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Abstract— HRDBMS is a new type of distributed relational 
database that uses a hybrid model by combining the best of 
traditional distributed relational databases with more modern 
workflow/framework based relational databases.  This allows 
HRDBMS to take advantage of years worth of research 
regarding query optimization, while also taking advantage of the 
scalability of workflow-based systems.  Furthermore, it uses a 
customized execution framework that removes the performance 
challenges that have been observed with running SQL on 
Map/Reduce and Spark.  These include materialization of 
intermediate results, lack of a global cost-based optimizer, 
unnecessary sorting, lack of good index support, lack of good 
statistics, lack of full DML support, and the large number of map 
and reduce phases that are required. 
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I. BACKGROUND 
The increasing scale of data to be processed for analytics 

has been a problem for the IT industry for years.  Many types 
of solutions to this problem have been proposed.  First MPP 
relational databases were proposed.  These used a shared-
nothing architecture to try to parallelize the query processing 
across multiple nodes.  While this proved to be effective at 
very small numbers of nodes, this approach did not scale to 
even medium-sized clusters.  Second columnar databases were 
proposed.  For many types of analytical queries, these proved 
more efficient than their row-based counterparts.  But, they 
suffered the same scalability issues that standard MPP 
relational databases faced.  Most recently, we have seen a 
number of workflow/framework based SQL engines.  This 
includes things like Hive, Shark, Spark SQL, and Dremel.  
While these types of approaches scale much better than 
traditional database approaches, they tend to perform very 
poorly because the database has to reduce the queries into a 
DAG of jobs to be performed on the underlying workflow 
framework.  HRDBMS is an attempt to unify the best things 
about workflow-based SQL engines with the best things about 
traditional MPP relational databases. 

II. HIGH LEVEL ARCHITECTURE 
An HRDBMS cluster is broken into 2 types of nodes.  

There are coordinator nodes and worker nodes.  Coordinator 
nodes only hold system metadata and are responsible for query 
planning.  Worker nodes only hold user data and are 
responsible for the majority of query execution. Queries enter 

the system by a client submitting SQL to a coordinator node.  
The coordinator node then runs the query through the 
optimizer, which uses statistics which are stored in system 
tables.  The output of the optimizer is a query plan, which then 
gets submitted for execution.  Query results are eventually fed 
back up to the coordinator node that planned the query.  Final 
sorts or aggregations may occur on the coordinator node, if 
they are small enough.  The coordinator node then forwards the 
result set on to the client. 

The optimizer is a cost-based optimizer as with traditional 
relational databases.  The benefits of cost-based optimization 
are well established.  Secondly, it uses an execution framework 
modeled after Map/Reduce, and the scalability of such 
frameworks is also well-established.  Third, HRDBMS varies 
from the typical Map/Reduce model in ways that improve the 
performance of SQL queries.  These differences are outlined in 
section III. 

Unlike Hive, HRDBMS also supports 
INSERT/UPDATE/DELETE operations with full transactional 
consistency (ACID compliance). 

III. HRDBMS’S DISTRIBUTED EXECUTION ENGINE 
Queries execute in the HRDBMS framework.  The 

HRDBMS framework is modeled after Map/Reduce, but 
contains many improvements and customizations specific to 
executing relational queries.   

We made the following observations about Map/Reduce 
that we believe lead to the slowness of SQL operations for 
databases such as Hive.  First of all, a reduce phase is really 
just a special type of map phase.  It again emits key/value pairs.  
The difference is that these key value pairs do not go through a 
shuffle and instead are directly written to disk.  It takes another 
(basically no-op) map phase to shuffle the output from a 
previous reduce phase so that data is correctly co-located for 
processing.  In HRDBMS, we therefore forego the use of 
reduce phases and string a series of map phases together with 
shuffles in between them.  Any of these map phases can 
perform any type of relational operation, including 
aggregation.  This also eliminates the write to disk that occurs 
in Map/Reduce at the end of each reduce phase.  HRDBMS 
only materializes the data when necessary. This also 
significantly improves performance as noted by others [1]. 

The first map phase will read the necessary input data from 
disk.  The data read may either come from a table or from an 



index.  Data is not stored on HDFS.  Instead the data is stored 
directly on the local filesystem of each node.  Coordinator 
nodes are aware of how the data is partitioned across each of 
the worker nodes.  Worker nodes may each contain a large 
number of physical disks.  The coordinators are also aware of 
how the data is partitioned across each disk on the worker 
nodes.  The first map phases are always scheduled to run on the 
node where the data they read resides.  It is not a preference for 
placement of the map task like it is in Map/Reduce.  Data 
locality is guaranteed.  These map tasks can then perform any 
type of relational operations needed, and eventually they do a 
mapping of each row and write it out to the shuffle. 

