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Abstract—Database provenance explains how results are derived by queries. However, many use cases such as auditing and

debugging of transactions require understanding of how the current state of a database was derived by a transactional history. We

present MV-semirings, a provenancemodel for queries and transactional histories that supports two commonmulti-version concurrency

control protocols: snapshot isolation (SI) and read committed snapshot isolation (RC-SI). Furthermore, we introduce an approach for

retroactively capturing such provenance using reenactment, a novel technique for replaying a transactional history with provenance

capture. Reenactment exploits the time travel and audit logging capabilities of modern DBMS to replay parts of a transactional history

using queries. Importantly, our technique requires no changes to the transactional workload or underlying DBMS and results in only

moderate runtime overhead for transactions.We have implemented our approach on top of a commercial DBMS and our experiments

confirm that by applying novel optimizations we can efficiently capture provenance for complex transactions over large data sets.

Index Terms—Databases, provenance, concurrency control, transaction processing, reenactment
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1 INTRODUCTION

PROVENANCE, information about the creation process and
origin of data, is critical for many applications including

auditing, debugging data by tracing erroneous results back
to erroneous inputs, and understanding complex transfor-
mations. How to model and capture the provenance of data-
base queries is relatively well understood. Most approaches
model provenance as annotations on data (e.g., tuples) and
propagate annotations to compute the annotation (prove-
nance) of a query result. That is, the annotation of a tuple t
in the result of a query records which input tuples are in
tuple t’s provenance and how these inputs were combined
to derive tuple t. Annotation propagation techniques have
been pioneered by systems such as Perm [1], DBNotes [2],
Orchestra [3], and others. However, many use cases require
the user to understand how data was derived by updates
executed as part of concurrent transactions which is not
supported by current approaches. For instance, tracing a
query result tuple back to its provenance in the query input
is not sufficient for auditing, because this type of prove-
nance does not explain how the query inputs were created
(i.e., inserted or updated by past transactions). Another
motivating example is transaction debugging where a

developer should be able to inspect the execution of a trans-
action after the fact to determine the cause of an erroneous
outcome. This requires a provenance model that exposes
the inner states of relations within transactions and their
interactions with each other including concurrency anoma-
lies which occur under non-serializable isolation levels.

Given the lack of support for transactional provenance,
users resort to the audit logging and time travel functionality
natively supported by many DBMS (e.g., Oracle, DB2,
SQLServer) for their auditing and debugging needs. Time
travel enables access to the transaction time history of rela-
tions, i.e., the user can query past committed versions of the
database. An audit log records which SQL statements were
executed by which user at which time and as part of which
transaction. While these features can unearth facts about past
operations and database states, there are limitations. For
example, these features can not be used to track dependencies
based on read operations, e.g., how the tuples created by an
INSERT INTO SELECT ... depend on the tuples accessed by
the SELECT query. Also, they can not expose which state-
ments of a transaction affected a tuple which is important for
debugging transaction execution. Our approach overcomes
these limitations.We focus on transactions executed using the
snapshot isolation (SI) concurrency control protocol and the
read committed variant of this protocol (RC-SI).

Snapshot Isolation. Many DBMS such as PostgreSQL, Ora-
cle, and MSSQL support SI. Under SI [4] each transaction T
sees a snapshot of the database containing changes of trans-
actions that have committed before T started and T ’s own
changes. Using SI, reads never block concurrent reads or
writes, because each transaction sees a consistent database
version as of its start. To support snapshots, old tuple ver-
sions cannot be deleted until all transactions that may
need them have finished. Typically, this is implemented by
storing multiple timestamped versions of each tuple and
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assigning a timestamp to every transaction as of its start that
determines which database version it will see (its snapshot).
Concurrent writes are allowed under SI. However, if several
concurrent transactions attempt to write the same data item,
only one will be allowed to commit. This is often imple-
mented using write locks that are held until transaction
commit. A transaction T waiting for a lock is aborted if the
transaction T 0 holding the lock commits (and continues if T 0

aborts). SI corresponds to isolation level SERIALIZE in sys-
tems such as Oracle and older versions of PostgreSQL.

Read Committed Snapshot Isolation (RC-SI). Under state-
ment-level snapshot isolation or RC-SI, each statement of a
transaction T sees previous changes of T and of concurrent
transactions that committed before the start of the state-
ment. To guarantee that each statement sees a consistent
snapshot, a statement waiting for a write-lock is restarted
when the transaction holding the lock commits. We refer to
this variant of SI as read-committed snapshot isolation, because
it corresponds to isolation level READ COMMITTED in, e.g.,
Oracle and PostgreSQL. Note that some databases (e.g.,
PostgreSQL) resume the execution of the statement when a
lock is released instead of restarting it.

Example 1. Fig. 2a shows an example database storing infor-
mation about banking accounts and overdrafts. Ignore the
annotations to the left of each tuple for now. Suppose
Bob executed the Transactions T5 shown in Fig. 1 under SI.
Bob implemented a policy of giving a $100 bonus to all
savings accounts and an additional $300 bonus to all sav-
ings accounts with a balance higher than $5000. The data-
base instance after the execution of Transaction T5 is
shown in Fig. 2b. Attribute values affected by an update
are highlighted in red. Meanwhile, Alice did withdraw
money ($1500) from her checking account which triggered
Transaction T6. This transaction inserts an overdraft
record into the relation Overdraft(cust,bal) since
the total balance of Alice’s accounts is negative after the
withdrawal. The states of the Account and Overdraft

relations after the execution of both transactions are shown
in Fig. 2c. Alice, surprised to receive an overdraft notice,
checks her account. She observes that the total balance of
her accounts is positive and, thus, she should not have
received the $100 overdraft. This unexpected result is
caused by a concurrency anomaly called write-skew [4]
which can occur under SI. Recall that under SI each
Transaction T executes over a private snapshot which
contains changes made by transactions that committed

before T ’s start. Hence, Transactions T6 sees the previous
balance of $1000 for Alice’s savings account and after the
withdrawal of $1500 from her checking account, it com-
putes a total balance of 1000þ ð� 1100Þ ¼ �100 < 0.

Auditing or debugging errors such as the one illustrated in
the example above is virtually impossible without access to
past database states and operations. For the above example,
an audit log would provide information as shown in Fig. 1
while time travel gives a user access to the database states as
shown in Fig. 2. However, these database states are not very
helpful in determining the cause of the overdraft, because
Alice’s total account balance is non-negative after the execu-
tion of both transactions. Technically, once the error is
detected, a user with a deep understanding of SI may be able
to recognize that this particular interleaving of operations can
lead to awrite-skew.However, even for a power user itwould
be challenging to determine the cause for such errors if several
other transactions were run concurrently with the transac-
tions involved in the error. Thus, this example motivates the
need for capturing the provenance of tuples that are updated
by concurrent transactions. We now give a brief introduction
of our provenance model for transactions and then demon-
strate how it can be used to understand unexpected results.

1.1 A Provenance Model for Transactions
Our provenance model called Multi-version semirings (MV-
semirings) records provenance as annotations on tuples.
While there are existing solutions for computing the prove-
nance of updates [3], [5], [6], these approaches do not sup-
port transactions and are not integrated with provenance
for queries. The annotation of a tuple t in our model is a
symbolic expression that encodes 1) which tuples where
used to derive t (variables, e.g., x1, x2, ...represent tuples)
2) how these tuples have been combined (addition and mul-
tiplication represent alternative and joint use of inputs) 3)
which DML operations executed by which transactions at
which time did create the annotated tuple version (repre-
sented by function symbols which we call version annota-
tions). For example, the annotation IidT;nðxÞ represents the fact
that an insert of transaction T executed at time n created
a tuple with identifier id that is represented as variable x.
Similarly, U , D, and C represent update, delete, and commit
operations. Note that we do not consider provenance
dependencies at the application side in this work. For

Fig. 2. Running example database states.

