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ABSTRACT

Given the maturity of the data integration field it is sur-
prising that rigorous empirical evaluations of research ideas
are so scarce. We identify one major roadblock for empir-
ical work - the lack of comprehensive metadata generators
that can be used to create benchmarks for different integra-
tion tasks. This makes it difficult to compare integration
solutions, understand their generality, and understand their
performance. We present iBench, the first metadata genera-
tor that can be used to evaluate a wide-range of integration
tasks (data exchange, mapping creation, mapping compo-
sition, schema evolution, among many others). iBench per-
mits control over the size and characteristics of the metadata
it generates (schemas, constraints, and mappings). We show
that iBench can be used to create very large, complex, yet
realistic scenarios. Our evaluation of iBench demonstrates
that it can efficiently generate large scenarios with differ-
ent characteristics. We also present an evaluation of two
mapping creation systems using iBench and show that the
intricate control that iBench provides over metadata sce-
narios can reveal new and important empirical insights into
integration solutions. iBench is an open-source, extensible
tool that we are providing to the community. We believe it
will raise the bar for empirical evaluation and comparison
of data integration systems.

1. INTRODUCTION

Despite the large body of work in data integration, the
typical evaluation of an integration system consists of ex-
periments over a few real-world scenarios (e.g., Amalgam
Integration Test Suite [20] the Illinois Semantic Integration
Archive, or Thalia [16]) shared by the community, or ad hoc
synthetic schemas and data sets that are created for a spe-
cific evaluation. Usually, the focus of such an evaluation is
to exercise and showcase the novel features of an approach.
It is often hard to reuse these evaluations.

Patterson [21] states that “when a field has good bench-
marks, we settle debates and the field makes rapid progress.”
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Our canonical database benchmarks, the TPC benchmarks,
make use of a carefully designed schema (or in the case of
TPC-DI, a data integration benchmark, a fixed set of source
and destination schemas) and rely on powerful data gener-
ators that can create data with different sizes, distributions
and characteristics to test the performance of a DBMS. For
data integration however, data generators must be accom-
panied by metadata generators to create the diverse meta-
data (schemas, constraints, and mappings) that fuel integra-
tion tasks. To reveal the power and limitations of integra-
tion solutions, this metadata must be created systematically
controlling its detailed characteristics, complexity and size.
Currently, there are no openly-available tools for systemati-
cally generating metadata for a variety of integration tasks.

1.1 Integration Scenarios

An integration scenario is a pair of a source and target
schema (each optionally containing a set of constraints) and
a mapping between the schemas. Integration scenarios are
the main abstraction used to evaluate integration systems.
We present the two primary ways such scenarios have been
generated and illustrate how they have been used in evalu-
ating different integration tasks.

ExXAaMPLE 1.1  (PRIMITIVES). Libraries of primitives
can be used to create integration scenarios of different shapes
and sizes. A set of synthetic schema evolution scenarios
modeling micro and macro evolution behavior were proposed
for evaluating mapping adaptation [24)]. A set of finer-grained
schema evolution primitives were proposed for testing a map-
ping composition system [7]. Each primitive is a simple in-
tegration scenario. Similarly, a set of mapping primitives
were proposed in STBenchmark, to permit the testing and
comparison of mapping creation systems [2]. The primitives
used in each approach depended on the integration task. In
STBenchmark, the task was mapping creation or discovery.
For composition [7], some additional primitives that were
trivial for mapping creation (like an add-attribute primi-
tive) were used because they can make the composition non-
trivial (that is, the composition may be a second-order (S0)
tuple-generating-dependency (TGD) [12]).

Using mapping primitives one can either test a single solu-
tion or compare multiple solutions on integration scenarios
with different properties (by selecting different subsets of
primitives). In addition, scalability can be tested by com-
bining primitives and applying them repeatedly to generate
larger scenarios (larger schemas and mappings). As an al-
ternative to using mapping primitives to create integration
scenarios, one can also use ad hoc integration scenarios tai-
lored to test specific features of an integration method. This



approach was the norm before the primitive approach was
introduced, and remains common.

EXAMPLE 1.2 (AD HoOC SCENARIOS). MapMerge [1]] is
a system for correlating mappings using overlapping sets of
target relations, or using relations that are associated via
target constraints. To evaluate their approach, the authors
used three real biological schemas (Gene Ontology, UniProt
and BioWarehouse) and mapped the first two schemas to the
third (BioWarehouse). These real scenarios reveal applica-
bility of their technique in practice, but do no allow con-
trol over the metadata characteristics (number of mappings,
their complexity, etc.) Such control is needed to evaluate
the performance of the technique. Unfortunately, the primi-
tives of previous approaches did not meet their needs as the
mappings created by sets of primitives rarely shared target
relations and the scenario generators did not permit detailed
control over how target constraints were generated.

Hence, to evaluate MapMerge, the authors created their
own ad hoc integration scenarios. These were designed to
let the researchers control the degree of sharing (how many
mappings used the same target relation) and the set of tar-
get schema constraints, the two crucial parameters for the
MapMerge algorithm. This set-up permitted control over the
mapping scenario complexity which was defined as the num-
ber of hierarchies in the target schema. However, this defi-
nition of complexity is not appropriate for other tasks (e.g.,
mapping composition) that do not depend so directly on the
characteristics of a schema hierarchy. Furthermore, this sce-
nario generator is limited to this one specific schema shape.
These characteristics make it unlikely that others can benefit
from this test harness for evaluating their work.

The use of ad hoc scenario generation is widespread in in-
tegration research and is necessitated by the lack of a com-
mon, shared integration scenario generator.

1.2 Metadata Generator Requirements

To meet the needs of a large variety of integration tasks,
we enumerate some basic requirements for a generator.
Generation of Different Types of Metadata. Differ-
ent integration tasks require different types of inputs and
produce different outputs. To test mapping creation sys-
tems, the schemas, the schema constraints (and sometimes
instances of the schemas) are used as input. The mapping
itself can be used as the gold standard to evaluate the ac-
curacy of a system. To test mapping composition, sets of
pairs of schemas and the mapping between them are used as
input (where the target schema of one scenario is the source
schema of another). A data exchange system takes a pair of
schemas and a mapping as input and produces transforma-
tion code creating a target instance from a source instance.
A metadata generator should be able to produce integra-
tion scenarios containing any of these types of metadata:
schemas, correspondences, mappings, transformations, and
instance data.

Concise Specification of Scenario Characteristics. Ex-
tensive empirical evaluation of the quality and performance
of integration tasks requires a metadata generator that can
produce integration scenarios with varying parameters. Ide-
ally, the user can provide the generator with a concise speci-
fication of characteristics to efficiently produce a set of inte-
gration scenarios for evaluating the behavior of her system
when varying one (or more) of the input parameters. For
example, to test how well a system scales in the instance

size, the researcher would use the generator to generate a
set of integration scenarios with the same schema and map-
ping characteristics, but different instance sizes. A system’s
execution time can be measured over these scenarios. Simi-
larly, to measure how sensitive transformations produced by
a data exchange system are to correlations among mappings
within a scenario (that is, to mappings that share the same
source or target relations), a researcher could use the gen-
erator to produce a set of scenarios with different amounts
of correlation. To efficiently support this type of usage, the
user has to be able to concisely specify the characteristics of
the scenarios that should be produced.

