
Smallest Synthetic Witnesses for ConjunctiveQueries∗

ARYAN ESMAILPOUR, Department of Computer Science, University of Illinois Chicago, USA

BORIS GLAVIC, Department of Computer Science, University of Illinois Chicago, USA

XIAO HU, Cheriton School of Computer Science, University of Waterloo, Canada

STAVROS SINTOS, Department of Computer Science, University of Illinois Chicago, USA

Given a self-join-free conjunctive query𝑄 and a set of tuples 𝑆 , a synthetic witness 𝐷 is a database instance such

that the result of𝑄 on 𝐷 is 𝑆 . In this work, we are interested in two problems. First, the existence problem ESW
decides whether any synthetic witness 𝐷 exists. Second, given that a synthetic witness exists, the minimization

problem SSW computes a synthetic witness of minimal size. The SSW problem is related to the smallest witness
problem recently studied by Hu and Sintos [22]; however, the objective and the results are inherently different.

More specifically, we show that SSW is poly-time solvable for a wider range of queries. Interestingly, in some

cases, SSW is related to optimization problems in other domains, such as the role mining problem in data

mining and the edge concentration problem in graph drawing. Solutions to ESW and SSW are of practical interest,
e.g., for test database generation for applications accessing a database and for data compression by encoding a

dataset 𝑆 as a pair of a query 𝑄 and database 𝐷 .

We prove that ESW is in P, presenting a simple algorithm that, given any 𝑆 , decides whether a synthetic

witness exists in polynomial time in the size of 𝑆 . Next, we focus on the SSW problem. We show an algorithm

that computes a minimal synthetic witness in polynomial time with respect to the size of 𝑆 for any query

𝑄 that has the head-domination property. If 𝑄 does not have such a property, then SSW is generally hard.

More specifically, we show that for the class of path queries (of any constant length), SSW cannot be solved in

polynomial time unless P = NP. We then extend this hardness result to the class of Berge-acyclic queries that
do not have the head-domination property, obtaining a full dichotomy of SSW for Berge-acyclic queries. Finally,
we investigate the hardness of SSW beyond Berge-acyclic queries by showing that SSW cannot be solved in

polynomial time for some cyclic queries unless P = NP.

CCS Concepts: • Theory of computation→ Data provenance; Database query processing and opti-

mization (theory).

Additional Key Words and Phrases: conjunctive queries, synthetic witness, head-domination, Berge-acyclic

1 Introduction
In the era of big data, data summarization techniques have been developed to reduce the compu-

tational cost and space usage for approximate and exact query processing. Sampling [9, 10, 46],

sketches [14], and coresets [38] are examples of data summarization techniques for approximation.

The notion of witness has been proposed in databases as a notion of exact data summarization. Wit-

nesses have been utilized as a form of why-provenance [1, 7, 20] providing proof for the existence

of query results, with wide applications in explainable data-intensive analytics. Given a SJFCQ
1 𝑄 ,

and a database 𝐷̄ , Buneman et al. [7] first introduced the witness for a query result 𝑡 ∈ 𝑄 (𝐷̄) as a
subset 𝐷 ′ ⊆ 𝐷̄ of tuples such that 𝑡 ∈ 𝑄 (𝐷 ′), where 𝑄 (𝑋) for a database 𝑋 is the result of query 𝑄

on 𝑋 . The smallest witness problem was first proposed by [35], where the goal was to compute a

witness 𝐷 ′ ⊆ 𝐷̄ of minimal size. Recently, Hu and Sintos [22] redefined the notion of witness to be

a subset 𝐷 ′ ⊆ 𝐷̄ of tuples such that 𝑄 (𝐷̄) = 𝑄 (𝐷 ′). In this paper, we study the smallest synthetic

∗
This work was partially supported by NSF grants IIS-2420577, IIS-2420691, IIS-2348919, and NSERC Discovery Grant.

1
We use SJFCQ to denote a self-join-free conjunctive query.

Authors’ Contact Information: Aryan Esmailpour, Department of Computer Science, University of Illinois Chicago, Chicago,

USA, aesmai2@uic.edu; Boris Glavic, Department of Computer Science, University of Illinois Chicago, Chicago, USA,

bglavic@uic.edu; Xiao Hu, Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, xiaohu@

uwaterloo.ca; Stavros Sintos, Department of Computer Science, University of Illinois Chicago, Chicago, USA, stavros@uic.

edu.

HTTPS://ORCID.ORG/0009-0000-3798-9578
HTTPS://ORCID.ORG/0000-0003-2887-2452
HTTPS://ORCID.ORG/0000-0002-7890-665X
HTTPS://ORCID.ORG/0000-0002-2114-8886
https://orcid.org/0009-0000-3798-9578
https://orcid.org/0000-0003-2887-2452
https://orcid.org/0000-0002-7890-665X
https://orcid.org/0000-0002-2114-8886

113:2 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

witness problem, the analog problem where no input database is given. Given a query 𝑄 and the

results set 𝑆 , our goal is to construct the database 𝐷 of a minimal size such that 𝑄 (𝐷) = 𝑆 . We

also investigate the problem of deciding the existence of such a database: given 𝑄 and 𝑆 , does a

database 𝐷 exist such that 𝑄 (𝐷) = 𝑆? We present a simple algorithm that can decide whether such

a witness exists in polynomial time in the size of 𝑆 .

The problem we study in this work arises naturally when testing applications that access a

database. To ensure certain control flow paths are taken in the application, queries executed by

the application must return certain results. One way to ensure this is to generate a test database

such that evaluating the query on the test database returns the desired result [5, 42]. Minimizing

the size of the test database is beneficial as it reduces the storage cost and runtime of evaluating

the tests. Another application is to reduce communication costs when sending data between two

servers. Instead of sending a dataset 𝑆 directly, we can “compress” 𝑆 by encoding it as a pair (𝑄, 𝐷)
such that 𝑄 (𝐷) = 𝑆 and |𝑄 | + |𝐷 | ≪ |𝑆 |. While the techniques from [22] can also be used for this

purpose, we observe that the restriction to 𝐷 ′ ⊆ 𝐷̄ is unnecessary in this context (and might not

achieve high compression) as the server we are sending 𝑆 to does not care whether the database

we send is synthetic or not.

Example 1.1. Consider the matrix query 𝑄matrix (𝐴1, 𝐴3) :−𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) and a data-

base 𝐷̄ introduced in the following. For some perfect square number 𝑁 ∈ N, let I = {1, 2, . . . ,
√
𝑁 }

and J = I × I = {(1, 1), . . . , (1,
√
𝑁), (2, 1), . . . , (2,

√
𝑁), . . . , (

√
𝑁, 1), . . . , (

√
𝑁,
√
𝑁)}. Consider

an arbitrary order of the tuples in J . For the 𝑖-th tuple (𝑗1, 𝑗2) ∈ J , we have in 𝐷̄ the tuple

(𝑗1, 𝑖) ∈ 𝑅1 and the tuple (𝑖, 𝑗2) ∈ 𝑅2. Moreover, 𝑄matrix (𝐷̄) = J . Consider sending the data set

𝑄matrix (𝐷̄) between two servers. The smallest witness 𝐷 ′ ⊆ 𝐷̄ according to [22] is 𝐷 ′ = 𝐷̄ with

size |𝐷 ′ | = 2𝑁 . However, the smallest synthetic witness 𝐷 includes tuples 𝑅1 = {(𝑖, ∗) | 𝑖 ∈ I} and
𝑅2 = {(∗, 𝑖) | 𝑖 ∈ I}, where ∗ is a special value, with |𝐷 | = 2

√
𝑁 . In the first case, the server needs

to send 2𝑁 tuples, while in the second case, only 2

√
𝑁 tuples.

1.1 Problem Definition
Let R be a database schema that contains𝑚 relations 𝑅1, 𝑅2, . . . , 𝑅𝑚 over a set of attributes A. Each
relation 𝑅𝑖 is defined on a subset of attributes A𝑖 ⊆ A. Let dom(𝐴) be the domain of attribute 𝐴 ∈ A.
Let dom(𝑋) = ∏

𝐴∈𝑋 dom(𝐴) be the domain of a set of attributes 𝑋 ⊆ A. Given the database schema

R, let 𝐷 be a given database instance of R, and let the corresponding relations of 𝑅1, 𝑅2, . . . , 𝑅𝑚
be 𝑅𝐷

1
, 𝑅𝐷

2
, . . . , 𝑅𝐷

𝑚 , where 𝑅
𝐷
𝑖 is a collection of tuples defined on dom(A𝑖). The size of a database

instance 𝐷 is denoted as |𝐷 | = ∑
𝑖∈[𝑚] |𝑅𝐷

𝑖 |. We will drop the superscript where 𝐷 is clear from the

context. For any attribute 𝐴 ∈ A, 𝜋𝐴𝑡 denotes the value over attribute 𝐴 of tuple 𝑡 . Similarly, for a

set of attributes 𝑋 ⊆ A, 𝜋𝑋 𝑡 denotes values over attributes in 𝑋 of tuple 𝑡 .

We consider the class of conjunctive queries without self-joins:
2

𝑄 (A) :−𝑅1 (A1) Z 𝑅2 (A2) Z . . . Z 𝑅𝑚 (A𝑚),

where A ⊆ A is a set of output (head) attributes and A−A is the set of non-output (body) attributes.

A SJFCQ is full if A = A, indicating the natural join of the given relations; otherwise, it is non-full.
We call 𝑄full (A) = 𝑅1 (A1) Z 𝑅2 (A2) Z . . . Z 𝑅𝑚 (A𝑚) as the underlying full join query. We call

𝑄 self-join-free if each 𝑅𝑖 in 𝑄 is distinct. The query result of a SJFCQ 𝑄 on database 𝐷 , denoted as

𝑄 (𝐷), is the projection of the natural join result of 𝑄full onto A, i.e.,

𝑄 (𝐷) = {𝑡 ′ ∈ dom(A) | ∃𝑡 ∈ dom(A) such that 𝜋A (𝑡) = 𝑡 ′ and ∀𝑖 ∈ [𝑚] : 𝜋A𝑖
(𝑡) ∈ 𝑅𝑖 }

2
This is the definition of join-project queries, however, we call them conjunctive queries to be consistent with [22].

Smallest Synthetic Witnesses for ConjunctiveQueries 113:3

A tuple 𝑡 ∈ 𝑅𝑖 is dangling if it does not participate in any join, i.e. if there does not exist any tuple

𝑡 ′ ∈ 𝑄full (𝐷) such that 𝜋attr(𝑅𝑖)𝑡
′ = 𝑡 , and non-dangling otherwise. We use rels(𝑄) to denote

all the relations that appear in the body of 𝑄 , and use head(𝑄) to denote all the attributes that

appear in the head of 𝑄 , i.e., head(𝑄) = A. We also use attr(𝑅𝑖) = A𝑖 to denote all the attributes

that appear in 𝑅𝑖 . Moreover, we use head(𝑅𝑖) to denote head(𝑄) ∩ attr(𝑅𝑖), i.e., the subset of head
attributes that appear in 𝑅𝑖 .

For a set 𝑆 ⊆ dom(A) of tuples, a database 𝐷 is called a synthetic witness of (𝑄, 𝑆) if 𝑄 (𝐷) = 𝑆 .

For every attribute 𝐴 ∈ A − head(𝑄), we assume that dom(𝐴) is an infinite set (for example, the set

of real numbers R). For simplicity, for every attribute 𝐴 ∈ head(𝑄), we also assume that dom(𝐴) is
an infinite set. Even if the finite set of tuples in 𝑆 contains values from a different domain, they can

be represented as items from the infinite set dom(𝐴).

Definition 1.2 (Existence of Synthetic Witness (ESW)). For a SJFCQ 𝑄 and a set of tuples 𝑆 ⊆
dom(head(𝑄)), decide whether there exists a synthetic witness for (𝑄, 𝑆).

Given 𝑄 and 𝑆 , we denote the above problem as ESW(𝑄, 𝑆).

Definition 1.3 (Smallest Synthetic Witnesses (SSW)). For a SJFCQ 𝑄 and a set of tuples 𝑆 ⊆
dom(head(𝑄)) such that ESW(𝑄, 𝑆) returns true, return a synthetic witness 𝐷 for (𝑄, 𝑆) such
that there exists no other synthetic witness 𝐷 ′ for (𝑄, 𝑆) with |𝐷 ′ | < |𝐷 |.

Given𝑄 and 𝑆 , we denote the above problem as SSW(𝑄, 𝑆). We note that the solution to SSW(𝑄, 𝑆)
may not be unique; hence, we aim to find some minimum synthetic witness. See Appendix A for

an example with multiple solutions. In this work, we study the data complexity of ESW and SSW,
i.e., the size of the database schema and query is considered to be constant. As we will show, for

any SJFCQ 𝑄 and any set 𝑆 ⊆ dom(head(𝑄)) of tuples, ESW(𝑄, 𝑆) is poly-time solvable in terms of

|𝑆 |. However, SSW is hard for general SJFCQs. We say that SSW is poly-time solvable for 𝑄 , if for an

arbitrary set of tuples 𝑆 ⊆ dom(head(𝑄)), SSW(𝑄, 𝑆) can be computed in polynomial time in terms

of |𝑆 |. As SSW is not always poly-time solvable, we introduce an approximated version:

Definition 1.4 (𝜃 -Approximated Smallest Synthetic Witnesses (𝜃-SSW)). For a SJFCQ 𝑄 and a set of

tuples 𝑆 ⊆ dom(head(𝑄)) with ESW(𝑄, 𝑆) = true, return a synthetic witness 𝐷 for (𝑄, 𝑆) such that

|𝐷 | ≤ 𝜃 · |𝐷∗ |, where 𝐷∗ is a solution to SSW(𝑄, 𝑆), and 𝜃 > 1.