Fig. 1. Example audit log for a transactional history.
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instance, consider an application that runs a query, stores the
result in a client-side variable, and then uses the variable in
an update statement. Detecting such dependencies requires
tracking provenance of procedural programming languages
which is beyond the scope of this work. The annotations
shown to the left of each tuple in Fig. 2 are the provenance
annotations of these tuples in our model. For example, con-
sider C1

T1;4
ðI1T1;2ðx1ÞÞ, the annotation of the first tuple shown

in Fig. 2a. Based on this annotationwe know that this tuple has
tuple identifier 1 and was created by an insert of a Transaction
T1 executed at time 2. This transaction did commit this tuple
version at time 3. Typically, a user would like to be able to
drill down into a part of a history instead of tracing the
origin of a tuple through the whole history of the database.
Ourmodel supports this type of drill down by replacing sub-
expressions in an annotation with fresh variables to prune
parts of the history from a tuple’s annotation. For example, if
the user wants to focus her investigation on the operations
of Transaction T5 then this is achieved in our model by
replacing subexpressions enclosed in commit operations by
transactions which committed before T5’s start with fresh
variables and removing tuples that were not affected by a

transaction. For example, C2
T5;14

ðU2
T5;11

ðC2
T1;4

ðI2T1;3ðx2ÞÞÞÞ, the
annotation of the second tuple in Fig. 2b, would be replaced

with C2
T5;14

ðU2
T5;11

ðCT1; 4
2ðc2ÞÞÞ for some fresh variable c2. To

ease understanding of provenance expressed in our model
and to enable queries over provenance, we define relational
encodings of such provenance annotations. These encodings
are quite flexible in that the user can choose, e.g., whether 1)
version annotations are shown and 2) how tuple versions are
represented (either as a pair of tuple identifier and time-
stamp or using the tuple’s attribute values). For instance,
Fig. 3 shows the relational encoding of the provenance of the
Account relation restricted to operations by Transaction T5

(annotations in our model are shown on the left). Here the
user has chosen the option to encode tuples in the prove-
nance by their attribute values and to show intermediate
tuple versions produced by the transaction. We explain this
example inmore detail below.

Tracking Read and Write Dependencies of Tuples. One way
to debug the example error is to determine which tuple ver-
sions were used to derive the erroneous overdraft tuple.
This would unveil that it was computed based on Alice’s
savings account balance before the bonus was added by
Transaction T5. Note that this is a read dependency. The sec-
ond account tuple version from Fig. 2a was read by the
INSERT INTO Overdraft SELECT ... statement which was
executed by Transaction T6. In our model, this is encoded in
the annotation of the new overdraft tuple which includes
C2

T1;4
ðI2T1;3ðx2ÞÞ, the annotation of the account tuple from

which it was derived. Time travel can expose write depen-
dencies caused by updates if a tuple can be identified across
versions (e.g., the DBMS uses immutable tuple identifiers).
However, it cannot be used to track read dependencies.

Tracking Applications of Updates. Understanding which
statements of which transactions were involved in the

derivation of a tuple version is important to answer auditing
questions such as “What data was affected by statements
executed by a compromiseduser account?”. Audit logs record
which statements were executed and when they were exe-
cuted. However, even when this information is correlated
with a transaction time history using time travel, it is highly
non-trivial to answer such questions since 1) only write tuple
dependencies are available and 2) time travel only exposes
committed database states. In our model, this information is
encoded in the nesting of version annotations. For example,
based on the annotation of the second tuple in the database
state shown in Fig. 2bwe know that this tuple versionwas cre-
ated by an update of Transaction T5 which was applied to a
tuple created by an insert of Transaction T1. Furthermore, we
know when these operations were executed and when these
transactions did commit. The annotation of the new overdraft
tuple in the running example shows that none of the updates
of Transaction T5 (adding the account bonuses) did affect the
tuples onwhich the overdraft is based on.

Exposing Intermediate States. Our relational encoding of
provenance can expose intermediate states of relations
produced by transactions, e.g., the state of a relation after a
particular operation. Furthermore, the encoding records
dependencies across such states. This is useful for investi-
gating whether and how an update modified a tuple.

Example 2. Recall that Fig. 3 shows the provenance of the
Account relation w.r.t. Transaction T5. The provenance
annotation of each tuple is encoded in additional attributes
that are added to the schema. A “provenance” attribute
P ðattr; uÞ stores the value of attribute attr for the version of
a tuple in the provenance seen by the update statement u.
We use u1 and u2 to denote the updates of Transaction T5.
For instance, attributes P ðbal; u1Þ and P ðbal; u2Þ store the
balance of a tuple before the execution of update u1 respec-
tive u2. The boolean attributeU i storeswhether the version
annotation for update ui is part of the provenance, i.e.,
whether ui affected a tuple. Suppose manager Tom
wants to know which accounts received the $300 bonus
implemented by the update u2 and what was the previ-
ous balance of these accounts before the bonus. This
question can be answered using the SQL query shown
below where Prov denotes the encoding from Fig. 3.

SELECT P(cust,u2), P(bal,u2) FROM Prov WHERE U2 =

True

Understanding Errors Caused by Concurrency Anomalies.
We have demonstrated in [7] how our model can be
used to debug errors caused by concurrency anomalies
such as the write-skew [4] in the running example. Errors
caused by anomalies are common, but hard to debug
since they may only occur for a particular interleaving of
transactions.

1.2 Capturing Provenance with Reenactment
We have developed a provenance capture mechanism that
produces the relational encoding of our provenance model

Fig. 3. Relational encoding of the provenance and intermediate results for relation Account with respect to Transaction T5.
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for a provenance request and have implemented this mecha-
nism in our provenance database middleware called GProM
(https://github.com/IITDBGroup/gprom). We use reenact-
ment, a novel technique for replaying a transactional history
(or parts thereof) using queries instrumented to capture
provenance. Reenactment retroactively captures the prove-
nance of tuple versions produced by a history. Notably,
our approach does not require any eager materialization of
provenance during transaction execution. Hence, we avoid
paying the runtime and storage overhead of provenance cap-
ture for every transaction executed by the system. Reenact-
ment solely relies on the information provided by audit logs
and time travel and is expressible in SQL. Many users that
would be interested in provenance already use these
features. Furthermore, as we demonstrate in Section 7.3, the
overhead of activating these features is quite manageable
(less than 20 percent for the workloads we considered).
Importantly, our approach does not require any modifica-
tions of the underlying DBMS or transactional workload.

We have introduced our vision of GProM in [8] and have
presented our approach for RC-SI in [9]. The main contribu-
tions of this work are:

� We introduce multi-version semirings (MV-semirings),
a provenance model for database queries and trans-
actions. In our model, tuples are annotated with
symbolic expressions that model dependencies
among tuples and which operations affected a tuple.
We use a relational encoding of our model for query-
ing provenance.

� We introduce reenactment, a technique for replaying a
transactional history using queries. The reenactment
query for a transaction T is equivalent to T within the
context of a history under MV-semiring semantics,
i.e., it returns the same database state and has the
same provenance. We reduce reenactment queries
with MV-semiring semantics to queries in standard
SQL that return a relational encoding of provenance.

� We develop optimizations for reenacting SI and RC-
SI transactions including alternative ways of encod-
ing reenactment as SQL queries and filtering unre-
lated information from the provenance early on.

� Our experiments demonstrate that 1) provenance cap-
ture based on reenactment is very efficient and scales to
large databases, complex transactions, and large num-
ber of updates; and 2) the storage and runtime overhead
incurred by time travel and audit logging is tolerable
and significantly smaller than the overhead of eagerly
capturing provenance during transaction execution.

The remainder of this paper is organized as follows.
We review related work in Section 2 and introduce our
provenance model in Section 3. We define an annotated
semantics of SI and RC-SI transactional histories in Section 4,
cover reenactment in Section 5, discuss implementation and
optimizations in Section 6, present experimental results in
Section 7, and conclude in Section 8.

2 RELATED WORK

Several provenance models for relational queries have been
introduced in relatedwork includingWhy-provenance,min-
imal Why-provenance [10], and Lineage [11]. Provenance
polynomials introduced by Green et al. [12] generalize these
provenance models for positive relational algebra queries
(RAþ). Green’s semiring annotation framework has been the

target of extensive research including relations annotated
with annotations from multiple semirings [13], rewriting
queries to minimize provenance [14], factorization of prove-
nance polynomials [15], extraction of provenance polyno-
mials from the PI-CS [1] model, and extensions for
aggregation [16] and set difference [17]. Our MV-semirings
generalize this model to support updates and transactions.
Similar to our approach, Lipstick [18], LogicBlox [19],
DBNotes [2], Perm [1], andmany other systems encode prov-
enance annotations in a standard data model and use query
instrumentation to propagate these annotations. Several
papers [5], [6] study provenance for updates, e.g., Vansum-
meren et al. [5] compute provenance for SQL DML state-
ments. However, these approaches modify updates to
eagerly capture provenance, do not track provenance
through concurrent transactions, and are often not inte-
grated with provenance for queries. We take interactions
among transactions into account using a generalization of
the semiring model for transactions. Command logs/audit
logs provide information about the update statements and
transactions that were executed, but they do not directly
encode data dependencies and tuple versions.

3 THE MV-SEMIRING MODEL

We now formally introduce our MV-semiring model that
extends K-relations with support for transactions.

