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Abstract

Measurements at different time points and positions in
large temporal or spatial databases requires effective and
efficient data mining techniques. For several parallel mea-
surements, finding clusters of arbitrary length and num-
ber of attributes, poses additional challenges. We present
a novel algorithm capable of finding parallel clusters in
different structural quality parameter values for river se-
quences used by hydrologists to develop measures for river
quality improvements.

1. Introduction

Environmental sensors produce data streams at succes-
sive time points, weather stations, observatories and seis-
mographic stations archive similar temporal sequences.
Likewise, geosensors generate huge amounts of parallel
spatial sequences. In a current project of the European
Union on renaturation of rivers, the structural quality of
river segments is analyzed. For a spatial database of Ger-
man rivers, about 120.000 one-hundred-meter segments
were evaluated according to 19 different structural criteria
(e.g. quality of the riverbed) [14]. They were mapped to
quality categories, where a value of ”one” indicates perfect
quality, while a value of ”seven” indicates most severe dam-
ages. Figure 1 illustrates a sample river indicating 8 of the
19 attributes. The sequence order of the segments is given
by the flowing direction of the rivers.

As the project aims at a quality improvement over the
next decades, packages of measures have been suggested
for different structural damages. They have been formal-
ized in rules specifying the attribute value constraints and
the attributes influenced positively by execution of the re-
spective measure. An example constraint might be that a
certain segment has good quality (categories one to three)
riverbed and riverbanks and poor river bending (categories
five to seven). This could be improved by measures like
adding deadwood to positively influence river bending.

Finding and analyzing these patterns helps hydrologists
summarize the overall state of rivers, give compact rep-
resentations of typical situations and review the extent to
which these situations are covered by measures envisioned.
They can identify those patterns which are problematic, i.e.
have low quality ratings, but are not yet covered by mea-
sures. In a follow-up step, these measures are annotated by
time and cost information to generate an overview over the
state of rivers as it might be in the near future if the mea-
sures suggested are put into action.

From a computer science point of view, finding the in-
trinsic structure of these multidimensional sequences is a
two-fold task: detect frequent patterns within sequences for
all possible subsequence lengths (note that we cannot know
the pattern length a priori), then detect parallel occurrences
of these patterns.

Patterns are ranges of values (which correspond to sev-
eral categories of river quality structure) found in several
(sub-)sequences. Pattern analysis has to take into account
that the data is subjective and fuzzy, because structural qual-
ity of rivers was mapped by different individuals. We pro-
pose using kernel densities in a density-based clustering ap-
proach instead of sequence counting approaches like mo-
tif discovery. This effectively detects fuzzy multidimen-
sional sequence patterns. These patterns are clustered effi-
ciently for arbitrary lengths using monotonicity properties.
We transform these sequence pattern clusters into a clus-
ter position space such that mining parallel patterns can be
reduced to efficient FP -tree frequent itemset mining.
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Figure 1. River mapping for eight attributes



2. Subsequence Clustering

Patterns or clusters discovered in sequences help domain
experts analyze typical scenarios in the data. Single se-
quence patterns, however, do not permit direct mapping of
possible measures to clusters. As mentioned in the intro-
duction, river measures may affect several structural prop-
erties, e.g. the river bank on the left and the right as well
as the river bending. Moreover, constraints are often for-
mulated for several attributes as well. In Figure 2 we illus-
trate two rivers S and T with two attributes (riverbed and
riverbank). These rivers contain a multicluster MC which
consists of two sequence clusters, one cluster C1 with val-
ues {�1, 2� , �1, 3�} in the riverbed attribute and one cluster
C2 = {�3, 4�} in the bank attribute. The example multi-
cluster is based on the following definition:

Definition 1 Multicluster:
A set of sequence clusters C1, . . . ,Cn of length k from n
different attributes is a multicluster MC iff:

(i) C1, . . . ,Cn are parallel at position i, i.e.
∀j ∈ {1 . . . n} a pattern Pj ∈ Cj occurs at position i

(ii) C1 . . .Cn occur frequently together, i.e.
|{i ∈ IN, C1, . . . ,Cn are parallel at position i}| ≥ φ.

