pand with dimensions, but if we choose our characterizations well,
we can examine them efficiently enough to get a rough picture of
the overall distribution.

The analysis begins with an n × p data matrix X . Pairs of
columns of this matrix are mapped to a p(p− 1)/2× q matrix F
that contains our q 2D point cloud characterizations. We call F a
feature matrix. We then analyze this feature matrix for structure
that can be mapped back to the domain of the original data matrix
X .

Characterization is a vague term. We narrow it by adding con-
straints:

• We want to distinguish many types of point distributions:
multivariate normal, lognormal, multinomial, sparse, dense,
convex, clustered, and so on.

• We want a small number of feature measures that characterize
these distributions.

• We want our feature measures on a common scale so we can
compare them.

• We want our feature measures themselves to have comparable
distributions.

• We want our feature measures to be computable efficiently so
they are scalable to large numbers of points and dimensions.

These constraints force us to construct a minimal set of features
that not only work well in the pairwise domain, but also lead to
discovery of structure in the high-dimensional domain.

2 RELATED WORK

Our visual analytics depend on several areas of prior research. The
first concerns projection, which reduces dimensionality in vector



or projective spaces in order to reveal structure. The second in-
volves geometric graphs, which use graph-theoretic concepts to re-
veal structure in point distributions. The third concerns organizing
by features, which structures multivariate displays according to se-
lected features.

2.1 Projections

Visualization researchers have made extensive use of projections in
order to represent high-dimensional structures in low-dimensional
space. Simple methods involve linear maps, such as orthogonal
pairwise projections or principal components. Other methods, such
as multidimensional scaling, involve nonlinear maps. Furnas and
Buja [19] discuss the characteristics of projective maps frequently
used in visualization.

Finding informative projections for high-dimensional point sets
is nontrivial. Friedman and Tukey [16] developed a class of loss
functions and an iterative method to pursue projections that reveal
selected structures (clustering, simplices, etc.) in point clouds. Asi-
mov [4] devised a smooth path through high-dimensional space that
defined a set of low-dimensional projections orthogonal to the path,
so that viewers could observe an animated “grand tour” through the
space. Roweis and Saul [38] modified the distance metric used in
MDS in order to identify relatively compact sets of points on a man-
ifold in low-dimensional space. In general, one has to have some
prior knowledge of the characteristics of the high-dimensional point
set in order to identify a relatively meaningful projection.

Furnas [18] developed an intriguing form of indirection in a
projective mapping that resembles our use of characterizing mea-
sures. Furnas mapped a distance matrix to a single point in a low-
dimensional space. This transformation enabled him to represent
a family of distance matrices as a cloud of points. In his words,
”Pictures of the cloud form a family portrait, and its characteristic
shape and interrelationship with the portraits of other families can
be explored.”

2.2 Geometric Graphs

A geometric graph is an embedding of a vertex-edge graph in a
metric space. These graphs have received a lot of attention re-
cently because of their ability to characterize point sets embed-
ded in high-dimensional spaces. The manifold learning commu-
nity [38][8][10] has used k-nearest-neighbor graphs to find infor-
mative low-dimensional projections. We use geometric graph-
theoretic measures for similar reasons. They are efficient to com-
pute and they carry a lot of information about the configuration of
points on which they are based. Marchette [31] surveys the use of
these graphs for feature detection.

2.3 Organizing by Features

Many have noted that clustering and/or sorting multivariate displays
by selected features can increase the interpretability of these dis-
plays [17][30][34][40]. Wilkinson [49] discusses much of the re-
search on organizing multivariate displays.

One organizing principle has especially influenced the work in
this paper. Around 20 years ago, John and Paul Tukey developed
an exploratory visualization method called scagnostics. While they
briefly mentioned their invention in [47], the specifics of the method
were never published. Paul Tukey did offer more detail at an Insti-
tute for Mathematics and its Applications visualization workshop
a few years later, but he did not include the talk in the workshop
volume he and Andreas Buja edited [11].

We summarize the Tukeys’ approach here, based on the first au-
thor’s recollection of the IMA workshop and subsequent conversa-
tions with Paul Tukey. The Tukeys proposed to characterize a large
number of 2D scatterplots through a small number of measures of

the distribution of points in these plots. These measures included
the area of the peeled convex hull [45], the perimeter length of this
hull, the area of closed 2D kernel density isolevel contours [41][39],
the perimiter length of these contours, the convexity of these con-
tours, a modality measure of the 2D kernel densities, a nonlinearity
measure based on principal curves [25] fitted to the 2D scatterplots,
and several others. By using these measures, the Tukeys aimed to
detect anomalies in density, shape, association, and other features
in the 2D scatterplots.