K-Relations. MV-semirings are based on the semiring
provenance framework [12]. In this framework, relations
are annotated with elements from an annotation domain K.
Let K ¼ ðK;þK; �K; 0K; 1KÞ be a commutative semiring. A
K-relation R is a (total) function that maps tuples to elements
from K with the convention that tuples mapped to 0K, the 0
element of the semiring, are not in the relation. A structure
K is a commutative semiring if it fulfills the equational laws
shown on the top of Fig. 4. Depending on the domainK, the
annotations can serve different purposes. For instance, the
semiring N, natural numbers with standard arithmetics, cor-
responds to bag semantics. If a tuple t occurs twice in a bag
semantics relation R, then this tuple would be annotated
with 2 in the N-relation corresponding to R. As we will see
in the following, the operators of the positive relational alge-
bra (RAþ) over K-relations are defined by combining input
annotations using the þK and �K operations where addition
represents alternative use of inputs (e.g., union) and multi-
plication denotes conjunctive use (e.g., join).

Provenance Polynomials. Provenance polynomials (semir-
ing N½X�), polynomials over a set of variables X which

Fig. 4. Equivalence relations for Kn.
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represent tuples in the database, model an expressive type
of provenance by encoding how a query result tuple was
derived by combining input tuples. Using N½X�, every tuple
in an instance is annotated with a unique variable x 2 X
and query results are annotated with polynomials over
these variables. For example, a tuple that was derived by
joining tuples identified by x1 and x2 would be annotated
with x1 � x2. Since our main concern is provenance, we
mostly limit the discussion to N½X� and its MV extension.

MV-Semirings.MV-semirings are a specific class of semir-
ings that encode the derivation of tuples based on a history
of transactional updates. For each semiring K, there exists a
corresponding semiring Kn, e.g., N½X�n is the MV-semiring
corresponding to the provenance polynomials semiring
N½X�. Since N encodes bag semantic relations, Nn represents
bag semantics with embedded history. Fig. 2 shows exam-
ples of N½X�n annotations. In these symbolic expressions,
variables (e.g., x1, x2, ...) represent freshly inserted tuples
and uninterpreted function symbols (the aforementioned
version annotations) encode which operations were applied
to the tuple. The nesting of version annotations records the
sequence of operations that created a tuple version.

Version Annotations. A version annotation Xid
T;nðkÞ denotes

that an operation of type X (update U , insert I, delete D, or
commit C) that was executed at time n� 1 by transaction T
affected a previous version of a tuple with identifier id and
previous provenance k. Assuming domains of tuple identi-
fiers I, version identifiers V, and transaction identifiers T,
let A denote the set of all version annotations

IidT;n; U
id
T;n; D

id
T;n; C

id
T;n for id 2 I; n 2 V; T 2 T: (1)

Example 3. Consider the N½X�n-relation Account in Fig. 2b.
The second tuple is annotated with C2

T5;14
ðU2

T5;11
ðC2

T1;4

ðI2T1;3ðx2ÞÞÞÞ, i.e., it was created by an update of Transac-

tion T5, which updated a tuple that was inserted by T1.
Based on the outermost commit annotation, this tuple
version is visible to transactions starting after version 13.

MV-Semiring Annotation Domain. Fixing a semiring K, we
define the domain of semiring Kn based on a set of finite
symbolic expressions P whose syntax is defined by the
grammar shown below where k 2 K and A 2 A

P :¼ k jP þ P jP � P j AðP Þ: (2)

The semantics of these expressions is defined in Definition 1
and Fig. 4. Note that þ and � in these expressions are used
to encode that a tuple depends on multiple input tuples,
e.g., a query such as the one used by the insert of example
Transaction T6 or an update that modifies two tuples that
are distinct in the input to be the same in the output (e.g.,
UPDATE Account SET typ = ’Savings’). For example,
consider a query PtypðAccountÞ evaluated over the instance
from Fig. 2a. The result tuple (Savings) is derived from
the second and third tuple in the Account table (the two
tuples with this value in attribute typ) and, thus, would be

annotated with C2
T1;4

ðI2T1;3ðx2ÞÞþ C3
T2;3

ðI3T2;1ðx3ÞÞ where addi-

tion represents alternative use of these two tuples. We
would expect certain symbolic expressions produced by the
grammar above to be equivalent, e.g., expressions in the
embedded semiring K can be evaluated using the opera-
tions of the semiring (k1þ k2 ¼ k1 þK k2) and updating a

non-existing tuple does not lead to an existing tuple
(Að0KÞ ¼ 0K). This is achieved by defining domain Kn as
the set of equivalence classes (denoted as ½��) for expres-
sions in P based on the equivalences shown in Fig. 4.

Definition 1. Let K ¼ ðK;þK; �K; 0K; 1KÞ be a commutative
semiring. The MV-semiring Kn is the structure

Kn ¼ ðKn;þKn ; �Kn ; ½0K��; ½1K��Þ;
where �Kn and þKn are defined as

½k�� �Kn ½k0�� ¼ ½k � k0�� ½k�� þKn ½k0�� ¼ ½kþ k0��:

Addition and multiplication output a symbolic expres-
sion by connecting the inputs withþ or � and then output the
equivalence class for this expression. Consider semiring N,
which encodes bag semantics relations by annotating each
tuple with a natural number representing its multiplicity.
For example, assume a tuple t is annotated with the
Nn-expression U1

T;nð3 � 6Þ. Here 3 and 6, elements from the
embedded semiring N, represent multiplicities. Applying
equivalence k � k0 ¼ k �K k0, we can evaluate 3 � 6 ¼ 3 �N 6 ¼ 18.
Thus, t appears with multiplicity 18 and was updated by an
update (U) of transaction T . The update was run at time
n� 1 and, thus, the tuple became valid at time n.

Normal Form and Admissible Instances. Kn expressions
admit a (non unique) normal form representing an element
k 2 Kn as a sum

Pn
i¼0 ki where none of the ki contains any

addition operations. AnyKn element can be brought into this
normal form by applying the equivalences from Fig. 4. Intui-
tively, each summand in the normal form corresponds to a
tuple under bag semantics. Thus, we will sometimes refer to
a summand as a tuple version. Assuming an arbitrary, but
fixed, order over such summands we can address elements
in such a sum by position. We use nðkÞ to denote the number
of summands in a normalized annotation k and k½i� to refer
to the ith element in the sum according to the assumed order.
We use this normal form to define updates and transactions.
Note that some expressions produced by the grammar
in Equation (2) can not be produced by any transactional
history. For instance, U1

T;11ðC1
T;10ð. . .ÞÞ is invalid, because it

implies that Transaction T executed an update after its com-
mit. AKn instance is admissible if either 1) it is empty or 2) it is
the result of evaluating a transactional history (formally
defined later) over an admissible instance.

Queries and Update Operations. We extend the standard
definition of positive relational algebra (RAþ) over
K-relations [12] with an operator ft ! kg that creates a sin-
gleton relation (a tuple t annotated with k). Let t:A denote
the projection of a tuple t on a list of projection expressions
A and t½R� to denote the projection of t on the attributes
of relation R. For a condition u and tuple t, uðtÞ denotes a
function that returns 1K if t � u and 0K otherwise.

Definition 2. Let R and S denote K-relations, t, t0 denote tuples,
and k 2 K. The operators ofRAþ are defined as

PAðRÞðtÞ ¼
X

t0:t0:A¼t

Rðt0Þ ðR [ SÞðtÞ ¼ RðtÞ þ SðtÞ

suðRÞðtÞ ¼ RðtÞ � uðtÞ ft0 ! kgðtÞ ¼ k if t ¼ t0

0K else

�
ðR ffl SÞðtÞ ¼ Rðt½R�Þ � Sðt½S�Þ ðfor R [ S tuple tÞ:
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Updates are also defined using semiring operations.
However, in contrast to queries, they create version annota-
tions. We support updates corresponding to SQL constructs
INSERT, UPDATE, DELETE, and COMMIT. An operation is
executed at a time n as part of a transaction T . Updates take
a normalized, admissible Kn-relation R as an input and
return an updated version of R. An insertion I½Q;T; n�ðRÞ
inserts the result of query Q into relation R. The annotations
of inserted tuples are wrapped in version annotations and
are assigned fresh identifiers (idnew). An update operation
U½u; A; T; n�ðRÞ applies projection expressions in A to tuples
that fulfill condition u. Both U½u; A; T; n�ðRÞ and delete
D½u; T; n�ðRÞ wrap annotations of tuples fulfilling condition
u in version annotations. A commit C½T; n�ðRÞ adds commit
version annotations. We use nðuÞ to denote the version
when an update u was executed and idðkÞ to denote the id
of the outermost version annotation of k 2 Kn (well-defined
for admissible Kn-relations).