Realistic and Diverse Scenarios. Synthetic scenarios
produced by a generator should be similar to real-world sce-
narios. In particular, mappings and schemas should follow
patterns that are common in real-world scenarios.

Scale Real-world Scenarios. Real-world integration sce-
narios are great tools for evaluation. However, real-world
scenarios usually are of small size which limits their appli-
cability for empirical studies. A metadata generator should
be able to scale real-world scenarios while preserving their
characteristics. In addition, the generator should be able to
combine scaled real-world scenarios with synthetic scenarios
to create scenarios with fine-tuned characteristics.
Support Complex Metadata. The metadata generator
should support rich languages for constraints and expressive
mapping languages [23], including languages like SO TGDs
which are important for integration tasks like composition.
The user should be able to easily create scenarios with con-
straints and mappings in the language of her choice.

1.3 Contributions

e We define the metadata-generation problem and detail
important requirements for a flexible, easy-to-use solution
to this problem (Section [2)).

e We present iBench, an open-source metadata genera-
tor that enables the fast, scalable development of integra-
tion scenarios (Section . The system provides the user
with intricate control over the metadata-generation process
(through a configuration) and satisfies all the requirements
we have enumerated. A user may choose which types of
primitives to use, the size of the schemas, the existence
and type of schema constraints, the mapping language: ST
TGDs (aka GLAV mappings), nested TGDs [13]|, or SO
TGDs [12]|. Importantly, the user may also control how in-
terconnected the mappings are (that is, the degree to which
mappings share source relations or target relations) and the
value invention semantics used within mappings. This con-
trol is the main innovation of the generator and distinguishes
it from previous mapping generators that use only a few
primitives designed for a single integration task and permit
very limited or fixed sharing among mappings.

e We present the MDGen algorithm that solves the meta-
data generation problem for a given configuration (Section.
The configuration allows a user to specify ranges for param-
eter values (e.g., the size of relations or degree of sharing
among many others). MDGen is a randomized algorithm
that invokes primitives satisfying a specification.

e We present an evaluation of the performance of iBench
(Section @ and show that iBench can efficiently generate
both large integration scenarios and large numbers of sce-
narios. We show that iBench can easily generate scenarios
with over 1 Million attributes, sharing among mappings,



and complex schema constraints in seconds. iBench can be
easily ertended with new (user-defined) primitives and new
integration scenarios to adapt it to new applications and
integration tasks. We present a performance evaluation of
this feature where we take several real-world scenarios and
scale them up by a factor of more than 10% and combine
these user-defined primitives with native iBench primitives.
We show that this scaling is in most cases linear.

e We demonstrate the power of iBench by presenting a novel
evaluation of MapMerge |1], comparing it to two other sys-
tems Clio [10] and ++Spicy [18] (Section[7). Our evaluation
systematically varies the degree of source and target shar-
ing among mappings in the generated scenarios. This reveals
new insights into the power (and need for) mapping corre-
lation on complex mappings. As the first generator that
varies the amount of generated constraints, we show for the
first time how this important parameter influences mapping
correlation.

The flexibility of iBench and the focus on providing com-
prehensive control over properties of the metadata (includ-
ing schemas, constraints, and mappings) mean that iBench
can be used for a wide range of integration and metadata
management tasks. iBench permits innovative evaluations of
existing methods that reveal new insights into their perfor-
mance over scenarios with differing degrees of complexity.

2. METADATA GENERATION PROBLEM

We now define the metadata generation problem and illus-
trate its challenges with examples. Furthermore, we define
a set of user requirements on the form, size and character-
istics of the metadata to be generated. and define what it
means for an integration scenario to satisfy these require-
ments. The metadata generation problem is the problem of
generating a solution (that is, an integration scenario) that
complies with the user specification.

2.1 Integration Scenario

An integration scenario is the output of a metadata-gen-
erator , i.e., the schemas, constraints (including the map-
pings), transformations (if requested), and data (if requested).

DEFINITION 2.1  (INTEGRATION SCENARIO). An integra-
tion scenario is a tuple S = (S, T,X,Z,J,T) where S and
T are a source and a target schema, ¥ are constraints over
these schemas (both mappings and integrity constraints on
the schemas), T is a transformation that implements the
mappings in 3, and I (respectively, J ) is a source (respec-
tively, target) instance. When non-empty, we require that
the transformation is a valid implementation of the map-
pings (Z,T(T)) |- =.

2.2 Primitives

We use mapping primitives as the basic building-block for
metadata generation. A mapping primitive is a parameter-
ized integration scenario that represents a common pattern.
For instance, vertical partitioning and horizontal partition-
ing are common patterns that a metadata generator should
support. Primitives act as templates that are instantiated
based on user input. The generator should allow a user
to both determine what primitives to use when generating
an integration scenario and also other characteristics of the
generated scenario such as the number of attributes per re-
lation, the dictionary used for schema element names, and
the constraints on the relations.

Primitives have the advantage that they can be used to
create specific targeted micro-benchmarks for testing very
specific functionality of an integration solution. They can
also be combined together to create larger benchmarks (i.e.,
to standardize sets of integration scenarios). A user can
select which primitives to use to create a benchmark. For
example, she can use only primitives that implement com-
mon transformations used in ontologies (e.g., that increase
or decrease the level of generalization in an isa hierarchy) or
she can choose to use only those primitives that implement
common relational schema evolution transformations.

EXAMPLE 2.2. Consider the integration scenario in Fig-
ure |1 that could be created using two primitives. The first,
copy-and-add-attribute (ADD), creates the source rela-
tion Cust (Name, Addr) and copies it to a target relation that
contains another attribute, Customer (Name, Addr, Loyalty).
The new attribute Loyalty does not correspond to any source
attribute. The second primitive, vertical-partitioning-hasA
(VH) creates a source relation, Emp(Name, Company), and
vertically partitions it into two target relations: Person(1d,
Name) and WorksAt (EmpRec,Firm,Id). The VH primitive
creates a has-a relationship between the two target relations
(modeled by a foreign key (FK)). Specifically, the primitive
VH creates new keys for the two target relations (Id for
Person and EmpRec for WorksAt) and declares WorksAt.Id
to be a FK for Person.

The primitives determine the shape of the schemas, i.e.,
the relations and the required schema constraints. They
also determine attribute correspondences (which source at-
tributes are mapped to which target attributes). The prim-
itives however are parameterized. Example parameters are
the number of attributes per relation or per constraint (e.g.,
for a key or FK), and the number of relations (so VH can
decompose into many target relations).

2.3 Sharing Among Primitives

By combining multiple instances of the primitives, a user
can generate diverse integration scenarios with a great deal
of control over the scenario characteristics. However, while
real-world schemas contain instances of these primitives,
they often contain metadata that correspond to a combi-
nation of primitives. To create such realistic scenarios, it is
important to permit sharing of metadata among primitives.