After calculating these measures, the Tukeys constructed a scat-
terplot matrix [22][13] of the measures. With brushing and linking
tools, the Tukeys proposed to identify unusual scatterplots. Wilkin-
son, Anand, and Grossman [50] discuss the method in more detail.

There are two aspects of the Tukeys’ approach that can be im-
proved. First, some of the Tukeys’ measures, particularly those
based on kernels, presume an underlying continuous empirical or
theoretical probability function. This is appropriate for scatters
sampled from continuous distributions, but it can be a problem for
other types of data. Second, the computational complexity of some
of the Tukey measures is O(n3). Since n was expected to be small
for most statistical applications of this method, such complexity
was not expected to be a problem.

We can ameliorate both these problems by using graph-theoretic
measures. Indeed, the Tukeys used a few themselves. First, the
graph-theoretic measures we will use do not presume a connected
plane of support. They can be metric over discrete spaces. Second,
the measures we will use are O(n log(n)) in the number of points
because they are based on subsets of the Delaunay triangulation.
Third, we employ adaptive hexagon binning [12] before computing
our graphs to further reduce the dependence on n.

There is a price for switching to graph-theoretic measures, how-
ever. They are highly influenced by outliers and singletons. When-
ever practical, the Tukeys used robust statistical estimators to down-
weight the influence of outliers. We follow their example by work-
ing with nonparametric and robust measures. Further, we remove
outlying points before computing our graphs and the measures
based on them.

We next introduce and define the graphs we use as bases for our
feature measures and then we discuss the measures themselves.

3 COMPUTING FEATURES

Our feature measures depend on geometric graphs.

3.1 Geometric Graphs

A graph G = (V,E) is a set V (called vertices) together with a re-
lation on V induced by a set E (called edges). An edge e(v,w),
with e ∈ E and v,w ∈ V , is a pair of vertices. A geometric graph
G? = [ f (V ),g(E),S] is an embedding of a graph in a metric space S
that maps vertices to points and edges to line segments connecting
pairs of points. We will omit the asterisk in the rest of this paper
and assume all our graphs are geometric. We will also restrict our
candidates to geometric graphs that are:

• undirected (edges consist of unordered pairs)

• simple (no edge pairs a vertex with itself)

• planar (there is an embedding in R2 with no crossed edges)

• straight (embedded edges are straight line segments)

• finite ( V and E are finite sets)

Figure 1 shows instances of the geometric graphs on which we
compute our measures. The points are taken from a dataset in [32].
In this section, we define the geometric graphs that are the bases for
our measures.



Figure 1: Graphs used as bases for computing scagnostics measures

3.1.1 Convex Hull

A hull of a set of points X in R2 is a collection of the boundaries
of one or more polygons that have a subset of the points in X for
their vertices and that collectively contain all the points in X . This
definition includes entities that range from the boundary of a single
polygon to a collection of boundaries of polygons each consisting
of a single point. A hull is convex if it contains all the straight line
segments connecting any pair of points in its interior.

There are several algorithms for computing the convex hull [42].
Since the convex hull consists of the outer edges of the Delaunay
triangulation, we can use an algorithm for the Voronoi/Delaunay
problem and then pick the outer edges. Its computation thus can
be O(n log(n)). We will use the convex hull, together with other
graphs, to construct measures of convexity.

3.1.2 Nonconvex Hull (Alpha Shape)

A nonconvex hull is a hull that is not the convex hull. This class in-
cludes simple shapes like a star convex or monotone convex hull [3],
but it also includes some space-filling, snaky objects and some that
have disjoint parts. In short, we are interested in a general class of
nonconvex shapes.

There have been several geometric graphs proposed for repre-
senting the nonconvex “shape” of a set of points on the plane. Most
of these are proximity graphs [27]. A proximity graph (or neigh-
borhood graph) is a geometric graph whose edges are determined
by an indicator function based on distances between a given set of
points in a metric space. To define this indicator function, we use
an open disk D. We say D touches a point if that point is on the
boundary of D. We say D contains a point if that point is in D. We
call an open disk of fixed radius D(r).