Definition 3. Let R be a normalized, admissible Kn-relation. Let
A be a list of projection expressions with the same arity as R
and idnew to denote a fresh id. Let Q be a query over a database
D such that for every ft ! kg operation in Q we have k 2 K.
We define updates over Kn-relations as

U½u; A; T; n�ðRÞðtÞ ¼ RðtÞ � ð:uÞðtÞ

þ
X

t0:t0:A¼t

XnðRðt0ÞÞ

i¼0

U
idðRðt0Þ½i�Þ
T;nþ1 ðRðt0Þ½i�Þ � uðt0Þ

I½Q; T; n�ðRÞðtÞ ¼ RðtÞ þ IidnewT;nþ1ðQðDÞðtÞÞ

D½u; T; n�ðRÞðtÞ ¼ RðtÞ � ð:uÞðtÞ

þ
XnðRðtÞÞ

i¼0

D
idðRðtÞ½i�Þ
T;nþ1 ðRðtÞ½i�Þ � uðtÞ

C½T; n�ðRÞðtÞ ¼
XnðRðtÞÞ

i¼0

com½T; n�ðRðtÞ½i�Þ

com½T; n�ðkÞ ¼ Cid
T;nþ1ðkÞ ifk ¼ Xid

T;n0 ðk0Þ ^X 2 fU; I;Dg
k else:

(

As a convention, if an attribute a is not listed in the list of
expressions A of an update then a ! a is assumed. For
instance, the first update of example transaction T5 would
be written as U½typ ¼0 Savings0; balþ 100 ! bal; T5; 10�ðAccountÞ.
What tuple identifiers (idnew) are assigned by inserts to new
tuples is irrelevant as long as identifiers are sufficient for
uniquely identifying tuples (see [20]).

Properties of MV-Semirings. We now discuss several prop-
erties of our model. A formal treatment including proofs is
presented in our technical report [20]. An important property
of provenance polynomials is that the result of a query Q in
any semiring K can be computed from the N½X� result of Q
by replacing variables in polynomials with elements from K
and evaluating the resulting expression in K. This property
was proven by Green et al. [12] by demonstrating 1) that
the process described above is a semiring homomorphism,
i.e., a mapping h : N½X� ! K that agreeswith semiring opera-
tions; and 2) that homomorphisms commute with queries. In
[20], we demonstrate that any homomorphism h : K1 ! K2

can be lifted to a “history-preserving” homomorphism

hn : K1
n ! K2

n by applying h to eachK1 element in a K1
n ele-

ment k. Lifted homomorphisms also commute with updates
and transactional histories. Thus, N½X�n enjoys the same
generality property among MV-semirings as N½X� does for
semirings. Any Kn-relation can be transformed into a corre-
sponding K-relation, by “evaluating” the history embedded
in aKn element k. This is achieved through a homomorphism
hU : Kn ! K that evaluates the symbolic expression k by
interpreting version annotations as functions from K ! K
and by interpreting the operations þ and � in semiring K.
Insert, commit, and update annotations are interpreted as the
identify function onKwhereas deletion annotations are inter-
preted as the function that maps every input to 0K. For exam-
ple, consider C4

T6;16
ðI4T6;15ðU1

T6;12
ðC1

T1;4
ðI1T1;2ðx1ÞÞ � C2

T1;4
ðI2T1;3ðx2ÞÞÞÞÞ,

the annotation of the overdraft tuple in Fig. 2c. By interpreting
the version annotations as the identity function on N½X�, this
expression would be transformed into the N½X�-expression
x1 � x2. Furthermore, we demonstrate that Q 	N½X�n Q0 )
Q 	Kn Q0 for any MV-semiring Kn. Thus, the equivalence
between histories and reenactment queries that we prove for
N½X�n in Section 5 implies equivalence for any Kn. In particu-
lar, reenactment works for bag semantics (semiringNn).

4 TRANSACTIONS AND HISTORIES

We now define transactional histories for Kn-databases
under SI and RC-SI in a way that is backward compatible to
the bag semantics version of SI/RC-SI. A transaction T ¼ fu1;
. . . ; un; cg is a sequence of update operations followed by a
commit operation (c) with nðuiÞ < nðujÞ for i < j. A history
H ¼ fT1; . . . ; Tng over a database D is a set of transactions
over D with at most one operation at each version n. We use
StartðT Þ ¼ nðu1Þ and EndðT Þ ¼ nðcÞ to denote the time when
transaction T did start (respective did commit). Note that an
update u in our algebra records explicitly when it was exe-
cuted in its version identifier nðuÞ. We use R½n� to denote the
state of relation R at time n produced by the history. Note
that R½n� only contains committed changes. R½T; n� denotes
relation R as seen by transaction T at time n. Our version
annotations do not explicitly store when a tuple version was
invalidated by an update. Invalidation is implicitly encoded
in the nesting of version annotations.

Definition 4. Let H be a history over a database D. The version
R½n� of relation R 2 D at time n and the version R½T; n� of
relation R visible within transaction T 2 H at time n are
defined in Figs. 5 and 6 for SI and RC-SI, respectively.

4.1 Snapshot Isolation Histories
A transaction T under SI sees 1) its own updates and 2)
the updates of transactions that have committed before
StartðT Þ. The first condition is encoded in the definition of
R½T; n� and the second one in the definition of R½n�.

Relation Versions Visible Inside an SI Transaction. R½T; n�
contains the result of applying the latest update of T before n
to the version valid before the update. As a convention, we
define R½T; n� ¼ ; if n < StartðT Þ. The 1st update in a trans-
action sees R½StartðT Þ�, the version of R containing all
changes of transactions committed before T started (2nd
case in Fig. 5a). We explain how to computeR½n� below. Con-
sider a transaction T ¼ u1; . . . ; un; c and assume for simplic-
ity that every update is modifying the same relation R. The
2nd update u2 within the transaction will see the version ofR
produced by applying update u1 to R½StartðT Þ�, the 3rd
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update u3 will run over the version ofR produced by u2, and
so on. This is encoded by the 3rd and 5th case in Fig. 5a. u
denotes one of the operations as defined in Definition 3. If T
executed an update on R at version n� 1 then R½T; n� is the
result of applying the update to R½T; n� 1�. If transaction
T committed at n� 1 then we apply a commit operation
(Definition 3) to R½T; n� 1� (4th case). If the transaction did
not execute any operation at n� 1 (including the case where
n > EndðT Þ þ 1) thenR½T; n� ¼ R½T; n� 1� (5th case).

Relation Versions Containing Committed Changes. Under SI,
a transaction starting at n will see a version of relation R
that contains changes of transactions committed before n.
Recall that we use R½n� to denote this version of R. Figs. 5b,
5c, and 5d show the definition of R½n�. R½n� can be written as
a union (sum) over all tuple versions (annotations) created
by transactions that committed before n as long as the same
tuple version is not included more than once. Furthermore,
we should not include annotations that correspond to tuple
versions which have been replaced with newer versions or
were deleted. This is checked using a predicate validAt.

Determining Valid Tuple Versions. validAtðT; t; k; nÞ evalu-
ates to 1 if two conditions are met: 1) annotation k was pro-
duced by transaction T , i.e., the outermost version annotation
in k is from T ; 2) the tuple version corresponding to kwas not
updated (predicate updatedðT 0; t; k; nÞ) by another transac-
tion T 0 that committed before n (EndðT 0Þ < n).

Checking for Tuple Updates. updatedðT; t; k; nÞ is true if
transaction T has invalidated the tuple version correspond-
ing to t annotated with k before n. A transaction T has invali-
dated a summand k in an annotation of a tuple t if there
exists an operation u (update or delete) within the transaction
that has updated tuple t into tuple t0 and nðuÞ < n. Thus,
there has to exist i and j so that a summandR½T; nðuÞ�ðtÞ½i� ¼ k

is in the annotation on t before the update and after the
update the annotation of tuple t0 contains a summand
R½T; nðuÞ þ 1�ðt0Þ½j� ¼ Xid

T;nðuÞþ1ðkÞ where X 2 fU;Dg (either a
delete or update).

Example 4. Consider Account½T6; 11�, the version of relation
Account from our running example visible to Transaction
T6 at version 11. Since StartðT6Þ ¼ 11, this version is equal
to Account½11�. We construct Account½11� by combining
tuple annotations created by transactions that committed
before T6 started as long as these tuple versions have not
been invalidated by another already committed transac-
tion. For instance, Transaction T1 did create the annotation
k ¼ C1

T1;4
ðI1T1;2ðx1ÞÞ on tuple a1 ¼ (Alice, Checking, 400) as

shown in Fig. 2a. validAt evaluates to 1 for this annotation
of tuple a1 if no transaction that committed before 11 has
invalidated this version. Since there is no such transaction,
we getAccount½11�ða1Þ ¼C1

T1;4
ðI1T1;2ðx1ÞÞ.

