# Mining Topics in Documents Standing on the Shoulders of Big Data

Zhiyuan (Brett) Chen and Bing Liu





1st International Workshop on Big Data Discovery & Curation

# **Topic Models**

Widely used in many applications

Most of them are unsupervised

# However, topic models Require a large amount of docs Generate incoherent topics

# Example Task

Finding product features from reviews

Most products do not even have 100 reviews.

# **Example Topics of LDA**

#### LDA topics with 100 reviews

Poor performance.



| Topic A   | Topic B |
|-----------|---------|
| price     | sleeve  |
| bag       | hour    |
| battery   | design  |
| file      | simple  |
| screen    | video   |
| dollar    | mode    |
| headphone | mouse   |

# Can we improve modeling using Big Data?

# **Human Learning**

A person



sees a new situation



uses previous experience (Years of Experience)

# **Model Learning**

A model

Model

sees a new domain



uses data of many previous domains (Big Data)

#### Motivation

Learn as humans do, Lifelong Learning

Retain the results learned in the past

Use them to help learning in the future

# **Proposed Model Flow**

Retain the topics from previous domains

Learn the knowledge from these topics

Apply the knowledge to a new domain

What's the knowledge representation?



# gain knowledge?

Should / Should not

### **Knowledge Representation**

```
Should => Must-Links
e.g., {battery, life}
```

```
Should not => Cannot-Links
e.g., {battery, beautiful}
```

# Proposed Model Flow

#### **Algorithm 1** AMC( $D^t$ , S, M)

- 1:  $A^t \leftarrow \text{GibbsSampling}(D^t, N, M, \emptyset); // \emptyset$ : no cannot-links.
- 2: **for** r = 1 **to** R **do**
- 3:  $C \leftarrow C \cup \text{MineCannotLinks}(S, A^t);$
- 4:  $A^t \leftarrow \text{GibbsSampling}(D^t, N, M, C);$
- 5: end for
- 6:  $S \leftarrow \text{Incorporate}(A^t, S);$
- 7:  $M \leftarrow \text{MiningMustLinks}(S)$ ;

# Proposed Model Flow

#### **Algorithm 1** AMC( $D^t$ , S, M)

- 1:  $A^t \leftarrow \text{GibbsSampling}(D^t, N, M, \emptyset); // \emptyset$ : no cannot-links.
- 2: **for** r = 1 **to** R **do**
- 3:  $C \leftarrow C \cup \text{MineCannotLinks}(S, A^t);$
- 4:  $A^t \leftarrow \text{GibbsSampling}(D^t, N, M, C);$
- 5: end for
- 6:  $S \leftarrow \text{Incorporate}(A^t, S)$ ;
- 7:  $M \leftarrow \overline{\text{MiningMustLinks}(S)};$

# **Knowledge Extraction**

Motivation: a person learns knowledge when it happens repetitively.

A piece of knowledge is reliable if it appears frequently.

# Frequent Itemset Mining (FIM)

Issue of single minimum support threshold

Multiple minimum supports frequent itemset mining (Liu et al., KDD 1999)

Directly applied to extract Must-Links

# **Extracting Cannot-Links**

O(V<sup>2</sup>) Cannot-links in total

A domain has a small set of vocabulary

Only for those top topical words

#### Related Work about Cannot-Links

Only two topic models were proposed to deal with cannot-type knowledge:

DF-LDA (Andrzejewski et al., ICML 2009)

MC-LDA (Chen et al., EMNLP 2013)

However, both of them assume the knowledge to be correct.

# **Knowledge Verification**

Motivation: a person's knowledge may not be applicable to a particular domain.

The knowledge needs to be verified towards a particular domain.

# Must-Link Graph

Vertex: must-link

Edge: must-links have original topic overlapping

{Bank, Money}

{Bank, River}

#### Pointwise Mutual Information

Estimate the correctness of a must-link

A positive PMI value implies semantic correlation

Will be used in the Gibbs sampling

#### Cannot-Links Verification

Most words do not co-occur with most other words

Low co-occurrence does not mean negative sematic correlation

# Proposed Gibbs Sampler

M-GPU (multi-generalized Pólya urn) model

Must-links: increase the probability of both words of a must-link

Cannot-links: decrease the probability of one of words of a cannot-link

# Example

See word **speed** under topic 0:

Increase prob of seeing **fast** under topic 0 given must-link: {speed, fast}

Decrease prob of seeing **beauty** under topic 0 given cannot-link: {speed, beauty}

Sample a must-link of word w

$$P(m_i = m|k) \propto P(w_1|k) \times P(w_2|k)$$

Construct a set of must-link {m'} given must-link graph

Increase prob by putting must-link words into the sampled topic:

$$p(z_{i} = k | \mathbf{z}^{-i}, \mathbf{w}, \alpha, \beta, \lambda)$$

$$\propto \frac{n_{d,k}^{-i} + \alpha}{\sum_{k'=1}^{K} (n_{d,k'}^{-i} + \alpha)}$$

$$\times \frac{\sum_{\{w',w_{i}\} \in \{m'\}} \lambda_{w',w_{i}} \times n_{k,w'}^{-i} + \beta}{\sum_{v=1}^{V} (\sum_{\{w',v\} \in \{m'_{v}\}} \lambda_{w',v} \times n_{k,w'}^{-i} + \beta)}$$