In an alpha shape graph [15], an edge exists between any pair
of points that can be touched by an open disk D(α) containing no
points. The alpha shape is relatively efficient to compute because
it is a subset of the Delaunay triangulation with a simple inclusion
criterion. Marchette [31] recommends a value of α to be the av-
erage value of the edge lengths in the minimum spanning tree. To
reduce noise, we have chosen a larger value, namely, the 90th per-
centile of these edge lengths. We clamp this value at one-tenth the
width of a frame if the percentile exceeds a tenth. This prevents us
from including sparse or striated point sets in a single alpha graph.

3.1.3 Minimum Spanning Tree

A path is a list of successively adjacent, distinct edges. A tree is a
graph in which any two nodes are connected by exactly one path. A
spanning tree is an undirected graph whose edges are structured as
a tree. A minimum spanning tree (MST) is a spanning tree whose
total length (sum of edge weights) is least of all spanning trees on a
given set of points [28]. The edge weights of a geometric MST are
computed from distances between its vertices.

The MST is a subgraph of the Delaunay triangulation. There
are several efficient algorithms for computing an MST for a set of
points in the plane [33], [36].

We will now discuss the feature measures computed on these
three graphs. In the formulas below, we use H for the convex hull,
A for the alpha hull, and T for the minimum spanning tree. In
our feature calculations, we ignore outliers (except for the outlier
measure).

3.2 Feature Measures

We are interested in assessing four aspects of scattered points: out-
liers, density, shape, and association. Our measures are derived
from several features of geometric graphs:

• The length of an edge, length(e), is the Euclidean distance
between its vertices.

• The length of a graph, length(G), is the sum of the lengths of
its edges.

• A path is a list of vertices such that all pairs of adjacent ver-
tices in the list are edges.

• A path is closed if its first and last vertex are the same.

• A closed path is the boundary of a polygon.

• The perimeter of a polygon, perimeter(P), is the length of its
boundary.

• The area of a polygon, area(P) is the area of its interior.

All our measures are defined to be in the closed unit interval. To
compute them, we assume our variables are scaled to the closed
unit interval as well.

3.2.1 Outliers

Tukey [45] introduced the use of the peeled convex hull as a mea-
sure of the depth of a level set imposed on scattered points. For
points on the 1D line, this amounts to successive symmetric trim-
ming of extreme observations. Tukey’s idea can be used as an out-
lier identification procedure. We compute the convex hull, delete
points on the hull, compute the convex hull on the remaining points,
and continue until (one hopes) the contours of successive hulls do
not substantially differ.

We have taken a different approach. Because we do not assume
that our point sets are convex (that is, comparably dense in all sub-
regions of the convex hull), we cannot expect outliers will be on the
edges of a convex hull. They may be located in interior, relatively
empty regions. Consequently, we have chosen to peel the MST
instead of the hull. We consider an outlier to be a vertex whose
adjacent edges in the MST all have a weight greater than ω .

There are theoretical results on the distribution of the largest
edge for an MST on normally distributed data [35], but we decided
to work with a nonparametric criterion for simplicity. Following
Tukey [46], we choose

ω = q75 +1.5(q75−q25)

where q75 is the 75th percentile of the MST edge lengths and the
expression in the parentheses is the interquartile range of the edge
lengths.

• Outlying

This is a measure of the proportion of the total edge length due
to extremely long edges connected to points of single degree.

coutlying = length(Toutliers)/length(T )



3.2.2 Density

The following indices detect different distributions of points.

• Skewed

The distribution of edge lengths of a minimum spanning tree
gives us information about the relative density of points in a scat-
tered configuration. Some have used the sample mean, variance,
and skewness statistics to summarize this edge length distribu-
tion [1]. However, theoretical results [43][35] show that the MST
edge-length distribution for many types of point scatters can be ap-
proximated by an extreme value distribution with fewer parame-
ters. We have chosen two measures of relative density. The first is
a relatively robust measure of skewness in the distribution of edge
lengths.

cskew = (q90−q50)/(q90−q10)

We will discuss the second measure in the Sparse section below.

• Clumpy

An extremely skewed distribution of MST edge lengths does not
necessarily indicate clustering of points. For this, we turn to an-
other measure based on the MST: the Hartigan and Mohanty RUNT
statistic [23]. This statistic is most easily understood in terms of
the single-linkage hierarchical clustering tree called a dendrogram.
The runt size of a dendrogram node is the smaller of the number of
leaves of each of the two subtrees joined at that node. Since there
is an isomorphism between a single-linkage dendrogram and the
MST [21], we can associate a runt size (r j) with each edge (e j) in
the MST, as described by Stuetzle [44]. The runt graph (R j) cor-
responding to each edge is the smaller of the two subsets of edges
that are still connected to each of the two vertices in e j after deleting
edges in the MST with lengths less than length(e j).