EXAMPLE 2.3. Suppose we apply a third primitive, copy-
add-delete-attribute (ADL). Without sharing, this prim-
itive would create a mew source relation and new target re-
lation where the target relation is a copy of the source but
with one or more source attribute(s) deleted and one or more
target attribute created (added). However, with sharing, we
can apply primitives to existing source (or target) relations.
As an example, if we enable target sharing, then an applica-
tion of ADL could create a new source relation Executive
and copy it into an existing target relation. In our example,
see Figure@ the existing target Person is chosen (a relation
that in this example was created by an application of the VH
primitive). In our example, ADL deletes the source attribute
Position and adds the target attribute Id. By addition, we
mean that no attribute of the source relation Executive is
used to populate this target attribute. Notice that the re-
sulting scenario is a very natural one. Parts of the source
relations Emp and Executive are both mapped to the target
Person relation while other parts (other attributes) of these



Source Target Source Target
Cust Customer Cust Customer Source Target
Name ———— > Name Name ———————— Name Sales Perf
Addr ——————— > Addr Addr —————— > Addr

Emp Loyalty Emp

Name Person Name

compaN Id e Company
Name H Executive
‘WorksAt Name
EmpRec Position
Firm H

Figure 1: ADD and VH Primitives

source relations are partitioned into a separate relation (in
the case of Emp) or removed (in the case of Executive).

To be able to create such realistic metadata, a generator
could create new primitives that represent combinations of
the existing primitives. However, implementing all possible
combinations is infeasible in terms of implementation effort.
In addition, it is likely overwhelming for a user to choose
from long lists of primitives (hundreds or thousands), mak-
ing such a generator hard to use. We define the metadata
generation problem using an alternative route under which
a user is able to control the amount of source or target shar-
ing among invocations of the primitives.

2.4 User-Defined Primitives

Sharing provides great flexibility in creating realistic and
complex scenarios. However, a user may sometimes require
additional control. One example of this is when a proposed
integration technique is designed to exploit scenarios with
a very specific shape (for example, the ad hoc scenarios we
discussed in the introduction). In addition, it is often helpful
to use real scenarios as building blocks in creating integra-
tion scenarios. Hence, we include in the metadata prob-
lem definition, the use of user-defined primitives (UDP).
The advantage of supporting UDPs is that we can system-
atically scale these scenarios (creating new scenarios with
many copies of the new primitive) and can combine them
with other native primitives or other UDPs. All native prim-
itives and UDPs should be able to share metadata elements.

EXAMPLE 2.4. Suppose an integration developer wishes to
test her solution on mappings that include a pivot. A sim-
ple ezample of this is depicted in Figure[3 In the source,
there are four separate attributes representing quarters, each
containing the sales amount for that quarter. In the target,
information about quarters is represented as data (the value
of the Quarter attribute). The desired mapping is myp.
myp : Sales(Y,1QT,2QT,3QT,4QT) — Perf(Y, ’'1°, 1QT),

Perf(Y, ’2°, 2QT), Perf(Y, ’3’, 3QT), Perf(Y, ’4’, 4QT)

By creating a new primitive Pivot, a user can now combine
this primitive with other primitives to create large scenar-
108 with many pivots and can combine these with vertical or
horizontal partitioning or other native primitives. This per-
mits her to understand the impact of pivoting (the accuracy
and performance) on her integration task (for example, on
her composition or mapping inversion algorithm).

2.5 Value Invention

Many integration scenarios are incomplete, i.e., there exist
elements in one schema for which there is no corresponding
element in another. For tasks like data exchange or mapping
composition, we need to model how values are created for
these elements. This is a task known as object identification

#
Loyalty Year Year

Person 1QT Quarter
Id < 2QT Amount
Name 3QT

WorksAt 4QT

EmpRec
Firm
Id

Figure 3: A Pivot UDP

Figure 2: ADL with Target Sharing

(OID) or walue invention |17]. Following the literature, we
use Skolem functions to formally model how these incom-
plete or missing values are correlated to known values.

ExXAMPLE 2.5. Continuing Example (Figure , this
scenario has four attributes for which value invention is
required (Customer.Loyalty, Person.Id, WorksAt.EmpRec,
and WorksAt.Id). We can model each with a Skolem func-
tion. Primitives may define a default semantics for value
invention. For example, the ADD primitive creates a Sko-
lem function whose arguments are all attributes in the source
relation. If this is the case, them we can represent the map-
ping that the ADD primitive creates as:

Ma,: 3f VN, A Cust(N, A) — Customer(N, A, f(N, A))

In the metadata generator, we would like each primitive
to determine a mapping. To do this, it should provide a
semantics for value invention.

EXAMPLE 2.6. Consider an invocation of the ADL prim-
itive where the user has requested two attributes deleted and
two added. The result could be a source S(Id,City,Mgr)
and target T(Name,Region,Type), where Id is mapped to
Name. There are many possible semantics for value inven-

tion. Three examples are depicted below.
my : 3f, g S(Id, City, Mgr) — T(Id, f(Id,City, Mgr), g(Id, City, Mgr))
mo : 3f, g S(Id, City, Mgr) — T(Id, f(Id), g(Id, City))
ms : 3f, g S(Id, City, Mgr) — T(Id, f(City), g(Mgr))

Each depicts a different semantics. For mai, the two in-
vented values depend on the entire source tuple. But for
ms, there is a constraint that if two source tuples have the
same City then they will necessarily create target tuple(s)
with the same Region (and a similar constraint for Mgr and
Type). Of course there are many other possible mappings.
The choices are exponential in the number of attributes. A
choice is important as it not only defines (possibly differ-
ent) sets of solutions for data exchange, but it may influ-
ence whether the mapping has an inverse or how it can be
composed. And each choice is a valid semantics and one a
metadata generator should be able to create.

Value invention poses a challenge for metadata generation.
First, we would like to give users flexibility in choosing the
value invention semantics. This is particularly important
since this semantics can change the power of the language
needed to express the generated mappings. For instance,
mapping m, above could alternatively be expressed as an
ST TGD (GLAV mapping) by replacing the Skolem with an
existential. However, mapping ms is not an ST TGD [12].
Some integration solutions are designed to work only with
ST TGDs, so it must be possible to restrict the generated
mappings to ST TGDs. Others are designed to work with
nested mappings or with SO TGDs, so it is equally impor-
tant to be able to create mappings that are nested (or SO)
and not equivalent to a mapping in a simpler language.



Parameter Description

Number of attributes per relation.

% source relations used in more than one mapping.
Length of join chains for some mapping primitives
rellnstSize Number of tuples per relation instance.

. . Type of value invention (key, all, random).

TrelSize
sourceShare
joinSize

B
™
b
ks

Table 1: Scenario Parameters (Excerpt)

One option is to implement a different primitive for each
of the value invention semantics, but this leads to an expo-
nential blow up in the number of primitives required (ex-
ponential in the number of attributes). Hence, we define
the metadata generation problem to require that the value
invention semantics used by primitives and used within an
integration scenario be parameterized. A user should be
able to choose among possible value invention semantics and
mapping languages.

2.6 Schema Constraints

To accurately model specific transformations, primitives
may generate schemas with constraints. An example is VH
(Example . Primitives may create source constraints,
target constraints or both. In addition to primitive-created
constraints, it is important for a metadata generator to per-
mit a user to specify if there should be additional constraints
on the schema and to specify the number and characteristics
of these constraints.

EXAMPLE 2.7. Our recent paper [5], showed that in the
presence of source functional dependencies (FD), SO TGDs
may be equivalent to first-order mappings. Continuing Ex-
ample[2-8}, if either of the FDs S.Ciity — S.Mgr or S.Mgr —
S.City holds in the source, them mapping ms is equivalent
to a first-order nested mapping. To evaluate how often SO
TGDs are equivalent to first-order mappings in realistic sche-
mas, a metadata generator was needed that could generate
large sets of scenarios with varying amounts and types of
FDs.

2.7 Transformations

For integration tasks such as data exchange and instance-
based schema matchers, a metadata generator should be
able to create executable transformations that implement
the generated mappings.

2.8 Name and Data Generation

Integration tasks such as schema matching can be sensi-
tive to both the schema elements names and their correla-
tion. To support such tasks, a metadata generator should
provide flexible ways of generating names for schema ele-
ments. In addition, many integration solutions (for prob-
lems including schema matching and mapping creation) may
leverage data (schema instances). An important challenge
when generating data is to generate schema instances that
satisfy the constraints defined over the schema.

2.9 The Metadata Generation Problem

A user of the generator should have a high level of con-
trol over the output but should also be able to generate a
set of scenarios with approzimately the same shape and size.
So to define the metadata generation problem, we use con-
figurations where the user is permitted to give ranges for
parameters. Note that we distinguish between two types
of parameters: scenario parameters restrict the shape of the
generated integration scenario; primitive parameters restrict

Value
Invention
Constraint

Generator
S -
Engine

Metadata Generator

Generator
Correspondences

Primitive
Generator

Figure 4: iBench Architecture
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the usage of primitives, i.e., the number of instances for a
primitive type.

DEFINITION 2.8  (INPUT CONFIGURATION). Let II and
© be sets of parameters and primitives, respectively. An
input configuration I' = (I'm UTe) is a set of scenario re-
strictions ' of the form min, < m < mazx, where m € Il
and 'e is a set of primitive restrictions of the form ming <
10l < mazs where 8 € O.

Intuitively, the primitive parameters restrict the usage of
primitives when creating an integration scenario S that con-
forms with an input configuration. The number of instan-
tiations of a primitive 6 used to create S must be between
ming and maxg. We call a scenario constructed in this fash-
ion compliant with the primitive parameters I'e of a config-
uration. For such a scenario S, we use 2o to denote the
number of instances for each primitive types that were used
to create S.

DEFINITION 2.9. Given a configuration I', a primitive in-
stantiation is an assignment Qe : © — N conforming with
Te, i.e., for each 6 € © we have ming < Qo(f) < maxg. A
scenario S constructed by instantiating primitives according
to Qe is called compliant with T'e.

In addition to restricting what primitives can be used to
create a scenario, the configuration also allows the user to
place restrictions on the general shape of the output scenario
using the scenario parameters I'ri. A few examples for these
parameters are shown in Table To be a solution for a
configuration I'; a scenario S should not only comply with
T'e, but also fulfill the restrictions on scenario parameters
in I'm. Note that there exist configurations for which it is
impossible to fulfill both conditions and, thus, no solution
exists for such configurations (this is discussed further in

Section [)).

DEFINITION 2.10 (METADATA GENERATION PROBLEM).
Let 11 be a set of scenario parameters and © be a set of prim-
itives. A solution for a configuration I" is a scenario S that
is complaint with I'e and that satisfies the scenario param-
eters: S |= I'n.

3. THE iBENCH GENERATOR

In this section, we present iBenclﬂ as a solution to the
metadata generation problem. The details of the scenario
generation algorithm will be discussed in Section [4]

"http://dblab.cs.toronto.edu/project/iBench/!
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Name Description

ADD  Copy a relation and add new attributes

ADL Copy a relation, add and delete attributes in tandem
CcP Copy a relation

HP Horizontally partition a relation into multiple relations
SU Copy a relation and create a surrogate key

VH Vertical partitioning into a HAS-A relationship

V1 Vertical partitioning into an IS-A relationship

VINM  Vertical partitioning into an N-to-M relationship

VP Vertical partitioning

Example Skolems
R(a,b) — S(a,b, f(a,b)) Variable
R(a,b) — S(a, f(a)) Variable
R(a,b) — S(a,b) -
R(a,b) Na=c1 — S1(b) -
R(a,b) Na = cag — S2(b)
R(a,b) = S(f(a,b),b, g(b)) Fixed/Variable
R(a,b) = S(f(a),a) A T(g(a,b),b, f(a)) Fixed

R(a,b,c¢) = S(a,b) AT(a,c) =
R(a,b) = S1(f(a),a) A M(f(a),g(b)) A S2(g(b),b) Fixed
R(“v b) - Sl (f(a7 b)v a) A SQ(f(av b)7 b)

Variable

Figure 5: Exemplary Native Primitives

3.1 iBench Architecture

The architecture of the system is depicted in Figure
The Name and Data Generators are connected as plug-ins
to permit easy customization with new generators. Meta-
data generation is driven by a configuration file defining an
input configuration I'. Our open source repository includes
configuration files for: our evaluation (Section , an eval-
uation of a mapping simplification algorithm [5], and for
evaluating a provenance-based mapping debugger |15].

3.2 Primitives

In iBench, we use a set of primitives that includes the
mapping primitives of STBenchmark [2] and the evolution
primitives of Bernstein et al. |7]. We have added a set of
additional primitives for tasks beyond evolution and map-
ping. A partial list of primitives is given in Figure [5| (for
a complete list see our web page). Note that the example
mappings in the figure represent the simplest version of each
primitive. The generated mappings may be much more in-
volved and diverse. For instance, a vertical partitioning may
split a relation into more than two fragments (depending on
the Tjoinsize configuration parameter) and the number of
attributes in a relation may vary (mreisize)-

Examples of primitives are the ADD, VH, and ADL prim-
itives from Section[2](the first is from Bernstein et al. [7], the
second two are new to iBench). iBench includes primitives
that model different variants of vertical partitioning such
as transforming subclass hierarchies (modeled relationally)
or has-a relationships. STBenchmark’s version of vertical
partitioning corresponds to VP, where the partitioned rela-
tions both have an invented key and there is a foreign-key
generated between the invented keys (meaning the target
relations are in an ISA relationship). Bernstein et al. |7] use
a similar definition but without value invention (VI in Fig-
ure [5) where the key of the source relation is used as the key
of the target relations. Based on the configuration param-
eter TmapLang We either express mappings as ST-TGDs or
SO-TGDs. Since not all primitives can be expressed fully as
ST-TGDs we have to apply some reasonable simplifications.
For instance, the Skolem functions f and g used to gener-
ate keys by VH for relations S and T depend on different
subsets of the input attributes which cannot be expressed
in an ST-TGD. We simply use different existential variables
in that case. In the configuration file, a user specifies the
number of times each primitive should be instantiated (I'e
introduced in Section . Primitives instantiation will be
discussed in Section [l

3.3 Sharing among Mappings of Primitives

The degree of sharing between mappings directly influ-
ences the complexity of the mapping scenario. We allow a
user to directly control whether (and to what degree) the
mappings will reuse the same source relations (called source
sharing) and also the degree to which they reuse the same
target relations (target sharing). For example, to create a
scenario with 20% source sharing, intuitively, we could in-
voke 90% of the requested primitives (without sharing so
each creates new metadata). For the final 10% of the primi-
tives, we find source relations with the right shape required
by the primitive (for example, a source relation with a key
if the primitive requires a key) and reuse these relations,
creating new target relations. The result will be that 20%
of the mappings share (at least one) source relation with
another mapping (details are given in Section [4.1)).