Increase prob by putting must-link words into the sampled topic:

$$p(z_{i} = k | \mathbf{z}^{-i}, \mathbf{w}, \alpha, \beta, \lambda)$$

$$\propto \frac{n_{d,k}^{-i} + \alpha}{\sum_{k'=1}^{K} (n_{d,k'}^{-i} + \alpha)}$$

$$\times \frac{\sum_{\{w',w_{i}\} \in \{m'\}} \lambda_{w',w_{i}} \times n_{k,w'}^{-i} + \beta}{\sum_{v=1}^{V} (\sum_{\{w',v\} \in \{m'_{v}\}} \lambda_{w',v} \times n_{k,w'}^{-i} + \beta)}$$

Increase prob by putting must-link words into the sampled topic:

$$p(z_{i} = k | \mathbf{z}^{-i}, \mathbf{w}, \alpha, \beta, \lambda)$$

$$\propto \frac{n_{d,k}^{-i} + \alpha}{\sum_{k'=1}^{K} (n_{d,k'}^{-i} + \alpha)}$$

$$\times \frac{\sum_{\{w',w_{i}\} \in \{m'\}} \lambda_{w',w_{i}} \times n_{k,w'}^{-i} + \beta}{\sum_{v=1}^{V} (\sum_{\{w',v\} \in \{m'_{v}\}} \lambda_{w',v} \times n_{k,w'}^{-i} + \beta)}$$

Decrease prob by transferring cannot-link word into other topic with higher word prob:

$$P(z_{q_{c}} = k | \mathbf{z}^{-q_{c}}, \mathbf{w}, \alpha, \beta, \lambda, q = q_{c})$$

$$\propto \mathbf{I}_{[0, p(w_{c}|k)]}(P(w_{c}|z_{c}))$$

$$\times \frac{n_{d,k}^{-q_{c}} + \alpha}{\sum_{k'=1}^{K} (n_{d,k'}^{-q_{c}} + \alpha)}$$

$$\times \frac{\sum_{\{w', w_{i}\} \in \{m'_{c}\}} \lambda_{w', w_{i}} \times n_{k,w'}^{-q_{c}} + \beta}{\sum_{v=1}^{V} (\sum_{\{w', v\} \in \{m'_{v}\}} \lambda_{w', v} \times n_{k,w'}^{-q_{c}} + \beta)}$$

Decrease prob by transferring cannot-link word into other topic with higher word prob:

$$\begin{split} &P(z_{q_{c}} = k | \boldsymbol{z}^{-q_{c}}, \boldsymbol{w}, \alpha, \beta, \lambda, q = q_{c}) \\ &\propto \boldsymbol{I}_{[0, p(w_{c}|k)]}(P(w_{c}|z_{c})) \\ &\times \frac{n_{d, k}^{-q_{c}} + \alpha}{\sum_{k'=1}^{K} (n_{d, k'}^{-q_{c}} + \alpha)} \\ &\times \frac{\sum_{\{w', w_{i}\} \in \{m'_{c}\}} \lambda_{w', w_{i}} \times n_{k, w'}^{-q_{c}} + \beta}{\sum_{v=1}^{V} (\sum_{\{w', v\} \in \{m'_{v}\}} \lambda_{w', v} \times n_{k, w'}^{-q_{c}} + \beta)} \end{split}$$

Note that we do not increase the number of topics as MC-LDA did.

Rational: cannot-links may not be correct, e.g., {battery, life}.

#### **Evaluation**

100 Domains (50 Electronics, 50 Non-Electronics), 1,000 review each

100 reviews for each test domain

Knowledge extracted from 1,000 reviews from other domains

# **Model Comparison**

AMC (AMC-M: must-links only)

LTM (Chen et al., 2014)

**GK-LDA** (Chen et al., 2013)

DF-LDA (Andrzejewski et al., 2009)

MC-LDA (Chen et al., 2013)

LDA (Blei et al., 2003)