Our runt-based measure emphasizes clusters with small intra-
cluster distances relative to the length of their connecting edge and
ignores runt clusters with relatively small runt size.

cclumpy = max
j

[
1−max

k
[length(ek)]/length(e j)

]
• Sparse

Our sparseness statistic measures whether points in a 2D scatter-
plot are confined to a lattice or a small number of locations on the
plane. This can happen, for example, when tuples are produced by
the product of categorical variables. It can also happen when the
number of points is extremely small. We choose the 90th percentile
of the distribution of edge lengths in the MST. This was the same
value we chose for the α statistic.

csparse = q90

In the extremely rare event that this statistic exceeds unity (e.g.,
when all points fall on either of the two diagonally opposing ver-
tices of a square), we clamp the value to 1.

• Striated

We define coherence in a set of points as the presence of rela-
tively smooth paths in the minimum spanning tree. Smooth alge-
braic functions, time series, and curves (e.g., spirals) fit this defini-
tion. So do points arranged in flows or vector fields. In the examples
in this paper, we will see a common striated pattern: parallel strips

of points produced by the product of categorical and continuous
variables.

We could recognize parallel lines with a Hough transform [26].
Other configurations of points that represent vector flows or striated
textures might not follow linear paths, however. We have devised
a more general measure. It is based on the number of adjacent
edges whose cosine is less than -0.75. Let V (2) ⊆V be the set of all
vertices of degree 2 in V and let I() be an indicator function. Then

cstriate =
1
|V | ∑

v∈V (2)

I(cosθe(v,a)e(v,b) <−.75)

3.2.3 Shape

The shape of a set of scattered points is our next consideration. We
are interested in both topological and geometric aspects of shape.
We want to know, for example, whether a set of scattered points on
the plane appears to be connected, convex, inflated, and so forth. Of
course, scattered points are by definition not these things, so we are
going to need additional machinery (based on our graphs that we fit
to these points) to allow us to make such inferences. The measures
that we propose will be based on these graphs.

• Convex

This is the ratio of the area of the alpha hull and the area of
the convex hull. This ratio will be 1 if the nonconvex hull and the
convex hull have identical areas.

cconvex = area(A)/area(H)

• Skinny

The ratio of perimeter to area of a polygon measures, roughly,
how skinny it is. We use a corrected and normalized ratio so that a
circle yields a value of 0, a square yields 0.12 and a skinny polygon
yields a value near one.

cskinny = 1−
√

4πarea(A)/perimeter(A)

• Stringy

A stringy shape is a skinny shape with no branches. We count
vertices of degree 2 and compare them to the overall number of
vertices minus the number of single-degree vertices.

cstringy =
|V (2)|

|V |− |V (1)|

3.2.4 Association

The following index helps reveal whether a given scatter is mono-
tonic.

• Monotonic

We have chosen the squared Spearman correlation coefficient,
which is a Pearson correlation on the ranks of x and y (corrected for
ties), to assess monotonicity in a scatterplot. We square the coef-
ficient to accentuate the large values and to remove the distinction
between negative and positive coefficients. We assume investiga-
tors are most interested in strong relationships, whether negative or
positive.

cmonotonic = r2
spearman

This is our only coefficient not based on a subset of the Delaunay
graph. Because it requires a sort, its computation is O(n log(n)).



3.3 Binning

We use hexagon binning [12] to improve performance. We begin
with a 40 by 40 hexagon grid for each scatterplot. If there are more
than 250 nonempty cells, we reduce the bin size by half and rebin.
We continue this process until there are no more than 250 nonempty
cells.

We examined by Monte Carlo simulation the effect of this adap-
tive binning on our measures. Three of them – Skewed, Sparse, and
Convex– showed a slight binning effect (within .1 in magnitude).
We therefore applied a correction factor to these measures:

w = .7+
.3

1+ t2

where t = n/500. Because Skewed tends to decrease with n after
adaptive binning, we use the transformation

1−w(1− cskew)

3.4 Performance

Because we use efficient binning and triangulation, computation
time is O(np2). On a Macintosh G4 PowerBook running Java 1.4.2,
computing the measures on 100,000 random cases distributed uni-
formly on 10 variables required approximately 10 seconds. Com-
puting the measures on 100,000 cases and 25 variables required
approximately 75 seconds. Computing on a microarray dataset
with 400 cases and 62 highly correlated variables required approxi-
mately 425 seconds. Because the effect of sample size is practically
negligible, our code can compute roughly four scatterplots per sec-
ond on this machine.

4 EXAMPLES

We begin with a dataset comprising hourly meteorological mea-
surements over a year at the Greenland Humboldt automatic
weather station operated by NASA and NSF. These measurements
are part of the Greenland Climate Network (GC-Net) sponsored
by these federal agencies. The variables include time of year (in
hours), low and high temperature, wind speed, humidity, ice tem-
perature, snowfall, wind direction, atmospheric pressure, radiation,
and incoming and reflected solar shortwave radiation.

4.1 Data SPLOM

Figure 2 shows a scatterplot matrix of the weather data. We have
ordered the variables in the matrix according to the original order-
ing in the dataset.There are 120 scatterplots in this display. The
SPLOM is small enough so we can view all of the scatterplots in a
single glance, but organizing them into groups is relatively difficult.
We notice that some of the variables appear to be categorical, be-
cause they display as stripes when plotted against other variables.
We also notice that these variables do not appear to be normally
distributed.

4.2 Features Plot

Figure 3 displays the scatterplots in Figure 2 ranked according to
each of our features. Above each little plot are two red marks in-
dicating the row and column indices of the location of the plot in
the SPLOM pictured in Figure 3. In the interactive program, these
plots are linked by mouse-click to the data SPLOM window so a
user can navigate between the two.

We now see clearly groups of scatterplots that are similar to each
other. This display ranks the top 10 scatterplots in each category,
but filters out plots with feature measures less than 0.5. We see

Figure 2: Scatterplot matrix of weather measurements at a Greenland
station

two plots which appear to contain a high number of outliers (the
leftmost column). These involve snowfall and ice temperature. We
are now suspicious that these measurements may be truncated. The
Clumpy column picks up these and other variables showing similar
behavior.

We also see in the rightmost column of Figure 3 that two pairs
of variables are highly correlated: low and high wind speed and
incoming and reflected solar short-wave radiation. The pairs are not
intercorrelated, however. The remaining plots in the Monotonicity
column appear to be correlated because of measurement artifacts.
We are reminded that these data may need considerable cleaning
before formal statistical analysis.

4.3 Features SPLOM

The Tukeys originally proposed constructing a scagnostics SPLOM
and working with that display to analyze patterns in the raw data
SPLOM. We do this in Figure 4. The interactive program allows
us to pick a single point in the Features SPLOM and to see the
scatterplot that point represents.

We have picked the incoming and reflected short-wave radiation
plot. Notice that the point representing this plot is highlighted in red
in the Features SPLOM. We saw that this plot was characterized as
highly correlated in the Features plot in Figure 3. By inspecting
the red points in the Features SPLOM, we can also see that the
point configuration is relatively skinny. We also note that, while it
is highly monotonically correlated, it is not especially convex. The
non-convexity is produced by unusual behavior at the lower left end
of the plot. This is clearly not a bivariate normal distribution (which
would appear as relatively convex in the Features SPLOM).

4.4 Data SPLOM Permuted by Features Component

Now we use the features to organize our displays. We have sorted
the variables in the raw data SPLOM using the size of the load-
ings on the first principal component of the scagnostic measures.
We compute our components on the p(p−1)/2×9 features matrix
F . Then we sum the component loadings over the indices of the
corresponding variables in the original n× p data matrix X .



Figure 3: Scatterplots of weather data sorted by features

Figure 5 shows that the sorting segregates the apparently discrete
and continuous variables and clusters similar marginal 2D distribu-
tions. There appear to be three clusters of plots: relatively dense at
the top, relatively striped at the bottom, and mixed in the middle.

4.5 Clustering Features

Features sorting suggests clusters but it is not a clustering proce-
dure. For that we need to cluster the features matrix F directly. A
k-means clustering [24] of F yields four clusters. In Figure 6, we
color the scatterplots according to the cluster identifiers. There is
substantial agreement between the clustering and the layout of the
features-sorted SPLOM. Further, we have chosen red for the color
of the smallest cluster. This reveals several anomalous scatterplots
that do not fit well into the other clusters.

4.6 Features Outliers

Our clustering has led us to consider the possibility of identifying
outliers among the scatterplots. This is a second-order concept –
namely, are there a few scatterplots (not points) that are signifi-
cantly different from all the others? Answering this question pre-
sumes that there is a distribution of scatterplots based on our data
and that there are scatterplot outliers from this distribution.