It’s worth pointing out a few more differences between the 
HRDBMS framework and Map/Reduce.  First of all a 
HRDBMS shuffle does not guarantee an ordering of the key 
values that the next map phase receives.  It just guarantees that 
all the rows with the same key are sent to the same node for the 
next phase of processing.  This is sufficient to implement 
distributed joins or aggregation, and reduces overhead be 
eliminating unnecessary sorts. 

Also, these map tasks are inherently parallel.  Each map 
task is defined in terms of the I/O and relational operations it 
will perform.  HRDBMS is designed such that it is easy to 
construct map tasks which perform different relational 
operations in parallel, do I/O in parallel, and even use 
parallelism within the execution of a single relational operator.  
For example, table data is not only partitioned across nodes, 
but also partitioned across disk drives on each node.  A 
separate I/O thread is assigned to each disk. 

Another performance improvement comes from the 
combination of not materializing intermediate files on disk, and 
not sorting during the shuffle.  These changes allow 1 map 
phase to start processing data before a previous map phase 
finishes running.  In fact for some queries, all of the map 
phases involved in the query may immediately begin to do 
work when the workflow begins executing. 

Eventually, the map tasks all map their rows back to the 
coordinator node that planned the query.  The coordinator then 
returns the result set back to the client. 

IV. HRDBMS OPTIMIZER 
HRDBMS takes advantage of years worth of research into 

traditional relational database SQL optimization to build 
efficient workflows for execution.  Query planning starts out 
very similar to query planning for a traditional relational 
database.  Standard transformations such as operator reordering 
are applied, join types are chosen, cardinalities are estimated 
from statistics, selection and projection are pushed down, etc… 

In HRDBMS, the cost of a query is dominated by the cost 
of the shuffles.  Therefore, the optimizer attempts to do 2 
things.  First it attempts to reduce the number of shuffles by 
taking advantage of the way the data is partitioned on disk as 
much as possible.  Secondly, it attempts to reduce the number 
of rows that are passed through each of the shuffles.  This is a 

similar process to join enumeration in a standard relational 
database. 

The optimizer then adds combiner steps where they can be 
used.  Again, this reduces the amount of data that has to pass 
through the shuffle. These combiner steps are just like in 
Map/Reduce where they are local to 1 node.  However, 
HRDBMS also prefers multiple smaller parallel shuffles to one 
big shuffle.  So, the optimizer may also choose to insert 
“combiner-like” steps to do pre-aggregation, where each 
combiner-like step processes data from a subset of the overall 
set of map tasks.  There may be more than 1 round of these 
combiner-like tasks depending on data cardinality and the 
number of nodes involved..  The optimizer may also choose to 
do the same sort of thing for sorting.  This is essentially multi-
pass k-way mergesort, but with parallelism on each of the 
passes.  The optimizer will insert these combiner-like steps in 
an effort to reduce the number of neighbors that each node 
must communicate with.  Tests have shown that this results in 
more efficient network communications. 

Lastly, the optimizer decides where to replace table scans 
with index access.  The final workflow is composed and it is 
submitted to the HRDBMS framework for execution. 

V. RESULTS 
We have run micro-benchmarks as well as the TPC-H 

benchmark at the 100GB scale on clusters ranging from 4 to 32 
nodes.  All nodes are Amazon EC2 m3.2xlarge instances.  
HRDBMS was compared against Hive and DB2 (an enterprise 
class traditional distributed relational database).  In micro-
benchmarks, HRDBMS outperformed both Hive and DB2.  In 
the TPC-H benchmark, HRDBMS was a few percent slower 
than DB2, but several times faster than Hive.  HRDBMS did 
show a higher speedup from 4-32 nodes in TPC-H testing than 
did DB2. 

VI. FUTURE WORK 
Fault tolerance is not yet implemented in HRDBMS, but 

the system is already rack-aware and aware of how data is 
partitioned across nodes and disks.  The plan is to have 
HRDBMS maintain on-rack and off-rack replicas that can be 
used in the event of primary node failure.  This could be 
extended to preferring secondary copies of data when certain 
nodes have more capacity at current than other nodes.  Data 
modifications affecting nodes that are down would be placed 
into pending-work queues.  The work in these queues must be 
completed and successfully committed before a node is 
allowed to rejoin the cluster. 
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