4.2 Read-Committed SI Histories
Under RC-SI, an update u of a transaction T sees 1) changes
of previous updates of T and 2) changes of transactions that
committed before nðuÞ. We use Rext½T; n� to denote the ver-
sion of R seen by u.

Relation Versions Visible Inside a RC-SI Transaction. For RC-
SI, we also apply the definition from Fig. 5a. The only differ-
ence is the 3rd case: an update was executed by transaction
T at time n� 1 and its modifications are reflected in R½T; n�.
The modified 3rd case is shown in Fig. 6a. The update sees
tuple versions created by: 1) the transaction’s own updates;
2) other transactions which committed before n� 1. We dis-
cuss how to compute this version of a relation R (denoted
by Rext½T; n� 1�) in the following.

Fig. 5. SI historic database definition.

Fig. 6. RC-SI historic database definition.
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Relation Version Visible to Updates. Fig. 6b shows the defi-
nition of Rext½T; n�, the version of relation R that is visible to
an update of transaction T executed at time n. The first sum
computes a version of relation R that contains all tuple ver-
sions which were created by transactions that committed
before StartðT Þ and have not been modified by a previous
update of transaction T . This is checked by function
validEx that returns 0 if the tuple version has been replaced
with a new updated version and 1 otherwise. Function
validEx uses predicate updatedðT; t; k; nÞ which was
already introduced in Section 4.1 (Fig. 5d). The second sum
only considers tuple versions R½T; n� created by previous
updates of T which is checked by function validIn.

Relation Versions Containing Committed Changes. We use
the same definition as for SI (Figs. 5b and 5c).

Example 5. Assume T5 and T6 were executed under RC-SI
instead of SI. Consider Account½T6; 14�, the version of
Account visible to the insert of T6 at time 14. As shown in
Fig. 2c, the first update of Transaction T6 did create the
annotation U1

T6;12
ðC1

T1;4
ðI1T1;2ðx1ÞÞÞ on the tuple (Alice,

Checking, -1100) of Account. Therefore, validIn returns 1
whereas validEx returns 0 and Accountext½T6; 14� contains
this version.

4.3 Provenance Filtering
A tuple’s annotation stores its derivation history since the ori-
gin of the database. This amount of information can be over-
whelming to a user. Asmentioned in Section 1, we can restrict
provenance to tuple versions affected by a transaction. To
restrict R½T;EndðT Þ�, the provenance of a Transaction T for
relation R, we apply two filtering steps: 1) filter out tuples
that were not affected by T . In this step, every summand is
removed from the annotation of a tuple if it is not wrapped in

a commit annotation of T , i.e., it is not of the form Cid
T;nðkÞ 2)

remove parts of the provenance that correspond to operations
before the start of T . Each subexpression that is wrapped in
the commit annotation of a transaction T 0 6¼ T is replaced
with a variable disambiguated by tuple identifiers, i.e., every
subexpression Cid

T 0;nðkÞ is substituted with Cid
T 0;nðxidÞ. Assume

we are interested in Transaction T and T 0 6¼ T . An expression

Cid
T 0;n0 ðIidT 0;n00 ðIid1T 0;n1ðx1Þ � Iid2T 0;n2ðx2ÞÞÞ in the annotation of a tuple

updated by T would be replacedwithCid
T 0;n0 ðxidÞ.

5 REENACTMENT

Reenactment captures provenance for an update u (or trans-
action T ) within the context of a history H by executing an
annotation equivalent reenactment query RðuÞ (or RðT Þ).
Annotation equivalent (	N½X�n ) means that such a query pro-
duces the same result and provenance. Recall that this
implies equivalence for any MV-semiring Kn. Since RAþ

operators do not introduce version annotations, we define
an operator for this purpose.

Definition 5. The operator aX;T;nðRÞ for X 2 fI; U;Dg takes as
input a Kn-relation R and wraps every summand in a tuple’s
annotation in XT;n. The commit annotation operator aC;T ;nðRÞ
only wraps summands produced by Transaction T using opera-
tor com½T; n�ðkÞ from Definition 3

aX;T;nðRÞðtÞ ¼
PnðRðtÞÞ

i¼0 com½T; n�ðRðtÞ½i�Þ if X ¼ CPnðRðtÞÞ
i¼0 XT;nðRðtÞ½i�Þ otherwise:

(

5.1 Update Reenactment
We first define reenactment for an update u that is executed
over the historic database seen by u’s transaction T at the
time of the update (R½T; nðuÞ�). Here we abuse notation and
treat R½T; n� as a syntactic construct that we can substitute
with an algebraic expression which computes this version
of R. For example, QðD½T; n�Þ denotes the query Q where
every access to a relation R is substituted by R½T; n�.
Definition 6. Let H be a history over database D. The reenact-

ment query RðuÞ for an operation u inH is

RðU½u; A; T; n�ðRÞÞ ¼ aU;T ;nþ1ðPAðsuðR½T; n�ÞÞÞ [ s:uðR½T; n�Þ
RðI½Q; T; n�ðRÞÞ ¼ R½T; n� [ aI;T ;nþ1ðQðD½T; n�ÞÞ
RðD½u; T; n�ðRÞÞ ¼ aD;T;nþ1ðsuðR½T; n�ÞÞ [ s:uðR½T; n�Þ:

An update applies the expressions from A to all input
tuples matching condition u and wraps the annotation of
such tuples into an update annotation. All other tuples are
not modified. We can compute the result of an update as
the union between these sets. Similarly, a deletion wraps
tuples matching its condition in delete annotations. Thus, it
can be reenacted as the union between deleted (matching
condition u) and unmodified inputs. An insert statement
adds the result of a queryQ to relation R. It can be reenacted
as the union between relation R and the result of Q.

Example 6. Consider the reenactment query for the first
update operation Rðu1Þ of Transaction T6. u1 ¼ U½cust ¼
‘Alice’ ^ typ ¼ ‘Checking’; bal� 1500 ! bal; T6; 11�ðAccountÞ
of example Transaction T6. The reenactment queryRðu1Þ is

aU;T6;11ðPcust;typ;bal�1500!balðscust¼‘Alice’^typ¼‘Checking’;

ðAccount½T6; 11�ÞÞÞ
[s:ðcust¼ ‘Alice’^typ¼ ‘Checking’Þ

ðAccount½T6; 11�Þ:

Theorem 1. Let u be an update. Then, u 	N½X�n RðuÞ.
Proof. We prove the theorem by substitution of operator

definitions. We show the proof for an update u ¼ U½u;
A; T; n�ðRÞ. The proofs for inserts and deletes are analo-
gous. The reenactment query RðuÞ for u is

aU;T ;nþ1ðPAðsuðR½T; n�ÞÞÞ [ s:uðR½T; n�Þ:
We have to show that uðtÞ ¼ RðuÞðtÞ for any t 2 R. Let
Q0 ¼ PAðsuðR½T; n�ÞÞ. SubstitutingRAþ definitions we get

RðuÞðtÞ ¼
XnðQ0ðtÞÞ

i¼0

U
idðQ0ðtÞ½i�Þ
T;nþ1 ðQ0ðtÞ½i�Þ þ ðRðtÞ � :uðtÞÞ:

Now we substitute Q0ðtÞ ¼ P
u:u:A¼tðRðuÞ � uðuÞÞ and

apply commutativity of þ to get

¼ RðtÞ � :uðtÞ þ
XnðQ0ðtÞÞ

i¼0

U
idðQ0ðtÞ½i�Þ
T;nþ1 ðð

X
u:u:A¼t

RðuÞ � uðuÞÞ½i�Þ:

Using the MV-semiring equivalence Aðkþ k0Þ ¼ AðkÞ þ
Aðk0Þ, we can pull out the inner sum in the second part

� � � þ
X

u:u:A¼t

XnðRðuÞ�uðuÞÞ

i¼0

U
idððRðuÞ�uðuÞÞ½i�Þ
T;nþ1 ððRðuÞ � uðuÞÞ½i�Þ:

Note that nðRðuÞ � uðuÞÞ ¼ nðRðuÞÞ if uðuÞ ¼ 1. If uðuÞ ¼ 0
then nðRðuÞ � uðuÞÞ 6¼ nðRðuÞÞ, but this does not affect the
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result, because thenRðuÞ½i� � uðuÞ ¼ 0. An analog argument
holds for idðRðuÞ � uðuÞÞ. Applying distributivity and using
the MV-semiring equivalence Aðk � k0Þ ¼ AðkÞ � k0 for
k0 ¼ 1 or k0 ¼ 0 to pull out themultiplication uðuÞweget

¼ RðtÞ � :uðtÞ þ
X

u:u:A¼t

XnðRðuÞÞ

i¼0

U
idðRðuÞ½i�Þ
T;nþ1 ðRðuÞ½i�Þ � uðuÞ

¼ U½u; A; T; n�ðRÞðtÞ:
tu

5.2 SI Reenactment
To reenact a transaction, we merge the reenactment queries
for updates of the transaction in a way that respects the visi-
bility rules enforced by the concurrency control protocol.
Under SI, each update ui of a transaction T sees the version
of the database at transaction start plus local modifications
of updates uj from T with j < i. Thus, effectively, each
update ui updating the relation R is evaluated over the
annotated relation produced by the most recent update uj

that updated R with j < i. Since we have proven that
u 	N½X�n RðuÞ, each reference to a relation R½T; n� produced
by update uj can be replaced with RðujÞ (as mentioned
above we treat R½T; n� as a symbolic expression in this con-
text). Applying this substitution recursively and adding an
annotation operator to wrap the final outputs in commit
annotations results in a single query RRðT Þ per relation R
affected by T . We use RðT Þ to denote all relations targeted
by at least one update of T and LastðT;R; nÞ to denote the
last update executed before n in T that updated relation R.