To answer the question, we use the same algorithm we devised
for identifying outliers in scatterplots – the MST outlier statistic.
Instead of applying it to a single scatterplot, however, we apply it
to the multivariate distribution of scatterplot features. That is, we
fit a minimum spanning tree to the features in 9 dimensions and we
identify outliers in that 9-dimensional empirical distribution.

In Figure 7, we color the outlying scatterplots according to the
MST scatterplot outlier statistic. We get a surprising result. The red
scatterplots identified in the fourth cluster are not flagged as outliers
by our statistic. Instead, several plots involving our suspicious vari-
able ice temperature are flagged.

Inspecting the raw data, we find that ice temperature is not a bi-
nary variable. It contains a missing value code (-6999) that swamps
all the other values. This artifact affects several of the other vari-
ables that appear to be binary in the plots. The scientific metadata
accompanying these data would have alerted us to this problem, but
we note that the features measures do so as well.

It is important to realize that our outlier procedure does not pre-
sume a particular parametric reference distribution. Standard out-
lier methods often presume multivariate normality, for example.
Statisticians look for outliers from multivariate normals when test-
ing assumptions for standard normal models such as linear discrim-
inant analysis and multivariate analysis of variance.

Figure 8 shows, however, that our procedure can find that multi-
variate normals are outliers when embedded in a batch of real data.
The data are statistics for baseball players in 2004. Five plots are
identified as outliers by our MST statistic. One is a plot of play-
ers’ height and weight, which appears to be bivariate normal. It is
flagged as an outlier, however, because it is the only untruncated
bivariate normal in the whole SPLOM. There are two other plots
identified as outliers. One plots batting average against home run
rate in an odd-shaped V formation.

Figure 9 shows clearly how a single plot can be identified as an
outlier in even a small SPLOM. The data are EPA emissions tests
for cars sold in the US. The variables are hydrocarbon emissions,
carbon monoxide emissions, horsepower, gallons burned per mile,



Figure 4: Features SPLOM of weather data

Figure 5: SPLOM of weather data sorted by features component

and carbon dioxide emissions. The flagged red scatterplot clearly
indicates the extremely high correlation between carbon dioxide
emissions and fuel consumption – a central statistic in the global
warming debate.

4.7 Other Multivariate Displays Sorted by Features

Finally, the following examples show that we must not assume that
the features matrix F and our analytics based on it are designed only
for scatterplot matrices. In Figure 10, we show a parallel coordi-
nates plot of the weather data colored by time of year and sorted by
the first principal component based on intercorrelations of the vari-
ables. Although this is probably the most prevalent sorting method
used on multivariate displays, the sorting doesn’t work very well
because most of the correlations are near zero and the correlation

Figure 6: SPLOM of weather data sorted by features component and
colored by cluster membership

structure is not particularly informative.
In Figure 11, we sort the parallel coordinates using our features

component. The variables follow the same ordering we used in
Figure 5. The gaps due to the sparse scatterplots are now pushed
toward the top of the display and the parallel coordinate profiles are
more coherent.

5 CONCLUSION

We conclude with a few observations based on our examples. First,
we chose relatively small datasets so we could illustrate them in
printed form. One should not assume that the data SPLOM shown
in Figure 2 is always viewable, however. For many datasets (such
as bioinformatics data), there are too many variables to display as a



Figure 7: SPLOM of weather data sorted by features component and
colored by MST outlier statistic

SPLOM or in parallel coordinates form. Furthermore, lensing and
filtering tools cannot be used effectively with these displays unless
the variables are properly sorted. Therefore, we often must rely on
features plots to drill into our data.

Second, we hope to have shown that sorting variables or scat-
terplots on simple statistics such as means, variances, or correla-
tions will not work well on many real datasets. That is because
many real datasets are not multinormally (or even “blobbily”) dis-
tributed. They frequently contain mixtures of categorical and con-
tinuous variables, outliers, missing data, and “just plain weird” bi-
variate distributions. The weather and baseball datasets are good
examples of this behavior.

Third (and here we diverge from the original scagnostics formu-
lation), feature-based analytics are not about scatterplot matrices.
They are a function of the data that can be used in a variety of an-
alytics to reveal structure in high-dimensional datasets. We have
illustrated only a few analytics (sorting, clustering, outlier identi-
fication) on the features matrix F . We suspect that this general
approach will lead to a variety of other new and useful visual ana-
lytics.
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