We are thus looking for those positions showing a pat-
tern in each of the sequence clusters (parallel) with a fre-
quency count above the threshold. Sequence clusters con-
sist of dense patterns, i.e. similar patterns occur often.

Definition 2 Sequence pattern:

• A tupel S = (s1, . . . , sn) of n subsequent values at
positions 1 through n is called a sequence of length n.

• A database DB is a set of sequences {S1, ..., Sm}.

• We denote a subsequence of S from position i to j by
S[i, j] = (si, . . . , sj).

• Whenever we are not interested in the concrete posi-
tions of a sequence, but merely in its values, we call
this a pattern P = �p1, . . . , pk�.

• A pattern P occurs in a database if there is a sequence
S ∈ DB and a position i ∈ IN with P = S[i, i+k-1].

• The support of a pattern P is the number of its
occurrences in the sequences of the database DB:
sup(P) =
|{i ∈ IN and S ∈ DB, where P = S[i, i+k-1]}|

When searching for prevailing patterns, it is important to
notice that merely counting of sequence patterns is not suf-
ficient in many scenarios. It is crucial to account for two

factors: first, mapping of river structures may be blurred
by people’s subjective decisions on unclear category bound-
aries. Second, measures and their constraints may be appli-
cable over several categories and cannot always be fitted ex-
actly to these categorical boundaries. Moreover, small devi-
ations in few segments may be tolerable for the application
of a certain measure if this results in longer river courses
treatable by a single measure. Hydrologists are thus inter-
ested in including ”similar” sequences in frequency notions.

Density-based clustering tries to separate dense areas
(”clusters”) from sparse ones (”noise”). The density of a
pattern is determined by evaluating its neighborhood ac-
cording to some distance function. In our approach, any
Lp-Norm can be used, yet the Manhattan norm (L1) has
shown to work well. The L1 norm reflects the intuition
that for each sequence element, the difference to its coun-
terpart should be determined and summed up. We use
a weighting function W to ensure that with greater dis-
tance to the pattern evaluated, the influence of neighbors
decreases. Any series of monotonous falling values can be
used as a weighting function, since distances between nom-
inal sequences are always discrete. All kernel-estimators
known from statistics [10] are constantly falling functions.
Experiments have shown that weighting functions based on
Gaussian kernels (WS

σ (Ti) = exp
�
−d(S,Ti)2/2σ2

�
) per-

form well in many applications. Using weighting functions
based on kernel estimators provides us with a natural way
of defining the set of similar sequences to be included in the
density evaluation. Whenever the weights assigned drop
below a certain significance threshold τ , these sequences
should not be considered in the density estimation.

Definition 3 Neighborhood and Density:

• The τ -neighborhood of a pattern P, Nτ (P), is defined
as the set of all patterns Q which at least have the
influence τ on the pattern P evaluated:
Nτ (P) = {Q, where WP

σ (Q) ≥ τ}.

• The density of P is the sum of all kernels in the
neighborhood

density(P) =
�

Q∈Nτ (P)

WP
σ (Q) ∗ sup(Q)

• P is dense with respect to a density threshold δ
iff density(P) ≥ δ.

We are now ready to formulate our cluster notion. As
mentioned before, clusters should consist of similar, dense
sequences of the same length.

Definition 4 Cluster:
C = {P1, . . .Pm} is a cluster of length k with respect to a
density threshold δ and a compactness parameter γ iff:
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Figure 2. Example multicluster for the river data base

(i) for all patterns Q of length k not in C: C∪{Q} is not
a cluster. (Maximality)

(ii) for all patterns Pi : density(Pi) ≥ δ. (Density)

(iii) between any pair of patterns Pi,Pj ∈ C there
is a chain of patterns (Q1, . . . ,Qn) ∈ C such
that dist(Pi,Q1) ≤ γ, dist(Qk,Qk+1) ≤ γ and
dist(Qn,Pj) ≤ γ. (Compactness)

Put informally, we are thus looking for as large clusters as
possible (maximality), where elements within clusters are
all dense (density) and at most γ apart from each other
(compactness).

Figure 2 illustrates the definition of density and clus-
tering. The upper part visualizes two sequences S and T
with two exemplary attributes, the riverbed and the bank.
In the lower part of the figure the density-value for a pat-
tern �1, 2� is calculated. We assume a significance thresh-
old of τ = 0.1. The Gaussian weighting function drops
below τ = 0.2 for sequences having a distance higher than
1.8 from the point evaluated. Thus in our ordinal setting
only sequences with a distances of or less 1 have signifi-
cant influence: exp(−12/2) ≈ 0.6 > τ and exp(−22/2) ≈
0.13 < τ . In our example the τ -neighborhood of pattern
�1, 2� contains the sequence �1, 2� itself starting at two posi-
tions S1 and S6 (distance zero) and �1, 3� starting at four po-
sitions S3, S8 and T2, T5 (distance one). Thus the density-
value for �1, 2� is 2 ∗W �1,2�

σ (�1, 2�) + 4 ∗W �1,2�
σ (�1, 3�) =

2 ∗ 1 + 4 ∗ 0.6 = 4.4. For a density-threshold of e.g. δ = 3
the pattern �1, 2� is considered dense.

The definition of multiclusters is based on sequence
clusters of arbitrary lengths. To detect clusters of arbi-
trary length, a naive approach might be to simply re-run a
density-based subspace clustering algorithm for each length
value to detect all possible clusterings. Obviously, this
leaves room for efficiency improvement. We therefore use a
monotonicity property between clusters of different lengths
which can be used to speed up clustering.

Theorem 1 Density Monotonicity:
For any two patterns P,Q of length k and their respective
prefix/suffix P�,Q� of length k − 1 holds:

(1) Q ∈ N�(P) ⇒ Q� ∈ N�(P�)

(2) density(P) ≤ density(P�)

Since density and neighborship are monotone, we can
conclude that clusters are monotone as well:

Theorem 2 Cluster Monotonicity:
For any cluster C of length k, there is a cluster C� of length
k − 1 such that for any pattern P and its prefix/suffix P�

holds: P ∈ C ⇒ P� ∈ C�

Proofs are given in an extended version of this paper. To
speed up the calculation of multiclusters of arbitrary length
two kinds of monotonicity properties can be utilized (see
Section 2). The proposed algorithm uses two steps to make
use of each monotonicity property. We then model par-
allelism between these clusters and give a transformation
which translates this problem into an efficiently solvable
frequent itemset mining task.

3. Multicluster Algorithm MC

For the algorithm, it is most important to efficiently
calculate the density value of patterns. Thus, it is cru-
cial to quickly retrieve the neighborhood of a subsequence.
To identify clusters of arbitrary length the MC algorithm
bottom-up identifies successively longer clusters. Existing
index structures which support neighborhood queries can-
not handle arbitrary lengths. A novel index (Fig. 3) is con-
structed by scanning once over each sequence. Each pattern
of a fixed starting length is added. A pattern is represented
by a path of labeled nodes from the root to a leaf. To later
determine the density value of a pattern the support is an-
notated at corresponding leaf nodes. Further on the index
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Figure 3. Hierarchical index structure

structure stores the position list (all starting points) for each
pattern stored on hard disk for scalability reasons. A cluster
identifier (e.g. C1) or the flag unclassified (UC) is stored
at each leaf node. The MC algorithm uses this flag to effi-
ciently calculate the transitive closure (compactness in Def.
4) for a dense pattern. The index efficiently supports neigh-
borhood queries and density calculations by selecting the
appropriate node ranges while descending the tree and sum-
ming up weighted support values.

The index structure must be able to calculate the position
list and support for constantly growing patterns. Therefore,
the position list for a pattern P of length k can be calculated
by using its k − 1 prefix and suffix. Intuitively, the pattern
P can only occur in a sequence if its k− 1 prefix also starts
at Ps starting position and its k − 1 suffix ends where P
ends. This means that no extra database scans are necessary
to determine its occurrence - we simply take a look at all the
starting positions of its prefix and determine its intersection
with its suffix shifted by one. Since both are shorter by one,
they must have been processed earlier. In Fig. 3 pattern
(3,2,1) is generated from (3,2) prefix and the (2,1) suffix
shifted by one position.

An overview of the MC algorithm is presented in Fig-
ure 4. For each length, the index structure is queried for
all cluster candidates. Looping over all candidates, each se-
quence is checked for density, and if applicable, expanded
to a cluster. The algorithm to calculate the corresponding
cluster candidates is based on the discovered clusters of the
previous step. Looping over all patterns of all clusters, it
tries to extend each pattern. For this purpose the suffix of
length − 1 is extracted from each pattern and all patterns
which start with the extracted suffix are queried from the in-
dex. Each queried pattern which satisfies the density prop-
erty is then used to create an elongated pattern by concate-
nating the appropriate prefix and suffix. These queries are

also supported by our index structure. The elongated pat-
terns are finally assigned to a new cluster candidate.

Having discovered dense patterns and combined them to
clusters, we identify those clusters which are parallel in the
dataset. Since for any cluster of length k all corresponding
clusters of length k − 1 have previously been detected, we
use the monotonicity property presented in Lemma 2. An
important property of multiclusters is that a subsequence of
a specific length may belong to no more than one cluster.
Hence any position in a sequence is the starting point for
at most one density based cluster of a fixed length. This
property is used to transform the sequence database from a
value representation to a cluster representation. After this
transformation it is possible to discover parallel clusters by
efficient frequent itemset mining techniques.

We use the following representation to apply the frequent
itemset mining: clusters starting at the same position in dif-
ferent attributes are combined to one itemset. The clusters
are identified by their cluster-ids. A frequent itemset con-
tains often occurring multiclusters in which each cluster be-
longs to a different attribute.

We use the Frequent Pattern (FP) growth algorithm pro-
posed by Han et al. for the extraction of frequent itemsets
[9]. The tree representation is very suitable for our task

MC-Clustering(db,lengthstart,lengthmax) 

foreach length from lengthstart to lengthmax
   foreach clustCand in candidateSet
      foreach seq in clustCand do
         if isDense(seq, index)
            ExpandToCluster(seq, clustCand);
   index.prune(length-1);
   CreateClusterCandSet(length+1);

Figure 4. Subsequence clustering algorithm
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Figure 5. MC and SUBCLU on synthetic data

since database scans are avoided. Thus the result of the FP-
tree algorithm contains multiclusters as described in Def. 1.
In order to find multiclusters of any length the FP-tree al-
gorithm is started for all different lengths for which clusters
have been found. Since the FP-tree works extremely fast on
the database of clusters, the loop over all different lengths
is efficient.

4. Experimental Evaluation

As mentioned in Section 2, a naive approach for detect-
ing clusters of arbitrary length would be to re-run a density-
based subspace clustering algorithm like SUBCLU [11]
for all possible lengths. Since SUBCLU was not devel-
oped to cluster subsequences we had to extend the original
implementation by our density notion. Figure 5 illustrates
the runtime of both algorithms on synthetic data. Note that
MC is faster by an order of magnitude. The runtime of both
algorithms depends on the number of subsequences belong-
ing to a cluster. Since longer subsequences are less often
dense the time to investigate longer subspace subsequence
is nearly constant. As far as the quality of the result is con-
cerned, both algorithms discovered the main patterns of the
six subspace subsequence clusters hidden in the database.

For the river dataset a value for σ between 0.7 and 0.85
has shaped up as a reasonable parameter. The MC algo-
rithm identifies more than a thousand clusters of length four
by using a value for σ of 0.7. Many of those clusters do
not show when mining clusters of length five. By using
a higher value for σ more subsequences are considered as
similar and cluster count drops between lengths five and six.
For this dataset experiments have shown that independent
of the σ value, parallel patterns in many attributes can be
found only at length four to six. Beyond this length, parallel
patterns are rare. This an interesting result for the hydrolo-
gists studying this data. They find that they should develop
packages of measures in this range and estimate costs for
about 500 meters river improvement. Figure 6 illustrates

the runtime of the MC algorithm for phase one (searching
for clusters of arbitrary length) and for phase two (searching
for parallel clusters) separately as well as for both. As we
can see, the time requirements for mining all clusters of ar-
bitrary length are distributed rather evenly between the two
phases. The total time for mining multiclusters of arbitrary
pattern length demonstrates the efficiency of our approach.
Note that with increasing maximal length, few additional
dense patterns are detected such that the increase in time
consumption slows down. The steepest ascent is for lengths
of up to six, which corresponds to our result findings.

Similar to the synthetic dataset, we also applied
SUBCLU on this real world dataset. However, even the
first iteration of SUBCLU for subspace subsequence clus-
ters of length ten did not finished after ten hours. One rea-
son why MC works extremely faster on the investigated
dataset than SUBCLU is the efficient combination of di-
mensions using an FP -tree as done by MC. Another rea-
son are the time consuming neighborhood queries on the
nineteen-dimensional data points. Even the use of index
structures like the R-Tree does not speed up these neighbor-
hood queries in these high dimensionalities.

For hydrologists to see how the detected multiclusters
are distributed and check in which areas the designed mea-
sures are applicable or where additional measure engineer-
ing is required, we visualize multiclusters in a geographi-
cal information system. Additional tools for hydrologists
give detailed information beyond this summary. Experts
may browse clusters for an overview of the attributes con-
tained in clusters, their value distributions as well as their
occurrence in the rivers. Moreover, individual attributes
and river values may be checked for containment in clus-
ters. By joining this information with the packages of mea-
sures designed, field experts can easily identify areas which
are not yet met by measures. Annotating the measures with
cost and duration information, political decision making is
supported. Hydrologists used the information derived from
these clusters to build a decision support system [3] that
gives concise summaries as well as detailed inspection of
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the state of the rivers as it is now as well as a prognosis for
future development depending on the packages of measures
chosen.

Our algorithm is useful for other multidimensional se-
quence data applications. We evaluated weather station data
from the ”National Fire Danger Rating Retrieval System”
from 1998 to 2005 about temperature, relative humidity,
wind speed, etc. [7]. The data includes indices like the
”Ignition Component”, i.e. the probability that a firebrand,
if present, would start a fire. These indices are influenced by
many variables forming natural multidimensional patterns.
MC detects this correlation between the index variables and
all measured sensor data. Thus the MC algorithm indeed
captures the data’s intrinsic structure.

5. Related Work

The analysis of sequence data has recently gained a lot of
attention. Recordings of data at successive time points have
been studied in time series mining (e.g. [6, 13]). Most of
these approaches, however, aim at finding patterns of val-
ues which do not have to directly follow one another, but
may have other values in-between (as in sequential frequent
itemset mining [1, 2]). A recent approach, dubbed motif
mining, is similar to our approach in that it searches those
patterns which have the highest count of similar subse-
quences [16]. Matching within some range is used to deter-
mine the frequency. However, neighbors are not weighted.
Moreover, parallel patterns are not discussed since the ap-
plication targeted is one-dimensional time series. While
noise is removed in motif discovery as well, we found
density-based clustering to be more useful in handling the
fuzzy and blurred river data collected by several individuals.
Numerous clustering methods have been proposed in the
literature, including partitioning clustering, e.g. the well-
known k-means algorithm [15]. These algorithms require
the specification of the number of clusters to be found and
can only detect convex cluster regions. Categorical cluster-
ing methods work well for categorical data where the no-
tion of neighborhood is not meaningful [8, 17]. Density-
based algorithms use a function to determine the density
of the neighborhood of each point and use a connectivity-
notion to assign similar points to the same cluster [5, 10].
Density-based clustering is robust to noise since it clusters
only those points or sequences above some noise thresh-
old as discussed in [4]. Moreover, it naturally incorporates
neighboring objects into its cluster definition.

6. Conclusion and Further work

Domain experts are supported in their need for pattern
detection in sequence databases such as river quality

records. The information derived using our approach
is incorporated in a decision support system devised by
hydrologists. Future work will concentrate on integrating
GIS information to handle non-sequence spatial informa-
tion as well and to extend the model to graph structures [12].

Acknowledgments: We would like to thank K. Kailing, H.-
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