1.2 Our Results
Our main results achieved in this paper are summarized as follows:

• In Section 3, we show a poly-time algorithm for ESW on arbitrary SJFCQs.

• In Section 4, we show a poly-time algorithm for SSW on SJFCQs with the head-domination
property (formally defined in Section 2).

• In Section 5, we investigate the hardness of SSW on SJFCQs without the head-domination property.

We first show that SSW is not poly-time solvable for path queries by a reduction from the vertex
cover problem. Next, we extend the hardness result to arbitrary Berge-acyclic SJFCQs without

the head-domination property. This leads to a full dichotomy of SSW for the class of Berge-acyclic
SJFCQs: For a Berge-acyclic SJFCQ 𝑄 , if it has the head-domination property, SSW is poly-time

solvable for 𝑄 ; otherwise, SSW is not poly-time solvable for 𝑄 , unless P = NP. In Section 5.4, we

show the hardness of SSW for some SJFCQs which are not Berge-acyclic.

• In Section 6, we show that a minor modification of our algorithm for the ESW problem returns

an 𝑂

(
min

{
|𝑆 |1−

1

𝜌★ (𝑄) ,
|𝑆 |
𝛽

})
-approximated solution to SSW for any SJFCQ 𝑄 , where 𝜌★(𝑄) is the

fractional edge covering number of 𝑄 and 𝛽 = max

𝑅𝑖 ∈rels(𝑄)
|𝜋head(𝑅𝑖)𝑆 |.

113:4 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

1.3 Related Work
Smallest witnesses for SJFCQs. Given a SJFCQ 𝑄 and a database 𝐷̄ , Buneman et al. [7] first

introduced the witness for a query result 𝑡 ∈ 𝑄 (𝐷̄) as a subset 𝐷 ′ ⊆ 𝐷̄ of tuples such that 𝑡 ∈ 𝑄 (𝐷 ′).
Witnesses can be determined in poly-time for SJFCQs. Hu and Sintos [22] defined a witness for a
SJFCQ 𝑄 and database 𝐷̄ to be a subset 𝐷 ′ ⊆ 𝐷̄ of tuples such that 𝑄 (𝐷̄) = 𝑄 (𝐷 ′). The smallest
witness problem (SWP) is then to find a witness for (𝑄, 𝐷̄) of minimal size. While SSW is quite similar

to SWP, there are a couple of fundamental differences. First, for SSW, witnesses are not constrained to
subsets of the input database 𝐷̄ . To compare SSW and SWP, set 𝑆 = 𝑄 (𝐷̄) to be the input of SSW. While

SWP returns a smallest witness as a subset of 𝐷̄ , SSW determines the smallest synthetic witness that

is not necessarily a subset of 𝐷̄ . Their differences lead to different techniques and results. In [22],

SWP is poly-time solvable if 𝑄 has the head-cluster property. Note that the head-cluster property
implies head-domination, but the other direction does not hold. For head-dominated SJFCQs but

without the head-cluster property, SWP is not poly-time solvable, but interestingly, SSW is poly-time

solvable. Therefore, SSW is poly-time solvable for a greater class of queries (unless P = NP), and by

definition, the size of the witness in SSW is no greater than the size of the witness in SWP. When we

are not restricted to using tuples from the input database, it is always better to obtain a synthetic

witness.

Resilience and view update. The problem of finding witnesses is also intimately related to query

resilience [17, 18, 31, 39] and variants of the view update problem including deletion propagation [6,

11, 23, 27, 28], insertion propagation [34], and data-based explanations for missing answers [21, 45].

The decision version of the side-effect free view update problem is given 𝑄 , 𝐷 , 𝑉 = 𝑄 (𝐷), and Δ𝑉 ,

determine whether there exists Δ𝐷 such that𝑄 (𝐷 ⊎Δ𝐷) = 𝑉 ⊎Δ𝑉 where Δ𝐷 and Δ𝑉 may consist

both of deletions and insertions and ⊎ denotes applying such a delta to a database or relation. The

deletion (insertion) propagation problem is a restricted version of this problem where both Δ𝐷 and

Δ𝑉 are deletions (insertions). The relevance of head-domination for deciding the complexity of

deletion propagation was recognized in prior work [27]. ESW, the decision version of the synthetic

witness problem is a special case of the insertion propagation problem [34] where 𝐷 = ∅ and𝑉 = ∅.
While ESW is poly-time solvable for all SJFCQs, the insertion propagation problem [34] is NP-hard
in terms of data complexity if tuples from Δ𝐷 only use values from the active domains of attributes

from 𝐷 . Another problem related to deletion propagation is query resilience [17, 18, 39]: for a

database 𝐷 and query 𝑄 , the resilience of 𝑄 is the minimum number of tuples Δ𝐷 that have to be

deleted from 𝐷 such that𝑄 (𝐷 − Δ𝐷) = ∅. Makhija and Gatterbauer [31, 33] showed a novel way to

unify all the approaches related to deletion propagation (including the SWP problem in [22]).

While related papers on SWP, resilience, and deletion propagation problems, also provide hardness

results for some classes of queries, their input consists of the database instance, so their approach

is always to create a database instance that makes their problem hard. In our case, the set 𝑆 is the

input to our problem, i.e., we cannot directly define the database instance. Intuitively, they leverage

both the structure of their constructed database instances and the query results at the same time,

while in our case, we only have control over the results of a query. This makes it challenging to

acquire the known techniques for showing hardness results and it is not clear how the approaches

from the related papers can be applied to our setting. However, interestingly, the head-domination

property appears to be a key in related problems [22], [27], and similarly in our setting.

Data synopses. Data synopses [13, 29, 38] are used in approximate query processing to approximate

the query’s result based on the information in the synopsis. A common technique is identifying a

small subset of the input as a synopsis that captures important input properties in a preprocessing

step. At query time, the synopsis can then compute a tight approximation of the query’s result

over the whole dataset. The main difference to our work is that (i) data synopses in databases and

Smallest Synthetic Witnesses for ConjunctiveQueries 113:5

computational geometry have been typically applied for range queries, aggregation queries, top-𝑘 ,

clustering, and other spatial queries instead of SJFCQs and (ii) our goal is to compute an exact

result instead of an approximation.

Factorized databases. Factorized databases [32, 37] are nested representations of query results as

relational algebra expressions (unions and cross products) that can be exponentially more succinct

than flat query results by exploiting the distributivity of product over union and commutativity

of product and union. A common problem studied in factorized databases is finding a variable

ordering for a given query that leads to the smallest worst-case factorized representation. Kenig

and Weinberger [26] investigate how to measure the loss introduced when decomposing a database

schema into an acyclic join dependency while Kenig et al. [25] discover approximate acyclic

database schemas and multivalued dependencies from relational data. In contrast, in SSW the goal is
to minimize a database instance based on a given set of query results. An interesting direction for

future work would be to investigate whether it is possible to further compress a synthetic witness

through factorization.

SSW for the matrix query. The SSW problem for the matrix query 𝑄matrix (𝐴1, 𝐴3) :−𝑅1 (𝐴1, 𝐴2) Z
𝑅2 (𝐴2, 𝐴3) is essentially the weighted biclique covering problem [41, 43]. A biclique edge cover 𝐶

for a bipartite graph 𝐺𝐵 = (𝑉 ,𝑈 , 𝐸) where 𝑈 ∪𝑉 are the nodes of the graphs and 𝐸 is the set of

edges, is a set of subgraphs of 𝐺𝐵 such that (1) each subgraph 𝑐 ∈ 𝐶 is a complete bipartite graph,

and (2) every edge in 𝐸 belongs to at least one subgraph in 𝐶 . For a subgraph 𝑔 of 𝐺𝐵 , letW(𝑔)
be the number of vertices in 𝑔. In the weighted biclique covering problem, the goal is to find a

biclique edge cover 𝐶 such that

∑
𝑐∈𝐶W(𝑐) is minimized. If every edge in 𝐺𝐵 represents a tuple

in 𝑆 (and vice versa), the weighted biclique covering problem is equivalent to the SSW problem

on 𝑄matrix: each value in 𝐴2 represents a subgraph in the biclique covering, each tuple (𝑣, 𝑐) ∈ 𝑅1

encodes that 𝑣 ∈ 𝑉 belongs to subgraph 𝑐 , and each tuple (𝑐,𝑢) ∈ 𝑅2 encodes that 𝑢 ∈ 𝑈 belongs

to 𝑐 . The same graph problem has been studied in other domains, such as in data mining [36, 44]

or in graph drawing [30]. Interestingly, SSW for 𝑄matrix is also equivalent to the edge-role mining

problem and the edge concentration problem. It is known that the weighted biclique covering

problem is NP-hard [16, 44]. Hence, there is no poly-time algorithm for the SSW problem on𝑄matrix

unless P = NP. Unfortunately, it is not clear how this result can be extended to other queries.

2 Preliminaries

Connectivity of SJFCQs. We model a SJFCQ 𝑄 as a graph 𝐺𝑄 , where each relation 𝑅𝑖 is a vertex

and there is an edge between 𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄) if attr(𝑅𝑖) ∩ attr(𝑅 𝑗) ≠ ∅. A SJFCQ𝑄 is connected
if 𝐺𝑄 is connected, and disconnected otherwise. For a disconnected SJFCQ 𝑄 , we can decompose it

into multiple connected subqueries by identifying the connected components of 𝐺𝑄 . The set of

relations corresponding to the set of vertices in one connected component of𝐺𝑄 form a connected

subquery of𝑄 . Given a disconnected SJFCQ𝑄 , let𝑄1, 𝑄2, · · · , 𝑄𝑘 be its connected subqueries. Given

a set 𝑆 ⊆ dom(head(𝑄)) of tuples for 𝑄 , let 𝑆𝑖 = 𝜋head(𝑄𝑖)𝑆 be the corresponding tuples defined for

𝑄𝑖 . It is easy to verify that every synthetic witness for 𝑆 , if it exists, satisfies 𝑆 = ×𝑖∈[𝑘]𝑆𝑖 . Hence,
from now on, we assume that 𝑄 is connected.

Lemma 2.1. For a disconnected SJFCQ𝑄 of 𝑘 connected components𝑄1,𝑄2, · · · ,𝑄𝑘 , SSW is poly-time
solvable if and only if SSW is poly-time solvable for (𝑄𝑖 , 𝑆𝑖) for each 𝑖 ∈ [𝑘].

Head-domination property. The notion of head-domination was first introduced by Kimelfeld

et al. in [27] to capture the hardness of the deletion propagation problem with minimal view

side effects. Later, Hu and Sintos [22] discovered that this notion could be used for capturing the

approximability of the SWP problem but not its hardness. In this paper, we use this notion to capture

113:6 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

Algorithm 1: ESW(𝑄, 𝑆)
1 𝐷 ← ∅, 𝑗 ← 1 ;

2 foreach tuple 𝑡 ∈ 𝑆 do

3 foreach 𝑖 ∈ [𝑚] do
4 𝑡𝑖 ← a tuple defined on attr(𝑅𝑖) such that 𝜋𝐴 (𝑡𝑖) = 𝜋𝐴 (𝑡) for each attribute

𝐴 ∈ head(𝑅𝑖) and 𝜋𝐴 (𝑡𝑖) = 𝑗 for each attribute 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖);
5 𝑅𝐷

𝑖 ← 𝑅𝐷
𝑖 ∪ {𝑡𝑖 };

6 𝑗 ← 𝑗 + 1;

7 if 𝑄 (𝐷) = 𝑆 then return true;

8 else return false;

the poly-time solvability of the SSW problem. For a SJFCQ 𝑄 and a subset 𝐸 ⊆ rels(𝑄) of relations,
𝑅𝑖 ∈ rels(𝑄) dominates 𝐸 if every output attribute appearing in any relation of 𝐸 also appears in 𝑅𝑖 ,

i.e.,

⋃
𝑅 𝑗 ∈𝐸 head(𝑅 𝑗) ⊆ head(𝑅𝑖). We also need to introduce the notion of existential-connectivity.

We model a SJFCQ𝑄 as a graph𝐺∃
𝑄
, where each relation 𝑅𝑖 is a vertex, and there is an edge between

𝑅𝑖 , 𝑅 𝑗 ∈ rels(𝑄) if attr(𝑅𝑖) ∩ attr(𝑅 𝑗) − head(𝑄) ≠ ∅. Let 𝐸1, 𝐸2, · · · , 𝐸𝜅 ⊆ rels(𝑄) be the

connected components of 𝐺∃
𝑄
, each corresponding to a subset of relations in 𝑄 .

Definition 2.2 ([27]). For SJFCQ 𝑄 , let 𝐸1, 𝐸2, · · · , 𝐸𝜅 be the connected components of𝐺∃
𝑄
. 𝑄 has

the head-domination property if for any 𝑖 ∈ [𝜅], there is a relation from rels(𝑄) that dominates 𝐸𝑖 .

