
Value Invention in Data Exchange

Patricia C. Arocena
University of Toronto

prg@cs.toronto.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

ABSTRACT
The creation of values to represent incomplete information,
often referred to as value invention, is central in data ex-
change. Within schema mappings, Skolem functions have
long been used for value invention as they permit a precise
representation of missing information. Recent work on a
powerful mapping language called second-order tuple gen-
erating dependencies (SO tgds), has drawn attention to the
fact that the use of arbitrary Skolem functions can have neg-
ative computational and programmatic properties in data
exchange. In this paper, we present two techniques for un-
derstanding when the Skolem functions needed to represent
the correct semantics of incomplete information are com-
putationally well-behaved. Specifically, we consider when
the Skolem functions in second-order (SO) mappings have
a first-order (FO) semantics and are therefore programmat-
ically and computationally more desirable for use in prac-
tice. Our first technique, linearization, significantly extends
the Nash, Bernstein and Melnik unskolemization algorithm,
by understanding when the sets of arguments of the Skolem
functions in a mapping are related by set inclusion. We show
that such a linear relationship leads to mappings that have
FO semantics and are expressible in popular mapping lan-
guages including source-to-target tgds and nested tgds. Our
second technique uses source semantics, specifically func-
tional dependencies (including keys), to transform SO map-
pings into equivalent FO mappings. We show that our algo-
rithms are applicable to a strictly larger class of mappings
than previous approaches, but more importantly we present
an extensive experimental evaluation that quantifies this dif-
ference (about 78% improvement) over an extensive schema
mapping benchmark and illustrates the applicability of our
results on real mappings.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data Translation

Keywords
Data Exchange, Schema Mappings, Value Invention, Unskolem-

ization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

1. INTRODUCTION
Schema mappings are constraints that model the relation-

ship between schemas and have been used extensively in data
exchange and integration. In data exchange, schema map-
pings are used as a logical specification of how to map data
from a source to a target schema. In data integration, map-
pings are used to specify how target queries can be trans-
lated into source queries. For decades, Skolem functions
have played an important role in schema mappings [18]. Sko-
lem functions can be used to model object identifier (OID)
invention or value invention [18], and more generally to pro-
vide a precise model of how missing values are correlated
to known source values [27, 29], and to other missing val-
ues [1]. The representational power of functions in map-
pings was recognized by Fagin et al. [12], with their presen-
tation of a class of existential second-order (SO) formulas
with arbitrary function symbols, called second-order tuple-
generating dependencies (SO tgds). SO tgds are the right
choice for modeling many data exchange and integration
problems, such as mapping composition [12] and correlation
of mappings [1]. Some, but not all, SO tgds are equivalent
to first-order (FO) mappings (that is, mappings expressible
in FO logic) [12]. While having the right expressive power,
SO tgds do have some drawbacks. Model checking, deter-
mining whether a pair of instances satisfies a mapping, is
intractable for SO tgds, while polynomial in data complex-
ity for FO mappings [12]. Model checking is important for
supporting updates, peer data-exchange [15], and data co-
ordination [20]. Furthermore, SO tgds are not closed under
target homomorphisms [31], a property that has undesirable
consequences in practice. If a data exchange solution (for
an SO tgd) is modified by a homomorphism that preserves
constants and only modifies NULLs (for example by filling
in missing information), then the result may no longer be a
valid solution.

As a result, most systems, including Clio [29], Orches-
tra [17], ++Spicy [24], and OpenII [30], use FO mapping
languages based on the popular language of source-to-target
(s-t) tgds (also known as Global-and-Local-As-View or GLAV
for short [21]), and the more general nested tgds (nested
GLAV) [14]. Fuxman et al. [14] argued that nested GLAV,
which permits nesting of mappings, instead of correlation
of mappings via Skolem functions (as in SO tgds), are a
less powerful, but more user-friendly programming concept.
Both GLAV and nested GLAV mappings are closed under
target homomorphisms [31]. Translations of these FO map-
ping languages into efficient transformation code (in, e.g.,

Source Schema
WorksOn (Department, Project, BudgetId)
Audit (BudgetId, Auditor)
City (Department, City)

Target Schema

Project (PId, BudgetId)
Dept (Department, Year, Project, NumEmp)
Location (Department, DepId, City, State)
Budget (Project, Leader, Size)

Figure 1: Example Schema

SQL, XQuery, or XSLT) are well-known, [14, 24] and oth-
ers, but the same is not true for arbitrary SO tgds.

Fortunately, many (though of course not all) SO tgds are
equivalent to (nested) GLAV mappings. However, testing
if an SO tgd is equivalent to a (nested) GLAV mapping is
undecidable, so it is not possible to have a complete char-
acterization of all SO tgds that are rewritable (this follows
from the result of Feinerer et al. [13]). Nash et al. [26] were
the first to present a polynomial-time sufficient condition for
when an SO tgd is equivalent to a GLAV mapping and to
motivate why finding such rewritings can be important in
practice. They provided a transformation algorithm to map
SO tgds produced by mapping composition to an equivalent
GLAV mapping, which can be of exponential size. We gen-
eralize their work to understand when the potentially corre-
lated functions in an arbitrary SO tgd are well-behaved. We
provide a more general condition that is able to transform
more SO tgds to GLAV. We also consider transformations
to the more expressive language of nested GLAV. The size
of a nested GLAV mapping produced by these transforma-
tions is linear in the size of the input SO tgd.1 We call SO
tgds that can be transformed by our techniques linearizable.
Finally, we consider source semantics, specifically functional
dependencies (FDs). We show that in the presence of FDs
(including keys), a larger set of SO tgds can be transformed
to equivalent nested GLAV mappings.

1.1 Nesting and Linearization
The language of SO tgds is the right language for model

management operators [9] like composition [12] and Map-
Merge [1], and has found important application in other op-
erators including mapping inversion [6]. To motivate our
work, we consider through examples, when such mappings
can be simplified and expressed as a set of equivalent FO
mappings (either GLAV or nested GLAV). Consider the
source and target schemas of Figure 1. Primary key at-
tributes are underlined.

Example 1.1. Suppose we wish to map the source infor-
mation WorksOn.BudgetId to the Project relation in the
target. The project id (PId) of the target is not present in the
source, so a mapping must invent this value using an existen-
tial or Skolem function. One mapping (θ1) that expresses the
semantics that the target attribute PId should depend on the
source values Department (d) and Project (p), is shown in
Figure 2. This mapping is an SO tgd as it contains an exis-
tentially quantified function. Intuitively, this function mod-
els that any tuples with the same Department and Project

1This does not contradict the result from Nash et al. [26]
stating that GLAV rewritings can be exponential in size,
because we are rewriting into nested GLAV mappings which
are more expressive.

values must necessarily share the same PId value. It is well
known that this mapping is equivalent to the FO mapping Ω1

(a nested GLAV mapping which permits interleaving of uni-
versal and existential quantifiers [14]). The position of the
existential variable in Ω1 (nested after d and p) expresses
the same semantics as the existential function in θ1. Fa-
gin et al. [12] proved that this mapping is not equivalent to
any GLAV mapping. As a result, the only known algorithm
for simplifying SO tgds [26] would fail as it only considers
transformation into GLAV mappings, not nested GLAV.

In our work, we present a sufficient condition for simplify-
ing SO tgds into nested GLAV mappings that would produce
Ω1. Intuitively, our condition characterizes when Skolem
functions are well-behaved in that they do not interact with
other Skolem functions in a way that would prohibit a simple
FO substitution of a Skolem function with an appropriately
nested existential. Of course, in the above example there is
a single Skolem function so the replacement of the Skolem
function by an existential only requires examination of its
arguments. When there are multiple Skolem functions, we
must understand how their arguments interact.

Example 1.2. Consider the second mapping in Figure 2
adapted from Libkin and Sirangelo [22], which maps the
WorksOn relation to a target Dept relation. This example
illustrates a mapping in which the arguments to the Sko-
lem functions have been customized to precisely model the
application semantics. In the SO tgd θ2, the two Skolem
functions f and g are used to generate values for the Year

and NumEmp attributes. The target attribute Year depends
on the department and, thus, d (Department), is the only
argument for Skolem function f . The Skolem function g
has two arguments, because the number of employees (Nu-
mEmp) depends on the Department and Project. Again, this
SO tgd is not equivalent to any GLAV mapping [22]. Our
algorithm succeeds by placing the (FO) existentials in the
correct scope, and would produce Ω2, an equivalent nested
GLAV mapping.

Notice that to produce an equivalent nested mapping, the
Skolem functions in the SO tgd (and corresponding exis-
tentials) must be placed in a linear order. This example
adapts an existing SO quantifier elimination method, often
called linearization to the case of SO tgds. We are not the
first to make use of this technique for data exchange. Pich-
ler and Skritek [28] proposed a fragment of SO tgds named
SOord for which the complexity of model checking, both
data and combined complexity, can be reduced to that of
FO formulas. In their reduction, the authors impose con-
ditions that rely on the existence of a total ordering of the
Skolem functions (based on set containment of their argu-
ment sets). Our rewriting techniques will generalize this
by using a novel partitioning strategy that allows us to ap-
ply linearization over sets of clauses in a complex SO tgd.
When these clauses can be partitioned into sets (which we
call blocks) with pairwise disjoint sets of (linearizable) Sko-
lem functions, our condition is more general. Furthermore,
unlike Pichler and Skritek [28], we present a constructive
(and efficient) algorithm for translating this more general
set of SO tgds into nested GLAV mappings.

1.2 (Un)Skolemization Revisited
Our examples illustrate that we will be replacing Skolem

functions with existentials, a process known under various

Ex. 1: Key Invention
θ1 = ∃f (∀d∀p∀b W (d, p, b)→ P (f(d, p), b))

Ω1 = ∀d∀p∃vf ∀b W (d, p, b)→ P (vf , b)

Ex. 3.A: Skolems with Disjoint Arguments
θ3 = ∃f∃g (∀d∀c C(d, c)→ L(d, f(d), c, g(c)))

Ex. 3.B: FD on City: Department → City
θ′3 = ∃f∃g (∀d∀c C(d, c)→ L(d, f(d, c), c, g(c)))

Ω3 = ∀c∃vg ∀d ∃vf C(d, c)→ L(d, vf , c, vg)

Ex. 2: Skolems with Overlapping Arguments
θ2 = ∃f∃g (∀d∀p∀b W (d, p, b)→ D(d, f(d), p, g(d, p)))

Ω2 = ∀d∃vf ∀p∃vg ∀b W (d, p, b)→ D(d, vf , p, vg)

Ex. 4: Arguments from Distinct Source Relations
θ4 =∃f∃g (∀d∀p∀b ∀a W (d, p, b) ∧A(b, a)→ B(p, f(d, p, b), g(b, a)))

Ω4 =∀b∀a∃vg ∀d∀p∃vf W (d, p, b) ∧A(b, a)→ B(p, vf , vg)

WorksOn FD: Department, Project → BudgetId
Audit FD: BudgetId → Auditor

Figure 2: SO tgds and First-order Translations

names such as unskolemization, reversed Skolemization, and
deskolemization [16, 26]. Important to our solutions will be
determining the right placement of the existentials (nested
within universal quantifiers) based on the arguments of the
Skolem functions and also whether such a placement is pos-
sible. As our examples make clear, the existential quantifier
must be placed after any universal quantifiers representing
its arguments (and not after universals on which it does
not depend). To understand this, it is helpful to consider
both unskolemization and its complement Skolemization.
Indeed, in the integration literature, Skolemization is often
used as a process for transforming FO formulas into a nor-
mal form that eliminates existential quantifiers by replacing
them with functions. The reverse process (unskolemization)
is always possible for Skolemized FO formulas, but not for
SO tgds because SO tgds can have arbitrary arguments in
the Skolem functions. Our work considers sufficient condi-
tions for when this is possible. So while our algorithms can
be considered unskolemization algorithms, it is important
to recognize that our goal is not to get rid of Skolem func-
tions, but rather to understand when the Skolem functions
in a mapping are well-behaved (and have a computation-
ally desirable FO semantics). If a complex SO tgd can be
shown to be equivalent to a (nested) GLAV mapping then
we guarantee that the Skolem functions can be untwisted
to produce a well-behaved nested mapping, and therefore
efficient transformation code.

Example 1.3. (Part A) Consider the mapping θ3 in Fig-
ure 2 that maps the source relation City to the target rela-
tion Location. The target relation has two attributes, DepId
and State, which depend respectively on the Department and
City attributes from the source. This SO tgd is not equiv-
alent to Ω3 or to any nested GLAV mapping [12]. Thus,
for example, if the source and target evolve independently of
each other it may be computationally hard to check whether
the modified instances fulfill the mapping, because this is
model checking which is NP-complete for SO tgds (and in
P for nested GLAV mappings).

1.3 Source Constraints
Often the source contains constraints, most commonly

keys or FDs. We can use these constraints to simplify SO
mappings that otherwise would not be equivalent to any
nested mapping (like θ3).

Example 1.3.(Part B) Suppose each Department in the
source has a single City (modeled by the FD Department →
City). If this is the case, then we will show that θ3 is equiv-
alent to θ′3 (Figure 2) where the Skolem f has arguments d
and c (both Department and City). This enables us to use

our linearization criteria to show that θ3 with this FD, is
equivalent to the nested mapping Ω3.

Source constraints are a powerful tool for simplifying map-
pings, but we can do even better by considering implied de-
pendencies. If we consider a source expression as a view, the
set of FDs implied by the view can be computed [19]. The
next example illustrates how to use such inferred constraints
to simplify SO tgds.

Example 1.4. Consider the SO tgd θ4 which maps a join
of WorksOn and Audit to the target relation Budget (adapted
from Alexe et al. [1]). Suppose we have source keys (De-
partment, Project) for WorksOn and BudgetId for Audit.
These keys alone cannot be used to augment the arguments
of Skolem functions f or g (since both already contain the
keys). However, if we compute the implied dependencies on
the source join, we will see that d, p → b, a (over the ex-
changed data). Hence, we can augment the arguments of f
to include all four variables and easily see that θ4 with these
keys is equivalent to Ω4 which linearizes g before f .

1.4 Summary of Contributions
The main contributions of this work are the following.

• We prove a sufficient condition for an SO tgd to be
equivalent to a nested tgd. This condition is broader than
the condition used in previous work by Nash et al. [26], and
we experimentally compare this difference.

• We develop an algorithm (called Linearize) for rewrit-
ing SO tgds satisfying our condition into nested GLAV map-
pings. Our algorithm is more general in that it produces
nested GLAV mappings, uses linearization of Skolem argu-
ments, and includes a new partitioning scheme for complex,
multi-clause SO tgds.

• We introduce an equivalence preserving transformation
of SO tgds exploiting the existence of FDs in the source
schema. Our transformation computes attribute closures for
the source expression considered as a view, and uses these
to augment the arguments of Skolem functions.

•We present an algorithm LinearizeFDs that extends our
linearization technique with source FDs, and show that this
combination presents many more opportunities for rewrit-
ing. Specifically, many SO tgds that cannot be rewritten,
can be written in the presence of source keys or FDs. We
compare this against Marnette et al.’s re-Skolemization strat-
egy [23], originally proposed to compute compact solutions.

• We use STBenchmark 2.0 [7] to produce SO tgds and
mapping scenarios with source keys or FDs. We use this
extended system to generate a large set of mapping scenar-
ios that include schemas produced by composition, evolu-

tion, or manual customization of Skolem functions. We also
present real-life mapping scenarios. Our evaluation shows
that (1) our partitioning and linearization techniques per-
mit the rewriting of significantly more SO tgds than pre-
vious techniques (approximately 78% more), (2) by using
source keys (that is, normalized source schemas where the
only FDs are keys) we can rewrite over twice as many SO
tgds as without any keys.

The remainder of the paper is organized as follows. We
introduce some formal definitions and background in Sec-
tion 2. Section 3 presents our new partitioning and lin-
earization conditions followed by our rewriting algorithm
Linearize in Section 4. Building on these results, Section 5
demonstrates how to use FDs to provide more opportunities
for rewriting and presents our LinearizeFDs algorithm. We
empirically evaluate our techniques in Section 6, discuss ad-
ditional related work in Section 7, and conclude in Section 8.

2. PRELIMINARIES
Schemas and Instances. A schema is a non-empty finite
set R of relation symbols where each Ri ∈ R has a fixed
arity. We define the notion of instance I over a schema R
in the normal way for relational schemas, that is, as the
union of relation instances over Ri, where Ri ∈ R. Let
S = (S1, . . . , Sn) and T = (T1, . . . , Tm) be two disjoint
schemas. We follow the convention of referring to S as the
source schema and to T as the target schema. The no-
tation (S,T) denotes the schema (S1, . . . , Sn, T1, . . . , Tm).
When necessary, we extend this nomenclature to instances
by adding the prefix source and target , respectively.
Satisfaction, Quantifier Scope, and Substitution. We
use the standard notion of satisfaction of a formula in FO
logic. IfK is an instance and ϕ is a formula, we writeK |= ϕ
to denote thatK satisfies ϕ. The same notion is applied over
a set of formulas Σ. The scope of an occurrence of a quanti-
fier Q ∈ {∀,∃} in a formula is the subformula controlled by
the quantifier. For example, given ∀x∃yψ(x, y), the scope of
quantifier ∀x is the subformula ∃yφ(x, y), where x appears
as a free variable, and the scope of ∃y is the subformula
φ(x, y), where both x and y are free. Let φ be a formula.
We use φ[t← t′] to denote the formula that is derived from
φ by replacing all occurrences of term t with term t′.
Schema Mappings. A schema mapping is a triple M =
(S,T,Σ), where S and T are schemas with no relation sym-
bols in common and Σ is a set of logical formulas over
(S,T) [11]. An instance of M is an instance 〈I, J〉 over
(S,T) that satisfies every formula in Σ. If 〈I, J〉 |=M, then
we call J a solution of I under M.
First-Order Tgds. A source-to-target tuple-generating de-
pendency (s-t tgd) [11] is a formula of the form ∀z,x(φ(z,x)
→ ∃yψ(x,y)), where z, x, and y are disjoint vectors of
variables; φ(z,x) is a conjunction of atomic formulas over
the source schema S; and ψ(x,y) is a conjunction of atomic
formulas over the target schema T. All variables of z ∪ x
are used in φ and all variables of x ∪ y are used in ψ.
We adopt the term GLAV mappings [21] for sets of s-t
tgds. A nested tgd [14] is an FO sentence of the form
Q(x,y)((φ1(x) → ψ1(x,y)) ∧ . . . ∧ (φn(x) → ψn(x,y)))
where (1) Q(x,y) is a sequence of quantifiers - universal
quantifiers for x and existential quantifiers for y; (2) each
φi(x,y) is a conjunction of atomic formulas over the source
schema S; (3) each ψi(x,y) is a conjunction of atomic formu-
las over the target schema T; and (4) each variable from x

appears in some formula ψi and each variable from y appears
in some formula ψj . Nested tgds, also known as nested
GLAV mappings, are a proper extension of GLAV map-
pings that allows alternation of ∀ and ∃ quantifiers [31].
Second-Order Tgds. A second-order tuple-generating de-
pendency (SO tgd) [12] is an existential second-order formula
of the form ∃f((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn)))
where (1) each member of f is a function symbol; (2) each
φi is a conjunction of (a) atomic formulas over the source
schema S and (b) equalities of the form t = t′ where t and
t′ are terms based on xi and f; (3) each ψi is a conjunction
of atomic formulas over the target schema T; and (4) each
variable in xi appears in some atom of φi. Even though SO
tgds may allow equalities between or with Skolem terms in
general settings, such equalities do not play a role for data
exchange and can be eliminated [32]. Arenas et al. [5] have
generalized previous results from Nash et al. [26] to prove
that every SO tgd is equivalent to another SO tgd with no
nested Skolem functions (e.g., f(g(a), b)). Thus, in what fol-
lows, we assume SO tgds without equalities between or with
Skolem terms and no nesting of Skolem terms.
Clausal Normal Form. Any SO tgd can be transformed
into an equivalent SO tgd in clausal normal form. Let
∃f ∀x1 . . . ∀xn (χ1 ∧ · · · ∧ χn) be an SO tgd θ, where each
implication clause χi is a quantifier-free formula (i.e., θ is
in prenex normal form). Let N = {C1, . . . , Cn} be a set of
clauses where Ci = χi for 1 ≤ i ≤ n. We refer to N as
the clausal normal form of θ where the variables in N are
implicitly universally quantified, and the clauses are related
by conjunction [16]. Unless otherwise stated, we assume SO
tgds in clausal normal form.
Skolemization. Let α be an FO formula. The SO Skole-
mization of α is an SO formula that results from replacing
existential quantifiers with Skolem functions, based on the
equivalence ∀x∃y δ(x, y) ≡ ∃f∀x δ(x, y)[y ← f(x)] [10]. In-
formally, this transformation removes ∃y from α, introduces
a new existentially quantified Skolem function f of arity k,
where k is the number of universally quantified variables in
x, and replaces y wherever it appears in the scope of ∃y
with the Skolem term f(x). The argument sequence of a
Skolem function f(x1, x2, . . . , xk), denoted as arg(f), is the
sequence of variables x1, x2, . . . , xk on which f depends. We
use the term argument set (and abuse the notation arg(f))
to refer to the set of variables in the argument sequence.

3. SUFFICIENT REWRITING CONDITION
We now present the first contribution of the paper, a new

sufficient condition for rewriting SO tgds into nested GLAV
mappings. This condition relies on the notions of consistency
and linearity, which we adapt from SO quantifier elimination
methods [16]. We first present the intuition, then prove
the correctness of our condition. Importantly, we turn this
condition into a practical rewrite algorithm in Section 4.

3.1 Intuition of Unskolemization
Our approach for rewriting SO tgds relies heavily on un-

skolemization. Consider an SO tgd θ in prenex form [10]

∃f ∀x1 . . . ∀xn (χ1 ∧ · · · ∧ χn) (1)

The aim of unskolemization is to eliminate the ∃f quantifiers
from θ and produce an equivalent set (Ω in our examples) of
FO formulas, in our case a nested GLAV mapping, without
Skolem functions. This involves systematically introducing

FO existential quantifiers in place of Skolem functions. To
do this, we resort to the same logical equivalence transfor-
mation [10] used to Skolemize FO formulas, i.e.,

∀x∃y δ(x, y) ≡ ∃f∀x δ(x, y)[y ← f(x)] (2)

For unskolemization, we aim to apply Eq. (2) from right-to-
left. For instance, reversing the original Skolemization of an
FO formula involves repeated applications of this single-step
equivalence over each Skolem function symbol. Notice that
when doing this, we implicitly obey an equation’s predeter-
mined order of universal and existential quantifiers (some of
which may have been introduced by previous applications of
the equivalence). That is, for f(x), we must add ∃y imme-
diately after all universal quantifiers binding x.

Example 3.1. Consider a single clause SO tgd:

∃f∃g (∀x1∀x2(R(x1, x2)→ S(f(x1), g(x1, x2), x2)))

To transform this SO tgd into an equivalent nested GLAV
mapping, we apply Eq. (2) twice. First, we replace g with an
existential variable vg that is introduced right after the quan-
tification of x1 and x2, the arguments of g. The resulting SO
formula θ′ is ∃f (∀x1∀x2∃vg (R(x1, x2)→ S(f(x1), vg , x2))).
We can now apply Eq. (2) again to remove the function f .
An existential variable vf representing f can be introduced
right after the quantifier for x1 (the argument of f). The
resulting equivalent nested GLAV mapping is:

∀x1∃vf∀x2∃vg(R(x1, x2)→ S(vf , vg, x2))

In this example, the first application of Eq. (2) (to remove
g) did not hinder us from applying the equation a second
time to remove the function f . However, when reversing the
Skolemization of an arbitrary SO tgd, this may not always
be the case, i.e., a rewriting step may result in a formula
that can not be further unskolemized using this equation.
This is not surprising, because there are SO tgds that are
not equivalent to any FO formula. The conditions over SO
tgds we introduce next make use of a careful ordering of
unskolemization steps to ensure that this type of rewriting
is indeed possible, i.e., they are sufficient.

3.2 Consistency
The first condition we consider is consistency. Consis-

tency models whether all occurrences of a Skolem function
symbol in a formula use exactly the same arguments.

Definition 3.2. [Consistency] A Skolem function f is
consistent with respect to an SO tgd θ if 1) any two occur-
rences of f in θ have the same argument sequence, and 2)
for any occurrence of f , each argument position is filled with
a universally quantified source variable and no variables are
repeated. An SO tgd θ is consistent when all its Skolem
functions are consistent.

By requiring each argument position to be filled with a
universally quantified source variable, our definition disal-
lows nesting of Skolem functions. At first sight, this may
appear restrictive, but recall from Section 2 that any SO
tgd is equivalent to an SO tgd without nesting of functions.

Example 3.3. Consider the following set of clauses:

C1 : S(x1, x2)→ T1(x1, f(x1), g(x1, x2)) ∧ T2(g(x2, x1))

C2 : R(x3, x4)→W (x3, x4, h(x3, x3))

The function f is consistent, g is not (because the two oc-
currences of g do not share the same argument sequence),
and h is not (it contains a repeated variable).

Lack of consistency is problematic when we try to un-
skolemize a formula because it may prevent us from choosing
the same existential variable ∃vf to replace all occurrences
of a given Skolem function f . Unification can often be ap-
plied to achieve consistency [16] but this is orthogonal to
our discussion. Importantly, consistency has also been used
by Nash et al. [26] (though using a different condition).