3.4 User-Defined Primitives

We support two mechanisms to define a UDP. In the first,
a user implements a new primitive type in our (open-source)
system. A much easier alternative is using the ability of
iBench to load any existing integration scenario from a file.
This scenario can then can be used in the same way as other
native iBench primitive type. The first option allows for
tighter integration with iBench, e.g., the primitive can be
parameterized in the same way as native primitives (to cre-
ate relations of different sizes, etc.). The second option al-
lows for rapid development of new primitives. In particular,
if the user has an existing real or synthetic integration sce-
nario from a previous evaluation (for example, an ad hoc
scenario from Example the only effort required is to
translate this scenario (its schemas, constraints and map-
pings) into the XML scenario format supported by iBench.
Our current implementation already ships with XML files
for the Amalgam Integration Benchmark Scenarios [20] and
the biological schemas used to evaluate Eirene [3] .

3.5 Value Invention

Each primitive in iBench has a default value invention se-
mantics. This includes UDPs where the value invention se-
mantics is specified using Skolem functions (or existentials)
in the mapping implementing the UDP (read from an XML
file). Hence, a developer can create a primitive that encodes
a specific value invention semantics required by her inte-
gration task. The default semantics for primitives is shown
by example in Figure Recall that we desire the ability
to generate any value invention semantics for primitives so
that a new primitive is not required to model each (of the
large number of) different value invention semantics for a
given scenario. To achieve this, we allow a primitive devel-
oper to indicate whether Skolemization is fixed or variable.



For primitives with variable Skolemization, a user can over-
ride the default semantics provided by the primitive using
one of three Tinurype settings: All, Key, or Random. Using
the All setting, all source attributes are used as arguments
for Skolem terms in a primitive. Using the Key setting,
the arguments are the keys to the source relation(s) used
by the primitive. Using Random, the arguments are ran-
domly chosen source attributes of the primitive subject to
the requirement that any constraints of the primitive (e.g.,
a foreign key) are satisfied.

EXAMPLE 3.1. For Ezample[2.3 (Figure[3), the ADL prim-
itive has a default behavior of Skolemizing by the exchanged
variables (Executive.Name in this example). This could be
changed by using Skolem mode All (creating maar).

Mear : 3k Vn, p Executive(n,p) — Person(k(p,n),n)

The Skolem mode Random would let the generator ran-
domly pick whether to use n or p (or both) as arguments.

The Random setting is useful for creating second-order
mappings and can do so even using a primitive that has by
default a first-order value invention semantics.

We also permit a user to take an integration scenario and
inject additional Skolem Noise. Composition of schema
mappings, like schema evolution, can lead to complex inter-
actions between Skolem terms (specifically the arguments
of the Skolem functions). In addition to Skolem terms in-
troduced in our primitives, we introduce additional Skolem
terms by randomly choosing source attributes to be replaced
(in the target) with Skolem functions (see Section [4.2).

3.6 Schema Constraints

iBench supports relational schemas with functional depen-
dencies (including keys) and inclusion dependencies (includ-
ing foreign-keys). We let the user control the type and com-
plexity of constraints (e.g., the number of attributes in key
constraints or the number of non-key functional dependen-
cies). We support multiple configuration parameters that
control generation of additional random constraints which
are not based on the primitives.

3.7 Transformations

iBench can produce an executable transformation that im-
plements the generated mappings. Currently we support
transformations expressed in SQL. iBench comes equipped
with tools for loading a mapping scenario into a relational
database by creating the schemas, loading the generated
source data, and running the transformations. This is useful
for integration tasks that require a target schema instance
in addition to a source schema instance, e.g., data exchange
or instance based matching.

3.8 Name and Data Generation

We encapsulate the name generation in a plugin. Thus,
several implementations of this plugin can be used to gen-
erate different name distributions. Currently we support a
dictionary-based generator. The main challenge in gener-
ating a source instance is to fulfill the constraints defined
over the schema and comply with input value distributions
(set in our configuration file). In our first release of iBench,
we use the ToXGene generator for XML data [6]. ToXGene
supports both the specification of value distributions and
data that conforms to referential and key constraints. When

Algorithm 1 MDGen (I")

1: for each 6 € © do
2: Qo (0) = RANDOM(ming, mazg)

{Instantiate Primitives}

3: for each 6 € © do

4: forie€{1,...,Q0(0)} do

5: INSTANTIATEPRIMITIVE(O, S, I'11)
{Value Invention}

6: COMPLEXVALUEINVENTION(S, T")
{Generate Additional Schema Constraints}

7: GENRANDOMCONSTRAINTS(S, I')
{Generate Data}

8: for each S € {S, T} do

9: for each R € S do

10: GENDATA(S, R, T'11)

{Serialize Outputs}
11: OutruT(S, ¥)

generating massive datasets, e.g., for Big Data integration
scenarios, parallelization of data generation is crucial. For
example, Ghazal et al. [14] discuss how to generate depen-
dent data in parallel with low communication overhead. Our
future work will consider how to apply these ideas to inte-
gration scenarios with complex mappings and both source
and target constraints.

4. THE MDGEN ALGORITHM

We now present our MDGen algorithm that solves the
metadata generation problem for a configuration I'. Our
algorithm is greedy in that we are never reversing a deci-
sion once it has been made. We use a best effort approach
for dealing with configurations that have no solution and to
compensate for the greediness. We always obey the primi-
tive restrictions, but allow violations of scenario restrictions.
Thus, we guarantee that a solution is returned that obeys
T'e, but not that this solution will fullfil I'r.

Algorithm [T]shows the metadata generation algorithm for
iBench. The algorithm takes as input a configuration I" and
output specification ¥. The output specification determines
what integration scenario elements should be generated, e.g.,
should data to be generated or not. We support multiple
formats for storing the generated metadata including the
XML file format developed for iBench mentioned before as
well as formats for particular elements, e.g., storing schemas
as XML schema files. As a first step we create a primitive
instantiation Qe. For each 6 € © we uniformly at ran-
dom select a value for Qg(0) that lies between ming and
maze (lines 1 to 2 of Algorithm . The next steps, instan-
tiation of primitives and value invention, are explained in
Section and respectively. We then generate random
constraints in addition to the constraints that are generated
based on the chosen primitives. If requested by the user in
the output specification ¥ we generate data for the source
schema. The user can control the number of tuples per gen-
erated per relation (Treirnstsize) and value generators used
to create attribute values (types of generators and associated
probability to use them). Finally, we serialize the generated
scenario using the specified output format.

4.1 Instantiate Primitives

Note that our algorithm is greedy in the sense that once
we have created the integration scenario elements for a prim-
itive instance we never remove these elements. In this fash-



Algorithm 2 InstantiatePrimitive (6,S = (S,%,7),T'n)

Algorithm 3 ComplexValueInvention (S,T")

1: sourceShare = false, targetShare = false

{Determine Sharing}

if RANDOM(0, 100) < TsourceShare then
sourceShare = true

if RANDOM(0,100) < T¢grgetShare then
targetShare = true

{Determine Restrictions on Scenario Elements}

6: Req = DETERMINEPRIMREQS(0,T'17)
{Generate Source Relations}
7: if sourceShare = true then
8: for i € {1,..., Req(||T|))} do
9: if targetShare = true then
10: tries = 0
11: while R [~ Req Atries + + < MAXTRIES do
12: R = PICKSOURCERELATION(S, 'y, %)
13: end while
14: if R [~ Req then
15: R = GENSOURCERELATION(S, Regq, ©)
16: else
17: R = GENSOURCERELATION(S, Reg, )

{Generate Target Relations}
{Generate Mappings}
{Generate Transformations}

18: ...

ion, we iteratively accumulate the elements of a scenario
by instantiating primitives. Algorithm [2]is used to instan-
tiate one primitive of a particular type 6. We realize sharing
among mapping primitives (as determined by the TsourceShare
and TiargetShare Parameters) by reusing relations in the schema
that we have created during previous calls to Algorithm
The choice of whether to reuse existing relations when in-
stantiating a primitive is made probabilistically (lines 2 to
6) where TsourceShare reSpective TiargetShare determines the
probability of reuse. Once we have determined whether we
would like to reuse previously generated schema elements
or not, the next step is to determine the requirements Req
on scenario elements based on the primitive type 0 we want
to instantiate and the scenario parameters I'r (line 8). Re-
call that our algorithm makes a best effort attempt to fulfill
the input scenario restrictions. To avoid backtracking and
to resolve conflicts between primitive requirements and the
scenario restrictions our algorithm violates scenario restric-
tions if necessary. For instance, assume the user requests
that relations should have 2 attributes (7 e1size) and that
VP primitives should split a source relation into three frag-
ments (TjoinSize). 1t is impossible to instantiate a VP prim-
itive that fulfills these conditions, because to create three
fragments, the source relation has to contain at least three
attributes. We define a precedence order of parameters and
relax restrictions according to this order until a solution is
found. In this example, we would choose to obey the re-
striction on 7joinsize and violate the restriction on myesize.
In lines 8 to 17, we generate source relations from scratch
or reuse existing source relations. Since not every source re-
lation can be reused we randomly pick source relations and
check whether they meet the requirements for the current
primitive. After MAXTRIES tries we fall back to generating
a source relation from scratch. For reasons of space we do
not show the details for target relation generation (which is
analogous to source relation generation), mapping genera-
tion, and transformation generation.

4.2 Value Invention

Input Integration Scenario S
Output : An Updated Integration Scenario
1: VI < attribute — Skolem {Map from attributes to Skolems}
{Associate Attributes With Skolems}
2: for each i < (GETNUMATTRS(S) - Heompiezvr) do

3: S.A = PICKRANDOMATTR(S) {Pick random attribute}
4 A= PICKRANDOMATTR(S, TskolemMode)

5: f = PICKFRESHSKOLEMNAME()

6 ADD(VLS.A, f(A))

{Adapt Mappings}
7. for each 0 € ¥4 do .
8: for each (S.A — f(A)) e VI do

9: if S € o then

10: x4 <+ vars(o, S.A)

11: args < vars(c, A)

12: term — f(A)[A + args]

13: for each R(Z) € RHS(o) do
14: R(Z) < R(Z)[xa < term]

Part of the value invention process has already been com-
pleted while instantiating primitives. Based on the param-
eter TinvType, we have parameterized the value invention in
mappings as described in Section In addition, we use the
scenario property meompiezv 1 to control how much additional
Skolem Noise we inject into the mapping. Algorithm
outlines the process of injecting Skolem noise. We randomly
select attributes from the generated source schema (called
victims) and associate them with fresh Skolem terms that
depend on other attributes from this source relation (lines
2-6). For each selected attribute S.A the attributes which
are used as the arguments of the Skolem function are cho-
sen based on parameter TinvType, €.8., if Tinvrype = Keys
then we use the key attributes of relation S. In lines 7-14,
we rewrite any mappings that use a victim to now use the
generated Skolem term. Here 1|z < y] denotes the formula
derived from 1 by replacing all occurrences of x with y.
For instance, assume the Skolem term f(a) was assigned to
attribute b of relation S(a,b). We would transform the map-
ping S(z1,z2) — T(z1,x2) into S(z1,x2) — T(z1, f(z1)).

5. RELATED WORK

Our solution builds on foundational work including efforts
for creating benchmarks for specific integration tasks, col-
lection and description of real-world integration scenarios,
and quality measures for comparing integration solutions.
Scenario Generators. Scenario generators have been used
to evaluate a number of different integration tasks. A set of
synthetic schema evolution scenarios were proposed for eval-
uating a mapping adaptation system [24], a set of schema
evolution primitives were proposed to evaluate a mapping
composition system [7], and a set of mapping scenarios were
defined in STBenchmark [2] to evaluate and compare map-
ping creation systems. STBenchmark raised the issue of
enabling schema reuse among primitives to generate more
diverse and realistic scenarios but tackles this issue by pro-
viding some primitives that combine the behavior of other
simpler primitives. No scenario generator has a general so-
lution for sharing and none of these approaches provide for
flexible value invention. (To be fair, all of these generators
create ST TGDs which support very limited value inven-
tion.) We have developed a principled approach for han-
dling sharing and value invention that avoids an explosive



growth of the number of primitives. In addition, these early
scenario generators focused primarily on varying the charac-
teristics of the (ST TGD) mappings they produced. iBench
is the first scenario generator that supports the generation of
plain SO TGDs [4], a much larger class of mappings useful in
many integration tasks including composition and inversion.
In addition, we let a user control not only the mappings,
but also the mapping language, the schemas, and their con-
straints. The latter is especially important for integration
systems that depend on (or benefit from) the presence of cer-
tain types of schema constraints (and we exploit this feature
in our evaluation of MapMerge and ++ Spicy in Section @
Real-world Scenarios and “Fixed” Benchmarks. Sev-
eral real-world scenarios and synthetic benchmarks have been
used to evaluate data integration systems. The Thalia [16]
benchmark models a University schema and consists of sev-
eral challenges including value conversion, language transla-
tion, and resolving structural heterogeneity. Another exam-
ple is the Amalgam [20] benchmark which consists of sev-
eral schemas and datasets storing bibliographic information.
Many other real-world scenarios, e.g., the Illinois Semantic
Integration Archive (http://pages.cs.wisc.edu/~anhai/
wisc-si-archive/) have been published and used in evalu-
ating integration systems. Real-world scenarios provide for
the highest level of realism when evaluating an integration
system, but only allow very limited evaluations. For in-
stance, it is not possible to vary parameters such as schema
and instance size and types of mappings which is neces-
sary for a rigorous experimental evaluation. With iBench
we leverage the extensive effort spent on creating these sce-
narios through UDPs. Any existing mapping scenario can
be loaded as a new primitive and, thus, can be scaled in
multiple dimensions to support broad evaluations.

Quality Metrics. Different integration tasks have different
outputs, thus, unsurprisingly, a number of quality metrics
have been proposed to evaluate specific output types. Here
we only showcase a few examples to demonstrate that these
measures can be quite complex and diverse. For mapping
creation or adaptation, we can measure the similarity be-
tween instances produced by data exchange. Alexe et al. |1]
proposed a metric for measuring the preservation of data
correlations in a target instance wrt. a source instance. Re-
cently, Mecca et al. [19] introduced the so-called instance
quality metric, which can be used to measure the similarity
of a generated output instance with respect to an expected
one. A long-term goal for iBench is to get the community to
contribute implementations of their metrics to enable future
evaluations exploiting these metrics.

6. IBENCH EVALUATION

We now evaluate the scalability of iBench for various input
parameters, using native primitives and UDPs.

6.1 Native Metadata Scenarios

We conducted four experiments to investigate the influ-
ence of the schema size on the time needed to generate large
metadata scenarios. We ran these experiments on an Intel
Xeon X3470 with 8 x 2.93 GHz CPU and 24GB RAM, re-
porting averages over 100 runs. All four experiments share
a baseline configuration, that uses the same number of at-
tributes per relation (10 attributes £ 5), the same size for
keys (2 &+ 1) , and the same length of join paths in mappings
(3£ 1). We generated scenarios of various sizes (100 up

to 1M attributes) by using the baseline configuration and
varying the amount of primitives.

Figure shows the metadata generation time in sec-
onds for generating four types of scenarios (on logscale).
The first configuration denoted as (0,0,0) has 0% of con-
straints, no source sharing, and no target sharing. The
other three configurations are created by introducing 25%
FD constraints (25,0,0), 25% source sharing (0,25,0), and
25% target sharing (0,0,25), respectively. iBench can gen-
erate scenarios with 1M attributes in 6.3 sec for the (0,0,0)
configuration and shows a linear trend. For the random con-
straints configuration we also observe a linear trend: 13.89
sec for a 1M attribute scenario. For the source and tar-
get sharing configurations we observed a non-linear trend.
While iBench generates scenarios with 100K attributes in
2.1 and 2.5 sec, respectively, for 1M attributes, iBench re-
quires several minutes. Here we noticed high variance in
elapsed times: 215.91 4+ 1.17 sec with a standard deviation
of 11.67 sec for source sharing, and 213.89 + 1.30 sec with a
standard deviation of 13.09 sec for target sharing. This vari-
ance is due to the greedy, best-effort nature of the sharing
algorithm. Despite this, we are still able to generate in rea-
sonable time scenarios that are 10-100 times larger and with
much more realistic sharing among mappings than used in
any previous evaluation that we are aware of.

6.2 UDP-based Metadata Scenarios

To analyze the performance of iBench’s UDP feature, we
used seven real-life metadata scenarios from the literature
and we scale them by factors of up to 1,000 times. We ran
these experiments on an Intel Core i7 with 4 x 2.9 GHz
CPU and 8 GB RAM. The first three UDPs are based on
the Amalgam Schema and Data Integration Test Suite [20],
which describes metadata about bibliographical resources.
We denote them by Al, A2, and A3. The next three UDPs
are based on a biological metadata scenario called Bio [3],
which employs fragments of the Genomics Unified Schema
GUS (www.gusdb.org) and the generic relational Biological
Schema BioSQL (www.biosql.org). We denote them by B1,
B2, and B3. The last UDP (denoted as FH) is based on a re-
lational encoding of a graph data exchange setting [8], com-
prising information about flights (with intermediate stops)
and hotels. For each UDP, we vary the number of instances
from 0 to 1,000. In all cases, we also requested 15 instances
of each native primitive. We present the generation time
in Figure and the numbers of generated relations and
attributes in Figure and respectively. As we scale
the number of loaded UDPs, the metadata generation time
grows linearly in the majority of cases. We observe the worst
behavior for A2 and A3, which contain the largest number
of relations (Figure . While profiling our code, we re-
alized that this non-linear behavior is due to a limitation in
the Java-to-XML binding library we used for manipulating
relations in the UDP and will be optimized for future iBench
releases.

7. INTEGRATION SYSTEM EVALUATION

To showcase how iBench can be used to empirically evalu-
ate an integration task, we present a novel evaluation com-
paring MapMerge |1] against Clio [10] and ++Spicy [18].
Systems. Clio creates mappings (given correspondences)
and transformations that produce a universal solution, Map-
Merge invokes Clio then correlates mappings to remove data
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Figure 6: iBench Scalability Results for Native and UDP Primitives.

redundancy, while ++Spicy creates mappings and transfor-
mations that attempt to produce core solutions. We ob-
tained Clio including MapMerge from the authors [1] and
downloaded ++Spicy from the web.

Original MapMerge Evaluation. The original Map-
Merge evaluation compared transformations that implement
Clio’s mappings (input to MapMerge) with transformations
that implement correlated mappings produced by MapMerge.
The evaluation used two real-life biological scenarios of up
to 14 mappings, and a synthetic scenario with one source re-
lation, up to 272 binary target relations and 256 mappings.
The synthetic scenario was based on an authority pattern,
i.e., a special case of vertical partitioning, where data over
a denormalized source schema is transformed into a target
schema containing several hierarchies. Each hierarchy has
at its root an authority relation and the other relations refer
to the authority through FKs. It was concluded that Map-
Merge improved the quality of mappings by both reducing
the size of the generated target instance, and increasing the
similarity between the source and target instances. Our goal
was to test these observations over more diverse and com-
plex metadata scenarios. In particular, we use iBench to
generate scenarios with random constraints and sharing to
explore how these parameters influence mapping correlation.
Metadata Scenarios. We designed two scenarios using
iBench. The Ontology scenarios consists of primitives that
can be used to map a relational schema to an ontology.
Three of these primitives are different types of vertical parti-
tioning, into a HAS-A, IS-A, or N-to-M relationship (VH,VI,
VNM). The fourth primitive is ADD (copies and adds new
attributes). The STB scenarios consist of primitives sup-
ported by STBenchmark [2]: CP (copy a relation), VP (ver-
tical partitioning), HP (horizontal partitioning), and SU
(copy a relation and create a surrogate key). The Ontology
scenarios produce at least twice as many value inventions
(referred hereafter as nulls) as the STB scenarios (e.g., one
instance of each ontology primitive - ADD, VH, VI, and
VNM - yields 8 nulls or more, while one instance of each
STB primitive - CP, VP, HP, and SU - only yields 4 nulls).
An important outcome of our experiments is that the ben-
efits of MapMerge w.r.t. Clio mappings are more visible in
scenarios involving more nulls.

Measures. Intuitively, mappings that produce smaller tar-
get instances are more desirable because they produce less
incompleteness. To assess the quality of the correlated map-
pings, we measure the size of the generated target instance
and the relative improvement (of MapMerge w.r.t. Clio),
where the size of an instance is the number of atomic values
that it contains [1]. The original MapMerge evaluation [1]
used this measure and also measured the similarity between
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source and target instances using the notion of full disjunc-
tion [22]. We were not able to use full disjunction in our
experiments because we use arbitrary constraints and shar-
ing, and these features often break the gamma-acyclicity [9)
precondition required for the implementation of this mea-
sure. Instead, we measure the number of nulls in the gen-
erated target instance. We also report the performance of
Clio and MapMerge in terms of time for generating and ex-
ecuting mappings using the same machine as in Section [6.2
We implemented the authority scenario used in the original
MapMerge evaluation as an iBench primitive to perform a
sanity check, and obtained the same generated instance size
and comparable times to the original evaluation.

7.1 Scalability of Clio and MapMerge

For the two aforementioned scenarios, we generate an
equal number of occurrences for each primitive and vary
this number according to consecutive powers of two. On the
x-axis of Figures to we report the total number
of primitives, e.g., the value 128 for Ontology scenarios cor-
responds to primitives ADD, VH, VI, VNM each occurring
128/4=32 times. We generated random inclusion dependen-
cies for 20% of the relations. We used 25% source and target
sharing for Ontology scenarios. For STB scenarios, we also
used 25% target sharing, but 50% source sharing to com-
pensate for sharing that naturally occurs (e.g., primitives
such as horizontal partitioning generate multiple mappings
sharing relations, hence sharing occurs even if 0% sharing is
requested). We require each source relation to have 4 +2
attributes and 1,000 tuples.

The target instance size for the studied scenarios is shown
in Figure[7(a)]and[7(b)]- as expected linear in the number of
primitives. Clio (C) produces the same number of constants
and more nulls than MapMerge (M). The Ontology scenarios
produce more nulls and instances of bigger size than the STB
scenarios. Figure shows that in general, the relative
improvement of MapMerge over Clio is higher for Ontology
compared to STB. Additionally, we notice that the relative
improvement remains more or less constant (the exception
is on small STB scenarios, where Clio and MapMerge are
almost indistinguishable), because the characteristics of the
scenarios are the same for different sizes.

We present the mapping generation and execution time
(logscale) in Figure and respectively. Generat-
ing and executing mappings for the Ontology scenarios takes
longer than for the STB scenarios due to the amount of nulls.
Although MapMerge requires more time than Clio to gen-
erate mappings, it requires less time to execute them. This
behavior is more visible for larger number of mappings be-
cause in our experiments this implies larger target instances
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Figure 7: Evaluation of Clio (C), MapMerge (M), and ++Spicy(S)

(up to 2M atoms, in contrast to the original MapMerge eval-
uation that only considered up to 120K atoms).

Our findings extend the original MapMerge evaluation for
two reasons: (i) they do not report the mappings execution
time (they have only the generation time), pointing to a
benefit of having a metadata generator that includes not
only mappings but transformations, and (ii) the behavior
that we report is exposed in the Ontology scenarios, which
are defined using iBench primitives that are not covered by
previous scenario generators nor by the existing MapMerge
evaluation. Indeed, the very flexible value invention pro-
vided by iBench reveals another strong point about Map-
Merge, not considered before. MapMerge not only generates
smaller instances compared to Clio, but is also more time
efficient.

7.2 Impact of Random Constraints and Reuse

We now study the impact of random constraints and shar-
ing for relations with 5 £ 2 attributes and 1,000 tuples. We
ran three experiments, and for each scenario, we use 10 in-
stantiations of each of its primitives. First, we vary the
amount of random inclusion dependencies from 10 to 40%,
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with no source or target sharing. We present the size of the
generated target instance for both scenarios in Figure
and [7(g)| respectively, and the relative improvement in Fig-
ure(7(h)l Here the relative improvement is not constant but
improves as the number of constraints increases.

Second, we vary target sharing by varying the amount
from 0-60% and no random constraints. Source sharing is
fixed to 20% for Ontology and to 50% for STB. We present
the size of the generated target instance for both scenarios in
Figure and [7(j)l respectively, and the relative improve-
ment in Figure [7(k)|

Third, we vary the amount of sharing source relations
from 0-60%. Target sharing is fixed to 20% and there are
no random constraints. Target instance sizes are shown in

Figure and: respectively, and the relative improve-
7

ment in Figure

Our experiments reveal that both sharing and target con-
straints increase the relative improvement of MapMerge over
Clio. We observe that for STB, the biggest gain comes from
using constraints, while for Ontology scenarios the biggest
gain comes from sharing. This suggests that the benefits
shown in Figure (for scenarios combining constraints




and sharing) are coming from both factors. ~MapMerge is
most useful for mappings that share relations or contain tar-
get inclusion dependencies, which aligns with the intuition
of correlating mappings. Our results highlight the impact
of MapMerge in novel scenarios, going beyond the original
evaluation.

7.3 Impact of Core Mappings

Despite producing target instances smaller than Clio, Map-
Merge has no guarantee to produce core solutions [11]. Here,
we include a brief comparison with ++Spicy [1§] that ex-
ploits FDs and rewrites mappings to produce core solutions.
We took 10 instances of each Ontology primitive, no sharing,
and source relations with 5 £ 2 attributes and 100 tuples.
We vary the amount of random constraints from 10 to 40%.
We present the generated target instance size in Figure
and the relative improvement with respect to Clio for both
MapMerge and ++Spicy in Figure We observe that
the size of the instance generated by ++Spicy remains con-
stant regardless of the random constraints. Therefore, its
relative improvement is greater than for MapMerge. These
benefits come naturally with a time cost: while generating
Clio or MapMerge mappings took up to 8 seconds, generat-
ing the ++Spicy mappings took up to 25 seconds.

8. CONCLUSION

Developing a system like iBench is an ambitious goal. We
presented the first version of iBench. We use the system to
conduct a new evaluation of MapMerge that reveals new in-
sights into its performance and considered how MapMerge
compares with other systems including Clio and ++Spicy.
In addition, iBench was an essential tool in a large scale em-
pirical evaluation we have conducted in previous work [5].
Our hope is that iBench will be a catalyst for encouraging
more empirical work in data integration and a tool for re-
searchers to use in developing and testing new quality mea-
sures. In the future, we will extend the prototype with new
functionality (with help from the community). Although
not part of our initial release of iBench, we would also like
to be able to generate queries expressed over a generated
source or target schema. Our goal is to support the eval-
uation of virtual data integration solutions that translate
target queries into source queries, or alternatively to eval-
uate what is lost in data exchange when a source query is
translated and evaluated on an exchanged target instance.
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