Berge-acyclic SJFCQs. There are several notions of acyclicity for CQs in the literature. We

show our main hardness results using the definition of acyclicity given by Berge [4]. Consider the

bipartite graph𝐺⊲⊳
𝑄
for a SJFCQ𝑄 , where each attribute 𝐴 ∈ A is a vertex on one side, each relation

𝑅𝑖 ∈ rels(𝑄) is a vertex on the other side, and there is an edge between 𝐴 and 𝑅𝑖 if 𝐴 ∈ attr(𝑅𝑖).
A SJFCQ𝑄 is Berge-acyclic if𝐺⊲⊳

𝑄
is acyclic. Note that this definition of acyclicity does not allow two

relations to have two or more common attributes. But if these attributes always appear together in

any relation, they can simply be considered as one “combined” attribute.

Some of the well-studied classes of queries in databases are Berge-acyclic, for example, path,

star, and tree queries. Berge-acyclic queries have been used to derive some interesting results in

database theory [8, 15, 24, 40]. A more relaxed notion of acyclicity is 𝛼-acyclicity (see Appendix C

for a formal definition), which does not always capture some intuitive properties. For example,

removing a relation from an 𝛼-acyclic SJFCQ can make it cyclic, which is quite counter-intuitive.

In contrast, Berge-acyclic queries have some nice properties that lead us to the hardness results.

3 ESW for SJFCQs
The ESW problem generalizes the standard satisfiability problem for SJFCQs [12]. Given a query 𝑄

(not necessarily a SJFCQ), the goal is to decidewhether a database instance𝐷 exists such that𝑄 (𝐷) ≠
∅. It is known that every SJFCQ is satisfiable. However, this is not always true for the ESW problem.

Indeed, consider the SJFCQ 𝑄 (𝐴2, 𝐴3, 𝐴4) :−𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) Z 𝑅3 (𝐴3, 𝐴4) Z 𝑅4 (𝐴4, 𝐴5).
If 𝑆 = {(1, 2, 3), (1, 2, 4), (6, 2, 3)}, ESW(𝑄, 𝑆) is false due to the fact that tuples {(1, 2), (6, 2)} must

appear in 𝑅2 and tuples {(2, 3), (2, 4)} must appear in 𝑅3, however, (6, 2, 4) ∉ 𝑆 . On the contrary, if

𝑆 = {(1, 2, 3), (1, 2, 4), (6, 2, 3), (6, 2, 4)}, then ESW(𝑄, 𝑆) is true.
We present an algorithm (Algorithm 1) for the ESW(𝑄, 𝑆) problem that runs in polynomial time

in terms of |𝑆 |, and decides whether a synthetic witness 𝐷 exists such that 𝑄 (𝐷) = 𝑆 . We start

from an empty database and perform the following step for each tuple 𝑡 ∈ 𝑆 . Let 𝑡 be the tuple

Smallest Synthetic Witnesses for ConjunctiveQueries 113:7

in 𝑆 processed in the 𝑗-th iteration of the outer loop (line 2). For each 𝑅𝑖 ∈ rels(𝑄), we add a

tuple 𝑡𝑖 to 𝑅
𝐷
𝑖 such that 𝜋head(𝑅𝑖) (𝑡𝑖) = 𝜋head(𝑅𝑖) (𝑡) and 𝜋𝐴 (𝑡𝑖) = 𝑗 , for every non-output attribute

𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖). Note that 𝐷 contains all tuples added in these iterations. Algorithm 1

returns true if 𝑄 (𝐷) = 𝑆 , and false, otherwise.

Lemma 3.1. Let 𝐷 be the database produced by lines 1-6 of Algorithm 1. Then, 𝑆 ⊆ 𝑄 (𝐷).

Proof. For each tuple 𝑡 ∈ 𝑆 , Algorithm 1 adds a tuple 𝑡𝑖 to 𝑅𝑖 for each 𝑖 ∈ [𝑚]. It is easy to

verify that 𝑡 = 𝜋head(𝑄) (⊲⊳𝑖∈[𝑚] 𝑡𝑖), since for all 𝑖 ∈ [𝑚], we have 𝜋𝐴 (𝑡𝑖) = 𝜋𝐴 (𝑡) if 𝐴 ∈ head(𝑄)
and 𝜋𝐴 (𝑡𝑖) = 𝑗 if 𝐴 ∉ head(𝑄), where 𝑗 is the iteration in which Algorithm 1 processes 𝑡 . Hence,

𝑡 ∈ 𝑄 (𝐷) and 𝑆 ⊆ 𝑄 (𝐷). □

Lemma 3.2. Given a SJFCQ 𝑄 and a set of tuples 𝑆 ⊆ dom(head(𝑄)), Algorithm 1 returns true if
and only if ESW(𝑄, 𝑆) is true.

proof sketch. From Lemma 3.1, we know that 𝑆 ⊆ 𝑄 (𝐷). It suffices to show that if there exists

a tuple ℎ ∈ 𝑄 (𝐷) such that ℎ ∉ 𝑆 then ESW(𝑄, 𝑆) = false. We first discuss the high-level idea of the

proof in the case where 𝑄 has only two relations. Assume the tuple ℎ ∈ 𝑄 (𝐷) − 𝑆 exists and 𝑄 has

only two relations 𝑅1 and 𝑅2. Sinceℎ ∉ 𝑆 , we have thatℎ = 𝜋head(𝑄) (𝑡1 Z 𝑠2), for two different tuples
𝑡, 𝑠 ∈ 𝑆 , by the definition of Algorithm 1. Again by the definition of Algorithm 1 (line 4), we have that

for any body attribute, 𝑡1 and 𝑠2 get different values, i.e, for any attribute𝐴 ∈ (attr(𝑅1)∩attr(𝑅2))−
head(𝑄), we have 𝜋𝐴 (𝑡1) ≠ 𝜋𝐴 (𝑠2). So, because 𝑡1 and 𝑠2 can be joined together to create the tuple ℎ,

the two relations cannot share a body attribute and we have (attr(𝑅1) ∩ attr(𝑅2)) − head(𝑄) = ∅.
Moreover, we have 𝜋head(𝑅1)∩head(𝑅2) (𝑡1) = 𝜋head(𝑅1)∩head(𝑅2) (𝑠2), since 𝑡1 and 𝑠2 can be joined.

Assume ESW(𝑄, 𝑆) = true and there exists a witness 𝐷 ′ for (𝑄, 𝑆). By definition, we have𝑄 (𝐷 ′) = 𝑆

and hence we have 𝑠, 𝑡 ∈ 𝑄 (𝐷 ′). Let 𝑡 ′
1
∈ 𝑅𝐷 ′

1
and 𝑡 ′

2
∈ 𝑅𝐷 ′

2
(resp, 𝑠′

1
∈ 𝑅𝐷 ′

1
and 𝑠′

2
∈ 𝑅𝐷 ′

2
) be the

tuples that create 𝑡 (resp. 𝑠), i.e., 𝑡 = 𝜋head(𝑄) (𝑡 ′1 Z 𝑡 ′
2
) (resp. 𝑠 = 𝜋head(𝑄) (𝑠′1 Z 𝑠′

2
)). We have

𝜋head(𝑅1) (𝑡 ′1) = 𝜋head(𝑅1) (𝑡) = 𝜋head(𝑅1) (𝑡1) and 𝜋head(𝑅2) (𝑠′2) = 𝜋head(𝑅2) (𝑠) = 𝜋head(𝑅2) (𝑠2). Hence,
we have ℎ = 𝜋head(𝑄) (𝑡 ′1 Z 𝑠′

2
), since we know that 𝑅1 and 𝑅2 do not share a body attribute and

also 𝜋head(𝑅1)∩head(𝑅2) (𝑡1) = 𝜋head(𝑅1)∩head(𝑅2) (𝑠2). Therefore we get ℎ ∈ 𝑄 (𝐷 ′) = 𝑆 , which is a

contradiction with the assumption ℎ ∉ 𝑆 . We show the general proof in Appendix B. □

Algorithm 1 needs 𝑂 (|𝑆 |) time to construct 𝐷 . For any SJFCQ 𝑄 , 𝑄 (𝐷) can be computed in

polynomial time in terms of |𝑆 |. Putting everything together, we obtain:

Theorem 3.3. For a SJFCQ𝑄 and any set 𝑆 ⊆ dom(head(𝑄)) of tuples, Algorithm 1 returns true if
and only if ESW(𝑄, 𝑆) is true, in polynomial time in terms of |𝑆 |.

4 SSW for Head-Dominated SJFCQs
We now present an exact algorithm for the SSW problem for head-dominated SJFCQs, which runs in

polynomial time in terms of |𝑆 |. Algorithm 2 takes as input a SJFCQ𝑄 and a set 𝑆 ⊆ dom(head(𝑄))
of tuples. First, it checks whether ESW(𝑄, 𝑆) = false. If a synthetic witness does not exist, the

algorithm returns ∅. Otherwise, it constructs a smallest synthetic witness 𝐷 as follows. For each

tuple 𝑡 ∈ 𝑆 , we iterate through all the relations 𝑅𝑖 ∈ rels(𝑄). For each relation 𝑅𝑖 , we add a

tuple 𝑡𝑖 defined on attr(𝑅𝑖) to 𝑅𝐷
𝑖 , such that 𝜋head(𝑅𝑖) (𝑡𝑖) = 𝜋head(𝑅𝑖) (𝑡) and for each attribute

𝐴 ∈ attr(𝑅𝑖) − head(𝑄), 𝜋𝐴 (𝑡𝑖) = ∗ for a special value ∗.
The new algorithm (Algorithm 2) is essentially the same as Algorithm 1, with one minor but

important difference. In Algorithm 1, we followed a defensive mechanism, adding a different value

𝑗 for each different tuple in 𝑆 to the body attributes attr(𝑅𝑖) − head(𝑅𝑖) for 𝑖 ∈ [𝑚]. Notice that
in the ESW problem, it only matters whether ESW(𝑄, 𝑆) is true or false, and we do not care about

constructing a minimum witness. Hence, to be safe, each time we encountered a tuple 𝑡 ∈ 𝑆 , we

113:8 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

Algorithm 2: EasySSW(𝑄, 𝑆)
1 if ESW(𝑄, 𝑆) = false then return ∅;
2 𝐷 ← ∅;
3 foreach tuple 𝑡 ∈ 𝑆 do

4 foreach 𝑖 ∈ [𝑚] do
5 𝑡𝑖 ← a tuple defined on attr(𝑅𝑖) such that 𝜋𝐴 (𝑡𝑖) = 𝜋𝐴 (𝑡) for each attribute

𝐴 ∈ head(𝑅𝑖) and 𝜋𝐴 (𝑡𝑖) = ∗ for each attribute 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖);
6 𝑅𝐷

𝑖 ← 𝑅𝐷
𝑖 ∪ {𝑡𝑖 };

7 return 𝐷 ;

added a tuple to each relation so that they could be joined to generate the result 𝑡 . On the other hand,

for the SSW problem, we must compute the smallest witness. We follow an aggressive approach,

adding the same value ∗ in all body attributes attr(𝑅𝑖) − head(𝑅𝑖) (for each 𝑖 ∈ [𝑚]) for all tuples
in 𝑆 . Of course, if𝑄 was any general SJFCQ, we would expect that such a construction might create

multiple new results that do not belong to 𝑆 , i.e., if 𝐷 is the constructed database instance, then

𝑄 (𝐷) ⊃ 𝑆 , leading to an incorrect result. However, in this section, we focus only on head-dominated

SJFCQs. We take advantage of the properties of head-dominated SJFCQs to show that if we use

the same character ∗ for the values of the body attributes over all tuples in 𝑆 , we always only

generate tuples that exist in 𝑆 . Intuitively, in head-dominated queries, based on our construction,

the unwanted additional tuples will get filtered out from the results by the dominating relations.

We first show that 𝐷 returned by Algorithm 2 is a valid synthetic witness of (𝑄, 𝑆) in Lemma 4.1

and then prove the optimality of 𝐷 in Lemma 4.2.

Lemma 4.1. For any SJFCQ 𝑄 with the head-domination property and any set of tuples 𝑆 ⊆
dom(head(𝑄)), such that ESW(𝑄, 𝑆) = true, the 𝐷 returned by Algorithm 2 is a synthetic witness, i.e.,
𝑄 (𝐷) = 𝑆 .

Proof. Direction 𝑄 (𝐷) ⊇ 𝑆 . Let 𝑡 ∈ 𝑆 be an arbitrary tuple. By definition, for every 𝑖 ∈ [𝑚],
𝑡𝑖 ∈ 𝑅𝐷

𝑖 , and 𝜋head(𝑄) (Z𝑖∈[𝑚] 𝑡𝑖) = 𝑡 so 𝑡 ∈ 𝑄 (𝐷), and the result follows. Note that this direction

holds even when 𝑄 does not have head-domination property.

Direction 𝑄 (𝐷) ⊆ 𝑆 . Let 𝜅 be the number of connected components in 𝐺∃
𝑄
and for each 𝑗 ∈ [𝜅],

let 𝑅 𝑗 be the dominating relation of the 𝑗-th connected component. Wlog, we consider the minimum

number of dominating relations, so no dominating relations 𝑅 𝑗1 , 𝑅 𝑗2 , for 𝑗1 ≠ 𝑗2 ∈ [𝑘] belong in the

same existential connected component.
3
By the construction of 𝐷 , 𝑄 (𝐷) = 𝜋head(𝑄) (Z𝑗∈[𝜅] 𝑅

𝐷
𝑗).