3.3 Maximal Partition
Consistency on its own does not guarantee rewritability.

The linearity condition we motivated in Section 1 (based on
conditions used in SO logic [16]) with consistency is still not
sufficient for SO tgds. To apply linearity and consistency,
we must first consider how the multiple clauses of an SO tgd
are related. We present a new partitioning strategy for SO
tgds (in which all clauses using a Skolem function f must
be grouped together) that we use to guide rewriting.

Definition 3.4. [Maximal Partition] Let θ be an SO
tgd and Π = {π1, . . . , πb} a partition of the clauses of θ
into sets of disjoint clauses called blocks. A partitioning Π
is called a maximal partition of θ if (1) every two distinct
blocks πi and πjare pairwise disjoint with respect to Skolem
functions and (2) there exists no partition Π′ of θ satisfying
(1) that has more elements than Π.

Note that every SO tgd θ has a unique maximal parti-
tion. For example, the maximal partition of an SO tgd
with clauses C1 : R(x1) → S(f(x1), g(x1)), C2 : T (x1) →
U(g(x1)), and C3 : V (x3) → W (h(x3)) is {C1, C2}, {C3}.
This method of splitting an SO tgd into a conjunction of SO
tgds based on the blocks in its maximal partition is equiva-
lence preserving, because we split the input using the rules
of quantifier distribution and SO tgds are closed under con-
junction [12]. Thus, each block can be unskolemized sep-
arately and it is sufficient to check the linearity condition
introduced next for each block individually. This is a less
strict condition than requiring it to hold for the complete
SO tgd as used in Pichler and Shritek [28].

3.4 Linearity
Linearity requires the Skolem functions of each block in

the maximal partition Π of an SO tgd θ to form a linear
order according to the set inclusion of their arguments.

Definition 3.5. [Linearity] Let θ be an SO tgd and Π
its maximal partition. A block π in Π is linear if for all
distinct Skolem functions f and g occurring in π (with arity
n and m, respectively) their argument sets can be linearly
ordered by set inclusion. Assuming n ≤ m, we have that the
set of arguments of f is a subset of the set of arguments of
g, i.e., arg(f) ⊆ arg(g). We say an SO tgd θ is linear if all
blocks π in Π are linear.

Example 3.6. Consider an SO tgd with a single block
that contains Skolem terms f(x1, x2), g(x1) and h(x3). While
the argument sets of Skolem functions f and g can be lin-
early ordered by set inclusion (that is, arg(g) ⊆ arg(f)),
notice that there is no set inclusion relationship between f
and h, and between g and h. This block of clauses is not
linear. However, if Skolem h would have been in a different
block than f and g, then the SO tgd would be linear.

3.5 Sufficient Condition
Linearity on top of consistency guarantees that we can

produce an FO rewriting, where all the quantifier dependen-
cies implied by Skolem function arguments can be morphed
into a single linear quantifier prefix (as required to gener-
ate nested GLAV). It guarantees that when more than one
existential variable needs to be introduced to replace the
Skolem functions, Eq. 2 can be repeatedly applied, i.e., the
result of each application of this equation is structured as re-
quired for the next application. More precisely, the equation
should be applied to each Skolem function symbol in order
of decreasing arity. For example, the SO tgd from Ex. 3.1
is linear (f(x1) < g(x1, x2)) and, as has been shown in that
example, can be transformed successfully into nested GLAV
by replacing first Skolem function g and then f .

Theorem 3.7. Let θ be an SO tgd without equalities be-
tween or with Skolem terms. If θ is both consistent and lin-
ear, then θ can be successfully rewritten as a logically equiv-
alent nested GLAV mapping.

4. LINEARIZATION ALGORITHM
We now present a polynomial-time algorithm, called Lin-

earize, that rewrites an SO tgd using our new sufficient
condition from Section 3, and the right-to-left direction of
the equivalence shown in Eq. (2). Algorithm 1 takes as input
an SO tgd θ in clausal normal form. It attempts to rewrite
the input by applying a number of transformation steps.
Check Consistency. Compute the maximal partition and
test consistency. If any Skolem function is inconsistent, re-
port that the rewriting failed.
Check Linearity. Recall from Example 3.6 that linearity
can be checked on each block π of the maximal partition
separately. We sort the list Oπ of Skolem functions of block
π according to set inclusion of their arguments using proce-
dure SortArgIncl. If two Skolem functions are incompara-
ble according to argument set inclusion, we report that the
rewriting failed.
Rewrite into Nested GLAV. If the linearity condition is
satisfied, rewrite each block of clauses π as a single nested
tgd, yielding a nested GLAV mapping Ω. The algorithm
creates a total order over the universally quantified variables
based on the sorted order Oπ of Skolem functions. Proceed-
ing from lowest to highest function in sort order, for each
Skolem term f , we add ∀x to the mapping (for all x ∈ arg(f)
that are not already in the mapping due to an earlier Skolem
term, notice that the ordering among these does not mat-
ter), then we add an existential variable for f , ∃vf (directly
after the quantifiers for variables from the arguments of f).
Once we have processed all variables used as arguments for
any Skolem, we add an universal quantification ∀x′ for each
remaining variable x′.

Theorem 4.1. Let θ be an SO tgd without equalities be-
tween or with Skolem terms, then Linearize(θ) ≡ θ.

To illustrate Algorithm 1 consider our example SO tgds.

Example 4.2. Consider θ1 from Figure 2. This SO tgd
is trivially consistent and linear, because it consists of only
a single clause and the only Skolem function f is just used
once. Procedure SortArgIncl would create the following or-
der over the quantified variables: d = p < b (b is last because

Algorithm 1 Linearize (θ)

Input : A SO tgd θ without Skolem equalities.
Output : If successful, a nested GLAV mapping Ω;

otherwise, θ.
1: f ← the set of Skolem functions in θ
2: Π← the maximal partition of θ
{Check Consistency}

3: for each f ∈ f do
4: πf ← block that contains f
5: arg(f)← (t1, . . . , ta) for a term f(t1, . . . , ta) in πf
6: for each term f(t′1, . . . , t

′
a) in πf do

7: arg(f)′ ← (t′1, . . . , t
′
a)

8: if ∃i, j : t′i = t′j or arg(f) �= arg(f)′ then
9: return θ {Not consistent}
{Check Linearity}

10: for each π in Π do
11: Oπ ← list of Skolem terms in π
12: if not SortArgIncl(Oπ) then
13: return θ {Not linear}
{Unskolemize}

14: Ω← ∅ {nested GLAV}
15: for each π in Π do
16: Ω← Ω ∪ ReduceToNested(π,Oπ)

17: return Ω

it is not used in any function). The resulting quantifier pre-
fix is ∀d∀p∃vf∀b. Now consider θ2 with two Skolem terms
f and g which will be ordered f < g and, thus, θ2 is lin-
ear. Ordering the variables results in the quantifier prefix
∀d∃vf∀p∃vg∀b. Since SO tgds θ3 and θ4 are not linear, they
can not be rewritten using Algorithm 1.

5. LINEARIZATION USING FDS
The Linearize algorithm fails if two Skolem terms in a

block have unrelated (by set containment) argument sets.
However, in many cases there is a hidden connection be-
tween these arguments based on constraints that hold on
the source schema. In this section, we present the main
contribution of this paper, an algorithm for rewriting SO
tgds in the presence of source keys or FDs. We use these
constraints to augment Skolem terms with additional ar-
guments, thus increasing the chance of rewriting. We first
prove that this type of augmentation preserves equivalence.
Then we introduce our extended rewriting algorithm and
prove its correctness. Moreover, we show that augmentation
of Skolem arguments never transforms a linearizable SO tgd
(or more precisely one on which our Algorithm Linearize

would succeed) into an SO tgd that is not linearizable by
our algorithm, i.e., using the source constraints can never
hurt our ability to find a rewriting.

5.1 Equivalence Preserving Augmentation of
Skolem Terms based on Source FDs

Consider a consistent SO tgd θ and a set ΣS of source FDs
over S. Each FD fd is of the form fd : X → Y where X, Y
and U are vectors of attributes; X,Y ⊆ U and U is the set of
all attributes over a given source relation. The intuition of
using FDs to augment Skolem terms is that if a Skolem term
f(x) contains variables corresponding to the left-hand-side
of a source FD fd, then adding variables corresponding to
the right-hand-side of fd to the list of arguments of f , is an
equivalence preserving transformation. Adding additional
arguments to Skolem terms can help us rewrite SO tgds into
nested GLAV mappings, as we show next.

Example 5.1. Recall θ3 from Example 1.3 over source re-
lation City and target relation Location, with disjoint Sko-
lem terms f and g. This SO tgd is consistent but not linear.
Assume that Department → City holds over relation City.
If we apply this FD over Skolem term f , then by adding
variable c to f we can rewrite θ3 as an equivalent formula

∃f∃g (∀d∀c C(d, c)→ L(d, f(d, c), c, g(c)))

This equivalent consistent and linear SO tgd can be rewritten
into a nested GLAV mapping using Algorithm 1.

Intuitively, the type of augmentation exemplified above
can be applied to all occurrences of a Skolem term f(x)
only if the base FDs in ΣS imply an FD fd : x → y over
the variables in each clause that references f . When this
condition is fulfilled, we can safely replace f(x) with f(x,y)
in all clauses containing f . Let C be a clause of an SO tgd.
We use ΣC , called the clausal FDs for C, to denote the set
of FDs that are implied by ΣS over the variables of the left-
hand-side of the clause (the source expression). Of course it
is well known how to compute ΣC for FDs over conjunctive
expressions [19]. Next, we show that augmentation based
on implied source FDs preserves equivalence.

Theorem 5.2. Let θ be a consistent SO tgd, ΣS a set of
source FDs, and f(x) a Skolem term used in θ. Moreover,
let πf be the set of clauses of θ that mention f , and let
x′ → y with x′ ⊆ x be an implied clausal FD that holds for
all clauses in πf . Then the following equivalence holds:

θ[f(x)← f(x,y)] ∪ ΣS ≡ θ ∪ ΣS

There may be cases where applying FDs will not help
us achieve a successful rewriting of SO tgds. However, as
we show in the experimental evaluation, in practice this
approach is very effective. This is because the arguments
of Skolem functions are usually not chosen randomly, but
rather in a principled way to encapsulate certain desired
grouping or correlation semantics [1, 22, 23, 29].

5.2 Algorithm and Correctness Proof
We now introduce a polynomial time algorithm for rewrit-

ing SO tgds in the presence of source FDs. Algorithm 2,
called LinearizeFDs (θ,ΣS), takes as input a consistent SO
tgd θ in clausal normal form and a set ΣS of source FDs.
The algorithm consists of two main steps, augmenting Sko-
lem terms based on implied FDs and applying our rewriting
algorithm to the result of this equivalent transformation.

As before, we generate the maximal partition of θ (Line
2). Lines 3 and 4 compute the clausal FDs ΣC (procedure
InferFDs) that hold over the variables of a clause. After-
wards (Lines 5 to 8), for each Skolem function f , we retrieve
the block πf that contains f and compute Σf , the set of FDs
that holds over all clauses in πf . Recall from Theorem 5.2
that a Skolem function can be augmented based on FDs that
hold over all clauses using f . The clauses in block πf are
clearly a superset of these clauses. Thus, by intersecting the
sets of FDs from the clauses in πf , we know that each FD
in Σf can be used to augment the arguments of f . Method
VariableClosure is used to replace the arguments arg(f) of
f with their attribute closure according to Σf . This step is
equivalent to a repeated application of our equivalence pre-
serving transformation and thus, generates an SO tgd that
is equivalent to the input SO tgd. Last, we run the rewriting
algorithm over the resulting SO tgd θaug (Line 9).

Algorithm 2 LinearizeFDs (θ,ΣS)

Input : A consistent SO tgd θ without Skolem equalities
A set ΣS of FDs over source schema S

Output : If successful, a nested GLAV mapping Ω;
otherwise, θ.

1: θaug ← θ
2: Π← maximal partition of θaug

{Compute FDs for each Clause}
3: for each clause C in θaug do
4: ΣC ← InferFDs(C,ΣS)

{Augment Skolem Terms}
5: for each Skolem f in θ do
6: πf ← block that contains f
7: Σf ←

⋂

C∈πf

ΣC {FDs valid for all Clauses in πf}

8: arg(f)← VariableClosure(arg(f),Σf)

{Run Linearization Algorithm}
9: return Linearize(θaug)

Example 5.3. Consider the SO tgd θ4 from Figure 2 which
joins relations WorksOn and Audit on the attribute Bud-

getId. The source FDs, Department, Project → BudgetId

and BudgetId→ Auditor, together with the reuse of variable
b (the join) imply the FD d, p→ b, a over the source expres-
sion. This (implied) dependency enables us to augment f
with variable a to produce the rewriting

W (d, p, b) ∧A(b, a)→ B(p, f(d, p, b, a), g(b, a)),

where as before we assume existential quantification over
Skolems and universal quantification over source variables.
This equivalent augmented SO tgd is now linear.

Proving the correctness of Algorithm 2 amounts to show-
ing that the transformed SO tgd θaug is equivalent to the
input θ, under the assumption that the source FDs ΣS hold.

Theorem 5.4. Let θ be a consistent SO tgd without equal-
ities between or with Skolem terms and let ΣS be a set of
source FDs, then

LinearizeFDs(θ,ΣS) ∪ ΣS ≡ θ ∪ ΣS .

According to Theorem 5.4, the rewritten SO tgd θaug pro-
duced by LinearizeFDs is equivalent to the input. However,
does this algorithm also preserve the sufficient condition?

Theorem 5.5. Let θ be a consistent SO tgd, Σs a set
of source FDs, and θaug be the equivalent SO tgd derived by
algorithm LinearizeFDs. If θ can be rewritten by Linearize

so can θaug. The opposite direction does not hold in general.

5.3 Discussion
The algorithm presented in this section divides the task

of rewriting in two steps: (1) apply an equivalence preserv-
ing re-Skolemization strategy, and (2) check the linearity
condition on the result. In the first step, we could use any
re-Skolemization strategy as long as it preserves equivalence.
Of course, the first re-Skolemization strategy that comes to
mind is that of Marnette et al. [23], which has been applied in
the context of efficiently computing compact data exchange
solutions under target constraints using SQL queries. This
sound but not complete strategy uses source FDs to mini-
mize the arguments of Skolem functions in a GLAV map-
ping, and uses target FDs to choose the most general Skole-
mization among competing ones.2 We can take the first part
2Like ours, the intuition behind this technique is that of
injectively creating and equating labelled NULLs.

Name Description Example Skolems
ADD Copy a relation and add new attributes R(a, b)→ S(a, b, f(a, b)) Variable
ADL Copy a relation, add and delete attributes in tandem R(a, b)→ S(a, f(a)) Variable
CP Copy a relation R(a, b)→ S(a, b) -
DL Copy a relation and delete attributes R(a, b)→ S(a) -
HP Horizontally partition a relation into multiple relations R(a, b) ∧ a = c1 → S1(b)

R(a, b) ∧ a = c2 → S2(b)
-

ME Inverse of vertical partitioning (merge) R(a, b) ∧ S(b, c)→ T (a, b, c) -
MA Inverse of vertical partitioning + adding attributes R(a, b) ∧ S(b, c)→ T (a, b, c, f(a, b, c)) Variable
OF Object fusion, e.g., inverse of horizontal partitioning R(a, b)→ T (a, b, f(a))

S(a, c)→ T (a, g(a), c)
R(a, b) ∧ S(a, c)→ T (a, b, c)

Fixed

SJ Copy relation (S) and create a relationship table (T)
through a self-join

R(a, b, c)→ S(a, c)
R(a, b, c) ∧ R(b, d, e)→ T (a, b)

-

SU Copy a relation and create a surrogate key R(a, b)→ S(f(a, b), b, g(b)) Fixed /
Variable

VH Vertical partitioning into a HAS-A relationship R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)) Fixed

VI Vertical partitioning into an IS-A relationship R(a, b, c)→ S(a, b) ∧ T (a, c) -
VNM Vertical partitioning into an N-to-M relationship R(a, b)→ S1(f(a), a) ∧M(f(a), g(b)) ∧ S2(g(b), b) Fixed

VP Vertical partitioning R(a, b)→ S1(f(a, b), a) ∧ S2(f(a, b), b) Variable

Figure 3: Mapping Primitives

of this strategy and use it to replace the argument set arg(f)
of a Skolem function f with a minimal subset min(args(f))
such that both share the same closure according to the im-
plied source FDs. We call this new strategy LinearizeMin.
We ask, then, what are the implications of minimizing in-
stead of maximizing the argument sets?

Example 5.6. Recall again Ex. 4 from Figure 2 with Sko-
lem functions f(d, p, b) and g(b, a). If we minimize these, we
obtain f(d, p) and g(b), respectively. The resulting formula
is not linear, in contrast to the re-Skolemized formula we
would obtain using LinearizeFDs. Now, consider a linear
variation of this same example where f(d, p, b) is replaced by
f(d, p, b, a) and g(b, a) stays the same. Applying minimiza-
tion, the re-Skolemizations for Skolems f and g are f(d, p)
and g(b) which again are not linear.

This example demonstrates that our approach of maxi-
mizing argument sets can solve cases for which minimization
fails and, even more important, the example also shows that
minimization may turn a linear SO tgd into a non-linear one.
The following theorem proves that our approach is strictly
better than minimization for the purpose of translating SO
tgds into (nested) GLAV mappings.3

Theorem 5.7. Let θ be a consistent SO tgd and Σs a set
of source FDs. Let θMin be the result of minimizing the
argument sets of each Skolem f in θ. Furthermore, let θaug

be the equivalent SO tgd derived by algorithm LinearizeFDs.
If θmin can be rewritten by Linearize so can θaug.

6. EXPERIMENTS
To evaluate our techniques, we used STBenchmark 2.0 [7],

a benchmark for generating SO tgds that extends the well-
known STBenchmark [2], a GLAVmapping benchmark. The
main motivation of our evaluation is to put into practice our
rewriting algorithms for SO tgds, and to compare against the
state-of-the-art using an implementation of Nash et al.’s [26]
sufficient condition. This sufficient condition, which we call
NBM after the authors, requires consistency and that ev-
ery universally quantified source variable that appears in

3This is not surprising because the minimization strategy
was not designed with unskolemization in mind.

the target expression (right-hand-side expression) of an SO
tgd also appears as an argument in every consistent Sko-
lem function. We also compare against the minimization
strategy [23] discussed in Section 5.3 (LinearizeMin), which
minimizes the argument sets of Skolem functions using im-
plied FDs before checking our linearity condition. Using ST-
Benchmark 2.0, we generate a large number of SO tgds, and
we measure the success of rewriting into nested GLAV (re-
ferred to as success rate) independently for each technique,
i.e., NBM, Linearize, LinearizeFDs, and LinearizeMin. We
start by describing the features of STBenchmark 2.0 that we
use, and then describe our experimental study.

6.1 Mapping Generator
STBenchmark 2.0 [7] is able to randomly generate a broad

range of SO tgds by combining basic mapping primitives into
complex mappings. The mapping generator takes as input
a set of configuration parameters and returns as output a
schema mappingM = (S,T,Σ). The benchmark supports
different variants of vertical partitioning primitives, some
of which offer specialized support for generating mappings
with (possibly repeated) Skolem functions, including func-
tions with both overlapping and disjoint arguments. This
permits the modeling of complex correlations, including Sko-
lem functions that cannot be unskolemized and rewritten
into GLAV. In Figure 3, we outline the benchmark map-
ping primitives used in our study. For each primitive, we
offer a brief description and an example mapping, in which
we underline those attributes which are part of primary keys,
when these are essential for understanding the semantics of
the transformation. Moreover, we indicate whether each
primitive generates no Skolem terms (−), or some Skolem
terms, using fixed or variable Skolemization strategies (Fixed
and Variable, respectively). Note that the original STBench-
mark [2] only uses Skolem functions in surrogate key (SU)
and vertical partitioning (VP) scenarios, and only a single
function in each. Hence, the original STBenchmark sce-
narios could always be unskolemized (i.e., they were nested
GLAV), whereas STBenchmark 2.0 generates SO tgds. Note
that the example mappings in the figure represent the sim-
plest version of each primitive. The generated mappings
may be much more involved and diverse. For instance, a
vertical partitioning may split a relation into more than two

Parameter Min Max
Number of Primitives (per type) 0 10
Number of Relations Per Schema 1 100+
Number of Attributes Per Relation 2 15
Number of Key Attributes 1 3
Join Path Length 2 4
Join Type Star Chain
Primary Key FDs No Yes
Source FDs 0% 50%
Skolem Noise 0% 50%
Source Reuse 0% 50%

Figure 4: Some Configuration Parameters

fragments (depending on how the configuration parameters
are set). For primitives that support variable Skolemiza-
tions, we use three different strategies (i.e., Key, All, and
Random chosen through a parameter called Skolem Mode).

We made use of STBenchmark 2.0’s ability to support
the generation of primary keys, and random multi-attribute
and partial FDs over the source. Configuration parameters,
Primary Key FDs and Source FDs, are used to turn these
features on and off as desired. We also made extensive use
of the benchmark’s ability to reuse schema elements across
primitives. For example, two instances of a CP primitive
may copy from the same source relation. This is of impor-
tance for generating correlations among mappings and in a
sense, more realistic cases of Skolem terms across clauses
used in the complex SO tgds we wish to consider.

Composition of schema mappings, like schema evolution,
can lead to complex interactions between Skolem terms (spe-
cifically the arguments of the Skolem functions). In addition
to Skolem terms introduced in the benchmark’s primitives,
we introduce additional Skolem terms by randomly choosing
source attributes to be replaced (in the target) with Sko-
lem functions (using the benchmark’s configuration param-
eter Skolem Noise [7]). For instance, assume the Skolem
term f(a) was assigned to attribute b of relation S(a, b).
We would transform the SO tgd S(x1, x2)→ T (x1, x2) into
S(x1, x2)→ T (x1, f(x1)).

6.2 Random Scenarios
To analyze the effectiveness of the four rewriting tech-

niques (NBM, Linearize, LinearizeFDs and LinearizeMin),
we randomly generated a broad and large number of schema
mappings using STBenchmark 2.0 [7]. Figure 4 outlines
some of the most important configuration parameters in-
volved in this experimental run and their valid ranges. For
example, we randomly selected the number of instances for
each mapping primitive (from 0 to 10, following a uniform
distribution). The size of the source and target schema was
determined not only by the number of requested attributes
per relation (plus/minus deviations), but also by the type of
requested primitives and some other additional parameters,
such as the length of join paths. We consider variable types
of joins (i.e., star and chain), key sizes, percentages of source
FDs, Skolem noise, and source reuse.

To understand the stability of our experiments over these
random configurations, we initially repeated each experi-
ment up to 1,000 times. For all four techniques, we found
that the values were already stable at 100 repetitions per
configuration (less than 1% difference for each percentile
of the distribution, with most percentiles being identical).
For all experiments, the reported data values are averaged

Figure 5: 12,500,000 Random Schema Mappings

across 250 runs. This guarantees stable results for the
whole breadth of schema mappings that can be generated
with STBenchmark 2.0 (using these parameter ranges). Fig-
ure 5 plots the distribution of the success rate (i.e., mini-
mum, 1-percentile, 25-percentile, median, 75-percentile, 99-
percentile, maximum) for the four techniques, over a total of
12, 500, 000 schema mappings. By success rate, we mean the
fraction of SO tgds from a schema mapping that were suc-
cessfully rewritten, e.g., for a schema mapping with 10 SO
tgds, 30% would indicate that 3 SO tgds were successfully
rewritten. For a few mappings, all methods performed very
well or very bad. Given the random nature of the generated
schema mappings, this was an expected outcome. Recall
that even the types of primitives used in the mappings were
chosen randomly. Figure 5 shows that NBM is already able to
rewrite 40% of the scenarios, Linearize can rewrite almost
50% more achieving a 58% success rate while LinearizeFDs
achieves an average 71% success rate. The success rate of
LinearizeMin is only slightly higher than Linearize. We
will thus only consider the latter technique over real-life sce-
narios on Section 6.6. These results suggest that significant
gains are possible by exploiting our more general rewriting
techniques and the presence of source FDs.

6.3 Mapping Primitives
Next we ran experiments using only one primitive at a

time to understand how the techniques deal with different
types of real world scenarios. Figures 6 and 7 present the
average success rate (over 250 runs) for each primitive with
0% and 50% Skolem noise, respectively. In both cases, we
use 50% of source FDs. In the case of 0% Skolem noise, we
found that all methods perform very well, i.e., we achieve
100% success rate for many primitives. This can be at-
tributed to the fact that 6 of the 14 mapping primitives do
not generate any Skolem terms (see Figure 3, e.g., CP and
DEL). Linearize and LinearizeFDs perform better for the
“harder” primitives. In particular, LinearizeFDs is the only
technique that can successfully deal with vertical partition-
ing into N-to-M relationships (VPN). This success is due
to the presence of source FDs which can be exploited to lin-
earize Skolem terms with disjoint argument sets. As revealed
by Figure 7, the importance of applying FDs is very notice-
able in the case of 50% Skolem noise (i.e., high prevalence
of Skolem functions with random arguments). For many
primitives, LinearizeFDs succeeds in over 80% of the cases,
Linearize in about 40%, and NBM in about 20%. However,
some primitives result in Skolem terms that are more diffi-
cult to rewrite than others. Notably, merge primitives (i.e.,
MA and ME, which encode denormalization or the reversal
of vertical partitioning) may use long sequences of joins in

0%

20%

40%

60%

80%

100%

ADD ADL CP DL HP MA ME OF SJ SU VH VI VNM VP

Su
cc

es
s R

at
e

NBM Linearize LinearizeFDs

Figure 6: Per Primitive with 0% Skolem Noise

0%

20%

40%

60%

80%

100%

ADD ADL CP DL HP MA ME OF SJ SU VH VI VNM VP

Su
cc

es
s R

at
e

NBM Linearize LinearizeFDs

Figure 7: Per Primitive with 50% Skolem Noise

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Su
cc

es
s R

at
e

Source Skolem Noise

NBM Linearize

Figure 8: Increasing Skolem Noise

0%

20%

40%

60%

80%

100%

NBM Linearize NBM Linearize NBM Linearize

Sk Noise = 0% Sk Noise = 25% Sk Noise = 50%

Su
cc

es
s R

at
e

Key All Random

Figure 9: Skolem Mode vs. Noise

0%

20%

40%

60%

80%

100%

NBM Linearize LinearizeFDs

Su
cc

es
s R

at
e

Run only considers primitives ADD, ADL, MA, SU and VP

Key All Random

Figure 10: Varying Skolem Modes

a single SO tgd. The longer the join sequence, the higher
the chance that randomly introduced Skolem terms are not
rewritable, not even using FDs. We also found that, in gen-
eral, NBM achieves lower success rates for higher percentages
of Skolem noise and, in particular, for most vertical parti-
tioning primitives. This finding aligns with the results re-
ported by Bernstein et al. [8] who also point out the difficulty
of rewriting these types of primitives.4

6.4 Amount and Type of Skolem Terms
We now investigate how the amount and types of Skolem

terms influence success rate. Recall that in STBenchmark
2.0 [7], the configuration parameter Skolem Noise simulates
that the mapping scenario is the result of composition or
correlation operations. The SO tgd mapping generator sup-
ports three strategies for choosing the arguments of Skolem
functions. Key uses the key attributes of a source expres-
sion as arguments for a given Skolem function; All uses all
attributes of a source expression; and Random randomly se-
lects a number of attributes. Figure 8 shows the average
success rates over all Skolem modes for techniques NBM and
Linearize, with Skolem noise varying from 0% to 50%. FDs
were deactivated for this experiment. In general, we observe
that the performance of both techniques decreases as we
increase the amount of Skolem noise. This was expected,
because intuitively the more Skolem noise is present, the
higher the chance that an SO tgd contains Skolems that
can not be rewritten. Linearize succeeds in over 80% per-
cent of the cases for 0% Skolem noise and only in 27% of
the cases for 50% Skolem noise. Note that 50% of Skolem
noise causes an unrealistically large number of Skolem terms
that are unlikely to appear in practical schema mappings.
Nonetheless, we included these measurements to understand
how the techniques behave under extreme conditions.

4Note that their experiments measure the success of com-
position rather than the success rate of rewriting [8].

Figure 9 shows the breakdown for each of the three Sko-
lem modes (i.e., Key, All and Random). As can be seen, NBM
achieves the best success rate if all attributes of a relation
(All) are used as Skolem arguments, and exhibits similar
behavior for Random and Key Skolem arguments. This be-
havior stems from the fact that NBM ’s sufficient condition
explicitly requires all exchanged source variables to appear
as arguments to every Skolem term, a condition that is easily
met under mode All. In contrast, Linearize works similarly
well for both modes Key and All.

Not all primitives generate Skolem terms and for some
primitives the Skolem arguments are predetermined by the
semantics of the mapping transformation (i.e., Fixed vs.
Variable Skolemization, as outlined in the last column of Fig-
ure 3). In the next experiment, we consider only those prim-
itives that support variable Skolemization strategies (i.e.,
AD, ADL, MA, SU, and VP). Using a fixed Skolem noise
percentage of 25%, we compare the success rate of the three
techniques for the different Skolem strategies. We show the
results of this experiment in Figure 10. Notice that NBM per-
forms poorly, in particular for random Skolem terms (about
3% success rate). The success rates for Linearize and Lin-

earizeFDs are better in general, but are also significantly
lower for Random (about 20%).

6.5 Impact of Primary Keys and FDs
As part of our experimental plan, we also studied the effect

of key and functional dependencies in rewriting SO tgds. We
varied three main configuration parameters: Skolem Mode
(i.e., Key, All and Random), Percentage of Source FDs (i.e.,
0%, 25%, and 50%), and Primary Key FDs. Each separate
run considered all mapping primitives, variable type of joins,
and primary keys between 1 and 3 attributes. Source Skolem
noise was fixed to 50%. We generated mappings with and
without primary key FDs, and also with various degrees of
additional source FDs. The results are depicted in Figure 11.
We include Linearize as a baseline (the best we can do

0%

20%

40%

60%

80%

100%

No PKs With PKs No PKs With PKs No PKs With PKs

SOURCE FDs = 0% SOURCE FDs = 25% SOURCE FDs = 50%

Su
cc

es
s R

at
e

Linearize LinearizeFDs

Figure 11: Impact of Primary Keys

without using FDs). As we increase the percentage of source
FDs, there is a slight increase (5% for 25% FDs and 10%
for 50% FDs) in the success rate of LinearizeFDs. This
experiment shows that primary keys act as a catalyst for
rewriting, yielding at least a 75% increased success rate.
This finding confirms our hypothesis about the advantages
of considering FDs for rewriting.

6.6 Real-World Mappings
Last, we applied our techniques over three real-life map-

ping scenarios. The first scenario, Amalgam [25], consists
of schemas describing scientific bibliographies. The second
and third scenarios, Bio [3] and 3SDB [4], are from the bi-
ological domain. We created SO mappings by relying on
the semantics of the schemas and documented data trans-
formations. We compared all rewriting techniques including
LinearizeMin. Figure 12 reports the number of SO tgds
that were successfully rewritten by each technique.
Amalgam. This scenario comprises two mappings between
schemas S1 and S2, and between S1 and S3. Schemas S1, S2,
and S3 consists of 15, 27, and 5 relations, respectively. Each
mapping is specified by 8 SO tgds, and all Skolem functions
include keys. LinearizeFDs succeeds on all SO tgds, fol-
lowed by Linearize and LinearizeMin with a success rate
of 68%. NBM only succeeds for one SO tgd as the remaining
ones require a more expressive mapping language.
Bio. We use a mapping between fragments of the Genomics
Unified Schema GUS and the generic relational Biological
Schema BioSQL.5 The source schema GUS consists of 7 re-
lations, and the target schema BioSQL consists of 6 rela-
tions. The schema mapping is specified by 8 SO tgds. Lin-
earizeFDs succeeds on rewriting all but one SO tgd due to
the presence of disjoint Skolem argument sets, thus outper-
forming the other techniques by at least 74%. NBM did not
succeed on any of the tgds.
3SDB. This scenario consists of three mappings represent-
ing the evolution of three versions (S1, S2, and S3) of a
biological sample database schema used for gene expression
analysis [4]. All rewriting techniques perform reasonably
well, in particular with respect to the second mapping which
consists mostly of full tgds with fewer Skolem functions. The
third mapping from S1 to S3 models the composition of the
evolution mappings and exhibits complex Skolem argument
sets, resulting in a lower success rate for all techniques ex-
cept LinearizeFDs. Notice that while LinearizeMin accom-
plishes similar performance as LinearizeFDs for the simpler
evolution mappings, it only succeeds in rewriting up to 36%
of the tgds in the composed mapping.

5From www.gusdb.org and www.biosql.org, respectively.

Amalgam
Scenario NBM Linearize LinearizeFDs LinearizeMin
S1 → S2 0 3 8 3
S1 → S3 1 8 8 8

Total (16 SO tgds) 6% 68% 100% 68%

Bio
Scenario NBM Linearize LinearizeFDs LinearizeMin

GUS → BioSQL 0 4 7 4
Total (8 SO tgds) 0% 50% 87% 50%

3SDB
Scenario NBM Linearize LinearizeFDs LinearizeMin
S1 → S2 4 6 10 9
S2 → S3 7 9 9 9
S1 → S3 2 4 11 4

Total (30 SO tgds) 43% 63% 100% 73%

Figure 12: Real-world Mappings

6.7 Discussion
In summary, our technique LinearizeFDs consistently out-

performs both Linearize and NBM by a large margin over
both synthetic and real-world mappings (e.g., over 95% suc-
cess rate in the latter). The performance of LinearizeFDs
is largely improved by the existence of primary keys in the
source. Using implied FDs to augment Skolem terms ap-
pears to be more beneficial than using FDs to minimize Sko-
lem terms [23] before checking our linearity condition (i.e.,
LinearizeMin). Since primary keys are available in most
schemas or can be added without much effort, we expect
our method to perform very well in practice.

7. RELATED WORK
The NBM algorithm [26] was used as part of a mapping

composition framework presented by Bernstein et al. [8].
This work presented a composition algorithm based on view
unfolding and a comprehensive experimental study in the
context of schema evolution (whereas our work and evalua-
tion considers general SO tgds). In Bernstein et al., source
key dependencies were used to minimize the argument sets
of Skolem functions (for example, a Skolem function f(x, y)
could be minimized to f(x) if x → y). We have found that
such minimization can sometimes hide a linearization oppor-
tunity and instead use an algorithm that augments function
arguments using FDs. Importantly, Bernstein et al. [8] sug-
gest as future work that it may be possible to exploit key
dependencies “in a more direct way”. We have confirmed
their conjecture and also shown how to leverage more general
source FDs along with dependencies implied by a mapping.

A number of techniques, logical and otherwise, have been
proposed for reducing the argument sets of Skolem functions
in SO tgds. Using SO Skolemization [10], Fagin et al. [12]
show that every s-t tgd is equivalent to an SO tgd with-
out equalities. It is often possible to apply a prior step to
this transformation that leads to Skolem terms with fewer
arguments. Practically, this means obtaining SO tgds with
Skolem terms depending only on the universal variables that
are effectively being exchanged, instead of using all universal
variables as dictated by the standard Skolemization strat-
egy [10]. Yu and Popa [32] exploit this optimization, among
others, in their mapping composition algorithm and use it
to simplify SO tgds by replacing every equality between two
Skolem terms with an equality of their arguments. This sim-
plification guarantees chase equivalence. In the context of
exchanging data in open and closed worlds, Libkin and Sir-
angelo [22] discuss the use of custom Skolemization strate-
gies to encapsulate the semantics of 1-to-1 and 1-to-n rela-
tionships over target attributes. Our approach of using FDs

to modify the arguments sets of Skolem functions may be
seen as proposing yet another Skolemization strategy, albeit
one that has the property of generating more opportunities
for the successful unskolemization of the resulting SO tgd.

8. CONCLUSIONS
We introduced two approaches for transforming SO tgds

into equivalent nested GLAV mappings. Our approach as-
sumes we are given an (arbitrary) SO tgd (without Skolem
equalities) and provides sufficient conditions for when the
rich Skolem functions in SO tgds are well-behaved and have
an FO semantics. We experimentally showed that these con-
ditions are able to handle a very large number of real schema
mappings. Going forward, we would like to incorporate our
insights on both linearization and using FDs directly into
mapping operators including composition and MapMerge.
This could lead to more concise Skolemizations and in gen-
eral a better understanding of how to determine the argu-
ments of newly introduced Skolem functions within map-
pings. This follows a trend of using FDs to simplify data
exchange [23], but holds the promise of being able to use
FDs and more general Skolem management techniques di-
rectly within a host of model management operators.

Acknowledgments. We thank the anonymous referees
for their valuable suggestions. Special thanks to Sheila
McIlraith for relevant discussions, and to Bodgan Alexe and
Yuan An for providing us with real-life schemas and map-
pings. Arocena was supported by the NSERC Business In-
telligence Network.

9. REFERENCES
[1] B. Alexe, M. A. Hernández, L. Popa, and W. C. Tan.

MapMerge: Correlating Independent Schema
Mappings. VLDB J., 21(2):191–211, 2012.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis.
STBenchmark: Towards a Benchmark for Mapping
Systems. PVLDB, 1(1):230–244, 2008.

[3] B. Alexe, B. ten Cate, P. Kolaitis, and W. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD, pages 133–144, 2011.

[4] Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos. A
Semantic Approach to Discovering Schema Mapping
Expressions. In ICDE, pages 206–215, 2007.

[5] M. Arenas, R. Fagin, and A. Nash. Composition with
Target Constraints. Logical Methods in Comput. Sci.,
7(3), 2011.

[6] M. Arenas, J. Pérez, J. Reutter, and C. Riveros.
Inverting Schema Mappings: Bridging the Gap
between Theory and Practice. PVLDB,
2(1):1018–1029, 2009.

[7] P. C. Arocena, M. D’Angelo, B. Glavic, and R. J.
Miller. STBenchmark 2.0. Technical report, University
of Toronto, 2013.
http://dblab.cs.toronto.edu/project/STBench2.0.

[8] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing Mapping Composition. VLDB J.,
17(2):333–353, 2008.

[9] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A
Vision for Management of Complex Models. SIGMOD
Record, 29(4):55–63, Dec. 2000.

[10] H. B. Enderton. A Mathematical Introduction to
Logic. Harcout Academic Press, 2nd. Edition, 2001.

[11] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data

Exchange: Semantics and Query Answering. Theor.
Comput. Sci., 336(1):89–124, 2005.

[12] R. Fagin, P. Kolaitis, L. Popa, and W. C. Tan.
Composing Schema Mappings: Second-Order
Dependencies to the Rescue. TODS, 30(4):994–1055,
2005.

[13] I. Feinerer, R. Pichler, E. Sallinger, and V. Savenkov.
On the Undecidability of the Equivalence of
Second-Order Tuple Generating Dependencies. In
AMW, 2011.

[14] A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested Mappings: Schema
Mapping Reloaded. In VLDB, pages 67–78, 2006.

[15] A. Fuxman, P. Kolaitis, R. J. Miller, and W. C. Tan.
Peer Data Exchange. TODS, 31(4):1454–1498, 2006.

[16] D. Gabbay, R. Schmidt, and A. Szalas. Second Order
Quantifier Elimination: Foundations, Computational
Aspects and Applications. College Publications, 2008.

[17] T. J. Green, G. Karvounarakis, N. E. Taylor,
O. Biton, Z. G. Ives, and V. Tannen. ORCHESTRA:
Facilitating Collaborative Data Sharing. In SIGMOD,
pages 1131–1133, 2007.

[18] R. Hull and M. Yoshikawa. ILOG: Declarative
Creation and Manipulation of Object Identifiers. In
VLDB, pages 455–468, 1990.

[19] A. Klug and R. Price. Determining View Dependencies
Using Tableaux. TODS, 7(3):361–380, 1982.

[20] M. K. Lawrence, R. A. Pottinger, and
S. Staub-French. Data Coordination: Supporting
Contingent Updates. PVLDB, 4(11):831–842, 2011.

[21] M. Lenzerini. Data Integration: a Theoretical
Perspective. In PODS, pages 233–246, 2002.

[22] L. Libkin and C. Sirangelo. Data Exchange and
Schema Mappings in Open and Closed Worlds. J.
Comput. Syst. Sci., 77(3):542–571, 2011.

[23] B. Marnette, G. Mecca, and P. Papotti. Scalable Data
Exchange with Functional Dependencies. PVLDB,
3(1):105–116, 2010.

[24] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data
Exchange. PVLDB, 4(12):1438–1441, 2011.

[25] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku,
and V. Lee. The Amalgam Schema and Data
Integration Test Suite.
www.cs.toronto.edu/~miller/amalgam, 2001.

[26] A. Nash, P. A. Bernstein, and S. Melnik. Composition
of Mappings Given by Embedded Dependencies.
TODS, 32(1):4, 2007.

[27] Y. Papakonstantinou, S. Abiteboul, and
H. Garcia-Molina. Object Fusion in Mediator Systems.
In VLDB, pages 413–424, 1996.

[28] R. Pichler and S. Skritek. The Complexity of
Evaluating Tuple Generating Dependencies. In ICDT,
pages 244–255, 2011.

[29] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
and R. Fagin. Translating Web Data. In VLDB, pages
598–609, 2002.

[30] L. Seligman, P. Mork, A. Y. Halevy, K. P. Smith,
M. J. Carey, K. Chen, C. Wolf, J. Madhavan,
A. Kannan, and D. Burdick. OpenII: an Open Source
Information Integration Toolkit. In SIGMOD, pages
1057–1060, 2010.

[31] B. ten Cate and P. Kolaitis. Structural
Characterizations of Schema-Mapping Languages. In
ICDT, pages 63–72, 2009.

[32] C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. VDLB, pages
1006–1017, 2005.

http://dblab.cs.toronto.edu/project/STBench2.0
www.cs.toronto.edu/~miller/amalgam

	Introduction
	Nesting and Linearization
	(Un)Skolemization Revisited
	Source Constraints
	Summary of Contributions

	Preliminaries
	Sufficient Rewriting Condition
	Intuition of Unskolemization
	Consistency
	Maximal Partition
	Linearity
	Sufficient Condition

	Linearization Algorithm
	Linearization Using FDs
	Equivalence Preserving Augmentation of Skolem Terms based on Source FDs
	Algorithm and Correctness Proof
	Discussion

	Experiments
	Mapping Generator
	Random Scenarios
	Mapping Primitives
	Amount and Type of Skolem Terms
	Impact of Primary Keys and FDs
	Real-World Mappings
	Discussion

	Related Work
	Conclusions
	References