Definition 7. Let T be a transaction in a historyH. The reenact-
ment query RðT Þ for T is

RðT Þ ¼ fRRðT Þ jR 2 RðT Þg
RRðT Þ ¼ aC;T ;EndðT ÞðRRðLastðT;R;EndðT ÞÞÞÞ;

where query RRðuÞ is computed as follows. We initialize
RRðuÞ ¼ RðuÞ and then apply the following substitution rule
until a fix point is reached (for every relation S accessed by T ,
only references of the form S½StartðT Þ� remain):

Pick a relation mention S½T; n� in the current RRðuÞ
� If 9u0 2 T : u0 updates S ^ nðu0Þ < n then replace

S½T; n� with RðLastðT; S; nÞÞ
� Otherwise, replace S½T; n� with S½StartðT Þ�

Technically, RðT Þ for a transaction T is a set of queries.
However, abusing terminology we refer to this set as the
reenactment query of T and by T 	N½X�n RðT Þ mean that for
every R 2 RðT Þ, the reenactment query RRðT Þ for a relation
R is equivalent to the effect that transaction T has on rela-
tion R. The structure of the reenactment query for SI trans-
actions updating a single relation R is outlined below.

Example 7. Consider Transaction T5 from the running
example. Let us refer to its operations as u1 and u2. We
use the following abbreviations in this example: Account
= A, cust = c, typ = t, and bal = b. Consider the construc-
tion of the reenactment query for T5 on A. The last update
modifying A is u2. Thus, R

AðT5Þ ¼ aC;T ;13ðRAðu2ÞÞ: Opera-
tion u2 updates relation A at version 12. The reenactment
query for u2 is

RAðu2Þ ¼ aU;T5;13ðPc;t;ðbþ300Þ!bðst¼0Savings0^b> 5000ðA½T5; 12�ÞÞÞ
[ s:ðt¼0Savings0^b> 5000ÞðA½T5; 12�Þ:

The last update of Transaction T5 that modified relation A

before version 12 is u1. Thus, the access to A½T5; 12� in
RAðu2Þ is replaced with RAðu1Þ. The access to relation A

by update u1 is replaced with A[10] in RAðu1Þ, because
there is no update operation in T5 that updated this rela-
tion before u1 was executed. The final reenactment query
RAðT5Þ is

RAðT5Þ ¼ aC;T ;13ðRAðu2ÞÞ
RAðu2Þ ¼ aU;T5;13ðPc;t;ðbþ300Þ!bðst¼0Savings0^b> 5000ðRAðu1ÞÞÞÞ

[ s:ðt¼0Savings0^b> 5000ÞðRAðu1ÞÞ
RAðu1Þ ¼ aU;T5;11ðPc;t;ðbþ100Þ!bðst¼0Savings0 ðA½10�ÞÞÞ

[ s:ðt¼0Savings0ÞðA½10�Þ:

Theorem 2. Let T be a transaction. Then, T 	N½X�n RðT Þ.
Proof. We prove the theorem by induction over the number

of updates in transaction T . To simplify the exposition,
assume WLOG that T updates a single relation R. Induc-
tion Start: For a transaction with a single update u1, the
theorem follows from equivalence for updates (Theo-
rem 1) and the equivalence of the commit annotation
operator and commit annotations produced by T (both
are defined using com). Induction Step: Assume that
T 	N½X�n RðT Þ for transactions with up to i updates. We
have to show that the same holds for any T ¼ u1; . . . ;
ui; uiþ1; c. Let Ti ¼ u1; . . . ; ui; c. WLOG assume
EndðT Þ ¼ EndðTiÞ. We know that RðTiÞ 	N½X�n Ti )
R½Ti; EndðTiÞ� ¼ R½Ti; nðuiÞ þ 1�. Since Ti and T have exe-
cuted the same updates over the same input, it follows
that R½Ti; nðuiÞ þ 1� ¼ R½T; nðuiÞ þ 1�. From the definition
of R½T; n� we know that R½T;EndðT Þ� ¼ R½T; nðuiþ1Þþ
1� ¼ uiþ1ðR½T; nðuiþ1Þ�Þ. Using the equivalences stated
above we can deduce uiþ1ðR½T; nðuiþ1Þ�Þ 	N½X�n uiþ1ð
RRðuiÞÞÞ. We know that Rðuiþ1Þ 	N½X�n uiþ1 and, thus, it
follows that R½T;EndðT Þ� 	N½X�n RRðuiþ1Þ. Since RRðT Þ ¼
aC;T ;EndðT ÞðRRðuiþ1ÞÞ this concludes the proof. tu

5.3 RC-SI Reenactment
Based on our model for RC-SI histories that we did present
in Section 4.2, we have to construct reenactment queries for
updates of a transaction T such that Rext½T; nðuÞ� is the input
of every update u over relation R. Rext½T; nðuÞ� contains
tuple versions from R½n� and also those tuples from R that
have been modified by previous updates of the transaction
T . Thus, we can compute it as a union between these two
sets of tuple versions by filtering out invalid tuple versions.

Version Merge Operator (m). This operator [9] merges two
versions R1 and R2 of a relation R such that the output
includes 1) each tuple version once that exists in both inputs
and 2) the newer version of each tuple which exists as dif-
ferent versions in both inputs (shown in Fig. 7). We con-
struct Rext½T; n� using this operator. Functions isMax and
isStrictMax used to define m are explained below.

Check Tuple Versions of a Relation. isMaxðR;kÞ returns 0when
relation R has a newer version of the tuple version encoded as
annotation k. Function isStrictMax is a strict version of isMax
function that also returns 0 when the tuple version k exists in
R. These functions use idOfðkÞ to access identifiers and
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versionOfðkÞ to retrieve the version identifiers from an annota-
tion k. These functions are only defined for inputs fromnormal-
ized, admissibleKn-relation (see Section 3).

RC-SI transactions that modify multiple relations are han-
dled analog to SI. Hence, we only present the construction of
reenactment queries for RC-SI transactions that update a sin-
gle relation R. The reenactment query for the Transaction
T ¼ ðu1; . . . ; un; cÞ executed under RC-SI is defined recur-
sively. It is constructed starting with a commit annotation
operator applied to the reenactment query RðunÞ for the last
update of T . Then for i 2 n� 1; . . . ; 1we replaceR½T; nðuiþ1Þ�
in the query constructed so far with mðRðuiÞ; R½nðuiþ1Þ�Þ.
Operator m computes Rext½T; nðuiþ1Þ�which is the input seen
by uiþ1. The structure of the reenactment query for RC-SI
transactions for a single relationR is shown below.

Theorem 3. If T is a RC-SI transaction, then T 	N½X�n RðT Þ.
Proof. Assume that transaction T ¼ u1; . . . ; un; c is updating

a single relation R. We need to show that the input
R½T; nðuÞ� for an update u is the same as the input produced
for RðuÞ by the reenactment query for Transaction T . We
prove this fact by induction over the number of updates in
Transaction T . Induction Start: Let T ¼ u1; c. This case is
analog to SI. Induction Step: Assume that R½T; nðuiÞ� ¼
Rext½T; nðuiÞ� for any i 
 n where i is the number of opera-
tions in Transaction T . We need to prove that for any trans-
action T ¼ u1; . . . ; unþ1; c we have that Rext½T; nðunþ1Þ� is
equal to the input for the reenactment query Rðunþ1Þ of
unþ1 within the reenactment query RðT Þ. In the reenact-
ment query, the input to Rðunþ1Þ is mðRðunÞ; R½nðunþ1Þ�Þ.
Based on the induction hypothesis we have RðunÞ ¼ R½T;
nðunþ1Þ�. Thus, denoting nðunþ1Þ as nnþ1

mðRðunÞ; R½nðunþ1Þ�ÞðtÞ

¼
XnðR½T;nnþ1�ðtÞÞ

i¼0

R½T; nnþ1�ðtÞ½i�

� isMaxðR½nnþ1�; R½T; nnþ1�ðtÞ½i�Þ

þ
XnðR½nnþ1�ðtÞÞ

i¼0

R½nnþ1�ðtÞ½i�

� isStrictMaxðR½T; nnþ1�; R½nnþ1�ðtÞ½i�Þ:
Rext½T; nnþ1�ðtÞ is also defined as a sum over the elements
from R½T; nnþ1�ðtÞ and R½nnþ1�ðtÞ. Individual summands
are filtered out using validIn and validEx. Thus, to
prove that mðRðunÞ; R½nðunþ1Þ�Þ ¼ Rext½T; nðunþ1Þ�, we
have to show that if the isMax or isStrictMax function
returns 1 on a summand then the same is true for
validIn or validEx, respectively. Fixing a tuple t and a

tuple version (summand) k with tuple identifier id in its
annotation, we have to distinguish between five cases
based on whether such a tuple version occurs in
R½nðunþ1Þ� and/or in R½T; nðunþ1Þ�, and, if it occurs in
both, whether one of these versions is newer. We show
the proof for one of these cases. The remaining cases are
similar in nature (see [21]).

Case 1: For this case, we assume that the first tuple
version with identifier idOfðkÞ was created by an insert
of Transaction T before nnþ1 and, thus k is only present
in R½T; nnþ1�ðtÞ. Therefore, function isMaxðR½nnþ1�; kÞ
returns 1 and k is in mðRðunÞ; R½nðunþ1Þ�ÞðtÞ. Similarly,
since k is the latest version, we have that validInð
R½T; nnþ1�; t; k; nnþ1Þ returns 1 because k’s outmost version
annotation is from T . Thus, k is also present in
Rext½T; nnþ1�. Having proven that mðRðunÞ; R½nðunþ1Þ�Þ ¼
Rext½T; nðunþ1Þ� it follows that T 	N½X�n RðT Þ. tu

6 IMPLEMENTATION AND OPTIMIZATIONS

We have implemented provenance capture for transactions
in our Generic Provenance Middleware (GProM) system.
Fig. 8 shows how the system processes a transaction prove-
nance request. GProM translates SQL statements with prov-
enance requests into relational algebra with annotated
semantics. Transaction provenance requests are processed
by the reenactor module that constructs the reenactment
query for a transaction using the audit log of the backend
DBMS to determine which statements were executed by the
transaction. The provenance instrumentation module rewrites
the reenactment query with annotated semantics into a rela-
tional algebra expression that produces our relational
encoding of MV-semiring annotations. This query uses time
travel to access past database states. We return provenance
restricted to a transaction T using the method discussed at
the end of Section 4. Afterwards, we optimize the algebra
expression and then compile it into SQL code. We present
optimizations specific to reenactment in the following and
refer the reader to [22] for a detailed discussion of GProM’s
heuristic and cost-based optimization framework.

6.1 Reducing MV to Standard Relational Semantics
We encode a normalized MV-semiring annotation of a tuple
as a set of tuples - one for each summand. We add prove-
nance attributes to the result schema to store tuples in the

Fig. 7. Definition of auxiliary operators used in RC-SI reenactment.

Fig. 8. GProM architecture.
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provenance (variables in MV-semiring expressions) and
version annotations for each summand. For instance, a tuple
t annotated with xþ y would be encoded as two tuples
encoding the summand x and y, respectively. When com-
puting the provenance of a Transaction T , initial annota-
tions for a relation R are created to represent variables in
annotations. We access the snapshot of R as of the start of
Transaction T and create annotations by duplicating attri-
bute values using projection. Note that the relational encod-
ing of annotations produced by this step corresponds to the
result of applying the filtering step 2 in Section 4.3 to
R½StartðT Þ�. Here we assume a standard SI based imple-
mentation of time travel that allows us to access a snapshot
Rn of relation R containing all committed tuple versions
valid at n. Furthermore, we expect a snapshot to store the
following information for each tuple version: 1) the transac-
tion that created the tuple version (attribute Xid) and 2) a
unique tuple identifier (attribute Id). We instrument the
remaining operators to propagate annotations from their
inputs. Consider a transaction T ¼ ðu1; . . . ; un; cÞ. We apply
a selection U1 _ � � � _ Un to the result to implement filtering
step 1 that removes tuples that were not affected by Trans-
action T (see Section 4.3). The details of our encoding and
instrumentation are presented in our technical report [20].

Reenacting with CASE. Our reenactment approach trans-
lates an UPDATE into a union between two accesses of the
input relation. For a sequence of updates in a transaction this
leads to queries where both inputs of such a union are again
unions. Unless intermediate results are reused, this leads to
an exponential number of unions (in the number of updates).
Instead of computing the union between the set of updated
tuples and non-updated tuples, we can use the SQL CASE

construct to decide for each tuple whether it should be
updated. We can reenact an update U½u; A; T; n�ðRÞ using a
projection constructed as follows. We replace each expres-
sion e ! a in A with CASE WHEN u THEN e ELSE a END AS a.
Version annotation attributes (Ui) are computed in a similar
fashion. This approach is also applicable for deletes.

Example 8. Consider a Transaction T with a single update:

UPDATE Account SET bal = bal + 100 WHERE typ =
0Savings0;
Reenactment produces the following query (for simplicity we
omit instrumentation for propagating annotations). SQL con-
struct R AS OF t denotes the use of time travel to compute
snapshot Rt. Using CASE instead of union we get:

SELECT cust, type, (CASE WHEN (typ = 0Savings0)
THEN bal + 100 ELSE bal END) AS bal

FROM Account AS OF StartðT Þ;

6.2 Prefiltering Provenance

Recall that we apply a selection on U1 _ � � � _ Un to the result
of reenactment to filter out tuples that were not affected by
any update of the transaction. Thus, the reenactment query
is evaluated over all tuples from RStartðT Þ. We now discuss
two optimizations that filter out tuples early on.

Prefiltering with Update Conditions. The naive method can
be improved if we can determine upfront which tuples will
be affected by a transaction. Consider a transaction
T ¼ u1; . . . ; un; c where each ui is an UPDATE and a tuple t
valid at transaction start. Tuple t was modified by a subset
(potentially empty) of the updates of T . If t is affected, then

there has to exist a first update ut in T that modified tuple t.
Thus, t has to fulfill the condition of ut. This observation can
be used to characterize the set of tuples affected by the
transaction. In particular, this is the set fulfilling the condi-
tion u1 _ � � � _ un where ui is the condition of the ith update
operation. Hence, it is safe to apply a selection on this condi-
tion to the input of reenactment. This approach is not appli-
cable to a relation R if one of the transaction’s inserts uses a
query that accesses relation R. Delete operations can be han-
dled like update operations whereas inserts create new
tuples and there is no need for prefiltering.

Join with Committed Tuple Versions. The version of the data-
base at commit of transaction T contains all tuple versions
that were created by T . Recall that snapshots use a column
Xid to store the updating transaction. Thus, we can deter-
mine which tuple versions were created by a transaction T
by running a query sXid¼T ðREndðT Þþ1Þ. To retrieve the version
of these tuples valid at transaction start, we can join the result
of this query with RStartðT Þ. Here, we assume that the data-
base uses unique immutable tuple identifiers stored in attri-
bute Id. We join on this identifier, i.e., in the reenactment
query we replace RStartðT Þ with RStartðT Þ ffl PIdðsXid¼T

ðREndðT Þþ1ÞÞ. This approach is only applicable to relations
that are not accessed by any insert’s query in the transaction.

7 EXPERIMENTS

We conducted experiments to evaluate 1) the performance
of provenance capture and 2) the overhead for transaction
execution comparing our approach (using reenactment,
audit logging and history maintenance) with an approach
that directly stores provenance. All experiments are run
with DBMS X as a backend (name omitted due to licensing
restrictions). We use a synthetic workload to evaluate how
our approach scales in various parameters and a TPC-C
workload to test its performance for realistic transactions.
All experiments were executed on a machine with 2 x AMD
Opteron 4,238 CPUs (12 cores in total), 128 GB RAM, and
4 x 1TB 7.2K HDs in a hardware RAID 5 configuration.

7.1 Setup and Workload
Datasets and Workload. We use a relation with five uniformly
distributed, numeric columns. We created variants R10K,
R100K, and R1000K with 10K, 100K, and 1M tuples and no
significant history (H0). Additionally, we generated three
variants of R1000K with different history sizes H10, H100,
and H1000 (100K, 1M, and 10M tuples history). At first, we
only consider transactions that consist solely of update
statements. We vary the following parameters: U is the
number of updates per transaction, e.g., U10 is a transaction
with 10 updates. T is the number of tuples affected by each
update. Unless stated otherwise, we use T1. The tuple to be
updated is selected randomly using the primary key (uni-
form distribution). The default isolation level used in the
experiments is SERIALIZABLE (SI).