Indeed, all the body attributes have the same value ∗, and for each tuple 𝑡 in a relation 𝑅 in the

𝑗-th existential connected component 𝜋head(𝑅)𝑡 ∈ 𝜋head(𝑅)𝑅 𝑗 , so all relations except the dominating

ones do not affect the query result in our constructed database 𝐷 . As ESW(𝑄, 𝑆) = true, there

exists a witness 𝐷 ′ (without dangling tuples) such that 𝑄 (𝐷 ′) = 𝑆 . Let ℎ ∈ 𝑄 (𝐷), and let ℎ 𝑗

be the tuple in 𝑅𝐷
𝑗 such that ℎ = 𝜋head(𝑄) (Z𝑗∈[𝜅] ℎ 𝑗). We need to show that ℎ ∈ 𝑆 . By the

construction of 𝐷 , 𝜋head(𝑅̂ 𝑗) (ℎ 𝑗) ∈ 𝜋head(𝑅̂ 𝑗) (𝑆), for every 𝑗 ∈ [𝜅], so there exists a tuple 𝑔 𝑗 ∈ 𝑅𝐷 ′
𝑗

such that 𝜋head(𝑅̂ 𝑗) (ℎ 𝑗) = 𝜋head(𝑅̂ 𝑗) (𝑔 𝑗). If no such tuple 𝑔 𝑗 existed, then 𝑄 (𝐷 ′) = 𝑆 would not

3
Assume that there are two dominating relations 𝑅̂ 𝑗1 , 𝑅̂ 𝑗2 in 𝐸 𝑗 . If 𝑅̂ 𝑗1 is dominating for 𝐸 𝑗 , then we can skip 𝑅̂ 𝑗2 becaus

eit is dominated by 𝑅̂ 𝑗1 . If the dominating relation of 𝐸 𝑗 , say 𝑅̂ 𝑗 , is in a different connected component 𝐸ℎ , we can safely

remove 𝑅̂ 𝑗1 , 𝑅̂ 𝑗2 from the set of dominating relations and add 𝑅̂ 𝑗 , because it dominates both 𝑅̂ 𝑗1 , 𝑅̂ 𝑗2 . We can continue the

same process until every component has at most one dominating relation.

Smallest Synthetic Witnesses for ConjunctiveQueries 113:9

include any tuple 𝑠 ∈ 𝑆 with 𝜋head(𝑅̂ 𝑗) (𝑠) = 𝜋head(𝑅̂ 𝑗) (ℎ 𝑗), which is a contradiction since we know

𝜋head(𝑅̂ 𝑗) (ℎ 𝑗) ∈ 𝜋head(𝑅̂ 𝑗) (𝑆). Let {𝑅 𝑗,1, . . . , 𝑅 𝑗,𝑏} be the relations of the 𝑗-th connected component

and let
¯A𝑗 =

⋃
𝑖∈[𝑏] head(𝑅 𝑗,𝑖). For each 𝑖 ∈ [𝑏], there exists a tuple ℓ𝑖 ∈ 𝑅𝐷 ′

𝑗,𝑖 such that Z𝑖∈[𝑏] ℓ𝑖 ≠ ∅
and 𝜋 ¯A𝑗

(Z𝑖∈[𝑏] ℓ𝑖) = 𝜋 ¯A𝑗
𝑔 𝑗 . If these conditions do not hold, then 𝑄 (𝐷 ′) = 𝑆 would not include

any tuple 𝑠 ∈ 𝑆 with 𝜋head(𝑅̂ 𝑗) (𝑠) = 𝜋head(𝑅̂ 𝑗) (ℎ 𝑗) = 𝜋head(𝑅̂ 𝑗) (𝑔 𝑗), which is a contradiction. We

can argue in the same way to show that 𝑔 𝑗 is not filtered by relations belonging to the same

connected component as 𝑅 𝑗 . By the definition of 𝐺∃
𝑄
, any two distinct connected components

do not share any non-output attributes, and hence Z𝑗∈[𝜅] 𝑔 𝑗 ≠ ∅. Putting everything together,

ℎ =Z𝑗∈[𝜅] 𝜋head(𝑅̂ 𝑗) (ℎ 𝑗) =Z𝑗∈[𝜅] 𝜋head(𝑅̂ 𝑗) (𝑔 𝑗) ∈ 𝑄 (𝐷
′). As 𝐷 ′ was assumed to be a witness for 𝑆 ,

we conclude that ℎ ∈ 𝑆 . □

Lemma 4.2. If ESW(𝑄, 𝑆) = true, |𝐷 | ≤ |𝐷 ′ | for any synthetic witness 𝐷 ′ of (𝑄, 𝑆), where 𝐷 is the
output of Algorithm 2.

Proof. By the construction of 𝐷 , |𝑅𝐷
𝑖 | = |𝜋head(𝑅𝑖) (𝑆) | for all 𝑖 ∈ [𝑚]. For each tuple 𝑡 ∈ 𝑆 ,

𝑡 ∈ 𝑄 (𝐷 ′), and hence for each 𝑖 ∈ [𝑚], there is a tuple 𝑡 ′𝑖 ∈ 𝑅𝐷 ′
𝑖 such that 𝜋head(𝑅𝑖) (𝑡 ′𝑖) = 𝜋head(𝑅𝑖) (𝑡).

So, for each 𝑖 ∈ [𝑚], |𝑅𝐷 ′
𝑖 | ≥ |𝜋head(𝑅𝑖) (𝑆) | = |𝑅𝐷

𝑖 |, which implies |𝐷 ′ | ≥ |𝐷 |. □

Recall that ESW(𝑄, 𝑆) can be computed in 𝑂 (|𝑆 |) time using Algorithm 1. The remaining opera-

tions (lines 3-6) take 𝑂 (|𝑆 |) time to construct 𝐷 . Hence, we obtain:

Theorem 4.3. For any head-dominated SJFCQ 𝑄 and a set 𝑆 ⊆ dom(head(𝑄)) of tuples such that
ESW(𝑄, 𝑆) = true, Algorithm 2 returns a solution to SSW(𝑄, 𝑆) in polynomial time in terms of |𝑆 |.

If 𝑆 = 𝑄 (𝐷̄) for a given 𝐷̄ , then a faster algorithm exists for some queries as shown in Appendix C.

Remark. While we focus on data complexity in this paper, our algorithms for the ESW problem
from Theorem 3.3, and the SSW problem (for head-dominated SJFCQs) from Theorem 4.3, run in

polynomial time in terms of |𝑆 | even in combined complexity.

5 SSW for SJFCQs Without the Head-domination Property
This section shows the hardness of SSW for Berge-acyclic SJFCQs without the head-domination

property. In Section 5.1, we prove that SSW cannot be solved in polynomial time for the commonly

studied path queries through a reduction from the vertex cover problem: Given an undirected graph

𝐺 = (𝑉 , 𝐸) with vertices 𝑉 and edges 𝐸, it asks to find a smallest subset 𝜌𝐺 ⊆ 𝑉 of vertices (called

a “cover”) such that each edge 𝑒 ∈ 𝐸 has at least one endpoint in 𝜌𝐺 . Throughout all the proofs,

we assume that 𝐺 is simple and each vertex in 𝐺 is incident to at least two other vertices. We can

safely make this assumption since the vertex cover problem is NP-Hard even for cubic graphs [19].

In Section 5.1, we show that for any fixed constant 𝑘 , the SSW problem is not poly-time solvable

for 𝑘-path SJFCQs unless unless P = NP. Given an arbitrary graph𝐺 (𝑉 , 𝐸), we can construct within

polynomial time with respect to the graph size (|𝐸 | and |𝑉 |), an input set 𝑆 of 3 · |𝐸 | tuples to
the SSW on a 𝑘-path SJFCQ. Any solution to the SSW problem can be used to construct an optimal

vertex cover for the graph 𝐺 in polynomial time with respect to the graph size. In Section 5.2, we

extend the hardness result to augmented path queries that will serve as the hard core of general
Berge-acyclic SJFCQs. Finally, in Section 5.3, we turn to Berge-acyclic SJFCQs. As any Berge-acyclic

SJFCQ 𝑄 without head-domination property always admits an augmented path, we can show a

reduction from SSW over an augmented path query to SSW over 𝑄 in polynomial time. In this way,

we show that SSW is not poly-time solvable for Berge-acyclic SJFCQs without head-domination

property unless P = NP.

113:10 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

To help the presentation, we introduce the following terminologies. A (synthetic) witness is

reduced if it does not contain dangling tuples (see Section 1.1). As SSW computes the smallest

synthetic witness, we only consider reduced synthetic witnesses and refer to them simply as

“synthetic witnesses”. For a database 𝐷 , the active domain of an attribute 𝐴, noted as adom𝐷 (𝐴), is
defined as the set of values from dom(𝐴) that appear in at least one tuple of 𝐷 . When the context

is clear, we will drop the superscript 𝐷 in adom𝐷 (𝐴). For a SJFCQ 𝑄 and a database 𝐷 , we define

the instance hypergraph 𝐻𝐷
of 𝐷 as follows. For every attribute 𝐴 ∈ attr(𝑄) and every value

𝑣 ∈ adom𝐷 (𝐴), we define a vertex 𝛾 (𝐴, 𝑣). Each tuple 𝑡 ∈ 𝐷 from a relation 𝑅 is encoded as a

hyperedge that includes the vertices {𝛾 (𝐴, 𝑣) | 𝐴 ∈ attr(𝑅), 𝑣 = 𝜋𝐴𝑡 }. An instance path between

a pair of vertices 𝑏1, 𝑏𝑘 in 𝐻𝐷
is a sequence of vertices 𝑏1, 𝑏2, · · · , 𝑏𝑘 such that there exists 𝑘 − 1

hyperedges 𝑡1, 𝑡2, · · · , 𝑡𝑘−1 in 𝐻𝐷
such that for every 𝑖 ∈ [𝑘 − 1], 𝑏𝑖 , 𝑏𝑖+1 ∈ 𝑡𝑖 , and 𝑡1, 𝑡2, · · · , 𝑡𝑘−1 are

from 𝑘 − 1 different relations. A pair of vertices are incident if they appear in at least one common

hyperedge in 𝐻𝐷
.

5.1 PathQueries

1

3

4

2

5

2

4

5

𝐴1 𝐴2 𝐴3

Fig. 1. The instance

graph constructed.

In this part, we first focus on the class of path queries, defined as below:

𝑄path (𝐴1, 𝐴𝑘+1) :−𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) Z · · · Z 𝑅𝑘 (𝐴𝑘 , 𝐴𝑘+1).
We show the hardness proof for the path query of length 𝑘 , where 𝑘 ≥ 2

is an arbitrary constant integer number. By slightly abusing the notation, we

may use 𝑄path to refer to both the class of path queries or a specific in this

class.

Example 5.1. Consider a path query with 𝑘 = 2, 𝑄 (𝐴1, 𝐴3) :−𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3), over an
instance with two relations 𝑅1 = {(1, 2), (3, 2), (3, 5), (4, 5)} and 𝑅2 = {(2, 2), (2, 4), (2, 5), (5, 2)}.
The instance hypergraph (graph), of the above example is shown in Figure 1. We note that for every

path query and any database, the instance hypergraph is in fact a graph. For simplicity, the node

𝛾 (𝐴, 𝑣) is shown as node 𝑣 under the attribute𝐴. For instance, the vertex marked as red in the figure

corresponds to 𝛾 (𝐴2, 5). Each tuple in 𝑅1 or 𝑅2 corresponds to an edge. For example, the orange

edge corresponds to the tuple (5, 2) in 𝑅2. A key property of this graph that we mainly use in the

proofs, is that any tuple (𝜙1, 𝜙2) in the results of the query 𝑄 (𝐴1, 𝐴3) :−𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3)
corresponds to an instance path from a node under 𝐴1 to a node under 𝐴3. More formally, we have

the tuple (𝜙1, 𝜙2) in the results, if and only if there is a path from the node 𝛾 (𝐴1, 𝜙1) to the node

𝛾 (𝐴3, 𝜙2). For example, for the given instance, we have the tuple (3, 5) in the results of the query

because the green path shown in the figure exists. However, the tuple (4, 4) is not in the results,

since there is no path between the blue nodes shown in the graph. The green path shows that the

tuple (3, 2) from 𝑅1 can be joined to the tuple (2, 5), to create the tuple (3, 5) in the results.

Next, we show that if there is a poly-time algorithm, called A, that can compute SSW(𝑄path, 𝑆)
for an arbitrary set 𝑆 ⊆ dom(head(𝑄path)) of tuples in polynomial time in terms of |𝑆 |, there exists
a poly-time algorithm A′ for the vertex cover problem. We obtain:

Theorem 5.2. SSW is not poly-time solvable for any path query 𝑄path, unless P = NP.

Step 1: Construct 𝑆 for 𝑄path from input graph 𝐺 . We are given a graph 𝐺 = (𝑉 , 𝐸). Let
𝑉 = {𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | } and 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒 |𝐸 | }, where each 𝑒𝑖 is a set of two vertices from 𝑉 . For

𝑒1

𝑒2𝑒3

𝑣1 𝑣2

𝑣3

Fig. 2. An input

graph 𝐺 = (𝑉 , 𝐸)
with 𝑉 = {𝑣1, 𝑣2, 𝑣3}
and 𝐸 = {𝑒1, 𝑒2, 𝑒3}.

an example, consider the triangle graph in Figure 2. We construct a set

𝑆 ⊆ dom(𝐴1)×dom(𝐴𝑘+1) of tuples as 𝑆 = {(𝑒𝑖 , 𝑣 𝑗) ∈ 𝐸×𝑉 : 𝑣 𝑗 ∈ 𝑒𝑖 }∪{(𝑒𝑖 , ∗) :

𝑒𝑖 ∈ 𝐸}, for some special value ∗. This step takes polynomial time in terms of

|𝐺 |, and the resulting 𝑆 is polynomial in terms of the size of 𝐺 . Recall that 𝐺

Smallest Synthetic Witnesses for ConjunctiveQueries 113:11

is simple and each vertex is connected to at least two other vertices. For any

reduced synthetic witness for (𝑄path, 𝑆), we slightly abuse the notation, and

we use 𝑉 to denote the values of adom(𝐴𝑘+1) that correspond to the vertices

of the graph 𝐺 and 𝐸 to denote the values of adom(𝐴1) that correspond to

the edges of the graph 𝐺 . Hence, we always have adom(𝐴𝑘+1) = 𝑉 ∪ {∗} and
adom(𝐴1) = 𝐸. Furthermore, notice that any instance path from a value in

adom(𝐴1) to a value in adom(𝐴𝑘+1) creates an output tuple. Intuitively, as we will see later, the ∗
value acts like a selector of a vertex in the vertex cover. The set 𝑆 for the triangle graph is shown in

Figure 3.

Let 𝐷 be any reduced witness of (𝑄path, 𝑆). Before proceeding with the technical details, we

review some properties of the instance graph 𝐻𝐷
that can be constructed from 𝐷 . For every tuple

(𝑥,𝑦) ∈ 𝑆 , there exists a path from the value 𝑥 ∈ adom𝐷 (𝐴1) to the value 𝑦 ∈ adom𝐷 (𝐴𝑘+1) in 𝐻𝐷
.

Moreover, if there exists a path from a value 𝑥 ∈ adom𝐷 (𝐴1) to a value 𝑦 ∈ adom𝐷 (𝐴𝑘+1) in 𝐻𝐷
, it

implies (𝑥,𝑦) ∈ 𝑄path (𝐷), and hence (𝑥,𝑦) ∈ 𝑆 . For simplicity, we will use the terms “value”, “node”,

and “vertex” in 𝐻𝐷
interchangeably. Let 𝑎𝐷𝑖,𝑗 denote the 𝑗-th value in adom𝐷 (𝐴𝑖), for 𝑖 = 2, . . . , 𝑘 . If

𝐷 is clear from the context we use 𝑎𝑖, 𝑗 . By saying a value 𝑎𝑘,𝑗 is incident to a value 𝑣 in𝑉 , we mean

that there exists a tuple (𝑎𝑘,𝑗 , 𝑣) in relation 𝑅𝐷
𝑘
under witness𝐷 , or equivalently, there exists an edge

connecting node 𝑎𝑘,𝑗 and node 𝑣 in the instance graph. From the construction of 𝑆 , we note that

for every 𝑒𝑝 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸, there exists a path from 𝑒𝑝 ∈ adom𝐷 (𝐴1) to 𝑣𝑖 ∈ adom𝐷 (𝐴𝑘+1), a path
from 𝑒𝑝 ∈ adom𝐷 (𝐴1) to 𝑣 𝑗 ∈ adom𝐷 (𝐴𝑘+1) and a path from 𝑒𝑝 ∈ adom𝐷 (𝐴1) to ∗ ∈ adom𝐷 (𝐴𝑘+1),
in the instance graph 𝐻𝐷

. Furthermore, it is straightforward to see that there is no path from

𝑒𝑝 ∈ adom𝐷 (𝐴1) to any other value in adom𝐷 (𝐴𝑘+1).
Intuition behind next steps. Let 𝐷 be an optimum synthetic witness returned by A on

SSW(𝑄path, 𝑆), where 𝑆 is constructed by Step 1. In Step 2, we show that 𝐷 has some useful

properties. More specifically, in Lemmas 5.3, 5.4 we show that any value 𝑎𝑘,𝑗 in adom𝐷 (𝐴𝑘) is
incident to either i) exactly one value in 𝑉 , or ii) ∗ and exactly one value in 𝑉 , or iii) ∗ and two

values of𝑉 . Furthermore, we show that |adom(𝐴𝑘) | ≥ |𝑉 |. Although this gives us some structure, it

is still not enough to construct the vertex cover. In Step 3, these properties are used to derive from

𝐷 a new optimum witness 𝐷 ′ (in polynomial time) that has some even nicer properties. In Step

3, we show the construction of 𝐷 ′. In Lemmas 5.5 and 5.7, we prove that the newly constructed

witness 𝐷 ′ is an optimum solution for SSW on 𝑄path such that every value 𝑎𝑘,𝑗 ∈ adom𝐷
′ (𝐴𝑘) is

either i) incident to exactly one value in 𝑉 or ii) it is incident to exactly one value in 𝑉 and ∗.
Furthermore, we show that every value 𝑣 in𝑉 is incident to exactly one value in adom𝐷

′ (𝐴𝑘). These
properties allow us to select a vertex cover for 𝐺 .

In Step 4, we show how to construct an optimal vertex cover 𝜌𝐺 for 𝐺 based on 𝐷 ′. In the new

witness 𝐷 ′, we know that a value 𝑣 𝑗 from 𝑉 is incident to exactly one value in adom𝐷
′ (𝐴𝑘). Say

that 𝑎𝑘,𝑗 is this value. If 𝑎𝑘,𝑗 is also incident to ∗ then we select 𝑣 𝑗 in the vertex cover we construct.

If 𝑎𝑘,𝑗 is only incident to 𝑣 𝑗 and not incident to ∗ then we do not select 𝑣 𝑗 in the vertex cover

solution (notice that 𝑎𝑘,𝑗 cannot be incident to two values from 𝑉). This is why we characterize ∗
as the selector of the vertex cover solution. Let 𝜌𝐺 ⊆ 𝑉 be the set computed as described above. In

Lemma 5.8, we show that the constructed solution for vertex cover 𝜌𝐺 ⊆ 𝑉 is an optimal vertex

cover. By contradiction, we first show that 𝜌𝐺 is a vertex cover. If it was not a vertex cover, then

there would be an edge 𝑒𝑝 = (𝑣1, 𝑣2) such that both 𝑣1, 𝑣2 are not in 𝜌𝐺 . However, (𝑒𝑝 , ∗) ∈ 𝑆 so

there should be a path from 𝑒𝑝 to ∗ in the instance graph. This path should pass a value/node 𝑎𝑘,𝑗 in

adom𝐷
′ (𝐴𝑘). By the properties of 𝐷 ′, we know that 𝑎𝑘,𝑗 cannot be incident only to ∗ and it should be

incident to either 𝑣1 or 𝑣2. Lastly, we argue that 𝜌𝐺 is minimal. If there was a different vertex cover

𝜌 ′
𝐺
with |𝜌 ′

𝐺
| < |𝜌𝐺 | then removing the tuples (𝑎𝑘,𝑗 , ∗) for each 𝑣 𝑗 ∈ 𝜌𝐺 from 𝐷 ′ and adding tuples

113:12 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

𝐴1 𝐴4

𝑒1 ∗
𝑒1 𝑣1

𝑒1 𝑣2

𝑒2 ∗
𝑒2 𝑣2

𝑒2 𝑣3

𝑒3 ∗
𝑒3 𝑣1

𝑒3 𝑣3

𝑅1

𝐴1 𝐴2

𝑒1 𝑎2,1

𝑒1 𝑎2,3

𝑒2 𝑎2,1

𝑒2 𝑎2,4

𝑒3 𝑎2,2

𝑒3 𝑎2,5

𝑅2

𝐴2 𝐴3

𝑎2,1 𝑎3,1

𝑎2,2 𝑎3,1

𝑎2,2 𝑎3,2

𝑎2,3 𝑎3,3

𝑎2,4 𝑎3,4

𝑎2,4 𝑎3,5

𝑎2,5 𝑎3,5

𝑅3

𝐴3 𝐴4

𝑎3,1 ∗
𝑎3,2 𝑣1

𝑎3,3 ∗
𝑎3,3 𝑣1

𝑎3,3 𝑣2

𝑎3,4 𝑣2

𝑎3,5 ∗

Fig. 3. A set of input tuples 𝑆 (left) and a non-optimal synthetic

witness (right) for (𝑄
path

, 𝑆), where𝑄
path

is a path query with 𝑘 = 3.

𝑒1

𝑒2

𝑒3

𝐴1

𝑎2,1

𝑎2,2

𝑎2,3

𝑎2,5

𝑎2,4

𝐴2

𝑎3,1

𝑎3,2

𝑎3,3

𝑎3,5

𝑎3,4

𝐴3 𝐴4

∗
𝑣1

𝑣2

𝑣3

Fig. 4. Instance hypergraph of the

witness in Figure 3, where solid lines

are edges. A smaller witness can be

obtained by removing red edges and

adding dashed green edges.

(𝑎𝑘,ℎ, ∗) for each 𝑣ℎ ∈ 𝜌 ′𝐺 would lead to a smaller a synthetic witness for SSW(𝑄path, 𝑆), coming to a

contradiction.

Step 2: Compute a solution 𝐷 to SSW(𝑄path, 𝑆). We invoke the (hypothetical) algorithm A to

compute a solution to SSW(𝑄path, 𝑆) denoted by 𝐷 within polynomial time in terms of |𝑆 | and also

in |𝐺 | (recall that our goal is to show that if such algorithm exists then there exists a polynomial

time algorithm for the vertex cover problem). Before proceeding to the next step, we show some

important properties of any synthetic witness (possibly non-optimal) to (𝑄path, 𝑆) in Lemma 5.3

and any solution (optimal witness) to SSW(𝑄path, 𝑆) in Lemma 5.4.

Lemma 5.3. In any reduced synthetic witness 𝐷̂ of (𝑄path, 𝑆), (1) in the graph 𝐻 𝐷̂ each value
𝑎𝑘,𝑖 ∈ adom𝐷̂ (𝐴𝑘) is incident to at most two values in 𝑉 , and (2) |adom𝐷̂ (𝐴𝑘) | ≥ |𝑉 |.

Proof. As each edge contains two vertices in 𝐺 , each value 𝑎𝑘,𝑖 ∈ adom(𝐴𝑘) is incident to
at most 2 values in 𝑉 . We next show for each value 𝑣𝑖 ∈ 𝑉 that is only incident to one value

𝑎𝑘,𝑗 ∈ adom(𝐴𝑘), it must be the case that 𝑎𝑘,𝑗 is not incident to any other value in𝑉 . For the sake of

contradiction, assume that 𝑎𝑘,𝑗 is incident to 𝑣𝑖 and some other value 𝑣 𝑗 . Then there exists exactly

one 𝑒𝑝 ∈ adom(𝐴1) with an instance path to 𝑎𝑘,𝑗 as otherwise, 𝐺 would contain duplicate edges.

Thus, 𝑣𝑖 appears in only one edge 𝑒𝑝 , resulting in a contradiction, since any vertex in𝐺 is contained

in at least two edges. Now, we remove all tuples containing such a value in𝑉 , i.e., we remove all the

tuples (𝑎𝑘,𝑗 , 𝑣𝑖) ∈ 𝑅𝑘 where 𝑣𝑖 is only incident to 𝑎𝑘,𝑗 . We also remove all tuples 𝑟 ∈ 𝑅𝑘 such that

𝜋𝐴𝑘+1 (𝑟) = ∗. Let 𝑅′𝑘 be the remaining relation. Let adom′ (𝐴𝑘) ⊆ adom(𝐴𝑘),𝑉 ′ ⊆ 𝑉 be the remaining

set of values that appear in some tuple in 𝑅′
𝑘
. From the analysis above, for every value in 𝑉 , we

remove a distinct value from adom(𝐴𝑘), and we remove additional tuples from 𝑅𝑘 that might remove

more values from adom(𝐴𝑘). Hence, |adom(𝐴𝑘) | − |adom′ (𝐴𝑘) | ≥ |𝑉 | − |𝑉 ′ |. Moreover, every value

in adom′ (𝐴𝑘) appears in one or two tuples in 𝑅′
𝑘
, and every value in 𝑉 ′ appears in at least two

tuples in 𝑅′
𝑘
, hence |adom′ (𝑅𝑘) | ≥ |𝑉 ′ |. Together with |adom(𝐴𝑘) | − |adom′ (𝐴𝑘) | ≥ |𝑉 | − |𝑉 ′ |, we

get |adom(𝐴𝑘) | ≥ |𝑉 |. □

Lemma 5.4. In any solution 𝐷̂ to SSW(𝑄path, 𝑆), each value 𝑎𝑘,𝑖 ∈ adom𝐷̂ (𝐴𝑘) must fall into one of
the following three cases in the graph 𝐻 𝐷̂ : (1) only incident to one value in𝑉 ; (2) incident to ∗ and one
value in 𝑉 ; and (3) incident to ∗ and two values in 𝑉 .

Proof. We first show that if 𝑎𝑘,𝑖 is incident to ∗, then 𝑎𝑘,𝑖 must be incident to at least one value

in 𝑉 . Consider an arbitrary attribute 𝐴𝑖 for some 𝑖 ∈ [𝑘]. A value 𝑎𝑖, 𝑗 ∈ adom(𝐴𝑖) is marked as

Smallest Synthetic Witnesses for ConjunctiveQueries 113:13

𝑅1

𝐴1 𝐴2

𝑒1 𝑎2,1

𝑒2 𝑎2,2

𝑒3 𝑎2,3

𝑅2

𝐴2 𝐴3

𝑎2,1 𝑎3,1

𝑎2,1 𝑎3,2

𝑎2,2 𝑎3,2

𝑎2,2 𝑎3,3

𝑎2,3 𝑎3,2

𝑎2,3 𝑎3,3

𝑅3

𝐴3 𝐴4

𝑎3,1 ∗
𝑎3,1 𝑣1

𝑎3,2 ∗
𝑎3,2 𝑣2

𝑎3,3 𝑣3

Fig. 5. A solution to SSW(𝑄
path

, 𝑆).

𝑒1

𝑒2

𝑒3

𝐴1

𝑎2,1

𝑎2,2

𝑎2,3

𝐴2

𝑎3,1

𝑎3,2

𝑎3,3

𝐴3 𝐴4

∗

𝑣1

𝑣2

𝑣3

Fig. 6. Instance graph of Figure 5.

𝑒1

𝑒2𝑒3

𝑣1 𝑣2

𝑣3

Fig. 7. An opti-

mal vertex cover for

𝐺 constructed from

Figure 6.

blue if there exists no value in 𝑉 having an instance path to 𝑎𝑖, 𝑗 . Moreover, 𝑎𝑖, 𝑗 is marked as red
if it is not blue and it is incident to some blue value. We note that in an optimal witness, every

value in adom(𝐴1) has an instance path to a value in 𝑉 so if a blue value exists, then at least one

value should be colored red. We next show that in an optimal synthetic witness such as 𝐷̂ , no value

will be marked as blue, and hence no value will be marked as red. For the sake of contradiction,

assume that a blue value exists. In this case, as we argued, at least one red value exists. Consider

any red value 𝑎𝑖, 𝑗 ∈ adom(𝐴𝑖) for some 𝑖 ∈ [𝑘 − 1]. By definition of red values, there must exist

some value in 𝑉 , with an instance path to 𝑎𝑖, 𝑗 . Let 𝑎𝑘,ℎ ∈ adom(𝐴𝑘) be the value on this path. We

remove all tuples from 𝑅𝑖 containing both 𝑎𝑖, 𝑗 and a blue value in adom(𝐴𝑖+1), and add the tuple

(𝑎𝑘,ℎ, ∗) to 𝑅𝑘 instead. At last, we remove every tuple that contains a blue value. By adding the

tuple (𝑎𝑘,ℎ, ∗), we make sure that 𝑎𝑖, 𝑗 has an instance path to ∗. Thus, after these operations, all the
red values will have an instance path to ∗. By definition, every value 𝑒𝑝 ∈ adom(𝐴1) has an instance

path to a value in 𝑉 , so 𝑒𝑝 is not a blue value. Therefore, if there exists a blue value in the instance

path from 𝑒𝑝 to ∗, there is an instance sub-path from 𝑒𝑝 to a red value. Since we made sure that

every red value has a path to ∗, and 𝑒𝑝 has a path to a red value, we know that 𝑒𝑝 will maintain a

path to ∗ after these operations. It can be easily checked that if there exists at least one blue value

then the resulting database instance is strictly smaller than 𝐷̂ , contradicting that 𝐷̂ is a solution to

SSW(𝑄path, 𝑆). For an example, see Figures 3, and 4. Hence, no blue value exists and every value in

adom(𝐴𝑘) is incident to some value in 𝑉 .

At last, we show that if 𝑎𝑘,𝑖 is incident to two values 𝑣1, 𝑣2 ∈ 𝑉 , then 𝑎𝑘,𝑖 is also incident to ∗.
Note that in this case, exactly one value in adom(𝐴1) has an instance path to 𝑎𝑘,𝑖 since 𝐺 does not

have duplicate edges. Let 𝑒 be the value in adom(𝐴1) such that there exists an instance path from 𝑒

to 𝑎𝑘,𝑖 . Notice that 𝑒 = {𝑣1, 𝑣2} ∈ 𝐸, and hence, the tuple (𝑒, ∗) must appear in 𝑄path (𝐷̂). So either

𝑎𝑘,𝑖 is incident to ∗ or there exists another path that starts from 𝑒 ∈ adom(𝐴1) and passes through

a value 𝑎𝑘,𝑗 ≠ 𝑎𝑘,𝑖 such that 𝑎𝑘,𝑗 is incident to ∗. If 𝑎𝑘,𝑖 is incident to ∗, then the lemma follows.

Otherwise, from the first property, we know that 𝑎𝑘,𝑗 must also be incident to some value in 𝑉 .

This value must be either 𝑣1 or 𝑣2, since 𝑒 = {𝑣1, 𝑣2}. Wlog, assume that 𝑎𝑘,𝑗 is incident to 𝑣1. Since,

𝑒 has an instance path to both 𝑎𝑘,𝑖 and 𝑎𝑘,𝑗 , it is easy to see that we can remove the tuple (𝑎𝑘,𝑖 , 𝑣1)
from 𝐷̂ , and this contradicts the optimality of 𝐷̂ . □

Step 3: Transform 𝐷 into 𝐷 ′ with desired properties. We next transform 𝐷 into another

solution 𝐷 ′ for SSW(𝑄path, 𝑆) with desirable properties. Our goal is to eliminate the possibility that

some value in adom(𝐴𝑘) is incident to two values in 𝑉 . Suppose 𝑎𝑘,𝑖1 ∈ adom(𝐴𝑘) is incident to
𝑣 𝑗1 , 𝑣 𝑗2 ∈ 𝑉 . There is exactly one value 𝑒1 ∈ adom(𝐴1) with an instance path to 𝑎𝑘,𝑖1 , since there are

no duplicated edges in 𝐺 . Thus, there exists a unique value 𝑎𝑘−1,𝑙1 ∈ adom(𝐴𝑘−1) which is incident

to 𝑎𝑘,𝑖1 . From Lemma 5.4, 𝑎𝑘,𝑖1 is also incident to ∗. Each vertex in 𝐺 appears in at least two edges.

So, there exists another value 𝑎𝑘,𝑖2 ∈ adom(𝐴𝑘) incident to 𝑣 𝑗1 .

113:14 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

We distinguish two more cases:

• If 𝑎𝑘,𝑖2 is not incident to any other values in𝑉 except 𝑣 𝑗1 , we remove the tuple (𝑎𝑘,𝑖1 , 𝑣 𝑗1) from 𝑅𝑘
and add tuple (𝑎𝑘−1,𝑙1 , 𝑎𝑘,𝑖2) to 𝑅𝑘−1. This does not change the size of the witness.

• If 𝑎𝑘,𝑖2 is incident to some other value 𝑣 𝑗3 ∈ 𝑉 , by the same argument as before, we know that only

one value 𝑒2 ∈ adom(𝐴1) has a path to 𝑎𝑘,𝑖2 , and from Lemma 5.4, we have that 𝑎𝑘,𝑖2 is incident to

∗. Let 𝑎𝑘−1,𝑙2 ∈ adom(𝐴𝑘−1) be the unique value incident to 𝑎𝑘,𝑖2 . From Lemma 5.4, 𝑎𝑘,𝑖1 is also

incident to ∗. In this case, we remove tuples (𝑎𝑘,𝑖2 , ∗), (𝑎𝑘,𝑖2 , 𝑣 𝑗1), and (𝑎𝑘,𝑖1 , 𝑣 𝑗2), and add the three
tuples (𝑎𝑘−1,𝑙2 , 𝑎𝑘,𝑖1), (𝑎𝑘−1,𝑙1 , 𝑎𝑘,𝑖3), and (𝑎𝑘,𝑖3 , 𝑣 𝑗2) instead, where 𝑎𝑘,𝑖3 is a new value we add to

adom(𝐴𝑘) in this step.

The new database𝐷 ′ is a valid synthetic witness to (𝑄path, 𝑆) with |𝐷 ′ | = |𝐷 | and |adom𝐷
′ (𝐴𝑘) | ≥

|adom𝐷 (𝐴𝑘) |, since we may add a new value 𝑎𝑘,𝑖3 in the second case. See Figures 5 and 6.

By the argument above, we obtain the following:

Lemma 5.5. Any solution 𝐷 to SSW(𝑄path, 𝑆) can be transformed into another solution 𝐷 ′ within
polynomial time in terms of |𝑆 |, in which each value 𝑎𝑘,𝑖 ∈ adom𝐷

′ (𝐴𝑘) falls into one of the two cases
in the graph 𝐻𝐷 ′ : (1) incident to exactly one value in 𝑉 ; (2) incident to ∗ and one value in 𝑉 .

Lemma 5.6. In 𝐷 ′, each value 𝑣 ∈ 𝑉 is only incident to exactly one value in adom𝐷
′ (𝐴𝑘).

Proof. By contradiction, we assume a value 𝑣 ∈ 𝑉 is incident to two distinct values 𝑎𝑘,𝑖1 , 𝑎𝑘,𝑖2
in adom(𝐴𝑘). Both 𝑎𝑘,𝑖1 and 𝑎𝑘,𝑖2 are only incident to 𝑣 from 𝑉 . Wlog, assume that 𝑎𝑘,𝑖1 is incident

to ∗. If none of 𝑎𝑘,𝑖1 , 𝑎𝑘,𝑖2 are incident to ∗, we still consider 𝑎𝑘,𝑖1 next. Let 𝐿 ⊆ adom(𝐴𝑘−1) be the
set of values incident to 𝑎𝑘,𝑖2 . We remove all tuples {(𝑎, 𝑎𝑘,𝑖2) | 𝑎 ∈ 𝐿} from 𝑅𝑘−1, the tuple (𝑎𝑘,𝑖2 , 𝑣)
from 𝑅𝑘 , and the tuple (𝑎𝑘,𝑖2 , ∗) if it exists. Next, we insert tuples {(𝑎, 𝑎𝑘,𝑖1) | 𝑎 ∈ 𝐿} to 𝑅𝑘−1. Let

𝐷 ′′ be the resulting database, which is a synthetic witness to (𝑄path, 𝑆) with |𝐷 ′′ | ≤ |𝐷 ′ | − 1 < |𝐷 |,
contradicting the fact that 𝐷 is a solution to SSW(𝑄path, 𝑆). □

By Lemmas 5.5 and 5.6, |𝑉 | = |adom𝐷 ′ (𝐴𝑘) |. As analyzed, |adom𝐷
′ (𝐴𝑘) | ≥ |adom𝐷 (𝐴𝑘) |. By

Lemma 5.3, |adom𝐷 (𝐴𝑘) | ≥ |𝑉 |. Hence, we obtain:

Lemma 5.7. In any solution 𝐷 to SSW(𝑄path, 𝑆), |adom𝐷 (𝐴𝑘) | = |𝑉 |.

The two lemmas above, will later allow us to show the hardness of SSW over a more general class

of queries in the next section.

Step 4: Construct an optimal vertex cover 𝜌𝐺 for 𝐺 . For each 𝑣 𝑗 ∈ 𝑉 , if there exists a value
𝑎𝑘,𝑖 ∈ adom𝐷

′ (𝐴𝑘), such that 𝑎𝑘,𝑖 is incident to both 𝑣 𝑗 and ∗ in the graph 𝐻𝐷 ′
, we include 𝑣 𝑗 in the

vertex cover denoted by 𝜌𝐺 . This step takes polynomial time in terms of |𝐺 |. See Figures 6, 7 for an
example of constructing a vertex cover from 𝐷 ′.

Lemma 5.8. 𝜌𝐺 is an optimal vertex cover for 𝐺 .

Proof. First, 𝜌𝐺 is a vertex cover of 𝐺 . By contradiction, assume there exists an edge 𝑒𝑝 =

(𝑣1, 𝑣2) ∈ 𝐸 with 𝑣1, 𝑣2 ∉ 𝜌𝐺 . By Lemma 5.4, there is no value 𝑎𝑘,𝑖 ∈ adom(𝐴𝑘), such that 𝑎𝑘,𝑖 is only

incident to ∗. Furthermore, by the definition of 𝜌𝐺 , 𝑎𝑘,𝑖 is incident to ∗ and one of the vertices 𝑣1 or

𝑣2 in 𝑉 . So, (𝑒𝑝 , ∗) ∉ 𝑄 (𝐷 ′), coming to a contradiction. We next show that 𝜌𝐺 is an optimal vertex

cover. Assume a vertex cover 𝜌 ′
𝐺
for 𝐺 exists, such that |𝜌 ′

𝐺
| < |𝜌𝐺 |. Wlog, let 𝑎𝑘,𝑖 ∈ adom(𝐴𝑘) be

the value incident to 𝑣𝑖 ∈ adom(𝐴𝑘+1) for every 𝑣𝑖 ∈ 𝑉 (there always exist such unique values, by

Lemma 5.5). By definition, for each 𝑣 𝑗 ∈ 𝜌𝐺 , the value 𝑎𝑘,𝑗 is incident to ∗ in addition to 𝑣 𝑗 . Let 𝐷
′′

be the set of tuples after removing (𝑎𝑘,𝑗 , ∗) for each 𝑣 𝑗 ∈ 𝜌𝐺 from 𝐷 ′ and adding tuples (𝑎𝑘,ℎ, ∗) for
each 𝑣ℎ ∈ 𝜌 ′

𝐺
. Now, 𝐷 ′′ is a valid synthetic witness with |𝐷 ′′ | < |𝐷 ′ |, contradicting that 𝐷 ′ is a

solution to SSW(𝑄path, 𝑆). □

Smallest Synthetic Witnesses for ConjunctiveQueries 113:15

Putting all four steps together, we obtained a poly-time algorithmA′ for the vertex cover problem.

Hence, such a poly-time algorithm A does not exist for SSW(𝑄path, 𝑆), unless P = NP.

Theorem 5.9. SSW is not poly-time solvable for 𝑄path, unless P = NP.

5.2 Augmented PathQueries
We next consider a slightly larger class of queries, noted as augmented path queries:

𝑄apath (𝐴1, 𝐴𝑘+1) :−
(
Z

𝑖∈[𝑘]
𝑅𝑖 (𝐴𝑖 , 𝐴𝑖+1)

)
Z

(
Z

𝑖∈[𝑘+1]
Z

𝑗∈[𝑤𝑖]
𝑅𝑘+𝑊𝑖−1+𝑗 (𝐴𝑖)

)
,

where 𝑘 ≥ 2 is a constant integer,𝑤1,𝑤2, · · · ,𝑤𝑘+1 are non-negative constant integers, and𝑊𝑖 =∑
𝑗∈[𝑖] 𝑤 𝑗 for 𝑖 ∈ [𝑘] with𝑊0 = 0. By slightly abusing the notation, we may use 𝑄apath to refer to

both the class of augmented path queries, or a specific query in this class.

Intuitively, an augmented path query is similar to a path query, but for each 𝑖 ∈ [𝑘 + 1], there
are𝑤𝑖 additional relations only containing the single attribute 𝐴𝑖 . Hence, in the size of a synthetic

witness, the number of tuples in these augmented relations, i.e., the size of the active domain of all

attributes, should also be taken into consideration.

Theorem 5.10. SSW is not poly-time solvable for any augmented path query 𝑄apath, unless P = NP.

Our hardness proof of SSW for 𝑄apath exactly follows that of 𝑄path. We start with the same

reduction from the vertex cover and build the set of tuples 𝑆 as Step 1. Lemma 5.3 and Lemma 5.4

hold for 𝑄apath. In Step 2, suppose a poly-time algorithm for 𝑄apath can compute an arbitrary

solution 𝐷 to (𝑄apath, 𝑆). Implied by Lemma 5.7, Lemma 5.5 also holds for 𝑄apath correspondingly

in Step 3. The optimal vertex cover can be computed in Step 4.

5.3 Berge-acyclic SJFCQs
We start with an important structural property of Berge-acyclic SJFCQs below:

Definition 5.11 (Free Path). In a SJFCQ 𝑄 , a free path is a sequence of distinct attributes 𝑃 =

⟨𝐴1, 𝐴2, · · · , 𝐴𝑘+1⟩ from attr(𝑄), and a sequence of distinct relations 𝑌 = ⟨𝑅1, 𝑅2, · · · , 𝑅𝑘⟩ from
rels(𝑄), such that:

• 𝐴1, 𝐴𝑘+1 ∈ head(𝑄) and for each 𝑖 ∈ {2, 3, · · · , 𝑘}, 𝐴𝑖 ∈ attr(𝑄) − head(𝑄);
• For each 𝑖 ∈ [𝑘], 𝐴𝑖 , 𝐴𝑖+1 ∈ attr(𝑅𝑖).

Lemma 5.12 ([22]). All Berge-acyclic SJFCQs without the head-domination property have a free
path.

Overview. Given any Berge-acyclic query without the head-domination property 𝑄 , we first find

a specific augmented path query 𝑄apath, based on 𝑄 . By Theorem 5.10, we know that SSW is not

poly-time solvable for 𝑄apath, unless P = NP. Next, we present a polynomial time reduction from

SSW over 𝑄apath to SSW over 𝑄 . To establish this reduction, we rely on two key properties that hold

for 𝑄 . First, 𝑄 always contains a free path. Second, every relation in 𝑄 that is not part of this free

path contains at most one attribute from the free path. These properties allow us to define the

augmented path query𝑄apath based on the free path, and further a polynomial-time reduction from

SSW over 𝑄apath to SSW over 𝑄 . Since SSW is not poly-time solvable for 𝑄apath unless P = NP, the
same hardness result extends to SSW over all Berge-acyclic SJFCQs without the head-domination

property.

Poly-time reduction. Consider an arbitrary Berge-acyclic SJFCQ𝑄 without the head-domination

property. Let 𝑃 = ⟨𝐴1, 𝐴2, · · · , 𝐴𝑘+1⟩ from attr(𝑄), and 𝑌 = ⟨𝑅1, 𝑅2, · · · , 𝑅𝑘⟩ from rels(𝑄) be the
free path of 𝑄 . For Berge-acyclic SJFCQs (see Section 2), we know that |attr(𝑅ℎ) ∩ 𝑃 | ≤ 1 for

113:16 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

each relation 𝑅ℎ ∈ rels(𝑄) − 𝑌 and attr(𝑅𝑖) ∩ attr(𝑅𝑖+1) = {𝐴𝑖+1} for each 𝑖 ∈ [𝑘 − 1], by the

definition of the free path. Let

𝑄apath (𝐴1, 𝐴𝑘+1) :−
(
Z

𝑖∈[𝑘]
𝑇𝑖 (𝐴𝑖 , 𝐴𝑖+1)

)
Z

(
Z

𝑅ℎ∈rels(𝑄)−𝑌,𝑃∩attr(𝑅ℎ)≠∅
𝑇ℎ (𝑃 ∩ attr(𝑅ℎ)

)
,

be the specific augmented path from which we will reduce. Let 𝑆1 ⊆ dom(head(𝑄apath)) be the set
of input tuples. We construct a set 𝑆2 ⊆ dom(head(𝑄)) of tuples as follows. For each 𝑡1 ∈ 𝑆1, we add

a tuple 𝑡2 to 𝑆2, such that 𝜋𝐴1,𝐴𝑘+1𝑡2 = 𝑡1 and 𝜋𝐴𝑡2 = ∗, for each attribute 𝐴 ∈ head(𝑄) − {𝐴1, 𝐴𝑘+1}
for a special character ∗. Let 𝐷2 be any solution to SSW(𝑄, 𝑆2). We construct a database 𝐷1 as

follows. For each 𝑖 ∈ [𝑘], we set 𝑇𝑖 = 𝜋𝐴𝑖 ,𝐴𝑖+1 (𝑅𝑖). For each 𝑖 ∈ [𝑘], we set 𝑇ℎ = 𝜋𝐴𝑖
𝑅𝑖 for all

𝑇ℎ ∈ rels(𝑄apath) such that attr(𝑇ℎ) = {𝐴𝑖 }, and 𝑇ℎ = 𝜋𝐴𝑘+1𝑅𝑘 for all 𝑇ℎ ∈ rels(𝑄apath) such that

attr(𝑇ℎ) = {𝐴𝑘+1}. We show that 𝐷1 is a synthetic witness for (𝑄apath, 𝑆1) and prove its optimality.

Lemma 5.13. 𝑄apath (𝐷1) = 𝑆1 and 𝐷1 is a solution to SSW(𝑄apath, 𝑆1).
Proof. The proof of the first part of the lemma can be found in Appendix D.

We show the second part of the lemma; 𝐷1 is a solution to SSW(𝑄apath, 𝑆1). By contradiction,

assume that there exists a synthetic witness 𝐷̂1 to (𝑄apath, 𝑆1), such that |𝐷̂1 | < |𝐷1 |. We construct

a database 𝐷̂2 such that 𝐷̂2 is a witness to (𝑄, 𝑆2), and |𝐷̂2 | < |𝐷2 |, which contradicts the optimality

of 𝐷2. For simplicity, let 𝑇𝑖 , 𝑅𝑖 to denote 𝑇
𝐷̂1

𝑖
, 𝑅

𝐷̂2

𝑖
respectively. Consider any 𝑖 ∈ [𝑘]. For each

tuple 𝑡 ∈ 𝑇𝑖 , we build a tuple 𝑡 ′ such that 𝜋𝐴𝑖 ,𝐴𝑖+1 (𝑡 ′) = 𝑡 and 𝜋𝐴 (𝑡 ′) = ∗, for each attribute

𝐴 ∈ attr(𝑅𝑖) − {𝐴𝑖 , 𝐴𝑖+1}, and add 𝑡 ′ to 𝑅𝑖 . Consider an arbitrary relation 𝑅ℎ ∈ rels(𝑄) − 𝑌 . We

distinguish two cases:

(1) attr(𝑅ℎ) ∩ 𝑃 = ∅. In this case, we add one tuple (∗, ∗, · · · , ∗) to 𝑅ℎ .
(2) attr(𝑅ℎ) ∩ 𝑃 = {𝐴 𝑗 }, for some 𝐴 𝑗 ∈ 𝑃 . In this case, for each value 𝑎 ∈ adom𝐷̂ (𝐴 𝑗), we add

a tuple 𝑡𝑎 with 𝜋𝐴 𝑗
𝑡𝑎 = 𝑎, and 𝜋𝐴𝑡𝑎 = ∗ for each attribute 𝐴 ∈ attr(𝑅ℎ) − {𝐴 𝑗 }.

It is straightforward to see 𝑄 (𝐷̂2) = 𝑆2 since 𝑄apath (𝐷̂1) = 𝑆1. Next we show |𝐷̂2 | < |𝐷2 |.
For each 𝑖 ∈ [𝑘], we have |𝑅𝑖 | = |𝑇𝑖 | (by construction) and |𝑅𝑖 | ≥ |𝑇𝑖 | (by definition). Consider an

arbitrary relation 𝑅ℎ ∈ rels(𝑄) − 𝑌 . We distinguish two cases:

(1) attr(𝑅ℎ) ∩ 𝑃 = ∅. In this case, we have |𝑅ℎ | = 1, by the construction of 𝐷̂2. Moreover, we

have |𝑅ℎ | ≥ 1, since each relation should contain at least one tuple.

(2) attr(𝑅ℎ) ∩ 𝑃 = 𝐴 𝑗 , for some 𝐴 𝑗 ∈ 𝑃 . In this case, we have |𝑅ℎ | = |adom𝐷̂1 (𝐴 𝑗) |, by the

construction of 𝐷̂2. Moreover, we have |𝑅ℎ | ≥ |adom𝐷1 (𝐴 𝑗) |; otherwise, there exists a value
𝑎 ∈ adom𝐷1 (𝐴 𝑗) such that there exists no tuple 𝑡 ∈ 𝑅ℎ with 𝜋𝐴 𝑗

(𝑡) = 𝑎. This implies that

there exists a dangling tuple in 𝐷2, which contradicts the optimality of 𝐷2.

Putting everything together, we have: |𝐷2 | ≥ |𝐷1 | + |{𝑅ℎ ∈ rels(𝑄) : attr(𝑅ℎ) ∩ 𝑃 = ∅}| and |𝐷̂2 |
= |𝐷̂1 | + |{𝑅ℎ ∈ rels(𝑄) : attr(𝑅ℎ) ∩ 𝑃 = ∅}|. As we assumed |𝐷̂1 | < |𝐷1 |, we obtain |𝐷̂2 | < |𝐷2 |,
contradicting the optimality of 𝐷2. □

Theorem 5.14. For a Berge-acyclic SJFCQ 𝑄 , if 𝑄 has head-domination property, then SSW is
poly-time solvable; otherwise SSW is not poly-time solvable, unless P = NP.

5.4 Beyond Berge-acyclic SJFCQs
In Section 4, we showed that SSW is solvable in polynomial time for all conjunctive queries (SJFCQs)

with the head-domination property. In Section 5, we established that for the remaining class of

Berge-acyclic SJFCQs, SSW is not polynomial-time solvable unless P = NP. To demonstrate that at

least one cyclic query exists for which SSW is intractable, we now analyze the hardness of a simple

cyclic query that lacks the head-domination property.

Smallest Synthetic Witnesses for ConjunctiveQueries 113:17

Beyond Berge-acyclic SJFCQs, we show the hardness of SSW on the pyramid query:

𝑄pyramid (𝐴, 𝐵,𝐶) :−𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴) Z 𝑅4 (𝐴, 𝐹) Z 𝑅5 (𝐵, 𝐹) Z 𝑅6 (𝐶, 𝐹),

which is the simplest cyclic query without the head-domination property. Notably, the pyramid

query was previously used in [22] to establish the inapproximability of SWPwithin a sub-logarithmic

factor for cyclic SJFCQs without the head-domination property. We prove the hardness of SSW
for 𝑄pyramid via a reduction from the vertex cover problem. Let 𝐺 (𝑉 , 𝐸), be the input graph to the

vertex cover problem as before. We construct the set 𝑆 ⊆ dom(𝐴) × dom(𝐵) × dom(𝐶) of tuples as
𝑆 = {(𝑒𝑖 , 𝑣 𝑗 , 𝑐1) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑒𝑖 } ∪ {(𝑒𝑖 , ∗, 𝑐1) : 𝑒𝑖 ∈ 𝐸} ∪ {(𝑒𝑖 , 𝑣 𝑗 , 𝑐2) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑉 }, where ∗, 𝑐1, 𝑐2

are special characters, and show that having a solution for SSW(𝑄pyramid, 𝑆), we can find a minimum

vertex cover for𝐺 . The idea behind the construction of 𝑆 , intuitively, is to force the relations 𝑅1, 𝑅2,

and 𝑅3, to have as many tuples as possible, so that they become less important and enable us to

focus on the subquery 𝑄 (𝐴, 𝐵) :−𝑅4 (𝐴, 𝐹) Z 𝑅5 (𝐵, 𝐹) Z 𝑅6 (𝐶, 𝐹), which is a Berge-acyclic query.

Since the process is similar to what we showed in previous sections, we show all the proofs and

details in Appendix D, and conclude with the following theorem:

Theorem 5.15. SSW is not poly-time solvable for 𝑄pyramid, unless P = NP.

6 Approximating SSW

In this section, we briefly discuss the approximation version of SSW. A minor modification of

Algorithm 1 returns an approximation solution for the SSW with theoretical guarantees. More

specifically, in Algorithm 1, instead of returning true or false (in lines 7 and 8), we return 𝐷 for

the input (𝑄, 𝑆). We analyze the approximation ratio of this algorithm. First, by the construction

of 𝐷 , it holds that |𝐷 | ≤ |𝑆 | · |rels(𝑄) |. Let 𝐷∗ be a solution for SSW(𝑄, 𝑆). It is known that a

SJFCQ 𝑄 over a database with |𝐷∗ | tuples can have at most 𝑂 (|𝐷∗ |𝜌★ (𝑄)) results, where 𝜌★(𝑄) is
the fractional edge covering number

4
of 𝑄 [2]. Hence, it follows that |𝐷∗ |𝜌★ (𝑄) ≥ 𝑐 · |𝑆 | for some

constant 𝑐 . Finally, we have
|𝐷 |
|𝐷∗ | ≤

|𝑆 | · |rels(𝑄) |
𝑐1/𝜌★ (𝑄) |𝑆 |1/𝜌★ (𝑄) = 𝑂 (|𝑆 |1−1/𝜌★ (𝑄)). On the other hand, we define

𝛽 = max𝑅𝑖 ∈rels(𝑄) |𝜋head(𝑅𝑖)𝑆 |. As |𝐷∗ | ≥ 𝛽 , we have
|𝐷 |
|𝐷∗ | ≤

|𝑆 | · |rels(𝑄) |
𝛽

= 𝑂

(
|𝑆 |
𝛽

)
. We conclude:

Theorem 6.1. For an arbitrary SJFCQ𝑄 and a set 𝑆 ⊆ dom(head(𝑄)) of tuples such that ESW(𝑄, 𝑆)
returns true, there is an algorithm that can find an𝑂 (min{|𝑆 |1−1/𝜌★ (𝑄) , |𝑆 |

𝛽
})-approximated solution

to SSW(𝑄, 𝑆) in polynomial time in terms of |𝑆 |, where 𝜌★(𝑄) is the fractional edge covering number
of 𝑄 , and 𝛽 = max𝑅𝑖 ∈rels(𝑄) |𝜋head(𝑅𝑖)𝑆 |.

Remark. Recall the equivalence between SSW for the matrix query 𝑄matrix and the weighted edge

covering problem discussed in Section 1.3. Any approximation algorithm (or inapproximability

result) for SSW over the matrix query directly translates to an approximation algorithm (or inap-

proximability result) for the weighted edge covering problem. Unfortunately, despite being studied

for nearly 50 years, the weighted edge covering problem has no known non-trivial approximation

algorithms or inapproximability results [41, 43].

Therefore, designing constant-factor or 𝑂 (log(|𝑆 |)) approximation algorithms (or proving non-

trivial inapproximability results) for SSW over the matrix query would yield significant progress

in graph theory by providing new approximation algorithms or inapproximability results for this

long-standing open problem.

4
For a SJFCQ𝑄 , a fractional edge covering is a function𝑊 : rels(𝑄) → [0, 1] with ∑

𝑅𝑖 :𝐴∈attr(𝑅𝑖)𝑊 (𝑅𝑖) ≥ 1 for every

𝐴 ∈ A. The fractional edge covering number is the minimum value of

∑
𝑅𝑖 :𝑅𝑖 ∈rels(𝑄)𝑊 (𝑅𝑖) over all fractional edge

coverings𝑊 of𝑄 .

113:18 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

7 Conclusions and Future Work
In this paper, we study the problem of constructing minimal synthetic witnesses for SJFCQs to

reproduce the desired output. It is still an open problem whether we can get a full dichotomy for the

SSW over all CQs, or even the class of 𝛼-acyclic CQs. As we have seen, proving the hardness is not

trivial even for the simplest matrix query, since it is equivalent to the weighted biclique covering

problem [41, 43]. To the best of our knowledge, all the known NP-hardness proofs [30, 36, 44] for
this classic problem are non-trivial and rely on the structure of a bipartite graph – in other words,

on having 2 relations in our setting. We presented a new proof via a reduction from the vertex cover

problem, which holds for an arbitrary constant 𝑘 . The concepts introduced here may prove valuable

for future research aimed at fully characterizing the problem’s complexity. A major distinction

between the definition of SSW problem with other related witness problems (for example, smallest

witness problem SWP [22], and deletion propagation [27]) is that, in other problems, the optimum

solution is always a subset of the database input. In contrast, for SSW, the infinite domain of the

SSW problem constitutes the primary obstacle to showing the hardness results for more complex

queries and fully capturing its complexity.

Finally, we highlight several interesting yet challenging open questions for future investigation:

• Full Dichotomy of SSW for CQs. An immediate next step is to develop a complete characterization

of the hardness for all CQs without the head-domination property.

• Better Approximation Algorithm. It is intriguing to investigate whether the approximation factor

of the 𝜃-SSW problem can be improved for certain specific queries by leveraging recent advances

in the weighted biclique covering problem.

• Finite Domains. Our results assume that the values for synthetic witnesses can be freely chosen

from an infinite domain. What would change if we imposed constraints on the available domain

values? The results of [34] for the more general view insertion problem suggest that this impacts

the hardness of the ESW problem.

• Compressing 𝑆 by optimizing both 𝑄 and 𝐷 . One application of synthetic witnesses is data

compression: instead of sending a table 𝑆 , we can transmit 𝑄 along and a witness 𝐷 that enables

the receiver to reconstruct 𝑆 . A natural generalization of SSW is to allow 𝑄 to be determined as

part of the optimization process.

References
[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggregate queries. In PODS. 153–164.

doi:10.1145/1989284.1989302

[2] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query plans for relational joins. SIAM J.
Comput. 42, 4 (2013), 1737–1767. doi:10.1137/110859440

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of acyclic database schemes. JACM 30, 3

(1983), 479–513. doi:10.1145/2402.322389

[4] Claude Berge. 1984. Hypergraphs: combinatorics of finite sets. Vol. 45. Elsevier.
[5] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen: generating query-aware test databases.

In SIGMOD, Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou (Eds.). 341–352. doi:10.1145/1247480.1247520

[6] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2002. On Propagation of Deletions and Annotations through

Views. In PODS. 150–158. doi:10.1145/543613.543633
[7] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where: A characterization of data provenance.

In ICDT. 316–330. doi:10.1007/3-540-44503-X_20
[8] Balder ten Cate and Victor Dalmau. 2022. Conjunctive queries: Unique characterizations and exact learnability. TODS

47, 4 (2022), 1–41. doi:10.1145/3559756

[9] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1999. On random sampling over joins. SIGMOD Record 28,

2 (1999), 263–274. doi:10.1145/304182.304206

[10] Yu Chen and Ke Yi. 2020. Random sampling and size estimation over cyclic joins. In ICDT. doi:10.4230/LIPIcs.ICDT.
2020.7

https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1137/110859440
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/543613.543633
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1145/3559756
https://doi.org/10.1145/304182.304206
https://doi.org/10.4230/LIPIcs.ICDT.2020.7
https://doi.org/10.4230/LIPIcs.ICDT.2020.7

Smallest Synthetic Witnesses for ConjunctiveQueries 113:19

[11] Gao Cong, Wenfei Fan, and Floris Geerts. 2006. Annotation propagation revisited for key preserving views. In CIKM.

632–641. doi:10.1145/1183614.1183705

[12] Stephen A Cook. 2023. The complexity of theorem-proving procedures. In Logic, automata, and computational
complexity: The works of Stephen A. Cook. ACM, 143–152. doi:10.1145/3588287

[13] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. 2011. Synopses for massive data: Samples,

histograms, wavelets, sketches. Foundations and Trends in Databases 4, 1–3 (2011), 1–294. doi:10.1561/1900000004
[14] Graham Cormode and Ke Yi. 2020. Small summaries for big data. Cambridge University Press. doi:10.1017/

9781108769938

[15] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30, 3 (1983), 514–550.

doi:10.1145/2402.322390

[16] Tomás Feder and Rajeev Motwani. 1991. Clique partitions, graph compression and speeding-up algorithms. In STOC.
123–133. doi:10.1145/103418.103424

[17] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015. The complexity of resilience and

responsibility for self-join-free conjunctive queries. PVLDB 9, 3 (2015), 180–191. doi:10.14778/2850583.2850592

[18] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2020. New Results for the Complexity of

Resilience for Binary Conjunctive Queries with Self-Joins. In PODS. 271–284. doi:10.1145/3375395.3387647
[19] M. R. Garey, D. S. Johnson, and L. Stockmeyer. 1974. Some simplified NP-complete problems. (1974), 47–63. doi:10.

1145/800119.803884

[20] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. 31–40. doi:10.1145/
1265530.1265535

[21] M. Herschel and M. Hernandez. 2010. Explaining Missing Answers to SPJUA Queries. PVLDB 3, 1 (2010), 185–196.

doi:10.14778/1920841.1920869

[22] Xiao Hu and Stavros Sintos. 2024. Finding Smallest Witnesses for Conjunctive Queries. In ICDT. doi:10.4230/LIPIcs.
ICDT.2024.24

[23] Xiao Hu, Shouzhuo Sun, Shweta Patwa, Debmalya Panigrahi, and Sudeepa Roy. 2020. Aggregated deletion propagation

for counting conjunctive query answers. PVLDB 14, 2 (2020), 228–240. doi:10.14778/3425879.3425892

[24] Xiao Hu and Ke Yi. 2016. Towards a worst-case I/O-Optimal algorithm for acyclic joins. In PODS. 135–150. doi:10.
1145/2902251.2902292

[25] Batya Kenig, Pranay Mundra, Guna Prasaad, Babak Salimi, and Dan Suciu. 2020. Mining Approximate Acyclic Schemes

from Relations. In SIGMOD. 297–312. doi:10.1145/3318464.3380573
[26] Batya Kenig and Nir Weinberger. 2023. Quantifying the Loss of Acyclic Join Dependencies. In PODS. 329–338.

doi:10.1145/3584372.3588658

[27] Benny Kimelfeld, Jan Vondrák, and Ryan Williams. 2012. Maximizing Conjunctive Views in Deletion Propagation.

TODS 37, 4 (2012), 24:1–24:37. doi:10.1145/1989284.1989308
[28] Benny Kimelfeld, Jan Vondrák, and David P Woodruff. 2013. Multi-tuple deletion propagation: Approximations and

complexity. PVLDB 6, 13 (2013), 1558–1569. doi:10.14778/2536258.2536267

[29] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. 2021. Combining aggregation and sampling (nearly)

optimally for approximate query processing. In SIGMOD. 1129–1141. doi:10.1145/3448016.3457277
[30] Xuemin Lin. 2000. On the computational complexity of edge concentration. Discrete Applied Mathematics 101, 1-3

(2000), 197–205. doi:10.1016/S0166-218X(99)00207-3

[31] Neha Makhija and Wolfgang Gatterbauer. 2023. A Unified Approach for Resilience and Causal Responsibility

With Integer Linear Programming (ILP) and LP Relaxations. Proc. ACM Manag. Data 1, 4 (2023), 228:1–228:27.

doi:10.1145/3626715

[32] Neha Makhija and Wolfgang Gatterbauer. 2024. Minimally Factorizing the Provenance of Self-join Free Conjunctive

Queries. Proceedings of the ACM on Management of Data 2, 2 (2024), 1–24. doi:10.1145/3651605
[33] NehaMakhija andWolfgang Gatterbauer. 2024. A Unified and Practical Approach for Generalized Deletion Propagation.

arXiv preprint arXiv:2411.17603 (2024). doi:10.48550/arXiv.2411.17603
[34] Dongjing Miao, Zhipeng Cai, Xianmin Liu, and Jianzhong Li. 2016. On the Complexity of Insertion Propagation with

Functional Dependency Constraints. In COCOON, Vol. 9797. 623–632. doi:10.1007/978-3-319-42634-1_50
[35] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining wrong queries using small examples. In SIGMOD. 503–520.

doi:10.1145/3299869.3319866

[36] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. 2016. A survey of role mining. CSUR 48, 4

(2016), 1–37. doi:10.1145/2871148

[37] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. SIGMOD Record 45, 2 (2016), 5–16. doi:10.1145/

3003665.3003667

[38] