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Abstract Provenance is essential for auditing, data

debugging, understanding transformations, and many

additional use cases. All these use cases would benefit

from provenance for transactional updates. We present

a provenance model for snapshot isolation transactions

extending the semiring framework with version annota-

tions and updates. Based on this model, we present the

first solution for computing the provenance of trans-

actions. Our approach retroactively traces provenance

using an audit log and time travel functionality (sup-

ported by many DBMS) without having to store any

additional information. For a given transaction, we con-

struct a reenactment query that simulates the effect of

the transaction. This query returns the updated ver-

sions of relations produced by the transaction and has

the same provenance as the transaction. Interestingly,

such reenactment queries can be expressed in relational

algebra and, thus, be executed by standard DBMS. We

have implemented a prototype on top of a commercial

database system and our experiments confirm that by

applying novel optimizations we can efficiently compute

the provenance of large transactions over large data sets

and our approach results in only moderate overhead for

transactions when no provenance is requested.

1 Introduction

Provenance, information about the creation process and

origin of data, is critical for many applications includ-

ing auditing, debugging data by tracing erroneous re-

sults back to erroneous inputs, understanding complex

transformations, and as a supporting technology for in-

tegration and probabilistic databases. How to model

and compute the provenance of database queries is rel-

atively well understood. Most approaches model prove-

nance as annotations on data (e.g., tuples) and prop-

agate annotations to compute the annotation (prove-

nance) of a query result. That is each tuple in the

result of a query will be annotated with input tuples

that are in its provenance and, depending on the pro-

venance model that is employed, also how these tuples

were combined to derive the result. Such techniques

have been pioneered by systems such as Perm [17], DB-

Notes [6], Orchestra [22], and others. While provenance

for queries is important, many use cases (e.g., auditing)

would benefit from provenance for update operations.

For instance, tracing a query result tuple back to its

provenance in the query input is not sufficient for au-

diting, because this type of provenance does not explain

how the query inputs were created (i.e., inserted and/or

updated by past transactions). Relational databases ex-

ecute updates as part of transactions and apply con-

currency control techniques to guarantee ACID proper-

ties for transactions. Provenance tracking for database

updates needs to take into account the idiosyncrasies

of concurrency control protocols to correctly describe

the origin of data. We present the first solution to this

problem. Specifically, we extend an existing provenance

model for queries (the semiring model) to also support

transactional semantics, demonstrate how to compute

provenance according to this model using a relational

database, and present an implementation in our GProM

system. We introduce reenactment, a novel technique

for replaying (“reenacting”) a transactional history (or

parts thereof) using queries. Reenactment queries en-

able us to retroactively compute the provenance of tu-

ple versions produced by a transactional history using

transaction time histories of relations and a log of SQL

statements. Notably, our approach does not require any

eager materialization of provenance during transaction

execution nor any changes to the transactions them-

selves. Hence, we avoid paying the runtime and storage

overhead of provenance computation for every transac-

tion executed by the system. We focus on transactions

executed under the snapshot isolation (SI ) concurrency

control protocol (used by, e.g., PostgreSQL, Oracle, and

MSSQL) in this work.

Example 1.1 Consider the database shown in Figure 1a.

Relation Order stores orders submitted by customers.

Relation Outstanding stores outstanding payments for

orders and their due dates. Relation Collection stores

outstanding payments that have not been payed by the

due date and, thus, went to collection. A history of

transactions for this database is shown in Figure 2.

Here we assume a discrete time domain Version and

show for each update the version at which it was exe-

cuted. Transaction T1 creates two orders for customer

Peter and inserts the order amounts as outstanding

payments. Peter recognizes an error in the order and

contacts customer service. The service operator corrects

the error (Transaction T2) by updating the order ta-

ble but forgets to modify Peter’s outstanding payment

accordingly. Some time later Peter decides to pay off

his dept. Assuming that the error has been corrected,

he pays $250 for his first order and $56 for his sec-

ond order. This triggers transactions T3 and T4 which

update the due amount (respectively delete outstanding

amounts that have been fully payed). These transactions

run a query that collects payments that are overdue and

inserts them into the collections table.

Assume that the database applies the snapshot isola-

tion [5] concurrency control protocol. Figure 1 shows the

states of the database after the commit of transactions

T1, T2, T3 and T4, respectively. For convenience, we

show tuple identifiers to the right of each tuple. Ignore

the annotations shown on the left for now. Under snap-
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(a) After Transaction T1

Order

id customer price

C1
T1,6

(I1T1,2
(x1)) oid1 Peter 300 o1

C2
T1,6

(I2T1,4
(x2)) oid3 Peter 56 o2

Outstanding

order amount due

C3
T1,6

(I3T1,3
(I1T1,2

(x1))) oid1 300 2000-05 s1

C4
T1,6

(I4T1,5
(I2T1,4

(x2))) oid3 56 2000-05 s2

(b) After Transaction T2

Order

id customer price

C1
T2,8

(U1
T2,7

(C1
T1,6

(I1T1,2
(x1)))) oid1 Peter 250 o

′
1

C2
T1,6

(I2T1,4
(x2)) oid3 Peter 56 o2

Outstanding

order amount due

C3
T1,6

(I3T1,3
(I1T1,2

(x1))) oid1 300 2000-05 s1

C4
T1,6

(I4T1,5
(I2T1,4

(x2))) oid3 56 2000-05 s2

,

(c) After Transaction T3

Order

id customer price

C1
T2,8

(. . .) oid1 Peter 250 o
′
1

C2
T1,6

(. . .) oid3 Peter 56 o2

Outstanding

order amount due

C3
T3,13

(U3
T3,9

(C3
T1,6

(. . .))) oid1 50 2000-05 s
′
1

C4
T1,6

(. . .) oid3 56 2000-05 s2

Collection

order amount

C5
T3,13

(I5T3,11
(U3
T3,9

(C3
T1,6

(. . .)))) oid1 50 c1

C6
T3,13

(I6T3,11
(C4
T1,6

(. . .))) oid3 56 c2

(d) After Transaction T4

Order

id customer price

C1
T2,8

(. . .) oid1 Peter 250 o
′
1

C2
T1,6

(. . .) oid3 Peter 56 o2

Outstanding

order amount due

C3
T3,13

(. . .) oid1 50 2000-05 s
′
1

C4
T4,14

(D4
T4,10

(C4
T1,6

(. . .))) oid3 56 2000-05 s
′
2

Collection

order amount

C5
T3,13

(. . .) oid1 50 c1

C6
T3,13

(. . .) oid3 56 c2

C7
T4,14

(I7T4,12
(C3
T1,6

(. . .))) oid1 300 c3

Fig. 1: Running example database state after execution of each of the 4 transactions in the example history.

Attribute values affected by an update are highlighted in red (�) and deleted tuples are highlighted in gray (�).

Transaction T1 Version

INSERT INTO Order VALUES (oid1 , Peter , 3 0 0 ) ; 1
INSERT INTO Outstanding (SELECT id , pr i ce , ’ 2005−05 ’ FROM Order WHERE id=oid1 ) ; 2
INSERT INTO Order VALUES (oid2 , Peter , 5 6 ) ; 3
INSERT INTO Outstanding (SELECT id , pr i ce , ’ 2005−05 ’ FROM Order WHERE id=oid2 ) ; 4
COMMIT; 5

Transaction T2 Transaction T3 Transaction T4

UPDATE Order
SET p r i c e = 250
WHERE id = oid1 ;

6

COMMIT; 7
UPDATE Outstanding
SET amount = amount − 250
WHERE order = oid1 ;

8

DELETE FROM Outstanding
WHERE order = oid3 ;

9

INSERT INTO c o l l e c t i o n
(SELECT order , amount
FROM Outstanding
WHERE due < ’ 2000−06 ’ ) ;

10

INSERT INTO c o l l e c t i o n
(SELECT order , amount
FROM Outstanding
WHERE due < ’ 2000−06 ’ ) ;

11

COMMIT; 12
COMMIT; 13

Fig. 2: Transactional history H of the running example, showing version identifiers for each statement.
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shot isolation each transaction T operates on a private

snapshot of the database that contains all tuple versions

that were produced by transactions that committed be-

fore T started and versions created by T ’s own updates.

This has no effect on transactions T1 and T2, because

the execution of these transactions does not overlap with

any other transaction. Transactions T3 and T4, how-

ever, do not see each other’s updates. These transac-

tions both operate on the version of relation Outstanding

produced by Transaction T2.1 This causes three (instead

of one) collection tuples to be created (see Figure 1):

Transaction T3 sees a remaining balance of $50 for or-

der oid1 and does not see the deletion of the outstanding

payment for order oid2. Transaction T4, sees the previ-

ous balance of $300 for order oid1.

Peter, surprised to receive a letter about outstand-

ing payments, calls the customer service again. The

representative will not be able to explain why the due

amounts went to collection, because the current data-

base state (Figure 1d) provides no hint at what caused

the errors. A temporal database would reveal more in-

formation, e.g., showing the unmodified $300 amount in

the Outstanding relation after the commit of Transac-

tion T2. However, critical information needed to under-

stand the problem in this example is not available since

a temporal database does not reveal which tuple ver-

sions the new collection tuples have been derived from

and by which operations. For example, the representa-

tive needs to understand that tuple c1 was derived from

the tuple version s
′

1 produced by subtracting $250 from

the amount of the previous version of this tuple (s1).

Furthermore, this previous tuple version s1 was derived

from tuple version o1. That is the update of Transaction

T2 (correction of the order price) was not taken into ac-

count. If a log of executed SQL statements is available

(we call this an audit log), then the user may be able

to correlate the transaction time history of the database

with the audit log to infer such provenance dependen-

cies. However, for any realistically complex SQL query

and realistically sized database it would not be feasible

to apply this inference manually.

This example motivates the need for an approach for

tracking the provenance of tuples that are updated by

concurrent transactions. A provenance model for trans-

actions would not just have to explain how tuple ver-

sions have been combined to produce new tuple ver-

sions, but also which SQL statements did create which

tuple version (and how). Ideally, it should be possible

to compute the provenance of any current or past tu-

ple version without having to eagerly materialize prove-

1 Readers familiar with snapshot isolation may recognize
that transactions T3 and T4 are an instance of the write-skew
problem [5], i.e., this history is not serializable.

nance information during transaction execution. Note

that in this work we do not consider provenance de-

pendencies at the application side. For instance, con-

sider an application that runs a query, stores the result

in a client-side variable, and then uses the variable in

an update statement. Detecting such dependencies re-

quires tracking provenance of procedural programming

languages which is beyond the scope of this work. While

there are existing solutions for computing the prove-

nance of updates [22,27,8], none of these approaches

support transactions and these approaches are not in-

tegrated with provenance for queries. As we will demon-

strate in the following, naive combinations of existing

provenance models with snapshot isolation do not ful-

fill our desiderata for a transaction provenance model.

Techniques for replaying operations (e.g., [29]) are also

not directly applicable to our problem because we do

not want to pay the overhead of replaying DB updates

(e.g., I/O caused by writing logs and changes to disk).

The main contributions of this work are:

•We introduce the multi-version semiring model,

a provenance model for queries and updates that ex-

tends the semiring annotation framework [21]. In par-

ticular, we support transactions executed using the snap-

shot isolation concurrency control protocol. The prove-

nance of a tuple version in this model encodes its com-

plete derivation history including previous tuple ver-

sions that were used to compute it and how tuple ver-

sions have been used by updates and/or queries in-

volved in its creation.

•Based on this model, we introduce the novel con-

cept of reenactment queries. Reenactment queries

are queries that simulate the effect of an update, trans-

action, or even a whole history. Importantly, these queries

are annotation equivalent to the operation(s) they are

simulating, i.e., they produce the same result (updated

relations) and have the same provenance. Reenactment

is the main enabler of our approach for computing the

provenance of transactions, because it enables us to

compute provenance retroactively by running reenact-

ment queries instead of having to compute and materi-

alize it eagerly while transactions are running.

•We present a relational encoding of our prove-

nance model and demonstrate how to implement prove-

nance computation for transactions by translating reen-

actment queries into SQL queries using time travel to

access past database states. By time travel we mean

the ability to access past states of a relation in queries

as supported by, e.g., Oracle, IBM, and MSSQL.2 We

2 If not natively supported, time travel can be implemented
using triggers to maintain a transaction time history in sep-
arate history relations (e.g., see [26], Chapter 8).
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use an audit log (log of executed SQL statements) to

construct reenactment queries.

•We implement our techniques in the GProM sys-

tem running on-top of DBMS X 3. We discuss several

optimizations including alternative ways of implement-

ing reenactment queries and filtering unrelated data

from the provenance computation early on.

•Our experiments demonstrate that 1) provenance

computation based on reenactment is very efficient and

scales to large databases, complex transactions, and

large number of updates and 2) the storage and run-

time overhead incurred for running transactions when

time travel and audit logging is activated is tolerable

and significantly smaller than the overhead incurred by

eagerly computing and materializing provenance for ev-

ery transaction when it is executed.

The remainder of this paper is organized as follows.

Section 2 presents an overview of our system. In Sec-

tion 3, we review related work and then introduce back-

ground on provenance and concurrency control in Sec-

tion 4. In Section 5, we introduce the multi-version pro-

venance model. We study reenactment in Section 6 and

demonstrate how to implement reenactment as stan-

dard relational queries in Section 7. In Section 8, we dis-

cuss our implementation and optimization techniques

for reenactment. We present experimental results in

Section 9 and conclude in Section 10.

2 System Overview

In this section, we give an end-to-end overview of our

approach for computing provenance for transactions.

2.1 Multi-version Provenance Model

Our first contribution is to introduce MV-semirings, a

provenance model that extends the well-known semi-

ring annotation framework [19] to account for tuple

derivations under transactional semantics. For any semi-

ring K we can construct an MV-semiring Kν . An anno-

tation in Kν is a symbolic expression over elements from

K recording the derivation history of a tuple. These

expressions use version annotations to enclose part of

the provenance of a tuple which encodes that this part

of the provenance was processed by a certain update

at a certain time. There is an intuitive correspondence

between these version annotations and tuple versions:

each version annotation wrapping the provenance of a

tuple corresponds to the creation of a new tuple ver-

sion. We define update operations and a snapshot iso-

lation (SI) transactional semantics for this model. In

3 Name omitted due to licensing restrictions.

the resulting semantics, each tuple in a version of a

database produced by a history of transactions is an-

notated with its complete derivation history according

to these transactions. Our model also supports prove-

nance tracking for queries, i.e., the provenance a query

result can not just be traced back to the inputs of the

query, but also reaches back into the transactional his-

tory that produced these inputs. The model preserves a

major advantage of the semiring framework: it general-

izes standard set and bag semantics as well as types of

annotated relations such as incomplete database. That

is, we can derive a standard bag semantics database for

a given snapshot isolation history from the annotated

database for this history.

Example 2.1 Consider the annotations on the left of

each tuple in Figure 1 showing the provenance for each

tuple version according to our model. For now, we will

only explain the meaning of these annotations - how

to compute them will be covered later. As mentioned

above, the provenance of a tuple version encodes its

whole derivation history - from which tuple version was

that tuple version derived and by which operations. As

an extension of the semiring annotation framework, our

model uses variables to denote tuples in the provenance.

We wrap parts of a tuple’s provenance in version anno-

tations to denote that it was produced by a certain type

of update of transaction T at time ν.4

Transaction T1. For instance, consider the annota-

tions on the Order relation tuples in Figure 1a. The

first tuple was produced by an insert (I) of transaction

T1 executed at time (version) 1. Note that we assign a

time stamp ν+1 to tuples created by an update executed

at time ν. We assign a fresh variable (x1 in the exam-

ple) to tuples created by an insert using a VALUES clause.

Inserted tuples are assigned new tuple ids (id 1 shown

as a superscript in the version annotation). When the

transaction creating a tuple version commits then we

wrap this tuple version in a commit version annotation

(C). The resulting provenance expression for this tuple

is C1
T1,6

(I1T1,2
(x1)). Transaction T1 has also inserted two

tuples into relation Outstanding. These tuples are the

result of running queries over relation Order. We record

which tuples of relation Order each of the new tuples in

relation Outstanding depends on by wrapping the pro-

venance of these Order tuples in a version annotation.

For instance, the first tuple of relation Outstanding is

annotated with C3
T1,6

(I3T1,3
(I1T1,2

(x1))), i.e., it was pro-

duced by an insert of transaction T1 executed at time 2

which used a tuple (represented by variable x1) produced

by the same transaction at time 1.

4 We assume that versions in the database are identified by
values from a discrete time domain.
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Based on the provenance annotations in Figure 1d,

the service operator from our running example can ex-

plain the three tuples in the Collection relation. For

instance, it is clear that the update to the Order tuple

was not reflected in the corresponding Outstanding re-

lation tuple (the provenance contains the annotation of

o1 before the update) which was used to create the first

tuple of the Collection relation.

2.2 Provenance Filtering

For databases with long histories, a user is likely not in-

terested in the complete derivation history of currently

valid tuples. Thus, we need an approach for abstract-

ing away unnecessary details in our provenance model.

Since our model is composable we can remove irrelevant

parts of a tuple’s derivation history by replacing pro-

venance subexpressions with new variables. We demon-

strate how this approach can be applied to limit the

provenance to a given transaction.

Example 2.2 Assume the service operator wants to

drill down into the provenance of Transaction T3. That

is, she is only interested in modifications of tuples by

this transaction. This is naturally achieved in our model

by replacing subexpressions in the provenance with vari-

ables that represent the input tuple versions as seen by

transaction T3. For instance, for tuple s′1 in relation

Outstanding (Figure 1c) we would replace version an-

notations from previous transactions (T1 and T2) in the

annotation C3
T3,13

(U3
T3,9

(C3
T1,6

(I3T1,3
(I1T1,2

(x1))))) with a

plain variable x3 wrapped in the commit annotation of

T1. The resulting annotation is C3
T2,13

(U3
T3,9

(C3
T1,6

(x3))).

Furthermore, we would remove the second tuple by set-

ting its annotation to 0 (a 0-annotation denotes that the

tuple is not in the relation), because this tuple was not

affected by Transaction T3. The resulting provenance

only contains information about T3’s updates, e.g., the

update of the first tuple of relation Outstanding.

2.3 Reenactment

We next prove an important fact. If we extend our query

model with a new operator that creates version anno-

tations, then any update, transaction, or (partial) his-

tory in our model can be equivalently expressed as a

query, e.g., from an update u we can derive a query

R(u) which returns the same database state as the orig-

inal update u (if executed over the same input). We call

such queries reenactment queries. A history is a poten-

tially concurrent execution of a set of transactions, e.g.,

Figure 2 shows a history. We will formally define his-

tories in Section 5.3. Note that in this paper we are

focusing on reenactment of updates or single transac-

tions only. However, we allow these transaction to be

part of a larger history. The equivalence under anno-

tated semantics between an operation and its reenact-

ment query has several important implications: instead

of computing provenance eagerly during transaction ex-

ecution we retroactively compute it by running reenact-

ment queries. Furthermore, since our model generalizes

bag-semantics snapshot isolation, we can use reenact-

ment to recreate a database state valid at a particular

time by simply running a query - including database

states that were only visible within one transaction.

Example 2.3 For simplicity we illustrate reenactment

using SQL and standard relation query semantics. Our

formal treatment of the subject in Section 6 uses an

algebra of updates and queries defined for our prove-

nance model. For instance, an SQL update UPDATE R SET

a = a + 1 WHERE b = 3 over a relation R(a, b) can be reen-

acted as a query that runs over the database state valid

before the update. Intuitively, we compute a union be-

tween the previous versions of tuples that were not af-

fected by the update (tuples that do not fulfill the WHERE

clause condition) and the new version of tuples that

were updated (fulfill the WHERE clause condition). Thus,

we can reenact the update shown above as:

SELECT * FROM R WHERE b <> 3

UNION ALL

SELECT a + 1 AS a, b FROM R WHERE b = 3;

2.4 Relational Implementation using Time Travel

While our model fulfills our desiderata for a transac-

tion provenance model, it would require major changes

to implement it within a DBMS. Our third major con-

tribution is a mapping of our provenance model to a

standard relational representation and a method for

using an audit log (a log of SQL statements executed

on the database) to construct reenactment queries and

time travel to access past database states when running

reenactment queries. Thus, we can compute the prove-

nance of past updates, transactions, and across trans-

actions - without having to materialize any additional

information, without modifying the DBMS, and with-

out requiring changes to the transactional workload.

Example 2.4 Figure 3 shows the relational represen-

tation of the provenance of relation Collection from

the example history restricted to transaction T3. The

annotation of a tuple t is represented as several tuples

by duplicating the tuple t and storing part of the anno-

tation in additional attributes. Tuple variables are rep-

resented by actual tuples. Version annotations are rep-

resented as boolean attributes (Ui for update ui) which
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Collection Provenance from Relation Outstanding u1 u2

order amount P(Outstanding,order) P(Outstanding,amount) P(Outstanding,due) U1 U2

C5
T3,13

(I5T3,11
(U3
T3,9

(x3))) oid1 50 oid1 300 2000-05 T T

C6
T3,13

(I6T3,11
(x4)) oid3 56 oid3 56 2000-05 F T

Fig. 3: Relational encoding of the provenance of example transaction T3

are true if this part of the provenance has this version

annotation and false otherwise. In Figure 3 we show

the annotation encoded by a tuple on the left of this tu-

ple. The boolean attributes U1 and U2 represent the ver-

sion annotations for the update (u1) and insert (u2) of

Transaction T3. For instance, consider the annotation

C5
T3,13

(I5T3,11
(U3

T3,9
(x3))) of tuple t =(oid1,50) derived

by replacing C3
T1,6

(I3T1,3
(I1T1,2

(x1))), the part of the an-

notation of t related to previous transactions, with a

new variable x3. This tuple was affected by both up-

dates of T3. Thus, both U1 and U2 are set to true. The

tuple version t′ =(oid1,300,2000-05) from relation Out-

standing from which tuple t was derived (represented

by variable x3 in the provenance annotation) is stored in

additional attributes we add to the schema. Here P de-

notes a renaming function used to distinguish attributes

storing provenance from attributes storing data.

Note that while the number of attributes in the rela-

tional encoding depends on how far back provenance is

traced this representation is not materialized but con-

structed on the fly using reenactment when a user re-

quests provenance. Using actual tuple values to repre-

sent variables in provenance expressions is often more

meaningful to a user than other representations of the

variables such as pairing tuple identifies with versions.

Nonetheless, we let the user decide how tuples are repre-

sented (actual values, tuple id and timestamp, or both).

2.5 GProM

We have implemented the techniques discussed above in

our GProM [3] provenance middleware. GProM works

as a wrapper of a standard relational database. The user

interacts with the system using the SQL dialect of the

underlying DBMS. We support several extensions for

computing provenance which are seamlessly integrated

within SQL. For example, the user can request the pro-

venance of a query, update, or single transaction, or for

a certain time interval. To process a transaction prove-

nance request we 1) query the audit log to gather suffi-

cient information to be able to construct a reenactment

query and 2) translate the reenactment query into an

SQL query with time travel (i.e., querying the transac-

tion time history of tables) which returns our relational

encoding of provenance (e.g., as shown in Figure 3).

From a language point of view, a provenance request

is treated as a query that returns a relational prove-

nance encoding, e.g., it can be used as a subquery (to

query provenance). For instance, to return all tuples af-

fected by an update u of a transaction T , the user would

request the provenance of T and only keep tuples for

which the annotation attribute of update u is true. To

track the derivation history of a single tuple the user

requests the provenance of the relation containing the

tuple and applies a selection to the result to return only

the provenance for the tuple she is interested in.

3 Related Work

3.1 Provenance Models

Provenance of relational queries has been studied ex-

tensively in the recent years leading to the develop-

ment of several models including Why-provenance [9],

Where-provenance [9], and Lineage [12]. See [11] for an

overview. The seminal paper from Green et al. [19] in-

troduced the K-relational model, an extension of the

relational model with annotations from a commutative

semiring and has shown how such annotations propa-

gate through positive relational algebra (RA+) queries.

The semiring of provenance polynomials is the most

general form of annotation in this model. Provenance

polynomials generalize the relational datamodel (set

and bag semantics), several extensions (e.g., trust), and

less informative provenance models including Lineage

and Why-provenance. See [21] for an overview of this

model and its extensions beyond positive relational al-

gebra (e.g., set difference [14] and aggregation [2]). Kosty-

lev et al. [24] have studied data annotated with annota-

tions from multiple semirings. Buneman et al. [10] relax

the semiring model for a hierarchical data model where

the distinction between data and annotation is flexible

- allowing queries to treat part of a hierarchy as annota-

tions and others as data. Oltenau et al. [25] discuss fac-

torization of provenance polynomials and Amsterdamer

et al. [1] rewrite queries into equivalent queries (under

set semantics) with minimal provenance. Boolean Cir-

cuits can be used to compactly represent semiring ex-

pressions [13]. It has been proven that provenance poly-
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nomials can be extracted from the PI-CS [17] and Pro-

venance Games [23] models. The latter also addresses

negation. We extend the semiring framework with up-

dates and transactional semantics. The idea of anno-

tating parts of a provenance polynomial with function

symbols was, to the best of our knowledge, first ap-

plied in the context of the Orchestra system to record

applications of schema mappings [20]. The version an-

notations in our model were inspired by this idea. The

major advances we made in developing our extension

are 1) encode derivation under concurrent transactions

and 2) model the visibility rules of the snapshot iso-

lation concurrency control protocol. Our model is a

strict generalization of the semiring model in the sense

that we can derive the semiring annotations of a tuple

from our model. As we will discuss further in Section 5,

naive combinations of the semiring model with imple-

mentations of snapshot isolation which use additional

attributes to store version information have the disad-

vantage that a tuple’s provenance may be spread over

multiple relations and database versions whereas in our

model it is stored in the tuple’s annotation.

3.2 Systems and Provenance for Past Operations

Systems such as DBNotes [6], Orchestra [22], Logic-

Blox [21], and Perm [17] encode provenance annotations

as standard relations and use query rewrite techniques

to propagate these annotations during query process-

ing. We also implement provenance computation for

transactions by propagating a relational encoding of

provenance annotations. Similar to the Perm system,

we refrain from eagerly computing provenance for all

operations, but instead reconstruct provenance when

requested. Zhang et al. [28] demonstrated that an audit

log and time travel functionality is sufficient for com-

puting the provenance of past queries. In this work, we

prove that audit logging and time travel are also suf-

ficient for computing the provenance of transactions.

This idea of using a log of operations (and changes

to data) to reconstruct provenance by replaying op-

erations has also been applied in the DistTape sys-

tem [29] (distributed datalog) and the Ariadne sys-

tem [16] (stream processing). Such replay techniques

could be applied to replay SI transactional histories as

long as the replay mechanism implements snapshot iso-

lation (or alternatively enforces the visibility rules of

snapshot isolation) and ensures that the operations of

transactions are executed in the same order as in the

original history. The novelty of our reenactment mecha-

nism lies in the fact that instead of replaying updates we

construct a reenactment query that simulates the up-

dates. The execution order of operations in the history

is “hard-coded” into that query. Thus, we do not have

to pay the overhead of DB update operations (caused

by logging, concurrency control, and I/O of writing

changes to disk) and can apply optimizations such as

reordering updates and pushing selections through up-

dates that are not available to a DBMS if the system

replays updates one at a time.

3.3 Provenance for Updates

Provenance for updates has been studied in related

work [22,8,27], but none of these approaches addresses

the complications that arise when updates are run as

parts of concurrent transactions. Note that the “trans-

actions” from Archer et al. [4] are sequences of updates

and not concurrent transactions. Buneman et al. [7]

present a copy-based model of provenance for curated

databases where sequences of updates are grouped into

transactions to reduce the size of provenance at the

cost of lossing information about intermediate states

produced by updates. This work also did not consider

concurrent transactions. Buneman et al. [8] have stud-

ied a copy-based provenance type for the nested update

language and nested relational calculus. Vansummeren

et al. [27] define provenance for SQL DML statements

by modifying the updates to store provenance. Our ap-

proach differs in that we reconstruct provenance on de-

mand instead of computing and storing provenance for

all operations. Furthermore, we are the first to compute

transactional provenance (for the snapshot isolation [5]

concurrency control protocol) using a novel technique

for query-based replay (reenactment). Extending ap-

proaches for updates to support transactions is non-

trivial, because it requires tracking provenance through

multiple operations taking the visibility of tuple ver-

sions into account (some of which only exist temporar-

ily during the execution of a transaction).

4 Background

In this section we introduce necessary background on

concurrency control and semiring annotated data.

Snapshot Isolation. Under Snapshot isolation (SI ) [5]

each transaction T sees a private snapshot of the data-

base containing changes of transactions that have com-

mitted before T started and T ’s own changes. Using SI,

reads never block concurrent reads or writes, because

each transaction sees a consistent database version as

of its start. To support snapshots, old tuple versions

cannot be deleted until all transactions that may need

them have finished. Typically, this is implemented by

storing multiple timestamped versions of each tuple and
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assigning a timestamp to every transaction when it be-

gins that determines which version of the database it

will see (its snapshot). Concurrent writes are allowed

under SI. However, if several concurrent transactions

write the same data item d, only one will be allowed to

commit. Under the First Committer Wins (FCW) rule,

the transaction which tries to commit first is allowed to

commit. Under the First Updater Wins (FUW) rule,

the first transaction updating d is allowed to commit.

SI corresponds to isolation level SERIALIZE in systems

such as Oracle and older versions of PostgreSQL. These

implementations neither apply the FCW nor the FUW

rule, but instead use write locks that are held until

transaction commit. A transaction T waiting for a lock

is aborted if the transaction T ′ holding the lock com-

mits (and continues if T ′ aborts).

The Semiring-Annotation Framework. Green et

al. [19,21] have introduced the semiring annotation frame-

work. In this framework [21] relations are annotated

with elements from a commutative semiringK = (K,+K,

×K, 0K, 1K). Such relations are called K-relations. For-

mally, a K-relation R is a (total) function that maps

tuples to elements from K with the convention that tu-

ples mapped to 0K, the 0 element of the semiring, are

not in the relation. The operators of the positive rela-

tional algebra (RA+) over K-relations are defined by

applying the +K and ×K operations of the semiring to

input annotations. K-relations generalize extensions of

the relational model including bag semantics, incom-

plete databases, and various provenance models (e.g.,

Lineage). Intuitively, the +K and ×K operations of the

semiring correspond to alternative and conjunctive use

of tuples. For instance, if an output tuple t was pro-

duced by joining input tuples annotated with k and k′,

then the tuple t would be annotated with k×K k′. Pro-

venance polynomials (semiring N[X]), polynomials over

a set of variables X which represent tuples in the data-

base, are the most general form of semiring annotation.

Using N[X], every tuple in an instance is annotated

with a unique variable x ∈ X. This semiring N[X] has

the important property that for any semiring K the an-

notation of a query result t in K can be derived from

the provenance polynomial for t. This is done by map-

ping each variable x ∈ X to an element from K and

interpreting the abstract + and × operations in N[X]

as the corresponding operations in K. Formally, any

valuation χ : X → K of variables to elements from a

semiring K can be lifted to a semiring homomorphism

Evalχ : N[X] → K. Semiring homomorphisms com-

mute with queries. The table below shows some semi-

rings and the extensions of the relational model they

encode.

Semiring Corresponding Model
(B,∨,∧, false, true) Set semantics

(N,+,×, 0, 1) Bag semantics
(P(X) ∪ {⊥},∪+,∪×,⊥, ∅) Lineage

(N[X],+,×, 0, 1) Provenance polynomials

The semiring B with elements true and false using ∨
as addition and ∧ as multiplication corresponds to set

semantics. The semiring N, the set of natural numbers

with standard arithmetics corresponds to bag seman-

tics. In the Lineage provenance model, the provenance

of a result tuple t of a query is a set of tuples from the

input that were used to derive t. The semiring over the

powerset of tuples in an instance (represented as vari-

ables X) using set union for addition and multiplication

corresponds to Lineage [11].5

Example 4.1 Consider the N[X]-relation Rf shown

below and the result of evaluating the query Q = ΠA(

Rf ./ ρB,C(Rf )) (persons that have friends with friends)

over this relation. The provenance polynomial for the

query result tuple records that this tuple was produced

by joining x1 with x2 (x1 × x2) and by joining x1 with

x3 (x1 × x3). By mapping x1, x2, and x3 to true and

interpreting + as ∨ and × as ∧ we get a B-annotation

true indicating that the result tuple exists under set se-

mantics. By mapping x1 to x3 to 1 ∈ N and evaluating

the resulting expression we get 1 × 1 + 1 × 1 = 2, the

multiplicity of the tuple under bag semantics. Finally,

by mapping xi to {xi} for i ∈ {1, 2, 3}, and by inter-

preting the expression in the lineage semiring we get

{x1, x2, x3}, the Lineage of the result.

Rf

A B
x1 Pete Bob
x2 Bob Alice
x3 Bob Gert

Result

A
x1 × x2 + x1 × x3 Pete

5 Multi-Version Provenance Model

We need a provenance model which is powerful enough

to provide a full account of how tuple versions have

been derived from other tuple versions and through up-

dates in an SI history. A typical way of implementing SI

(and transaction time databases in general) is to store

multiple versions of each tuple in a relation and use ad-

ditional attributes which are hidden from the user to

store a unique tuple identifier, the time interval dur-

ing which the tuple version was valid, and potentially

the transaction which created the tuple version. Each

update of a tuple creates a new tuple version with the

same tuple identifier, the start time set to the current

5 ⊥ means not in the database and ∅ means no provenance.
∪+ and ∪× are both set union except for ⊥ where these op-
erations are defined as k ∪+ ⊥= k and k ∪× ⊥=⊥.
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time, the end time set to UC (until changed), and the

transaction identifier set to the transaction updating

the tuple. Such an update would also set the end time

of the previous version of this tuple to the current time.

It is tempting to extend such a representation of

snapshots with semiring annotations to represent pro-

venance for snapshot isolation histories. However, we

will demonstrate in the following that this approach

has two major drawbacks: 1) the derivation history of a

tuple is not fully contained in the tuple’s annotation in

this representation. In fact, tracing the origins of a tu-

ple requires correlating annotations from multiple tuple

versions - possibly across relations and several versions

of the database; 2) even if we combine information from

multiple tuple versions it may not be possible to recon-

struct a tuple’s complete derivation history.

Example 5.1 As an example of the first problem con-

sider how the instance of Figure 1a would be repre-

sented using K-relations and a typical implementation

of snapshot isolation using three additional attributes:

the identifier of the transaction that created the tuple

version (XID), the version when the tuple started to be

valid (Tb), and the version when this tuple version is

no longer valid (Te). We show this instance below. At-

tribute Tb of tuple t is set to the commit time of the

transaction that produced tuple t. Using this technique

to store snapshot relations, the tuple versions visible

to an update within a transaction T include all tuples

committed before T started that were still valid when

T started (Tb ≤ Start(T ) < Te) plus all of T ’s own

changes (XID = T ).

Order

id customer price XID Tb Te
x1 oid1 Peter 300 T1 5 UC

x2 oid3 Peter 56 T1 5 UC

Outstanding

order amount due XID Tb Te
x1 oid1 300 2000-05 T1 5 UC
x2 oid3 56 2000-05 T1 5 UC

The first difference of this representation to the instance

annotated using our model is that the annotations of

the tuples in relation Outstanding do not contain the

whole provenance of such a tuple - part of its provenance

is stored in a tuple from the Order relation. Thus, re-

constructing the complete derivation history of a tuple

requires correlating provenance across multiple tuples.

Compared to the instance in Figure 1a, we have lost

information of how tuples have been derived, e.g., al-

though we can infer that the two tuples annotated with

x1 are somewhat related, we do not know how. All we

know is that they were both produced by Transaction

T1 and started to be valid at time 5 (the time when

T1 committed). Extending the model by adding addi-

tional attributes such as tuple identifiers and identi-

fiers for the update operation creating a tuple would

solve this problem for this particular example. How-

ever, this not true in the general case. Consider a re-

lation R(A,B,C) : {(1, 2, 3) → x} (here we denote

a tuple t annotated with k as t → k) and an insert

INSERT INTO S (SELECT A,C FROM R UNION SELECT B,C FROM R).

This creates the following instance S(A,C) : {(1, 3) →
x, (2, 3) → x}. The same transaction then executes an

insert INSERT INTO T (SELECT C FROM S WHERE f(A)) where

function f ’s return type is boolean. Let us assume that

f(1) = true and f(2) = false. The new tuple tnew =

(3) inserted into table T will be annotated with x. Based

on this annotation it is impossible to know whether this

tuple was derived from tuple (1, 3) or (2, 3). Additional

information that we can extract from the temporal at-

tributes of the snapshot isolation implementation is not

useful for resolving this ambiguity.

These examples illustrate the need for a provenance

model that can help us track the origin of tuple ver-

sions. We have developed an extension of the semiring

model that fulfills this requirement. Given a semiring

K we construct a new semiring Kν that represents K
with embedded history. We call structures constructed

in this fashion multi-version (MV) semirings. The ele-

ments of such a semiring are symbolic expressions over

elements from K, version annotations, and semiring op-

erations where the structure of an expression encodes

the derivation history of a tuple. Recall from Exam-

ple 1.1 that version annotations wrap a part of the pro-

venance to indicate that a version of a tuple with iden-

tifier id (with the wrapped provenance) was modified

by a certain type of update operation (Insert, Update,
or Delete), executed as part of a transaction T , at time

ν − 1. Furthermore, we use a version annotation C to

denote that the transaction T creating a tuple version

committed at time ν − 1 and, thus, the tuple version

will be visible to transaction starting at or after ν. The

symbolic expressions that are the elements of an MV-

semiring are uninterpreted with the exception of a set of

equivalence relations which ensures that Kν obeys the

laws of commutative semirings and addition as well as

multiplication with operands from K can be evaluated.

Definition 5.1 Let T be a domain of transaction iden-

tifiers, V a domain of version identifiers, I a domain of

tuple identifier, and K = (K,+K,×K, 0K, 1K) a commu-

tative semiring. The set A of version annotations con-

tains the following elements for each transaction T ∈ T,

version ν ∈ V, and tuple identifier id ∈ I: IidT,ν , U idT,ν ,
Did
T,ν , C

id
T,ν . Consider the set of finite symbolic expres-

sions P defined by the grammar shown below where

k ∈ K and A ∈ A. P := k | P + P | P × P |
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Laws of commutative semirings

k + 0K = k k × 1K = k (neutral elements)

k + k′ = k′ + k k × k′ = k′ × k (commutativity)

k + (k′ + k′′) = (k + k′) + k′′

k × (k′ × k′′) = (k × k′)× k′′
(associtivity)

k × 0K = 0K (annihilation through 0)

k × (k′ + k′′) = (k × k′) + (k × k′′) (distributivity)

Evaluation of expressions with operands from K

k + k′ = k +K k
′ k × k′ = k ×K k′ (if k ∈ K ∧ k′ ∈ K)

Equivalences involving version annotations

A(0K) = 0K A(k + k′) = A(k) +A(k′)

Fig. 4: Equivalence relations for Kν

A(P ). Furthermore, let Kν be the set of congruence

classes for expressions in P based on the equivalence

relations shown in Figure 4. We use [k]∼ to denote the

congruence class of k ∈ P . The multiversion semiring

(MV-semiring) for semiring K is the structure Kν =

(Kν ,+Kν ,×Kν , [0K]∼, [1K]∼). Here ×Kν is defined as

[k]∼ ×Kν [k′]∼ = [k × k′]∼. Operation +Kν is defined

analogously.

Note that the structure Kν is a semiring. The ele-

ments of this structure are expressions build from ver-

sion annotations, elements from K, and the operations

+ and ×. In such expressions we are allowed to evaluate

products and sums that only combine elements from K,

but not allowed to interpret version annotations except

for applying the equivalences used in the construction.

For example, k = U1
T,ν(10 + 5) is a valid element of Nν ,

the bag semantics MV-semiring, which denotes that a

tuple with tuple identifier 1 was produced by an up-

date (U) of transaction T at version ν. This element k

is in the same equivalence class as U1
T,ν(15) based on

the equivalence that enables evaluation of addition over

elements from K. The intuitive meaning of the equiva-

lence for version annotations are: 1) update operations

never create tuples from non-existing or deleted tuples

(recall that if a tuple is annotated with 0K in relation

R this denotes that the tuple is not in the relation R)

and 2) alternative use of tuples distributes over up-

dates (e.g., updating the result of a union query returns

the same result as computing the union after updating

its inputs). In the following we will omit the subscript

of operations and neutral elements if the semiring is

clear from the context or irrelevant to the discussion.

Since we typically define a single semiring structure for

a given set K, we will sometimes use K to refer both to

the semiring K and its set K interchangeably.

Definition 5.2 Let D be a universal domain of values

and K a semiring. An n-nary K-relation R is a func-

tion: Dn → K that maps each tuple t ∈ Dn to an an-

notation from K. We require that R has finite support

(number of tuples not mapped to 0). A K-database is a

set of K-relations.

There exists a strong connection between K and Kν
relations: By evaluating the symbolic expression that

make up an Kν element interpreting version annota-

tions as functions K → K, we transform an Kν re-

lation into a corresponding K relation. Conceptually,

this means we are removing the embedded history from

the provenance. For example, if we apply this approach

to derive provenance polynomials from their Kν coun-

terpart, the result will record from which tuples a tuple

was derived (and how), but no longer encode its update

history. Below we define an operator Unv that imple-

ments this mapping based on a function hU : Kν → K.

In Section 5.2 we will prove that hU is a semiring homo-

morphism which as proven by Greene et al. [19] implies

that it commutes with queries.

Definition 5.3 Let R be a Kν-relation. The unversion-

ing operation Unv(R): Kν-relation → K-relation ap-

plies the mapping hU : Kν → K defined below to every

tuple’s annotation, i.e., Unv(R)(t) = hU (R(t)).

hU (k) =



k if k ∈ K
hU (k′) if k = IidT,ν(k′)/U idT,ν(k′)/CidT,ν(k′)

0K if k = Did
T,ν(k′)

hU (k1) +K hU (k2) if k = k1 + k2

hU (k1)×K hU (k2) if k = k1 × k2

Note that we use k = IidT,ν(k′)/U idT,ν(k′)/CidT,ν(k′) as

a notational shortcut for k = IidT,ν(k′) ∨ k = U idT,ν(k′) ∨
k = CidT,ν(k′) and will use similar notation throughout

the paper, e.g., I/U denotes a version annotation that

is either an insert or update. The application of Unv

to an Kν-database D is defined in the obvious way.

Example 5.2 Reconsider the instance of relation Out-

standing from the example shown in Figure 1d. This

instance is annotated with N[X]ν , the MV version of

the provenance polynomial semiring. The first tuple s′1
is annotated with C3

T3,13
(U3

T3,9
(C3

T1,6
(I3T1,3

(I1T1,2
(x1))))),

i.e., it was created by an update of Transaction T3, that

updated a tuple inserted by T1 based on another previ-

ously inserted tuple by the same transaction. Based on

the outermost commit annotation we know that this tu-

ple version is visible to transactions starting after ver-

sion 12. The second tuple s′2 is annotated with C4
T4,14

(

D4
T4,10

(C4
T1,6

(I4T1,5
(I2T1,4

(x2))))) , i.e., this tuple was de-

leted by Transaction T4 (and was originally produced by
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a sequence of two inserts by Transaction T1). If we ap-

ply Unv to relation Outstanding, then s′1 is annotated

with x1 and s′2 is annotated with 0 (indicating that the

deleted tuple s′2 is not in the instance).

In the following we make use of a normal form for

Kν elements that represents them as a sum of subex-

pressions which use multiplication and version annota-

tions. This will simplify the definition of updates and

transactional semantics in our model.

Definition 5.4 An Kν element k is normalized if it is

of the form:
∑m
i=0 ki where 1) none of the summands ki

contains addition and 2) all summands are non-zero.

Note that any annotation k can be translated into

this normal form by applying the equational laws of

MV-semirings. For example, an annotation I3T,ν2(U2
T,ν1

(

x1)+U1
T,ν1

(x2)) can be normalized based on distributiv-

ity of addition over version annotations into I3T,ν2(U2
T,ν1

(

x1))+I3T,ν2(U1
T,ν1

(x2)). In the following, it will be help-

ful to introduce notation for accessing particular ele-

ments from the sum of a normalized Kν element. We

use n(k) to denote the number of summands of a nor-

malized Kν-element k and k[i] to denote the ith element

in the sum (assuming some order over the summands).

5.1 Queries

We use the standard definition of positive relational

algebra (RA+) over K-relations with the exception that

we add one operator {t → k} that creates a singleton

relation containing the tuple t annotated with k. Note

that this is an extension of the empty relation operator

introduced in the original work on K-relations [19]. For

sake of completeness, we repeat the full definition of

RA+ here. We use t.A to denote the projection of a

tuple t on a list of projection expressions A and t[R] to

denote the projection of a tuple t on the attributes of

relation R. For a condition θ and tuple t, θ(t) denotes

a function that returns 1K if t |= θ and 0K otherwise.

Definition 5.5 Let K be a semiring, R, S denote K-

relations, Sch(R) denote the schema of relation R, t,

u denote tuples, and k ∈ K. The positive relational

algebra RA+ on K-relations is defined as:

ΠA(R)(t) =
∑

u:u.A=t

R(u) (R ∪ S)(t) = R(t) + S(t)

σθ(R)(t) = R(t)× θ(t) {t′ → k}(t) =

{
k if t = t′

0K else

(R ./ S)(t) = R(t[R])× S(t[S])

(for any Sch(R) ∪ Sch(S) tuple t)

Note that the singleton construction {t→ k} intro-

duced above does not affect the commutativity of semi-

ring homomorphisms with queries. However, since this

operator explicitly mentions a semiring element k ∈ K,

a homomorphism h : K → K′ has to be applied to the

query too to guarantee that it returns a K′ relation (this

is similar to the treatment of the constant annotation

operator in [14]). Let h(Q) denote the application of

the homomorphism h to query Q, i.e., we replace every

operator {t→ k} in Q with {t→ h(k)}.
Theorem 5.1 Let h : K → K′ be a semiring homo-

morphism, then h commutes with any Q in the above

algebra if h is applied to Q. Let I be a K database in-

stance. Then, h(Q)(h(I)) = h(Q(I))

Proof The proofs to all theorems presented in this re-

port are given Appendix

The mapping hU : Kν → K used in the definition

of the Unv operator introduced above is a semiring ho-

momorphism. Thus, the application of Unv commutes

with queries. Practically, this means we can execute

queries over relations with embedded history and then

derive the corresponding relation without history or

equivalently strip the history information upfront.

Theorem 5.2 hU is a surjective semiring homomor-

phism.

Consider N[X]ν , i.e., the MV-semiring version of the

provenance polynomials semiring N[X]. A variation of

the fundamental property of the semiring framework

still holds for Kν-relations. That is, N[X]ν generalizes

all other Kν semirings if we consider mappings that pre-

serve embedded history. Any assignment χ : X → K

of elements from K to each variable from X extends to
a homomorphism from Evalχ

ν : N[X]ν → Kν . Practi-

cally, this means that we can use the result of a query

in N[X]ν to derive the query result in any MV-semiring

Kν (and, thus also semiring K by applying Unv). In

fact, we prove a more general result: any homomor-

phism h : K1 → K2 can be lifted to a homomorphism

hν : K1
ν → K2

ν by applying h to each element from

K1 in an expression in K1
ν . We call this type of ho-

momorphisms history-preserving because they do not

change the embedded history (structure of the symbolic

expression) of an MV-semiring element.

Theorem 5.3 Any semiring homomorphism h : K1 →
K2 can be lifted to a homomorphism hν : K1

ν → K2
ν

as defined below. If h is surjective then so is hν .

hν(k) =


h(k) if k ∈ K1

A(hν(k′)) if k = A(k′)

hν(k1) + hν(k2) if k = k1 + k2

hν(k1)× hν(k2) if k = k1 × k2
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Example 5.3 Consider a query Q = Πcustomer(Order)

run over the instance from Figure 1b. This query re-

turns a single tuple t =(Peter) as shown below. The

annotation of this tuple records that t was produced from

two tuples in the input of the query and how these two

tuples were created (e.g., C2
T1,6

(I2T1,4
(x2))). To compute

the answer to this query under bag semantics we first

apply the Unv operator which returns annotation x1 +

x2 for tuple t and then apply an assignment N[X]→ N.

If we assume that both input tuples have multiplicity

1, then tuple t will be annotated with 1 + 1 = 2, the

multiplicity of this query result under bag semantics.

customer

C1
T2,8

(U1
T2,7

(C1
T1,6

(I1T1,2
(x1))))

Peter
+ C2

T1,6
(I2T1,4

(x2))

5.2 Update Operations

So far in our treatment of MV-relations we have consid-

ered instances annotated with arbitrary elements from

a semiring Kν , i.e., elements that can be constructed

using the grammar shown in Definition 5.1. However,

not every such element can be the result of a sequence

of update operations or transactional history. For ex-

ample, k = U1
T,ν+1(C1

T,ν(x)) is a valid N[X]ν element.

Nonetheless, k cannot occur in a database created by a

valid history because according to k, Transaction T did

update a tuple after its commit. We define admissible

MV-relations (databases) as instances that can be cre-

ated from an empty relation (database) by a sequence

of updates or a transactional history in our model.

Definition 5.6 An Kν-relation R is called admissible

if there exists a (potentially empty) sequence of update

operations (as defined in Definition 5.7) that if applied

to an empty input produces R or if there exists a his-

tory H such that R is a relation in the database state

produced by H (as defined in Definition 5.9).

We now define an update language for Kν-relations.

We restrict the application of update operations to ad-

missible instances to ensure that the input of the up-

date has sufficient history embedded to correctly eval-

uate the update. In particular, summands in a normal-

ized annotation in an admissible instance are of the

form A(k) and we will use this fact in the definition

of update operations. In contrast to queries which do

not manipulate version annotations in Kν expressions,

update operations add new versions annotations, i.e.,

they extend the history embedded in an Kν annotation

to record the application of the update. We introduce

three update operations and a commit operation for

our model. For each operation, we consider it to be ex-

ecuted at a time ν as part of a transaction T . Update

operations take as input a normalized Kν-relation R

and return the updated version of this Kν-relation (re-

call that any Kν-relation can be brought into normal

form). An insert I[Q,T, ν](R) inserts the result of query

Q into relation R. Note that this operation can express

SQL style INSERT ... VALUES (...) (singleton operator)

and INSERT ... (SELECT ...) statements. Newly inserted

tuples are wrapped in version annotations and are as-

signed a fresh tuple id (inew). Note that we do not al-

low inserts to “forge” history. That is, if the query Q of

an insert contains a singleton operator {t→ k} then k

should be an element of the embedded semiring and not

contain any version annotations. An update operation

U [θ,A, T, ν](R) modifies each tuple in R that matches

condition θ by applying the projection expressions in

A. These tuples will be wrapped in version annotations.

A deletion D[θ, T, ν](R) wraps all tuples matching the

condition θ in a delete annotation. Recall that Unv

interprets delete annotations as functions mapping ev-

ery input to 0. Thus, deleted tuples are removed when

R is mapped to the corresponding K-relation. A com-

mit operation C[T, ν](R) wraps every input affected by

transaction T into a commit annotation.

Definition 5.7 Let R be an admissible Kν-relation. We

use ν(u) to denote the version (time) when an update u

was executed and id(k) to denote the id of the outermost

version annotation of k ∈ Kν . Let A be a list of pro-

jection expressions with the same arity as R, and inew
to denote a fresh id that is deterministically created as

discussed below. Let Q be a query such that for every

{t → k} operation in Q we have k ∈ K. The update

operations on Kν-relations are defined as:

U [θ,A, T, ν](R)(t) = R(t)× (¬θ)(t)

+
∑

u:u.A=t

n(R(u))∑
i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i])× θ(u)

I[Q,T, ν](R)(t) = R(t) + IidnewT,ν+1(Q(D)(t))

D[θ, T, ν](R)(t) = R(t)× (¬θ)(t)

+

n(R(t))∑
i=0

D
id(R(t)[i])
T,ν+1 (R(t)[i])× θ(t)

C[T, ν](R)(t) =

n(R(t))∑
i=0

com[T, ν](R(t)[i])

com[T, ν](k) =

{
CidT,ν+1(k) if k = I/U/Did

T,ν′(k′)

k else



14

Note that for updates we will often only explic-

itly state the projection expressions for attributes that

are updated and assume that other attributes are kept

unmodified. For instance, for an update over a rela-

tion R(a, b, c) we may write (b + 5 → b) instead of

(a, b + 5 → b, c). What tuple identifiers are assigned

by inserts to new tuples is immaterial to our approach.

However, identifiers should be assigned deterministi-

cally (to ensure that they can be recreated during reen-

actment as will be explained in Section 6) and should be

“unique enough” to enable elements in the provenance

to be distinguished (as illustrated in Example 5.1). We

use a skolem function fid(T, ν, t, k) to assign new ids

idnew that takes as input the transaction T , version

ν, tuple t to be annotated, and Kν-element k that is

wrapped in the version annotation.

Example 5.4 Consider the update operation of Trans-

action T2 from the running example. This update runs

over the version of relation Order shown in Figure 1a.

We abbreviate the attributes of this relation as d (id),

c (customer), and p (price). This update operation can

be expressed in our model as:

U [d = 1, p→ 250, T2, 6](Order)

Tuple o1: Tuple o1 in the instance of relation Order is

annotated with C1
T1,6

(I1T1,2
(x1)). This tuple fulfills the

condition d = 1 of the update and, thus, the first ex-

pression (R(t) × (¬θ)(t)) in the annotation created by

the update evaluates to: Order(o1) × (¬(d = 1))(o1) =

C1
T1,6

(I1T1,2
(x1))×0 = 0. Note that here we use concrete

tuple identifiers instead of the fid scheme. The second

part of the expression sums the annotations over all tu-

ples u such that if the update is applied to them the

resulting updated tuples are equal to o′1. Since the up-

date sets attribute price to a constant value, these are

all tuples (oid1,Peter,p′) for some price p′. However,

all tuples except for o1 and o2 are annotated with 0 in

the input (they are not part of this instance). For tu-

ples u with Order(u) = 0 the inner sum evaluates to

U1
T2,7

(Order(u)) × θ(u) = U1
T2,7

(0) × θ(u) = 0. Intu-

itively, this is the expected result, because an update is

only creating new versions of existing tuples. Tuple o2
is annotated C2

T1,6
(I2T1,4

(x2)) in the input, a single ele-

ment sum. Since, this tuple does not fulfill the update’s

condition, the inner sum evaluates to U2
T2,7

(C2
T1,6

(I2T1,4
(

x2))) × (d = 1)(o2) = U2
T2,7

(C2
T1,6

(I2T1,4
(x2))) × 0 = 0.

Finally, o1 is the only tuple which fulfills the condition

of the update and is not annotated with 0 in the input.

For o1 the inner sum evaluates to U1
T2,7

(C1
T1,6

(I1T1,2
(x1)))

×(d = 1)(o1) = U1
T2,7

(C1
T1,6

(I1T1,2
(x1))). As expected the

annotation denotes that the resulting tuple was derived

from tuple o1 in the previous version of relation Order

and was not affected by any other input tuple.

Notably, the fundamental property of N[X]ν , the

MV-semiring of provenance polynomials, extends to up-

dates. Recall that any valuation χ : X → K can be

lifted to a history-preserving homomorphism Evalχ
ν

and the following theorem states that such lifted homo-

morphisms commute with updates. Note that the iden-

tifier generation scheme we have introduced for inserts

uses an element k of Kν as one argument of the skolem

function fid. We extend lifted homomorphisms to also

manipulate the arguments of this skolem function to

ensure that they commute with updates. In particular

hν(fid(T, ν, t, k)) = fid(T, ν, t, h
ν(k)).

Theorem 5.4 Let hν be a lifted homomorphism as de-

fined in Theorem 5.3. hν commutes with updates.

5.3 Transactions and Histories

We now define transactional histories for Kν-databases

under SI. We will limit the discussion to histories that

start from an empty database. The results naturally

extend to histories that are applied to any admissible

Kν-database. We model transactions as sequences of

update operations. Note that we do not consider trans-

action aborts and partially executed transactions, be-

cause this is unnecessary for the purpose of retroac-

tively computing the provenance of transactions.

Definition 5.8 A transaction T = u1, . . . , un, c is a

sequence of updates followed by a commit operation (c).

We use Start(T ) to denote ν(u) where u is the first up-

date in T . Similarly, End(T ) denotes the commit time

of transaction T . A history H = {T1, . . . , Tn} over a

database D is a set of transactions over D such that

<ν : {(ui, uj) | ν(ui) < ν(uj)} is a total order.

Recall that updates are explicitly part of a transac-

tion in our model and we record when (ν) an update has

been executed. This will allow us to determine the state

of the database seen by each update of a transaction.

5.4 Historic Databases

An important property of histories in our model is that

they completely determine what we refer to as a his-

toric database. A historic database DH for a history

H executed under SI encodes the versions of D seen

at each point in time by transactions from the history.

Each transaction under SI sees a private version of the

database. Our definition of a historical database takes

this property of SI into account by defining transac-

tion specific versions of each relation - R[T, ν] denotes

relation R as seen by transaction T at time ν.
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(a) Historic Relation R[T, ν]

R[T, ν] =



∅ if ν < Start(T )

R[ν] if Start(T ) = ν

u(R[T, ν − 1]) if ∃u ∈ T : ν(u) = ν − 1 ∧ u updates R ∧ End(T ) 6= ν − 1

C[T, ν](R[T, ν − 1]) if End(T ) = ν − 1

R[T, ν − 1] else

(b) R[ν]: Committed Tuple Versions at ν

R[ν](t) =
∑

T∈H∧End(T )<ν

n(R[T,ν](t))∑
i=0

R[T, ν](t)[i]× validAt(T, t, R[T, ν](t)[i], ν)

(c) Valid Tuple Versions from Transaction T at ν

validAt(T, t, k, ν) =

{
1 if k = Cid

T,ν′(k
′) ∧ (¬∃T ′ 6= T : End(T ′) ≤ ν ∧ updated(T ′, t, k))

0 else

(d) Tuple Versions Updated By Transaction T

updated(T, t, k)⇔ ∃u ∈ T, t′, i, j : R[T, ν(u)](t)[i] = k ∧R[T, ν(u) + 1](t′)[j] = U/DidT,ν(u)+1(k)

Fig. 5: Historic database definition

In contrast to the standard implementations of SI,

we do not need to store additional start and end times-

tamps for tuple versions, because this information is al-

ready encoded in the annotation of a tuple. Intuitively,

the time ν recorded in a version annotation corresponds

to the start time of a tuple version. Under standard SI,

a system attribute recording the end time of a tuple

version needs to be updated when a new version of this

tuple is created. Our version annotations do not explic-

itly store when a tuple version was invalidated by an

update. Invalidation is implicitly encoded in the nest-

ing of version annotations. Thus, tuple versions are im-

mutable in our model in the sense that a part of an an-

notation wrapped in a version annotation may be used

as part of a new more complex expression, but will not

be modified itself. This greatly simplifies the reenact-

ment approach presented in the next section, because

we only need to deal with immutable data.

Definition 5.9 Let H be a history over a database D,

T the set of transactions in H, and V a domain of ver-

sion identifiers. The historic database DH based on H

is a set of historic relations. An n-ary historic relation

Rν is a function Dn × T × V → Kν . We use R[T, ν]

to denote the restriction of Rν generated by fixing pa-

rameters T and V to T and ν and apply the same no-

tation also for databases. Furthermore, we define R[ν],

the snapshot of relation R visible at ν. The definitions

of R[T, ν] and R[ν] are shown in Figure 5a.

The complexity of the above definition stems from

the fact that it needs to account for the visibility rules

of SI. Recall that a transaction T under SI sees 1) its

own updates and 2) the updates of transactions that

have committed before Start(T ). The first condition is

encoded in the recursive definition of R[T, ν] and the

second one in the definition of R[ν].

Relation Versions Visible Inside a Transaction.

R[T, ν] contains the result of applying the latest update

of T before ν to the version valid before the update. As

a convention, we define R[T, ν] = ∅ if ν < Start(T ).

The first update in a transaction sees R[Start(T )], i.e.,

the version of R containing all committed changes of

transactions committed before T started (2nd case in

Figure 5a). We explain how to compute R[ν] below.

Consider a transaction T = u1, . . . , un, c and assume

for simplicity that every update is modifying the same

relationR. The second update u2 within the transaction

will see the version of R produced by applying update

u1 to R[Start(T )], the third update u3 will run over the

version of R that is the result of applying update u2 to

the result of u1 and so on. This is encoded by the 3rd

and 5th case in Figure 5a. If T executed an update on

R at version ν− 1 then R[T, ν] is the result of applying

the update to R[T, ν − 1]. If transaction T committed

at ν − 1 then we apply a commit operation to R[T, ν −
1] (4th case). If the transaction did not execute any

operation at ν−1 then R[T, ν] is the same as R[T, ν−1]

(5nd case). Note that this also includes the case where

ν > End(T ) + 1.

Relation Versions Containing Committed Chan-

ges. Under SI, a transaction starting at ν will see a

version of relation R that contains all changes of trans-

actions committed before ν. Recall that we use R[ν] to

denote this version of R. Figure 5b to 5d show the def-

inition of R[ν]. R[ν] can be expressed as a union (sum)

over all tuple versions (annotations) created by com-

mitted past transactions as long as we make sure that

we are not including the same tuple version more than
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once. Furthermore, we should not include annotations

that correspond to tuple versions which have been re-

placed with newer versions or were deleted. We enforce

these two conditions using a predicate validAt.

Determining Valid Tuple Versions. validAt(T, t,

k, ν) evaluates to 1 if two conditions are met: 1) annota-

tion k was produced by transaction T which is the case

if the outermost version annotation in k is from T ; 2)

the tuple version corresponding to k was not updated

(predicate updated(T ′, t, k)) by another transaction T ′

that committed before ν (End(T ′) < ν).

Checking for Tuple Updates. updated(T, t, k) is

true if transaction T has overwritten the tuple version

corresponding to t annotated with k. That is, T has up-

dated or deleted this tuple version. A transaction T has

overwritten a summand k in an annotation of a tuple t

if there exists an operation u (update or delete) within

the transaction that has updated tuple t into tuple t′.

Recall that U/D stands for an update, or delete version

annotation. Thus, there has to exist i and j so that a

summand R[T, ν(u)](t)[i] = k is in the annotation on t

before the update and after the update the annotation

on tuple t′ contains a summand R[T, ν(u) + 1](t′)[j] is

U idT,ν(u)+1(k) or Did
T,ν(u)+1(k).

Example 5.5 Consider the historic database states of

Transaction T4 from our running example.

Relation Order at Version 9: Consider the version Or-

der[T4, 9] valid before T4 started. Since Start(T4) = 9,

this version is equal to Order[9]. We construct Order[9]

by combining tuple annotations created by transactions

that committed before T4 started (Transactions T1 and

T2 in the example) as long as these tuple versions have

not been overwritten by another already committed trans-

action. For instance, consider tuple versions o1 and o′1
which were created by T1 and T2. The annotation for

o′1 = (oid1,Peter,250) in Order[9] is computed by sum-

ming up all annotations on this tuple in the versions of

relation Order created by T1 and T2. These are 0 for

T1 and k = C1
T2,8

(U1
T2,7

(C1
T1,6

(I1T1,2
(x1)))) for T2. The

latter will be included in the annotation for o′1 if we can

determine that it was not invalidated by another trans-

action that committed after T2 and updated o′1. This

is checked by computing predicate validAt(T2, o
′
1, k, 9)

which returns 1 if there does not exist any such transac-

tion. Since there is no such transaction in the example,

we get Order[9](o′1) = C1
T2,8

(U1
T2,7

(C1
T1,6

(I1T1,2
(x1)))).

Tuple o1 = (oid1, P eter, 300) is annotated with k′ =

C1
T1,6

(I1T1,2
(x1)) in T1 and 0 in T2. Since Transaction

T2 updated o1 and committed after T1 and before ver-

sion 9, the predicate validAt(T1, o1, k
′, 9) evaluates to

0 and we get Order[9](o1) = 0.

Importantly, lifted homomorphisms also commute

with transactional histories.

Theorem 5.5 Let hν be a lifted homomorphism (The-

orem 5.3). hν commutes with histories.

5.5 Provenance Filtering

The annotation of a tuple stores its derivation history

since the origin of the database. This amount of infor-

mation can be overwhelming to a user. We now define

how to restrict the provenance to tuples versions re-

lated to one transaction. In the Kν model this can be

achieved by filtering parts of the annotations (to only

track the effect of a certain set of statements) and by

replacing subexpressions in annotations that represent

parts of the history the user is not interested in with

by evaluating them using the homomorphism hU of the

Unv operator. Furthermore, for N[X]ν-relations we re-

place the resulting polynomial with a fresh variable dis-

ambiguated by the tuple’s identifier. For example, if

a subexpression CidT ′,ν′(IidT ′,ν′′(I
id1
T ′,ν1

(x1) × Iid2T ′,ν2
(x2)))

where T ′ is a transaction different from the transaction

T we are interested in occurs in an annotation we would

replaced it with CidT ′,ν′(xid). Reconsider Example 2.2 as

an example for the application of the definition below.

Definition 5.10 Let T be a transaction in a history H

over database D. The provenance D[T ] restricted to T

is derived from D[T,End(T )] by replacing each relation

R[T,End(T )] with R[T ] as defined below.

R[T ](t) =

n(R[T,End(T )](t))∑
i=0

filt(R[T,End(T )](t)[i])

filt(k) =

{
CidT,ν(hf (k′)) if k = CidT,ν(k′)

0 else

hf (k) =



k if k ∈ K
U/I/Did

T,ν(hf (k′)) if k = U/I/Did
T,ν(k′)

hf (k1) + hf (k2) if k = k1 + k2

hf (k1)× hf (k2) if k = k1 × k2
CidT ′,ν(hU (k′)) if k = CidT ′,ν(k′) ∧ K 6= N[X]

CidT ′,ν(xid) if k = CidT ′,ν(k′) ∧ K = N[X]

6 Reenactment Queries

We now introduce reenactment which enables us to re-

construct the provenance of an update u or transaction

T by executing a reenactment query R(u) respectively

R(T ). Such a query is annotation equivalent to u re-

spectively T (u ≡N[X]ν R(u)), i.e., the operation and its
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reenactment query produce the same result and prove-

nance. As we will demonstrate later this also implies

equivalence for any other MV-semiring Kν . We intro-

duce a new operator that adds version annotations, be-

cause this is required for reenactment since the opera-

tors of RA+ do not introduce new version annotations.

Definition 6.1 The operator αX,T,ν(R) for X ∈ {I, U,
D,C} takes as input a Kν-relation R and returns a

Kν-relation where each summand in an annotation k is

wrapped in X
i(k)
T,ν . Here id(k) denotes the identifier of

the outermost version annotation in annotation k.

αU/D,T,ν(R)(t) =

n(R(t))∑
i=0

U/D
id(R(t)[i])
T,ν (R(t)[i])

αI,T,ν(R)(t) =

n(R(t))∑
i=0

IidnewT,ν (R(t)[i])

αC,T,ν(R)(t) =

n(R(t))∑
i=0

com[T, ν](R(t)[i])

Note that idnew is determined using skolem function

fid as described in Section 5.2 and that αC,T,ν uses

com[T, ν]() introduced Definition 5.7.

6.1 Update Reenactment

We first define reenactment for an update operation u

that is executed over the historic database seen by u’s

transaction T at the time of the update (R[T, ν(u)]).

Note that here we abuse notation and treat R[T, ν] as

a syntactic construct that we can substitute with an

algebraic expression which computes this version of R.

For example, Q(D[T, ν]) denotes the query Q where

every access to a relation R is substituted by R[T, ν].

Definition 6.2 Let H be a history over database D.

The reenactment query R(u) for operation u in H is:

R(U [θ,A, T, ν](R)) = αU,T,ν+1(ΠA(σθ(R[T, ν])))

∪ σ¬θ(R[T, ν])

R(I[Q,T, ν](R)) = R[T, ν] ∪ αI,T,ν+1(Q(D[T, ν]))

R(D[θ, T, ν](R)) = αD,T,ν+1(σθ(R[T, ν])) ∪ σ¬θ(R[T, ν])

An update modifies a relation by applying the ex-

pressions from A to all tuples matching condition θ. All

other tuples are not modified. We can compute the re-

sult of an update as the union between these sets. An in-

sert statement adds the result of a query to the affected

relation. It can be reenacted as the union between the

relation and the insertion query result. A deletion wraps

tuples matching its condition in deletion annotations.

Thus, it can be expressed as the union between the

original tuples that do not match the condition and the

deleted versions of tuples matching the condition.

Example 6.1 Consider the reenactment query R(u1)

for the update u2 = U [d = 1, p → 250, T2, 6](Order) of

example Transaction T2. We abbreviate relation Order

as O and attributes like in previous examples.

αU,T2,7(Πd,c,250→p(σd=1(O[T2, 6]))) ∪ σ¬(d=1)(O[T2, 6])

Theorem 6.1 Let u be an update and R(u) its reen-

actment query. Then, u ≡N[X]ν R(u).

Based on this theorem, reenactment queries can sim-

ulate the effect of any update expressible in our model.

6.2 Transaction Reenactment

To reenact a transaction, we merge the reenactment

queries for the updates of the transaction in a way that

respects the visibility rules enforced by the SI protocol.

Under SI, each update ui of a transaction T sees the

version of the database at transaction start plus local

modifications of updates uj from T with j < i. Thus,

effectively, each update ui updating a table R is evalu-

ated over the annotated relation produced by the most

recent update uj with j < i that updated R. Since we

have proven that u ≡N[X]ν R(u), each reference to a

relation R[T, ν] produced by update uj can be replaced

with R(uj) (as mentioned above we treat R[T, ν] as a

symbolic expression in this context). Applying this sub-

stitution recursively and adding an annotation opera-

tor to wrap the final outputs in commit annotations

results in a single query RR(T ) per relation R affected

by T . Technically, the reenactment of a transaction T

is a set of queries. However, abusing terminology we

refer to this set as the reenactment query of T and by

T ≡N[X]ν R(T ) denote that each reenactment query for

a relation R is equivalent to the effect that transaction

T has on this relation.

Definition 6.3 Let T = u1, . . . un, c be a transaction

in a history H. We use R(T ) to denote all relations

targeted by at least one update of T and Last(R, T, ν)

to denote the last update executed before ν in T that

updated table R. The reenactment query R(T ) for T is:

R(T ) = {RR(T ) | R ∈ R(T )}
RR(T ) = αC,T,End(T )+1(RR(Last(T,R,End(T ))))

where query RR(u) is computed as follows. We initialize

RR(u) = R(u) and then apply the following substitution

rule until a fix point is reached (only relation mentions

of the form S[Start(T )] remain):
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– Pick a relation mention S[T, ν] in the current ver-

sion of RR(u)

– If ∃u′ ∈ T : u′ updates S ∧ ν(u) < ν then replace

S[T, ν] with RS(Last(T,R, ν))

– Else replace S[T, ν] with S[Start(T )]

Example 6.2 Consider the transaction T3 from the run-

ning example. Let us refer to its operations as u1 and

u2.We abbreviate relation names as O (Order), S (Out-

standing), and C (Collection) and attribute names as

in previous examples with the exception that attribute

date is denoted as e. Consider the reenactment query

for T3 on C. The last update modifying C is u2. Thus,

RC(T3) = αC,T,13(RC(u2))

Operation u2 is an insert into relation Collection us-

ing a query over the state of relation Outstanding valid

at version 10. The reenactment query for this update is:

RC(u2) = αI,T2,11(Πo,a(σt<'2000−06'(S[T3, 10])))

∪ C[T3, 10]

The last update of Transaction T3 that modified relation

Outstanding before version 10 is u1. Thus, the access

to S[T3, 10] in RC(u2) is replaced with RS(u1). Relation

Collection has not been modified by any other update

of T3. Thus, C[T3, 10] is replaced with C[Start(T3)].

RC(u2) = αI,T2,11(Πo,a(σt<'2000−06'(RS(u1)))) ∪ C[8]

The access to relation Outstanding by update u1 is not

replaced in RS(u1), because there is no update operation

in transaction T2 that updated this relation before u1
was executed. The final reenactment query RC(T3) is:

RC(T3) = αC,T,13(RC(u2))

RC(u2) = αI,T2,11(Πo,a(σt<'2000−06'(RS(u1)))) ∪ C[8]

RS(u1) = αU,T2,9(Πo,(a−250)→a,d(σd=1(S[8])))

∪ σ¬(d=1)(S[8])

We now prove that the reenactment query for a

transaction is equivalent to this transaction.

Theorem 6.2 Let T be a transaction and R(T ) its

reenactment query. Then: T ≡N[X]ν R(T ).

Green demonstrated [19] that QvN[X]Q
′ ⇒ QvKQ′

if K is naturally ordered and, thus Q ≡N[X] Q
′ ⇒

Q ≡N Q
′. The result is based on the existence of surjec-

tive semiring homomorphisms. We do not define what

it means for a semiring to be naturally ordered here,

but note that many important semirings including all

semirings considered here are naturally ordered. Based

on the theorem shown below this result translates to

queries using the annotation operation defined above

and updates in MV-semirings. Thus, reenactment queries

also produce the same updated relation as the original

operation under bag semantics.

Theorem 6.3 For Q and Q′ be two RA+ queries and

K a naturally ordered semiring. Then Q ≡Kν Q′ ⇒
Q ≡K Q′. Let Q and Q′ be two updates or RA+ queries

that may use the annotation operator α and K a natu-

rally ordered semiring, then Q ≡N[X]ν Q
′ ⇒ Q ≡Kν Q′.

The theorem above implies that reenactment can

be used to replay transactions over any Kν-database

not just a N[X]ν-database. Furthermore, using Unv we

can use reenactment compute the same K-database as

would have been produced by applying Unv to the re-

sult of the reenacted transaction.

7 Relational Reenactment using Time Travel

and Audit Logging

We now introduce techniques for retrieving the prove-

nance of transactions using standard DBMS based on

a relational encoding of reenactment queries. Our ap-

proach uses an audit log to determine which SQL state-

ments were executed when and by which transaction.

We demonstrate how reenactment queries can be trans-

lated into standard relational algebra queries with time

travel that produce a relational encoding of provenance

restricted to a transaction (as explained in Section 5.5).

7.1 Relational Encoding of Kν -Relations

We extend the relational encoding of provenance poly-

nomials introduced for the Perm [17] project with ad-

ditional columns that encode version annotations. To

encode the filtered provenance R[T ] of a transaction T

we: 1) normalize Kν-expressions according to the opera-

tions that were applied to the data and 2) use additional

attributes to represent a normalized N[X]ν-polynomial.

Normal Form. The basic idea behind this encoding

is to represent variables in a normalized polynomial by

actual tuple values from the inputs of the query. In

particular, we take a polynomial in the normal form

introduced in Definition 5.3 that is a sum of products

(and version annotations) and order the variables and

version annotations in each summand according to the

relation and update they belong to. Given the alge-

bra tree for a reenactment query, variables in products

mixed with version annotations are ordered according

to the leaves of the algebra tree. We add additional at-

tributes to be able to encode such a product and its

version annotations, and represent each summand in a

normalized polynomial as a separate tuple.
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Sch(Rel(R[T ])) = Sch(R) . IDP(SchEnd(T )(T,R)) . UC Schν(T,R) =

{
P(T,Last(R, T, ν)) if ∃u ∈ T : u updates R ∧ ν(u) < ν

P(R) else

Schν(T, {t→ k}) = const

P(T, u) =

{
Schν(u)(T,R) . Schν(u)(T,X1) . . . . . Schν(u)(T,Xm) . Upos(u) if u = I[Q(X1, . . . , Xm), T, ν](R) where either Xi = Ri or Xi = {ti → ki}
Schν(u)(T,R) . Upos(u) else

Rel(R[T ]) =
⋃
t∈R

n(R[T ](t))⋃
i=0

t .RelEnd(T )(T,R,R[T ](t)[i]) . True Relν(T,R, k) =

{
EncU(T,Last(R, T, ν), k) if ∃u ∈ T : u updates R ∧ ν(u) < ν

EncR(R, k) else

Relν(T, {t→ x}, k) = EncR({t→ x}, k)

EncR(R, k) =

{
T ′, ν′, id, t(x) if k = Cid

T ′,ν′(x)

Null(P(R)) else
EncR({t→ x}, k) =

{
id if k = xid

null else

EncU(T, u, k) =


Relν(u)(T,R, k′) . True if u is a delete or update ∧ k = Apos(u)(k′)
Relν(u)(T,R, k) . False if u is a delete or update ∧ k 6= Apos(u)(k′)
Null(Schν(u)(T,R)) .Relν(u)(T,X1, k1) . . . . .Relν(u)(T,Xm, km) . True if u is an insert ∧ k = Apos(u)(k1 × . . .× km)

Relν(u)(T,R, k) .Null(Q) . False if u is an insert with query Q ∧ k 6= Apos(u)(k1 × . . .× km)

Fig. 6: Schema and instance of the relational encoding of R[T ]

Definition 7.1 Let T be a transaction. An N[X]ν an-

notation in R[T ](t) is in ordered normal form if it is

normalized according to Definition 5.4 and variables in

each summand ki are sorted according to RR(T ).

Schema. We first define the schema of a relational en-

coding Rel(R[T ]) of the provenance for a transaction

T using a renaming function P that maps a relation

and attribute name to a provenance attribute name. In

the following we use Sch(R) to denote the schema of

a relation R, and P (R) to denote the list of attribute

names containing P (R,A) for each A ∈ Sch(R) and

P(R) to denote P (R) plus three additional attributes

Id, Xid and V that encode a tuples identifier, the trans-

action creating the tuple version, and the time at which

the update creating the tuple version was created, re-

spectively. Furthermore, let IDP denote a function that

takes a list of attribute names and adds unique identi-

fiers to names that occur more than once in the list. We

use . to denote list concatenation, e.g., concatenating

lists of attributes.

Definition 7.2 Let T be a transaction, Ui denote a

boolean attribute representing the version annotation of

update ui ∈ T , and UC denote a boolean attribute rep-

resenting the commit annotation of T . The name of at-

tribute Ui encodes ν(ui), the type of update ui (insert,

delete, update), and the query Q in case the update is

an insert. We use pos(u) to denote the position of up-

date u in transaction T . The schema of the relational

encoding Rel(R[T ]) is defined in Figure 6.

The schema is constructed recursively by tracing

back from the last operation in the transaction that

modified relation R. If this operation u is an update or

delete then we add an attribute U for storing whether

a version annotation for u is used in an annotation. For

updates or deletes that are the first operation modify-

ing a relation R, the schema will contain provenance

attributes to store the tuple corresponding to a vari-

able in an annotation. For instance, if a transaction T

consists of two updates u1 and u2 which both updated

relation R, then each annotation on a tuple in R will

be of the form U idT,ν(u2)
(U idT,ν(u1)

(x)) where both version

annotations are optional. Consequently, the schema of

the relational encoding for such annotations will have

two attributes U1 and U2 to denote which version anno-

tation is present and provenance attributes for relation

R to store the tuple corresponding to variable x in the

annotation. Since insert operations insert the result of

a query into a relation, we have to add provenance at-

tributes to represent the provenance of input tuples to

such a query. Assume that the query of an insert is de-

fined over X1 to Xm where each Xi is either an access
to a relation Ri or a singleton operator {t→ x}. To be

able to store the annotation of a tuple from relation Ri
in the query’s provenance, we have to add attributes to

represent all previous updates of T on Ri. Such a list of

attributes is then constructed in the same fashion as for

the last update of the transaction using Schν(u)(T,Ri).

In case of a singleton operator {t→ x} we have to add

an attribute to store the variable assigned to the tuple

t. Note that even though the definitions of P(T, u) and

Schν(T,R) are mutually recursive, these definitions are

not circular because Schν(T,R) only refers to P(T, u)

for updates u with ν(u) < ν. Thus, Schν(T,R) may

only depend on Schν
′
(T,R) if ν′ < ν.

Instance. The instance Rel(R[T ]) of the relational en-

coding of R[T ] is created by representing each summand

ki in a normalized annotation R[T ](t) =
∑m

1 km as a

separate tuple. The construction of the schema guaran-

tees that this will always be possible.
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Definition 7.3 Consider the provenance R[T ] of trans-

action T in ordered normal form and let Null(P(R))

and Null(Q) denote a list of null values with the same

arity as P(R) and the provenance schema for Q (the

list of Relν(u)(R,Xj , kj) attributes), respectively. Let

t(x) denote the tuple corresponding to a variable x. The

relational encoding Rel(R[T ]) is defined in Figure 6.

The relational encoding of a normalized N[X]ν-an-

notation of a tuple in R[T ] is constructed following the

same procedure as for its schema. For each summand

k in a ordered normalized annotation of a tuple t in

R[T ] we create a tuple in Rel(R[T ]) by concatenating

t and the relational encoding of k. The encoding of k

is constructed iteratively by encoding and stripping of

parts of k corresponding to updates in T .

Example 7.1 Figure 3 shows a simplified version of

Rel(Collection[T3]) for example Transaction T3. We

abbreviate Collection as C and Outstanding as S

and attribute names as in previous examples. Note that

we have omitted the UC , Xid, V , Id, and P (C) at-

tributes to simplify the representation. MV-annotations

are shown to the left of each tuple. We use u1 and u2
to denote the two operations of this transaction. The

schema of this encoding is constructed as follows:
Sch(Rel(C[T3])) = Sch(C) . IDP(Sch12(T3, C)) . UC
Sch12(T3, C) = P(T3, u2) = Sch10(T3, C) . Sch10(T3, S) . U2
Sch10(T3, C) = P(C) = Id,Xid, V, P (C, o), P (C, a)

Sch10(T3, S) = P(T3, u1) = Sch8(T3, S) . U1
Sch8(T3, S) = P(S) = Id,Xid, V, P (S, o), P (S, a), P (S, d)

In this schema, attributes U1 and U2 represent the ver-

sion annotations for updates u1 and u2. The insert u2
in T3 uses a query Πo,a(σd<'2000−06'(Outstanding)).

Thus, the schema contains provenance attributes for re-

lation Outstanding. Attribute U1 is added, because up-

date u1 has previously updated this relation. Consider

the 1st tuple in Figure 3 which represents the single

summand in the annotation of tuple (oid1,50). The tu-

ple was derived by updating the tuple annotated with x3
in relation Outstanding and then inserting a new tuple

into relation Collection based on this tuple. Both ver-

sion annotation attributes are set to true (both updates

were involved in the derivation) and the provenance at-

tributes for relation Outstanding are used to store the

tuple annotated with x3 in the input.

Given this relational encoding we need to prove that

it is lossless, i.e., the encoded MV-relation R[T ] can be

recovered from Rel(R[T ]).

Theorem 7.1 The Rel(R[T ]) operation is lossless.

7.2 Audit Log and Time Travel

We require the DBMS we use for provenance computa-

tion to keep an audit log that stores the SQL code for

each update plus 1) when the update was executed and

2) the identifier (xid) of its transaction. The audit log is

used to determine the operations of a transaction and

the database version they have accessed. We assume a

standard SI based implementation of time travel as sup-

ported in similar fashion by multiple DBMS. Each tuple

is annotated with a system time interval (transaction

time) that encodes when this tuple version is valid in

the database. Update operations create new tuple ver-

sions and invalidate tuple versions that are updated by

setting their end time to the current time. These mod-

ifications are only visible in the updating transaction.

When a transaction commits, then new tuple versions

are created for all modified tuples with start time set

to the transaction commit time. A snapshot Rν of rela-

tion R contains all committed tuple versions valid at ν.

Snapshots have additional attributes TTb and TTe stor-

ing validity time intervals as well as Xid and Id storing

the transaction and tuple identifiers, respectively.

7.3 Relational Implementation of Reenactment

We now discuss how Kν-relational reenactment queries

can be rewritten as standard relational (bag semantics)

queries which produce Rel(R[T ]) for a transaction T .

This rewriting of Kν-queries into bag semantics queries

(expressible in SQL) extends previous results for rewrit-

ing K-relational queries into bag semantics [17,15]. A

query is rewritten by recursively applying rewrite rules

for single operators in a top-down fashion. We apply a

selection on the boolean version annotation attributes

to only return tuple versions from R[T ], i.e., that were

affected by at least one update of transaction T .

Definition 7.4 Let T = u1, . . . , un, c be a transaction

and let Ui denote the version annotation created by the

ith update in T . The relational translation TR(RR(T ))

of the reenactment query RR(T ) restricted to R[T ] is

computed from RR(T ) as shown below. The rewrite op-

erator Rew is defined in Figure 7. Null(P(q)) denotes

a singleton relation with null values for all provenance

attributes of q except for version annotation attributes

which are set to false. Furthermore, IDx is a function

that adds a suffix ’_x’ to attribute names in a list.

TR(RR(T )) = σU1∨...∨Un(Rew(RR(T )))

The query produced by the rewrite rules of Fig-

ure 7 returns the relational encoding of provenance in-

troduced previously. There are two rules for the union
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Structural Rewrite
Rew({t→ xid}) = ΠSch(t),Id({t . id})

Rew(R[ν]) = ΠSch(R),Xid,TTb→V,Id,Sch(R)→P (R)(Rν)

Rew(σθ(q)) = σθ(Rew(q))

Rew(ΠA(q)) = ΠA,P(q)(Rew(q))

Rew(q1 ∪ q2) =Rew(q1)∪
(Rew(q2)× ρUi({(false)}))

(if RR(ui) = q1 ∪ q2 ∧ ui = U/D)

Rew(q1 ∪ q2) =(ρSch(q1),ID1(P(q1))(Rew(q1))×Null(ID2(P(q2))))

∪ (ΠSch(q2),P(q1∪q2)(ρSch(q2),ID2(P(q2))(Rew(q2))

×Null(ID1(P(q1)))))

(else)

Rew(q1 ./θ q2) = ΠSch(q1),Sch(q2),P(q1./θq2)
(ρSch(q1),ID1(P(q1))(Rew(q1))

./θ ρSch(q2),ID2(P(q2))(Rew(q2)))

Rew(αi(q)) = ΠSch(Rew(q)),true→Ui(Rew(q))

Rew(αC,T,End(T )(q)) = ρSch(Rel(R[T ]))(Rew(q)× ρUC ({(true)})) (for q = RR(T ))

Annotation Attributes

P({t→ xid}) = Id

P(R[ν]) = P(R)

P(σC(q)) = P(q)

P(ΠA(q)) = P(q)

P(q1 ./ q2) = ID1(P(q1)) . ID2(P(q2))

P(αi(q)) = P(q) . Ui

if RR(u) = q1 ∪ q2 ∧ u = U/D
P(q1 ∪ q2) = P(q1)

else:

P(q1 ∪ q2) = ID1(P(q1)) . ID2(P(q2))

Fig. 7: Rewrite rules for translating Kν-semantics reenactment queries into standard relational semantics (bag)

TR(RC(T3)) = σU1∨U2
(ρSch(Rel(C[T3]))(Rew(RC(u2)× ρUC ({(true)}))))

Rew(RC(u2)) = (ρo,a,ID1(P(C[8]))(Rew(C[8]))×Null(ID2(P(q2)))) ∪ (Πo,a,P(RC(u2))
(ρo,a,ID2(P(q2))(q2)×Null(ID1(P(C[8])))))

q2 = Πo,a,P (S,o),P (S,a),P (S,d),U1,true→U2
(σd<'2000−06'(Rew(RS(u1))))

Rew(RS(u1)) = Πo,(a−250)→a,d,Xid,V,Id,P (S,o),P (S,a),P (S,d),true→U1
(σo=1(Rew(S[8])))) ∪ (σ¬(o=1)(Rew(S[8]))× ρU1

({(false)}))

Rew(C[8]) = Πo,a,Xid,TTb→V,Id,o→P (C,o),a→P (C,a)(C8)

Rew(S[8]) = Πo,a,d,Xid,TTb→V,Id,o→P (S,o),a→P (S,a),d→P (S,d)(S8)

Fig. 8: Relational translation of the reenactment query for transaction T3 from the running example

operator. The first one deals with reenactment of an

update or delete operation ui where the annotation at-

tributes of the left union input are the same as for the

right input except for the version annotation attribute

Ui. The renaming applied in the rewriting of the annota-

tion operator for the commit of the transaction ensures

that the schema is that same as defined in Figure 6.

Example 7.2 Consider the reenactment query for trans-

action T3 (Example 6.2) and its standard relational al-

gebra version shown in Figure 8. Accesses to relations

Collection (C) and Outstanding (S) are replaced with

snapshots and the attributes of these relations are du-

plicated to encode the variables in the annotations of

tuples of C and S. Recall that we represent variables

in annotations using the tuples they are annotating us-

ing the Xid, TTb, and V to encode the commit anno-

tation of the past transaction creating the tuple. The

part of the query corresponding to update u1 (RS(u1))

has been rewritten by replacing S[8] with its rewrit-

ten counterpart. The version annotation operator has

been replaced with a projection adding true as the value

for annotation attribute U1. For attribute U1, which is

not in the right input (tuples that were not updated by

u1), we add ρU1({(false)}) (we use ρU1 to denote re-

naming of the single attribute of {(false)}). Update u2
is an insert that accesses relation Outstanding. Re-

GProM
Parser

SELECT *
FROM ...

PROVENANCE OF 
(SELECT * FROM ...

Provenance
Rewriter

Transaction
Reenactor

OptimizerSQL Code
Generator

Audit Log
-- --- ---
-- -- --- -- -- - - - -----

Versioned Tables

Fig. 9: GProM architecture

call that in R(u2) the access to this relation was re-

placed with R(u1). The rewritten version of RC(u2) ap-

plies crossproducts with singletons for union compatibil-

ity and uses IDi to append a suffix to every annotation

attribute to prevent name clashes between the two in-

puts of the union. The annotation operator in R(u2) is

replaced with a projection Π...,true→U2 . Finally, the se-

lection σU1∨U2 ensures that only tuples that are affected

by at least one operation from T3 are returned.

This translation of reenactment queries returns the

encoding of R[T ] that as defined in Section 7.1.

Theorem 7.2 Let T be a transaction. Then:

TR(RR(T )) = Rel(R[T ])
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8 Implementation

We have implemented provenance computation for trans-

actions in GProM (Generic Provenance Middleware),

a provenance middleware for standard DBMS. Figure 9

shows an overview of the system. GProM translates

SQL statements with provenance requests into rela-

tional algebra. Requests for transaction provenance are

processed by the reenactor that constructs a reenact-

ment query using the audit log of the backend DBMS.

The provenance rewriter rewrites this reenactment query

to compute its provenance. Afterwards, we optimize

the algebra expression using heuristic rules. The sim-

plified expression is then compiled into SQL code. For

an overview of GProM and its unique features see [3].

8.1 Reenacting With CASE

One disadvantage of the reenactment queries produced

by our approach is that each UPDATE is translated into a

union between two accesses to the input relation. For

a sequence of updates in a transaction this leads to

queries where the left and right input of each such union

is again a union operation. Unless intermediate results

are reused, this leads to an exponential number of union

operations (in the number of updates). Instead of com-

puting the union between the set of updated tuples and

non-updated tuples, we can use the SQL CASE construct

to decide for each tuple whether it should be updated

or not. We can reenact update U [θ,A, T, ν](R) using

a projection (SELECT) constructed as follows. For each

expression e → a in A we add CASE WHEN θ THEN e ELSE

a END AS a to the projection. The values of version at-
tributes can be computed in a similar fashion. This ap-

proach is also applicable for deletes.

8.2 Prefiltering Provenance

The relational encoding of reenactment introduced in

Section 7.3 filters out tuples that were not affected by

any update by applying a selection on U1∨. . .∨Un to the

result of reenactment. Thus, the reenactment query is

evaluated over all tuples from RStart(T ). We now discuss

two optimizations that filter out tuples early on.

Prefiltering With Update Conditions. The naive

method can be improved if we can determine upfront

which tuples will be affected by a transaction. Con-

sider a transaction T = u1, . . . , un, c and a tuple t valid

at transaction start. Tuple t was modified by a subset

(potentially empty) of the updates of T . If t is affected,

then there has to exist a first update ut in T that mod-

ified tuple t. Thus, t has to fulfill the condition of ut.

This observation can be used to characterize the set of

tuples affected by the transaction. In particular, this is

the set fulfilling the condition θ1 ∨ . . . ∨ θn where θi is

the condition of the ith update operation. Hence, it is

safe to apply a selection on this condition to the input

of reenactment. This approach is not applicable to a re-

lation R if one of the transaction’s inserts uses a query

that accesses relation R. Delete operations can be han-

dled like update operations whereas inserts create new

tuples and there is no need for prefiltering.

Join With Committed Tuple Versions. The ver-

sion of the database at commit of transaction T will

contain all tuple versions created by T . Recall that

that snapshots use a column Xid to store the updating

transaction. Thus, we can determine which tuple ver-

sions got created by a transaction T by running a query

σXid=T (REnd(T )). To retrieve the versions of these tu-

ples valid at transaction start, we can join the result of

this query with RStart(T ). Recall that we assume that

the database system uses unique immutable tuple iden-

tifiers stored in attribute Id. We join on this identifier,

i.e., in the reenactment query we replace RStart(T ) with
ΠSch(RStart(T ))(RStart(T ) ./Id=Id′ ΠId→Id′(σxid=T (REnd(T )))).

This approach is only applicable to relations that are

not accessed by any insert’s query in the transaction.

9 Experiments

In our experiments we study 1) the performance of pro-

venance computation and 2) the overhead for transac-

tion execution comparing our approach (using reenact-

ment, audit logging and history maintenance) against

an approach that directly stores provenance. We use a
synthetic workload to evaluate how our approach scales

in various parameters and a TPC-C workload to test its

performance for realistic transactions. All experiments

were executed on a machine with 2 x AMD Opteron

4238 CPUs (12 cores in total), 128 GB RAM, and 4 x

1TB 7.2K HDs in a hardware RAID 5 configuration.

9.1 Setup and Workload

Datasets and Workload. We use a relation with five

numeric columns. Values for these attributes are cho-

sen from a uniform distribution. We created variants

R10K, R100K, and R1000K with 10K, 100K, and 1M

tuples and no significant history (H0). Additionally, we

generated three variants of R1000K with different his-

tory sizes H10, H100, and H1000 (100K, 1M, and 10M

tuples history). At first, we only consider transactions

that consist solely of update statements. We vary the

following parameters: U is the number of updates per
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Fig. 12: Optimization methods
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Fig. 13: Affected tuples/update
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Fig. 15: Inserts, deletes, updates

transaction, e.g., U10 is a transaction with 10 updates.

T is the number tuples affected by each update. Unless

stated otherwise, we use T1. The tuple to be updated

is selected using the primary key. All transactions were

executed under isolation level SERIALIZABLE (SI).

Compared Methods. We compare different config-

urations for computing provenance of a single transac-

tion - each using a subset of the optimizations described

in Section 8. Experiments were repeated 100 times and

we report the average runtime. NoOpt (N): Computes

the provenance of all tuples in a relation, even tuples

that were not affected by the transaction, i.e., we do

not apply the filter condition on the version annotation

attributes. Prefilter (P): Only returns provenance of

tuples affected by the transaction using a selection on

the disjunctions of all conditions for the transaction’s

updates (see Section 8.2). The database system was in-

structed to materialize the intermediate result corre-

sponding to each update in the reenactment query using

temporary relations. Prefilter+Merge (PM): This is

the same as Prefilter, but we merge operators (particu-

larly, projections) to reduce the number of query blocks.

HistJoin (HJ): We use a join to compute partial pro-

venance as described in Section 8.2. This configuration

merges operators where possible.

9.2 Performance of Provenance Computation

In the first set of experiments we have executed the

transactional workload beforehand and measure the per-

formance of computing provenance for transactions from

this workload to study how our reenactment approach

scales in database size, size of the history, and complex-

ity of the transaction (number of operations, amount of

modified tuples, mix of update types).

Relation Size and Updates/Transaction. We com-

pute the provenance of transactions varying the num-

ber of updates per transaction (U1, U10, U100, and

U1000) and the size of the database (R10K, R100K,

and R1000K). We use the relation without significant

history (H0) and ran N and PM. Figure 10 shows the

runtime of these provenance computations. We scale

linearly in R and U . By reducing the amount of data to

be processed by the reenactment query and by merging

operators, the PM approach is up to three orders of

magnitude faster then the naive N configuration.

History Size. We have computed the provenance for

transactions with 10 updates (U10) over relations with

1M tuples (R1000K) and history sizes: H0, H10, H100,

and H1000. As shown in Figure 11, N exhibits almost

constant performance. The runtime is dominated by

evaluating the reenactment query over 1M tuples (all

tuples in one version of the relation) hiding the impact

of scanning the history. Since we have not created any

indexes on the history relations, the PM approach only

has the advantage of processing less tuples in the pro-

venance computation, but still has to scan most of the

history to find tuples that were updated.

Comparing Optimization Techniques. Figure 12

shows results for varying the number of updates (U1,

U10, U100, and U1000) using R1000K-H1000. Com-

pared with P, PM benefits from avoiding materializa-

tion. This optimization is more effective for larger trans-

actions, because reenactment queries for such transac-

tions are increasingly complex. While resulting in∼20%

improvement for U100, it improves the runtime by a

factor of roughly 10 for U1000. The cost of PM is af-

fected by the first selection that is applied to 1M tuples

(no index on the history relation). This condition is lin-

ear in the number of update operations. The runtime



24

of HJ is almost not affected by parameter U , because

it is dominated by the join between historic relations.

PM outperforms HJ by a factor of about 3.

Affected Tuples Per Update. Figure 13 shows re-

sults for U10 where each update modifies 10, 100, 1000,

or 10000 tuples from relation R1000K-H1000. As evi-

dent from Figure 13, the runtime is not significantly

affected when increasing the number of affected tuples

per update. It is dominated by scanning the history

and filtering out updated tuples (PM ) or the self-join

between historic relations (HJ ). Increasing the T pa-

rameter by 3 orders of magnitude results in an runtime

increase of about 150% (PM ) and 20% (HJ ).

Index vs. No Index. We study the effect of replicat-

ing the indexes defined for a relation to its correspond-

ing history relation. Figure 14 shows the results with

and without indexes. We have used R1000K-H1000 and

have varied U from U1 to U1000. We omit the N (no

benefit from indexes) and P (consistently outperformed

by PM ) configurations. Using indexes improves execu-

tion time of queries that apply PM considerably.

Inserts and Deletes. We now also use inserts and

deletes in addition to updates. We have used theR1000K

relation in this experiment. Each operation is chosen

randomly (25% probability) from: 1) An update as used

in the previous experiments (T1); 2) an insert that in-

serts one new tuple; 3) an insert that inserts the result

of a query over a different relation (1 tuple inserted);

and 4) a delete that removes 1 randomly chosen tuple.

Figure 15 shows the results for U20 varying history size

(H10 to H1000). The results indicate that performance

is comparable to performance for updates.

TPC-C. In this experiment, we compute provenance
for the TPC-C OLTP benchmark. We executed a TPC-

C transactional workload over an instance with 32 ware-

houses. The resulting database is roughly 16GB large.

The benchmark defines 5 transaction types, out of which

2 are read-only. We compared the N and PM methods

for the 3 transaction types that execute updates. Fig-

ure 16 shows the results for computing the provenance

of a single transaction of each type. Each of these trans-

actions only manipulate a few tuples each. Thus, the

cost for PM is quite low. The cost for N is dominated

by scanning large input relations (millions of tuples).

9.3 History and Audit Logging Overhead

We use audit logging and time travel to reconstruct

provenance of past transactions. We now quantify the

runtime and storage overhead of DBMS X’s built-in

temporal and audit features. We measure the execu-

tion time of 10,000 transactions with U10 and T1 run

over the R1000 instance. The table below shows the to-

tal runtime for three configurations: without temporal

and audit logging features (W/O), with temporal fea-

tures, and with both the temporal and audit logging

features. If history maintenance is activated then this

results in about 12% runtime overhead for this work-

load. This seems to align with the performance numbers

from DBMS X’s documentation which states 5% over-

head for mixed read-write workloads. Activating audit

logging in addition results in a total overhead of ∼ 19%.

W/O History History+Audit
27.46 sec 30.94 sec 32.59 sec

Tuples in the relation without history are 21 byte large.

Activating time travel results in an overhead of 37 bytes

for currently valid tuples. Outdated tuple versions oc-

cupy 65 bytes on average. The average audit log entry

size is 378 bytes (per executed statement).

9.4 Eager Provenance Computation

We now compare our approach with eager provenance

computation during transactions execution. We con-

sider two configurations: 1Step stores a separate pro-

venance record for each tuple version and statement

in an extra relation. Each such record is linked to the

provenance record for the previous version of the tu-

ple. The provenance of a transaction is reconstructed

by recursively joining these provenance records; Full

stores the complete derivation history of each tuple in

an additional column.

Transaction Execution Overhead. Using the work-

load from Section 9.3 we compare the overhead for
transaction execution incurred by these two eager meth-

ods with our method (Reenact). The results are shown

in Figure 18. The performance of our method and 1Step

remains stable when increasing the size of the history.

In constrast the overhead of Full increases with the his-

tory size, because the size of provenance per tuple in-

creases and the attribute storing provenance has to be

updated by every operation. Both 1Step and Full do

significantly slow down transaction processing showing

about a factor 7 higher overhead than our approach.

Storage Size. We compare the storage size used by

the three methods for a table with 1M rows varying

the size of the history (H10, H100, and H1000) and

number of tuple affected by each update (T1, T10, and

T100). For our method we show the total storage space

as well as the breakdown into regular relation plus his-

tory and the audit log. Only the size of the audit log

is affected by the T parameter. Thus, we only show

our method for T10 and T100 since the other methods

require the same storage for all T values. The results
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Fig. 17: Provenance computation

Method Exec. (sec) Rel.
Reenact 32.59 19%

1Step 67.18 145%
Full H10 64.02 133%
Full H100 71.98 162%
Full H1000 220.16 702%

Fig. 18: Transaction exec. overhead

shown in the table below demonstrate that in the worst

case (1 tuple affected per update) our method requires

up to ∼4 times more storage than the best approach.

This overhead is caused by the audit log storing one

SQL statement per modified tuple. However, if more

tuples are affected by each statement then our method

requires about the same or less storage space than the

alternatives. Note that in other two approaches, there

is no record of the SQL statements that were executed.

Storage Size (MB)
#Tuples /
Update

Method H10 H100 H1000

T1

History 41 97 655
Audit Log 36 360 3600

Total 77 457 4255
Full 62 181 1245

1Step 45 191 1658

T10
Audit Log 4 36 360

Total 45 133 1015

T100
Audit Log 0.3 4 36

Total 41.3 98 691

Retrieving Provenance. We now compare the perfor-

mance of reenactment (the PM method) for retrieving

provenance with 1Step and Full. Figure 17 shows the

result for computing provenance of transactions with

U10 and T1 varying the history size (H). We created

relevant indexes for each method. Optimized reenact-

ment outperforms both alternatives, because Full re-

quires filtering tuples based the transaction identifier

contained in the attribute storing the provenance and

1Step requires a recursive query or multi-way join to

reconstruct the provenance of a transaction from pro-

venance for each update.

9.5 Summary

Our evaluation confirms the efficiency and scalability

of our approach - the presented techniques for retroac-

tively computing provenance scale to relations with mil-

lions of tuples, large transactions (1000 update state-

ments), large number of updated tuples, and large his-

tories. The proposed optimizations increase performance

by several orders of magnitude. The runtime overhead

for transaction execution incurred by our approach due

to auditing and history maintenance is below 20% for

our experimental workloads - a small price to pay com-

pared to eager materialization of provenance while trans-

actions are executed (about 133% and higher).

10 Conclusions

We have presented the first solution for computing the

provenance of transactions run under SI. Our approach

is based on the novel concept of reenactment queries,

i.e., queries that simulate the effect of updates and

transactions. We have extended the semiring annota-

tion framework with updates and transactional seman-

tics using version annotations. Using audit logging, time

travel, and a relational encoding of reenactment we

can retroactively compute the provenance of tuples pro-

duced by transactional histories using a standard DBMS.

Our experiments confirm that our implementation scales

to large databases, histories, and transactions. In future

work, we will study reenactment for other concurrency

control protocols and more expressive query languages

(e.g., aggregation [2]). Reenactment has many potential

applications such as answering historic What-If queries

(e.g., “What would have happened if we had updated

accounts using 10% interest?”).
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A Glossary

The table below given an overview of the notation ap-

plied in the paper.
Symbol Meaning

Updates and Transactions

ν a time (version)

id a tuple identifier

T a transaction

End(T ) transaction T ’s commit time

u an update operation

ν(u) the point in time when u was exe-

cuted

H a history

Rν snapshot of relation R at time ν
Semirings and MV-semirings

A A version annotation

I/D/U either one of I, D, or U

{t1 → k1, . . .} denotes an annotated relation where

tuple ti is annotated with ki
K a semiring

Kν the MV version of semiring K
≡K /vK denotes query equivalence/contain-

ment over K-relations (see [18])

n(k) number of summands in a normal-

ized MV-semiring element k (a sum

of subexpressions)

k[i] the ith summand in a normalized

MV-semiring element k

χ An assignment of variables to ele-

ments of a semiring

[k]∼ the congruence class of a symbolic

MV-semiring expression k

k ≡∼ k′ k and k′ belong to the same congru-

ence class

MV-updates and Historic Databases

U [θ,A, T, ν](R) updates tuples in R that fulfill θ us-

ing the projection expressions in A
I[Q,T, ν](R) Inserts the result of query Q into R

D[θ, T, ν](R) Delete operator: removes all tuples

that fulfill θ

R[ν] version of relation R at time ν

R[T, ν] version of relation R as seen by

transaction T at time ν

R[T ] relation R restricted to provenance

of transaction T (see Section 5.5)

validAt functions that returns 1 if part of

an annotation of a tuple is valid at

a given point in time

updated predicate that checks whether a

transaction has overwritten (up-

dated or deleted the annotated tu-

ple) an annotation

Reenactment

αX,T,ν(R) annotation operator the wraps every

summand in an the annotation of a

tuple in a version annotation XT,ν

where X ∈ {I, U,D,C}
R(X) denotes the reenactment query for

operation/transaction/history X

Homomorphisms

Unv operator that maps a Kν-relation

to K-relation by applying homomor-

phism hU to each annotation

hU homomorphism Kν to K that maps

an Kν element to an element of the

embedded semiring K by evaluating

the expression k (interpreting ver-

sion annotations as functions K →
K).

hν a homomorphism K1
ν → K2

ν cre-

ated by lifting homomorphism h :

K1 → K2

Query Languages

RA+ positive relational algebra

RA+/α positive relational algebra including

the annotation operator α

Relational Encoding
Rel(R) relational encoding of an Kν-

relation R

Rew(q) rewrite of a query q with Kν-

relational semantics into a standard

relational semantics query returning

the relational encoding of the MV-

relational output produced by q
P(Q) annotation attributes used to store

part of an annotation by the stan-

dard relational encoding of MV-

semiring annotated relation
P (R) renaming of the attributes of rela-

tion R for storing a variable x in an

Kν provenance polynomial.

P(R) P (R) and additional attributes Xid,

versionAttr, Id

Ui boolean attribute recording whether

the version annotation of the ith up-

date of a transaction is present in an

annotation
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Null(A) a singleton relation containing a list

of null values and false constants

with the same arity as A. false is

used for U attributes and null values

are used for all other attributes.

IDP(A) renames attributes in list A to guar-

antee that every attribute name in

A is unique.

IDx(A) appends a suffix _x to every at-

tribute name in A

Misc

. List concatenation

Sch(R) Schema of relation R

B Proofs

Theorem 5.1 Let h : K → K′ be a semiring homo-

morphism, then h commutes with any Q in the above

algebra if h is applied to Q. Let I be a K database in-

stance. Then, h(Q)(h(I)) = h(Q(I))

Proof We only need to show that the theorem holds

for the new operator Q = {t → k}. The result of this

operator is a relation R with R(t′) = 0 for t′ 6= t and

R(t) = k. Applying the homomorphism to R we get a

singleton relation R(t) = h(k). Applying the homomor-

phism to Q we get h(Q) = {t→ h(k)}. Evaluating this

query we get the singleton relation R(t) = h(k) as well.

Theorem 5.2 hU is a surjective semiring homomor-

phism.

Proof Note that hU evaluates the symbolic expression

of an representative k of a congruence class [k]∼. To

prove that hU is well-defined we have to show that

k ≡∼ k′ ⇒ hU (k) = hU (k′), i.e., all representative of

a congruence class are mapped to the same element of

K. If k ≡∼ k′ then there has to exist at least one se-

quence of applications of the equivalences that define

the congruence relation of Kν (Figure 4) such that ap-

plying this sequence to k we get k′. We prove the im-

plication by induction over these equivalences. Most of

these equivalences follow directly from the construction

of hU and the definition of MV equivalences:

Laws of commutative semirings

hU (k + 0K) = hU (k) +K hU (0K)

= hU (k) +K 0K = hU (k)

hU (k × 1K) = hU (k)×K hU (1K)

= hU (k)×K 1K = hU (k)

hU (k + k′) = hU (k) +K hU (k′)

= hU (k′) +K hU (k) = hU (k′ + k)

hU (k × k′) = hU (k)×K hU (k′)

= hU (k′)×K hU (k) = hU (k′ × k)

hU (k + (k′ + k′′)) = hU (k) +K hU (k′ + k′′)

= hU (k) +K hU (k′) +K hU (k′′)

= hU (k + k′) +K hU (k)

= hU ((k + k′) + k′′)

hU (k × (k′ × k′′)) = hU (k)×K hU (k′ × k′′)
= hU (k)×K hU (k′)×K hU (k′′)

= hU (k × k′)×K hU (k)

= hU ((k × k′)× k′′)

hU (k × 0K) = hU (k)×K hU (0K)

= hU (k)×K 0K = hU (0K)

hU (k × (k′ + k′′)) = hU (k)×K hU (k′ + k′′)

= hU (k)×K (hU (k′) +K hU (k′′))

= (hU (k)×K hU (k′))

+K (hU (k)×K hU (k′′))

= hU ((k × k′) + (k × k′′))

Evaluation of expressions with operands from K

hU (k + k′) = hU (k) +K hU (k′)

= k +K k
′ = hU (k +K k

′)

hU (k × k′) = hU (k)×K hU (k′)

= k ×K k′ = hU (k ×K k′)

Equivalences involving version annotations

hU (A(0K)) = hU (0K) = 0K = hU (0K)

For A(k + k′) we need to distinguish two cases. Ei-

ther A = Did
T,ν and we get:

hU (A(k + k′)) = 0K = 0K +K 0K

= hU (A(k)) +K hU (A(k′))

= hU (A(k) +A(k′))

In the second case if A 6= Did
T,ν we get:

hU (A(k + k′)) = hU (k + k′) = hU (k) +K hU (k′)

= hU (A(k)) +K hU (A(k′))

= hU (A(k) +A(k′))
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Thus, hU is well-defined and for the remainder of the

proof it suffices to restrict the discussion to single rep-

resentatives of congruence classes.

We now prove that hU is surjective. Consider an

arbitrary element k ∈ K. By construction of Kν , k ∈
Kν . We have hU (k) = k and, thus, hU is surjective.

It remains to be shown that hU is a semiring ho-

momorphism. We have to show that hU (0Kν ) = 0K,

hU (1Kν ) = 1K, hU (k + k′) = hU (k) +K hU (k′) and

hU (k×k′) = hU (k)×K hU (k′). Recall that 0Kν = [0K]∼
and 1Kν = [1K]∼. As proven above we can choose an

arbitrary representative of a congruence class when ap-

plying hU . We get hU (0Kν ) = hU (0K) = 0K and analog

hU (1Kν ) = hU (1K) = 1K. Furthermore, hU (k + k′) =

hU (k) +K hU (k′) and hU (k × k′) = hU (k) ×K hU (k′)

trivially hold based on the definition of hU . Thus, hU
is a semiring homomorphism.

Theorem 5.3 Any semiring homomorphism h : K1 →
K2 can be lifted to a homomorphism hν : K1

ν → K2
ν

as defined below. If h is surjective then so is hν .

hν(k) =


h(k) if k ∈ K1

A(hν(k′)) if k = A(k′)

hν(k1) + hν(k2) if k = k1 + k2

hν(k1)× hν(k2) if k = k1 × k2

Proof Note that the mapping hν is applied to a repre-

sentative of a congruence class. We need to prove that

if k ≡∼ k′ then hν(k) ≡∼ hν(k′). Note that K1
ν and

K2
ν are using the same congruence relations with the

exception of evaluating expressions with operands from

the embedded semiring which is K1 in the first case and

K2 in the other. Since by construction hν preserves the

structure of expressions, the implication holds as long

as it is true for any expression which involves only el-

ements from k and the + and × semiring operations.

For elements from K1 we have k ≡∼ k′ ⇒ k = k′

because there are no equivalences in the congruence re-

lation that equate elements from K1. Thus, hν(k) =

h(k) = h(k′) = hν(k′) and we get hν(k) ≡∼ hν(k′).

Since the symbolic expressions of K1
ν and K2

ν are

generated by the same grammar with the exception that

k ∈ K2 instead of k ∈ K1, hν is obviously a mapping

from K1
ν → K2

ν . For the same reason, surjectivity of h

implies surjectivity of hν . For an expression k2
ν in K2

ν

let k1 to kn be the elements from K2 that occur in this

expression. Given that h is surjective we can find l1 to ln
in K1 such that h(li) = ki. Now we construct an element

k1
ν with the same structure as k2

ν , but with li instead

of ki for i ∈ {1, . . . , n}. From the constructions and

definition of hν follows that hν(k1
ν) = k2

ν . It remains

to be shown that hν is a homomorphism.

hν(k1 + k2) = hν(k1) + hν(k2) (by construction)

hν(k1 × k2) = hν(k1)× hν(k2) (by construction)

hν(0) = 0 (h(0) = 0 and k ≡∼ k′ ⇒ hν(k) ≡∼ hν(k′))

hν(1) = 1 (h(1) = 1 and k ≡∼ k′ ⇒ hν(k) ≡∼ hν(k′))

Theorem 5.4 Let hν be a lifted homomorphism as de-

fined in Theorem 5.3. hν commutes with updates.

Proof We have to show for each update operation that

hν(u(R)) = u(hν(R)). Recall that any lifted homomor-

phism is history preserving, i.e., it keeps the structure

of expressions intact.

Update:

hν
(
U [θ,A, T, ν](R)(t)

)
=hν

(
R(t)× (¬θ)(t)

+
∑

u:u.A=t

n(R(u))∑
i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i])× θ(u)

)

Since hν is a homomorphism it commutes with semiring

operations and we get:

=hν
(
R
)

(t)× (¬θ)(t)

+
∑

u:u.A=t

hν
( n(R(u))∑

i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i])

)
× θ(u)

Note that application of a lifted homomorphism such

as hν to a normalized annotation does not change the

structure of summands in this annotation, i.e., hν can

be pushed into this sum.

=hν
(
R
)

(t)× (¬θ)(t)

+
∑

u:u.A=t

n(hν
(
R

)
(u))∑

i=0

U
hν(id(hν

(
R

)
(u)[i]))

T,ν+1 (hν
(
R
)

(u)[i])× θ(u)

=U [θ,A, T, ν](hν
(
R
)

)(t)

Inserts:

hν
(
I[Q,T, ν](R)(t)

)
=hν

(
R(t) + IidnewT,ν+1(Q(D)(t))

)
=hν

(
R(t)

)
+ hν

(
IidnewT,ν+1(Q(D)(t))

)
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Recall that based on the construction of hν it follows

that hν(IidnewT,ν+1(k)) = IidnewT,ν+1(hν(k))). Furthermore, since

hν is a homomorphism it commutes with queries. Thus,

= hν
(
R
)

(t) + IidnewT,ν+1(Q(hν
(
D
)

)(t))

= I[Q,T, ν](hν
(
R
)

)(t)

Deletes:

hν
(
D[θ, T, ν](R)(t)

)
=hν

(
R(t)× (¬θ)(t)

+

n(R(t))∑
i=0

D
id(R(t)[i])
T,ν+1 (R(t)[i])× θ(t)

)
=hν

(
R
)

(t)× (¬θ)(t)

+

n(hν
(
R

)
(t))∑

i=0

D
hν(id(hν

(
R

)
(t)[i]))

T,ν+1 (
(
R
)

(t)[i])× θ(t)

=D[θ, T, ν](hν
(
R
)

)(t)

Commits:

hν
(
C[T, ν](R)(t)

)
=hν

( n(R(t))∑
i=0

com[T, ν](R(t)[i])
)

=

n(hν
(
R

)
(t))∑

i=0

hν
(
com[T, ν](R(t)[i])

)
where

com[T, ν](k) =

{
CidT,ν+1(k) if k = I/U/Did

T,ν′(k′)

k else

so if R(t) = I/U/Did
T,ν′(k′) then

hν(com[T, ν](R(t)))

=hν(CidT,ν+1(R(t)))

=C
hν(id(hν

(
R

)
(t)[i]))

T,ν+1 (hν
(
R
)

(t)[i])

=com[T, ν](hν(R)(t))

otherwise we get

hν(com[T, ν](R(t)))

=hν(R(t))

=hν(R)(t)

=com[T, ν](hν(R)(t)))

In summary hν(com[T, ν](R(t))) = com[T, ν](hν(R)(t)).

Thus,

n(hν
(
R

)
(t))∑

i=0

hν
(
com[T, ν](R(t)[i])

)

=

n(hν
(
R

)
(t))∑

i=0

com[T, ν](hν(R)(t)[i])

=C[T, ν](hν
(
R
)

)(t)

Theorem 5.5 Let hν be a lifted homomorphism (The-

orem 5.3). hν commutes with histories.

Proof As was demonstrated before, hν commutes with

updates and, thus also sequences of updates. Thus, for

single transactions the theorem holds. Specifically, for

any update u in a transaction T executed at ν we have

u(hν(R[T, ν]) = hν(u(R[T, ν]))

It remains to be shown that hν commutes with the

computation of R[ν] over the results of past transac-

tions, i.e., applying hν to the result of this computa-

tion is the same as applying it to every input R[T, ν] of

the computation. By iteratively pushing the homomor-

phism through all transactions involved in a history the

result follows.

hν
(
R[ν](t)

)
=hν

( ∑
T∈H∧End(T )<ν

n(R[T,ν](t))∑
i=0

R[T, ν](t)[i]× validAt(T, t, R[T, ν](t)[i], ν)
)

=
∑

T∈H∧End(T )<ν

n(hν
(
R[T,ν]

)
(t))∑

i=0

hν
(
R[T, ν]

)
(t)[i]× hν

(
validAt(T, t, R[T, ν](t)[i], ν)

)
Since hν(1) = 1 and hν(0) = 0 we know that

hν
(
validAt(T, t, R[T, ν](t)[i], ν)

)
=validAt(T, t, R[T, ν](t)[i], ν)

It remains to be shown that

validAt(T, t, R[T, ν](t)[i], ν)

=validAt(T, t, hν(R[T, ν])(t)[i], ν)
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under the assumption hν(R[T, ν](t)[i]) 6= 0 (other-

wise the value of validAt is irrelevant). Since hν does

not affect version annotations k = CidT,ν′(k′)⇒ hν(k) =

CidT,ν′(hν(k′)).

validAt(T, t, hν(k), ν) = 1

⇔hν(k) = CidT,ν′(hν(k′))

∧ (¬∃T ′ 6= T : End(T ′) ≤ ν
∧ updated(T ′, t, hν(k)))

⇔k = CidT,ν′(k′)

∧ (¬∃T ′ 6= T : End(T ′) ≤ ν
∧ updated(T ′, t, k))

We now have to prove that updated(T ′, t, hν(k)) ⇔
updated(T ′, t, k).

updated(T, t, hν(k))

⇔∃u ∈ T, t′, i, j : hν(R[T, ν(u)])(t)[i] = hν(k)

∧ hν(R[T, ν(u) + 1])(t′)[j] = hν(U/Did
T,ν(u)+1(k))

⇔∃u ∈ T, t′, i, j : R[T, ν(u)](t)[i] = k

∧R[T, ν(u) + 1](t′)[j] = U/Did
T,ν(u)+1(k)

The last equivalence follows from the fact that we have

proven that hν commutes with the operations of one

transaction above.

Theorem 6.1: Let u be an update and R(u) its reen-

actment query. Then, u ≡N[X]ν R(u).

Proof Proven by substitution of the definitions of up-

date operations, queries, and annotation operators. We

show the proof for an update u = U [θ,A, T, ν](R). The

reenactment query R(u) for u is:

αU,T,ν+1(ΠA(σθ(R[T, ν]))) ∪ σ¬θ(R[T, ν])

We have to show that u(t) = R(u)(t) for any t ∈ R. Let

Q′ = ΠA(σθ(R[T, ν])). Substituting RA+ definitions

we get:

R(u)(t) =

n(Q′(u))∑
i=0

U
id(Q′(u)[i])
T,ν+1 (Q′(u)[i]) + (R(t)× ¬θ(t))

Now we substitute Q′(t) =
∑
u:u.A=t(R(u)× θ(u)) and

apply commutativity of + to get

= R(t)× ¬θ(t)

+

n(Q′(t))∑
i=0

U
id(Q′(t)[i])
T,ν+1 ((

∑
u:u.A=t

R(u)× θ(u))[i])

Using the MV-semiring equivalence A(k+k′) = A(k)+

A(k′), we can pull out the inner sum:

= R(t)× ¬θ(t)

+
∑

u:u.A=t

n(R(u)×θ(u))∑
i=0

U
id((R(u)×θ(u))[i])
T,ν+1 ((R(u)× θ(u))[i])

Note that n(R(u) × θ(u)) = n(R(u)) if θ(u) = 1. If

θ(u) = 0 then n(R(u)× θ(u)) 6= n(R(u)), but this does

not affect the result, because then each R(u)[i]×θ(u) =

0. An analog argument holds for id(R(u) × θ(u)). Ap-

plying the distributivity laws for semirings, we get:

= R(t)× ¬θ(t)

+
∑

u:u.A=t

n(R(u))∑
i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i]× θ(u))

Using the MV-semiring equivalence A(k×k′) = A(k)×
k′ if k′ = 1 or k′ = 0 we can pull out the multiplication

θ(u) to get:

= R(t)× ¬θ(t)

+
∑

u:u.A=t

n(R(u))∑
i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i])× θ(u)

= U [θ,A, T, ν](R)(t)

The proofs for inserts and deletes are analogous.

Theorem 6.2: Let T be a transaction and R(T ) its

reenactment query. Then: T ≡N[X]ν R(T )

Proof We prove the theorem by induction over the num-

ber of updates in transaction T . For simplicity, we as-

sume that T updates a single relation R. The proof can

easily be extended for transactions that update multi-

ple relations.

Induction Start: For a transaction with a single update

u1, the theorem follows from the equivalence result for

updates and a simple check for the equivalence of the

annotation operator for commits and commit annota-

tions produced by T .

Induction Step: Assume that we have proven that reen-

actment is annotation equivalent for transactions with

up to i updates. We have to show that the same holds

for any T = u1, . . . , ui, ui+1, c. Let Ti = u1, . . . , ui, c.

In the induction start we have already proven that the

commit operation of a transaction are equivalent to the

commit annotation operator in its reenactment query.

Thus, we ignore the existence of commit operations in

the following proof. WLOG assume End(T ) = End(Ti).

We know that R(Ti) ≡N[X]ν Ti = R[Ti, End(Ti)] =

R[Ti, ν(ui)+1]. Since Ti and T have executed the same

updates over the same input it follows that R[Ti, ν(ui)+

1] = R[T, ν(ui) + 1]. From the definition of historic

databases we know that R[T,End(T )] = R[T, ν(ui+1)+

1] = ui+1(R[T, ν(ui+1)]). Using the equivalences stated
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above we can deduce ui+1(R[T, ν(ui+1)]) ≡N[X]ν ui+1(

RR(ui))). We know that R(ui+1) ≡N[X]ν ui+1 and, thus,

it follows that R[T,End(T )] ≡N[X]ν RR(ui+1). Since

RR(ui+1) = RR(T ), this concludes the proof.

Theorem 6.3 For Q and Q′ be two RA+ queries and

K a naturally ordered semiring. Then

Q ≡Kν Q′ ⇒ Q ≡K Q′

Let Q and Q′ be two RA+/α queries or updates and

K a naturally ordered semiring, then

Q ≡N[X]ν Q
′ ⇒ Q ≡Kν Q′

Proof Let K1 and K2 be naturally ordered semirings. It

was proven in [18] that QvN[X]Q
′ ⇒ QvKQ′. Further-

more, QvK1
Q′ ⇒ QvK2

Q′ iff there exists a surjective

semiring homomorphism K1 → K2. The first part of the

theorem follows from the fact that Unv is a surjective

semiring homomorphism (Theorem 5.2) and that the

property of being naturally ordered is preserved for Kν
semirings (see Lemma B.1 below).

The second parts holds if we can demonstrate that

1) if K is naturally ordered then so is Kν , 2) a lifted

homomorphism hν is surjective if h is surjective and

commutes with updates, the annotation operator, and

histories. In particular, since any valuation χ : X → K
can be uniquely extended to a homomorphism Evalχ :

N[X] → K [19], 1) and 2) imply the second part. As

mentioned above 1) is proven in Lemma B.1. The lift-

ing of homomorphisms was shown to preserve surjec-

tivity (Theorem 5.3) and these homomorphisms com-

mute with updates (Theorem 5.4) and histories (Theo-

rem 5.5). The fact that hν commutes with the annota-

tion operator is proven in Lemma B.2.

Lemma B.1 Let K be a naturally ordered semiring,

then Kν is naturally ordered.

Proof Let K be a naturally ordered semiring, i.e., the

natural order: k ≤ k′ ⇔ ∃k′′ : k + k′′ = k′ is a par-

tial order. Recall that for a relation ≤ to be a par-

tial order it has to be reflexive, antisymmetric, and

transitive. Consider the natural order on Kν . Reflex-

ivity follows from k+ 0 = k. Transitivity holds because

k1 ≤ k2 ∧ k2 ≤ k3 ⇒ ∃k′1, k′2 : k1 + k′1 = k2 ∧ k2 + k′2 =

k3 ⇒ k1 + k′1 + k′2 = k3. Now let k13 = k′1 + k′2. We get

k1 + k13 = k3 ⇒ k1 ≤ k3. Thus, it remains to be shown

that ≤ is antisymmetric. We prove this fact by demon-

strating that there are no additive inverses in Kν , i.e.,

the operation of adding an element k′ to an element k

cannot be inverted by another addition. If this property

holds then ≤ has to be antisymmetric.

Consider two elements k and k′ of Kν in normal

form (a sum of elements that do not contain addition).

Let k1, . . . , kn be the summands in k and k′1, . . . , k
′
m

be the summands in k′. WLOG consider m = 1, be-

cause if an additive inverse can be found for the sum

of k′1, . . . , k
′
m then there has to exist an inverse for

each element k′i. Treat every summand as an ordered

tree whose leafs are elements of K and ×-operations

are considered n-ary. Furthermore, order operands of

such monomials as follows: 1) elements of K precede

any elements wrapped in version annotations and are

ordered based on an arbitrary extension of the natu-

ral order of K to a total order; 2) elements wrapped

in version annotations are ordered based on some or-

der over A based on the outermost version annota-

tion; 3) two elements with the same version annota-

tion are ordered based on the order of their children.

For example, for A1(A2(x1) × x2 × A2(x3)) assuming

x1 < x2 < x3 in the extension of the natural order on

N[X] we would order the elements of the monomial as

follows: A1(x2 ×A2(x1)×A2(x3)). We now prove that

inverses for an element k′ cannot exists by induction

over the structure of such summands (trees).

Let kν 6= 0 be the element we are trying to invert

and −kν represent its inverse (if it exists).

Base case: Consider trees of height 1, i.e., kν = k 6= 0

with k ∈ K. If −kν = −k with −k ∈ K then this leads

to a contradiction since K is naturally ordered. To see

why this is true consider, k+−k = 0 which would imply

k ≤ 0, but also 0 + k = k which implies 0 ≤ k. Since

we have k 6= 0 this yields the contradiction. Thus, if

an inverse −kν exists it must contain at least one ver-

sion annotation. However, it can be shown by induction

over equivalences of the congruence relation of Kν that

by adding a summand with a version annotation to an

element of K can never yield 0 as a result.

Inductive step: Assume that for any tree of depth up

to n we have proven that no inverse exists. Consider

kn+1 6= 0 as an element whose tree is of height n + 1.

We have to distinguish two cases: either kn+1 = A(kn)

for some tree kn of depth n or kn+1 =
∏m
i=1 ki where

each ki is of maximal depth n and no inverse exists for

any of these ki.

Case 1 (kn+1 = A(kn)): Note that the congruence rela-

tion of Kν does not manipulate individual version an-

notations. Thus, −kn+1 would have to be of the form

A(−kn) such that A(kn) +A(−kn) = A(kn + −kn) =

A(0) = 0. However, this leads to a contradiction be-

cause kn is of depth n and thus no additive inverse of

kn can exist.

Case 2 (kn+1 =
∏m
i=1 ki): We prove this case by induc-

tion over m. If m = 2 then kn+1 = k1 × k2 and WLOG

we have to distinguish 2 cases: 1) k1 = A(k′1) and

k2 ∈ K or 3) k1 = A(k′1) and k2 = A(k′2). Note that

k1, k2 ∈ K conflicts with the fact that kn+1 is of height
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n + 1 and, thus, we do not have to consider this case.

In any case we can construct −kn+1 as either −k1× k2
or k1 × −k2. For any k ∈ K no inverse exists. Thus,

we have to find the inverse of an element ki = A(k′i).

However, since ki of height less than n we know that

none such inverse exists. The inductive step is analog.

Lemma B.2 Let hν be a lifted semiring homomorphism

(as defined in Theorem 5.3). hν commutes with the an-

notation operator α.

Proof

hν
(
αU/D,T,ν(R)(t)

)
=hν

( n(R(t))∑
i=0

U/D
id(R(t)[i])
T,ν (R(t)[i])

)

=

n(hν
(
R

)
(t))∑

i=0

U/D
hν
(
id(hν

(
R

)
(t)[i])

)
T,ν (hν

(
R
)

(t)[i])
)

=αU/D,T,ν(hν
(
R
)

)(t)

For commits recall that

hν(com[T, ν](k)) = com[T, ν](hν(k))

and thus hν(αC,T,ν(R)(t)) = αC,T,ν(hν(R))(t).

For inserts consider that idnew = fid(T, ν, t, k).

hν
(
αI,T,ν(R)(t)

)
=hν

( n(R(t))∑
i=0

IidnewT,ν (R(t)[i])
)

=

n(hν
(
R

)
(t))∑

i=0

IidnewT,ν (hν
(
R
)

(t)[i])

=αI,T,ν(hν
(
R
)

)(t)

Theorem 7.1 The Rel(R[T ]) operation is lossless.

Proof We prove the theorem by induction over the num-

ber of operations in a transaction. Recall that R[T ] is

derived from R[T ]End(T ) by applying filt().

Base Case: Consider a transaction T = u, c with one

operation u. We have to prove that R[T ](t) can be re-

covered from Rel(R[T ]) for any t. We treat each of the

three types of update operations separately.

u = U [θ,A, T, ν](R): ConsiderR[T ](t) =
∑n(R[T ])
i=0 R[T ][i],

the annotation of one tuple t in R[T ] and let ki denote

R[T,End(T )][i]. Note that that each such ki is guaran-

teed to be of the form CidT,End(T )(U
id
T,ν(u)(C

id
T ′,End(T ′)(k

′
i)))

with k′i ∈ K and T ′ 6= T . This fact follows immedi-

ately from the definition of filt() which removes sum-

mands that are wrapped in version annotations of other

transactions and replaces subexpressions of the form

CidT ′,End(T ′)(k) with CidT ′,End(T ′)(xid) if T ′ 6= T . Since

T = u, c every summand is bound to be structured like

this.

Now consider the schema created for R[T ]. Applying

the definition shown in Figure 6 the schema is Sch(R).

P (R).U1 .UC where P (R) contains attributes Xid, Id,

V and a provenance renaming of the attributes of R.

The attribute name of U1 encodes ν(u1) and the type of

the update. The attribute name of UC encodes End(T ).

According to the definition of Rel(R[T ]) every sum-

mand in the annotation of tuple t is encoded as a sepa-

rate tuple t .RelEnd(T )(T,R,R[T ](t)[i]). Applying the

definition of RelEnd(T )(T,R,R[T ](t)[i]), a summand

CidT,End(T )(U
id
T,ν(u)(C

id
T ′,End(T ′)(xid))) would be encoded

as t . T ′ . End(T ′) . id . t(xid) . True . True. From T ′,

End(T ′) and id we can directly reconstruct CidT ′,End(T ′)(xid).

Based on the value U1 (True) and ν(u1) and the type

of the update (U) encoded in the name U1 it can be de-

termined that the element we have constructed so far

should be wrapped in U idT,ν(u). Finally, End(T ) is deter-

mined based on the name of UC .

u = I[Q(R1, . . . , Rn), T, ν](R): Let ki denote individual

summands in R[T ](t) as in the previous case. Every

summand ki is of the form CidT,End(T )(I
id
T,ν(u)(ki1× . . .×

kin)) with kij = 1, kij = Cid
′

T ′,End(T ′)(xij
′), or kij = xij .

Note that n is number of (not necessarily distinct) re-

lation mentions and constant relation operators in Q,

e.g., in Q = R×R×R we have n = 3. Applying the def-

inition of Sch(Rel(R[T ]))) each ki would be encoded

using P (R) . A1 . . . . . An where each Aj = P (Rj) for

an relation access Rj or Aj = const for a constant re-

lation operator. Recall that repeated attribute names

have been disambiguated by IDP . The version annota-

tion for u can be reconstructed as explained above for

updates. The attributes of P (R) are guaranteed to be

null since all tuple versions in R[T ] have been created

by u. Based on the definition of Rel() if kij = 1 then

the attributes in P (Rj) respective the const attribute

are null else these attributes store T ′, End(T ′) and id′

such that Cid
′

T ′,End(T ′)(xij ) can be reconstructed analog

to the update case or store id (in case of the constant

relation operator) and xid can be recovered. Then ki
is reconstructed by multiplying the individual recon-

structed operands and wrapping the result in IidT,ν(u)
where id is determined using fid as explained in Sec-
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tion 5.2.

u = D[θ, T, ν](R): The case for delete is analog to the

case for updates.

Inductive Step: Let T = u1, . . . , un+1, c and assume

that any annotation produced by a transaction of length

up to n can be recovered from its relational encoding.

We now show that the same holds for T . We distinguish

between three cases based on whether the last operation

is an update, insert, or delete.

un+1 = U [θ,A, T, ν](R): Consider R[T ](t) =
∑n(R[T ])
i=0

(R[T ][i] the annotation of one tuple t in R[T ] and let ki
denote R[T,End(T )][i]. Note that that each such ki is

guaranteed to be of the form CidT,End(T )(U
id
T,ν(u)(k

′
i)) or

CidT,End(T )(k
′
i) where each k′i is an annotation produced

by a sequence of up to n updates. Thus, if we ignore the

commit annotation then k′i could have been produced

by a transaction with up to n updates. Since the def-

inition of the schema SchEnd(T )(T,R) and relational

encoding Rel(End(T )) is recursively defined based on

the schema and relational encoding for the first n up-

dates, we know that k′i can be reconstructed. Specif-

ically, SchEnd(T )(T,R) = Sch(R) . IDP(Schν(un+1)(

T,R).Un+1).UC . If the version annotation for un+1 is

present in ki then according to the definition of Rel()

attribute Un+1 would be set to true. Based on the in-

duction hypothesis we can reconstruct k′i and then use

the value of this attribute to determine whether U idT,ν(u)
should be added or not.

un+1 = I[Q,T, ν](R): Every summand ki in an anno-

tation is either of the form 1) CidT,End(T )(I
id
T,ν(u)(ki1 ×

. . . × kim)) with kij = 1, kij = Cid
′

T ′,End(T ′)(kij
′), or

kij = xid′′ (if produced by a constant relation operator)

where m is the numer of relation mentions and constant

relation operators in Q; or 2) CidT,End(T )(ki
′) where k′u

is produced by a sequence of n updates. The schema for

the relational encoding is SchEnd(T )(T,R) = Sch(R) .

IDP(Schν(un+1)(T,R) . Schν(un+1)(T,X1) . . . . .

Schν(un+1)(T,Xm) . Un+1) . UC . Cases 1) and 3) can

be distinguished from case 2) based on whether all at-

tributes in Schν(un+1)(T,R) are null or not. In case 1)

ki
′ is an annotation produced by less than or equal to

n updates and, thus, can be reconstructed based on the

induction assumption. In case 2) we can construct the

monomial ki1 × . . .× kim in the same fashion as in the

base case as long as it is possible to determine which

attributes in Schν(un+1)(T,R1) . . . .Schν(un+1)(T,Rm)

belong to which Schν(un+1)(T,Rl). This is possible us-

ing the query Q of the insert which is encoded in Un+1.

The tuple id in IidT,ν(u) is reconstructed using the deter-

ministic scheme introduced in Section 5.2.

un+1 = D[θ, T, ν](R): The case for delete is analog to

the case for updates.

Theorem 7.2 Let T be a transaction. Then:

TR(RR(T )) = Rel(R[T ])

Proof We prove the theorem through induction over the

number of operations in a transaction.

Base Case: Consider a transaction T = u1, c with one

operation u and End(T ) = νe and ν(u1) = νu. We treat

each of the three types of update operations separately.

u1 = U [θ,A, T, ν](R): The reenactment query RR(T ) is

αC,T,νe+1(αU,T,νu+1(ΠA(σθ(R[νu]))∪σ¬θ(R[νu])). This

query would return T [νe + 1,], the version seen within

transaction T at its commit. R[T ] is derived from this

version by removing summands that are not wrapped

in a commit annotation of T and replacing subexpres-

sions of the form CidT ′,End(T ′)(k
′) in the remaining sum-

mands with CidT ′,End(T ′)(xid). The relational translation

TR(RR(T )) of this reenactment query is

TR(RR(T )) = σU1(Rew(RR(T )))

Rew(RR(T )) = ρSch(Rel(R[T ]))(Rew(q)× ρUC ({(true)}))
Rew(q) = (ΠA,P(R),True→U1(σθ(Rew(R[νu]))))

∪ (σ¬θ(Rew(R[νu]))× ρU1({(false)}))
Rew(R[νu]) = ΠSch(R),Xid,TTb→V,Id,Sch(R)→P(R)(Rνu)

Consider k = R[T ](t) for an arbitrary tuple t. As

shown in the proof for Theorem 7.1 each summand ki
in k will be of the form

CidT,End(T )(U
id
T,ν(u1)

(CidT ′,End(T ′)(xid)))

with T ′ 6= T . In the relational encoding each such

summand ki will represented as

tki = t . T ′ . End(T ′) . id . t(xid) . True . True

where the two True constants are for attributes Uc
and U1. We have to prove that iff ki in R[T ](t) then tki
is in the result of TR(RR(T )).

⇒: If ki is a summand then there exists a tuple t′ corre-

sponding to CidT ′,End(T ′)(xid) inRνu . Thus, in Rew(R[νu])

there will be a tuple t′ . T ′ . End(T ′) . id . t(xid).

This tuple fulfills the condition θ of the update, be-

cause otherwise ki would not occur in R[T ](t). Hence,

it will be in the left input of the union in Rew(q)

and would fulfill the condition of the final selection

σU1 . After application of the projection ΠA,..., we get
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t′ . T ′ . End(T ′) . id . t(xid) . True. Because of the

crossproduct with ρUC ({(true})) the final result tuple

will be t . T ′ .End(T ′) . id . t(xid) . True . True = tki .

⇐: Assume that tki is in the result of TR(RR(T )). Since

the final operation in TR(RR(T )) is a selection on U1
and U1 is only true in the left branch of the union in

Rew(q) we know that this tuple is from the left in-

put of the union. This immediately implies that there

has to exist a tuple t′ . T ′ . End(T ′) . id . t(xid) in

Rew(R[T ]) which fulfills the condition of the update

u1. Thus, a summand ki corresponding to this tuple

will be in R[T ](t).

u1 = I[Q(R1, . . . , Rn), T, ν](R): The reenactment query

for u1 is R[T, νu] ∪ αI,T,νu+1(Q(D[T, νu])). The rela-

tional rewrite for TR(RR(T )) is

TR(RR(T )) = σU1(Rew(RR(T )))

Rew(RR(T )) = q1 ∪ q2
q1 = (ρSch(R),ID1(P(R))(Rew(R[νu]))

×Null(ID2(P(Q) . U1))))

q2 = (ΠSch(q2),ID1(P(R)),ID2(P(Q).U1))(

ρSch(Q),ID2(P(Q).U1)(

ΠSch(Q),P(Q),True→U1(Rew(Q))

×Null(ID1(P(R[νu])))))

Rew(R[νu]) = ΠSch(R),Xid,TTb→V,Id,Sch(R)→P (R)(Rνu)

Rew(Ri[νu]) = ΠSch(Ri),Xid,TTb→V,Id,Sch(Ri)→P (Ri)(Riνu)

Since U1 is true in the right input of the union and false

in the left input, because of Null(ID2(P(Q) . U1))),

any result returned by TR(RR(T )) originates in the

right input. It remains to be shown that Rew(Q) pro-

duces the correct result, because the additional version

annotation attributes (U1 and UC), derived in the same

fashion as for update, are true. Note that for queries the

rewrite rules are the rewrite rules introduced in Perm

which were shown to derive a relational encoding of

provenance polynomials [17] except that a snapshot of

relations is accessed and that the provenance attributes

for a relation R contain additional attributes Xid, V ,

and Id. Since these additional attributes are not treated

any different from the other provenance attributes of R

in the rewrite rules, the correctness of Rew(Q) follows

from the correctness of the Perm rewrites.

u = D[θ, T, ν](R): analog to the case for updates.

Inductive Step: Let T = u1, . . . , un+1, c and assume

that the relational rewrite for any transaction of length

up to n is correct. We now show that the same holds for

T . We distinguish between three cases based on whether

the last operation is an update, insert, or delete. We

need to show that the new parts of annotations added

by un+1 under Kν-relational semantics are correctly en-

coded and that the correct encoding of annotations in

the input is preserved in the output if these annotation

occur in an annotation produced by un+1.

un+1 = U [θ,A, T, ν](R): Each summand ki in an anno-

tation k = R[T ](t) for a tuple t is either of the from

CidT,End(T )(U
id
T,ν(un+1)

(k′i)

where k′i is an annotation produced by any of the

previous updates of T that affected R or a summand

in an annotation on a tuple in R[Start(T )] (in case

the annotated tuple in the input of un+1 fulfills the

condition the update un+1 and, thus, was updated) or

CidT,End(T )(k
′
i)

The first case is analog to the base case for updates

with the only exception that the relational encoding of

k′i is more complex. However, observe that the proof of

the base case does not make use of the properties of

k′i. Thus, the relational encoding of all summands that

belong to the first type is correct in TR(Rew(T )). In

the second case, observe that ki would occur as a sum-

mand in an annotation on tuple t in T ′ = u1, . . . , un, c

and according to the induction hypothesis the encod-

ing of ki is correct in the input of un+1. Let tki be

this relational encoding. It remains to be shown that

the relational translation of RR(un+1) propagates this

encoding to its output assuming that t does not fulfill

the update’s condition (otherwise ki would not occur

in the annotation of t in R[T ]). Since t does not fulfill
θ, tki would is present in the right input of the union

in Rew(q) (where q is the union in the reenactment

query for un+1 as in the proof of the base case for up-

dates). Tuple t fulfills ¬θ and, thus is extended with

(false, true) (attributes Un+1 and UC). That is, as was

to be proven TR(RR(T )) returns tk1 . false . true.

u = I[Q(R1, . . . , Rn), T, ν](R): Consider a summand ki
in an annotation k = R[T ](t) for a tuple t. Again, we

have to distinguish between two cases: summands pro-

duced by the insert and summands that are already

present in the previous version of relation R before ex-

ecuting the insert. The correctness of the first case fol-

lows based on the proof for the base case if for ki =

CidT,End(T )(I
id
T,ν(un+1)

(ki1 × . . . × kin) we have that for

each kij the relational encoding of kij in the version

of relation Rj before execution of the insert is prop-

agated correctly by the relational translations of the

reenactment query for un+1. This is proven analog to

the base case based on the correctness of the Perm
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rewrites for regular provenance polynomials and the

observation that the propagation for MV-semiring el-

ements only differs in the propagated attributes and

these attributes are not affected by the rewrite rules.

The second case is trivial since the reenactment query

for an insert unions the relational encoding of the pre-

vious version of relation R before the insert with the

result of the insert’s query. Thus, any tuple in the pre-

vious version of R is propagated by extending it with

(false, true) (attributes Un+1 and UC).

u = D[θ, T, ν](R): The case for delete is analog to the

case for updates.
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