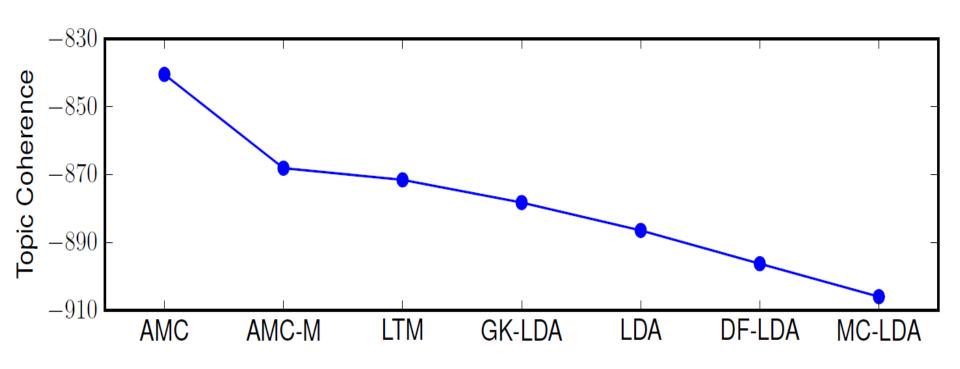
# **Topic Coherence**

Proposed by Mimno et al., EMNLP 2011

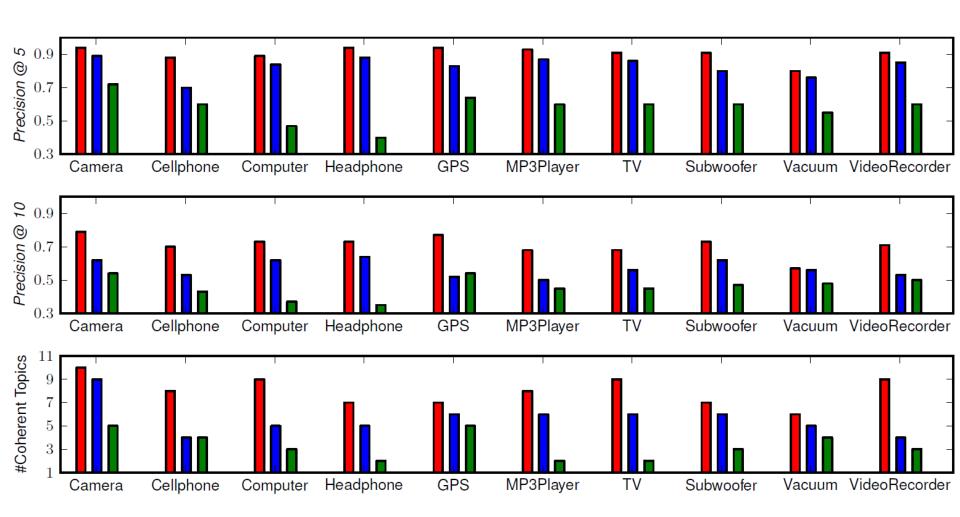
Higher score means more coherent topics

$$C(t; V^{(t)}) = \sum_{m=2}^{M} \sum_{l=1}^{m-1} \log \frac{D(v_m^{(t)}, v_l^{(t)}) + 1}{D(v_l^{(t)})}$$

# **Topic Coherence Results**



#### **Human Evaluation Results**

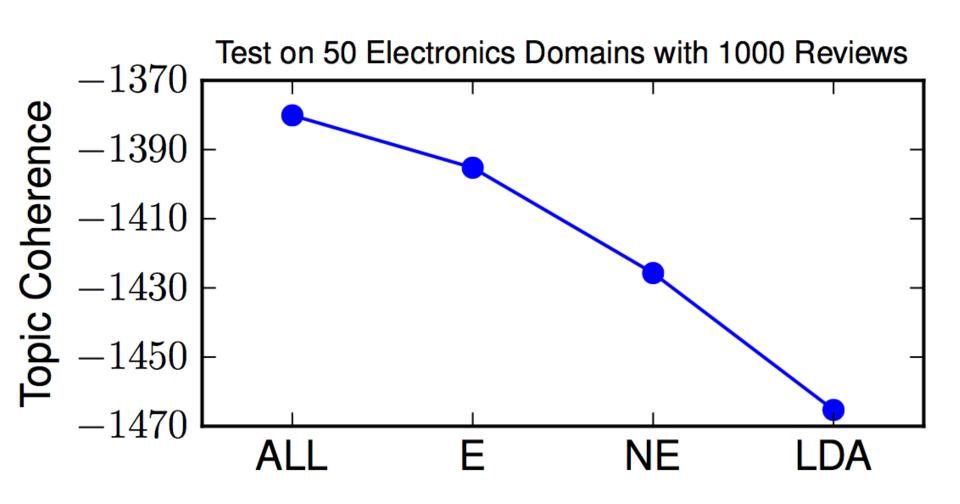


Red: AMC; Blue: LTM; Green: LDA

# **Example Topics**

| Price       |                        |                |
|-------------|------------------------|----------------|
| AMC         | $\mathbf{LTM}$         | $\mathbf{LDA}$ |
| money       | shot                   | image          |
| buy         | money                  | price          |
| price       | review                 | movie          |
| range       | $\operatorname{price}$ | stabilization  |
| cheap       | $\operatorname{cheap}$ | picture        |
| expensive   | camcorder              | technical      |
| deal        | condition              | photo          |
| point       | con                    | dslr           |
| performance | sony                   | move           |
| extra       | trip                   | short          |

#### Electronics vs. Non-Electronics



#### Conclusions

Learn as humans do

Use big data to help small data

Knowledge extraction and verification

M-GPU model

#### **Future Work**

Knowledge engineering: how to store/maintain the knowledge

Importance of domains, domain selection

# Q&A



Thank you!