Compared Methods. We compare different configurations
for capturing provenance for a transaction - each using a sub-
set of the optimizations described in Section 6. Experiments
were repeated 100 times and we report the average runtime.
NoOpt (N): Computes the provenance of all tuples in a rela-
tion, even tuples that were not affected by the transaction,
i.e., we do not apply the filter condition on the version anno-
tation attributes. Prefilter (P): Only returns provenance of
tuples affected by the transaction using a selection on the
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disjunction of the conditions of the transaction’s updates (see
Section 6.2). The database systemwas instructed to material-
ize the intermediate result corresponding to each update in
the reenactment query using temporary relations. Prefilter
+Opt (PO): This is the same as Prefilter, but we merge opera-
tors (particularly, projections) to reduce the number of query
blocks. HistJoin (HJ): We use a join to compute partial prove-
nance as described in Section 6.2. This configuration merges
operators where possible. Themaximum allocated execution
time for eachmethod is 1,000 sec.

7.2 Performance of Provenance Capture
In this set of experiments we execute the transactional work-
load beforehand and measure the performance of capturing
provenance for transactions from this workload. We study
how our reenactment approach scales in database and his-
tory size as well as complexity of the transaction (number of
operations, amount of modified tuples, types of updates).

Relation Size and Updates/Transaction. We compute the
provenance of transactions varying the number of updates
per transaction (U1 up to U1000) and the size of the database
(R10K, R100K, and R1000K) without significant history
(H0). Fig. 9 shows the runtime of capturing provenance for
one transaction. We scale linearly in R and U . By reducing
the amount of data to be processed by the reenactment query
and by merging operators, the PO approach is up to three
orders of magnitude faster than the naiveN configuration.

History Size. We capture provenance for transactions with
10 updates (U10) over relations with 1M tuples (R1000K)
and history sizes: H0, H10, H100, and H1000. As shown in
Fig. 10, N exhibits almost constant performance. The run-
time is dominated by evaluating the reenactment query
over 1M tuples (all tuples in one version of the relation) hid-
ing the impact of scanning the history. Since we have not
created any indexes on the history relations, the PO
approach only has the advantage of processing less tuples
in the provenance computation, but still has to scan most of
the history to find tuples that were updated.

Comparing Optimization Techniques. Fig. 11 shows results
for varying the number of updates (U1 to U1000) using
R1000K-H1000. Comparedwith P, PO benefits from avoiding
materialization. This optimization is more effective for larger
transactions, as reenactment queries for such transactions
are increasingly complex. While resulting in �20 percent
improvement for U100, it improves the runtime by a factor
of �10 for U1000. The cost of PO is affected by the first selec-
tion that is applied to 1M tuples (no index on the history

relation). The size of this condition is linear in the number of
update operations. The runtime of HJ is almost not affected
by parameter U , because it is dominated by the join between
historic relations. PO outperforms HJ by a factor of about 3.
For U1000, the N method did not finish within the allocated
time slot (1,000 sec.).

Affected Tuples Per Update. Fig. 12 shows results for U10
where each update modifies 10, 100, 1,000, or 10,000 tuples
of the R1000K-H1000 relation. As evident from Fig. 12, the
runtime is not significantly affected when increasing the
number of affected tuples per update. It is dominated by
scanning the history and filtering out updated tuples (PO)
or the self-join between historic relations (HJ). Increasing
the T parameter by 3 orders of magnitude results in a run-
time increase of about 150 percent (PO) and 20 percent (HJ).

Index versus No Index. Fig. 13 shows the effect of replicat-
ing the indexes defined for the R1000K-H1000 relation to its
corresponding history relation.We varyU (U1 toU1000). We
omit theN (no benefit from indexes) and P (consistently out-
performed by PO) configurations. Using indexes improves
execution time of queries that apply PO considerably.

TPC-C.We capture provenance for the TPC-C benchmark.
We execute a TPC-C workload over an instance with 32
warehouses. The resulting database is roughly 16 GB large.
The benchmark defines 5 transaction types, out of which 2
are read-only. We compare the N and PO methods for the 3
transaction types that execute updates. Fig. 14 shows the
result for computing the provenance of a single transaction

Fig. 9. Relation size.

Fig. 10. History size.

Fig. 11. Optimization methods.

Fig. 12. Affected tuples.

Fig. 13. Index versus no index.

Fig. 14. Provenance for TPC-C.
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of each type. Each of these transactions only modifies a few
tuples. Thus, the cost for PO is quite low. The cost for N is
dominated by scanning the full input relation.

Isolation Levels. Fig. 15 compares the performance of cap-
turing provenance for SI and RC-SI. We use R1000K-H1000
and vary the number of updates per transaction (U1 to
U1000). As expected, SI reenactment is more efficient than
RC-SI reenactment, because for RC-SI we have to check for
each tuple and update whether the tuple is visible to the
update. The impact is more noticeable for efficient configu-
rations such as P and larger number of updates (U1000).
The runtime of N is dominated by a full scan of the large
input and history tables and by having to produce 1M out-
put rows. For U1000, the method N did not finish within the
allocated time slot (1,000 sec.).

7.3 Overhead and Eager Provenance Capture
We use audit logging and time travel to reconstruct prove-
nance of past transactions.We now quantify the runtime and
storage overhead of DBMS X’s built-in temporal and audit
features. We measure the execution time of 10,000 transac-
tions with U10 and T1 run over the R1000 instance. Fig. 17
shows the total runtime for three configurations: without
temporal and audit logging features (W=O), with temporal
features, and with both the temporal and audit logging fea-
tures. If history maintenance is activated then this results in
about 12 percent runtime overhead (see Fig. 17). This result
agrees with DBMS X’s documentation which states 5 percent
overhead for mixed read-write workloads. Also activating
audit logging results in a total overhead of �19 percent. We
now compare our approach with eager provenance capture
during transactions execution. We consider two configura-
tions: 1Step stores a separate provenance record for each
tuple version and statement in an extra relation. Each record
is linked to the provenance record for the previous tuple ver-
sion. The provenance of a transaction is reconstructed by
recursively joining these provenance records; Full stores the
complete derivation history of each tuple in an additional
column. Results are shown in Fig. 18.

Transaction Execution Overhead. Using the workload from
Section 7.3, we compare the overhead for transaction execu-
tion incurred by these two eager methods with our method.

The performance of our method and 1Step remains stable
when increasing the size of the history. In contrast, the over-
head of Full increases with the history size, as the size of
provenance per tuple increases and the attribute storing
provenance has to be updated by every operation. Both
1Step and Full do significantly slow down transaction proc-
essing showing up to a factor of 7 higher overhead than our
approach.

Storage Size. We compare the storage size used by the
three methods for a table with 1M rows varying the size of
the history (H10, H100, and H1000) and number of tuples
affected by each update (T1, T10, and T100). For our
method we show the total storage space as well as the
breakdown into a relation plus history and the audit log.
Only the size of the audit log is affected by the T parameter.
Thus, we only show our method for T10 and T100 since the
other methods require the same storage for all T values. The
results shown in Fig. 18 demonstrate that in the worst case
(1 tuple affected per update), our method requires up to �4
times more storage than the best approach. This overhead is
caused by the audit log storing one SQL statement per mod-
ified tuple. However, if more tuples are affected by each
statement then our method requires about the same or less
space than the alternatives.

Retrieving Provenance. We now compare the performance
of using reenactment (the PO method) for retrieving prove-
nance with 1Step and Full. Fig. 16 shows the result for cap-
turing provenance of transactions with U10 and T1 varying
the history size (H). We created relevant indexes for each
method. Optimized reenactment outperforms both alterna-
tives, because Full requires filtering tuples based on the
transaction identifier that is stored in the provenance col-
umn and 1Step requires a recursive query or multi-way join
to reconstruct the provenance of a transaction from prove-
nance records for each update.

8 CONCLUSIONS

We present the first solution for capturing provenance for
transactions run under SI and RC-SI. Our approach is based
on reenactment, i.e., replaying updates and transactions as
queries with annotated semantics. Using audit logging,
time travel, and a relational encoding of reenactment, we
retroactively capture the provenance of tuples produced by
transactional histories using a standard DBMS. In future
work, we will study reenactment for more expressive query
languages (e.g., aggregation [16]). Reenactment has many
potential applications such as answering historic What-If
queries (e.g., “What would have happened if we had
updated accounts using 10 percent interest?”) [23].
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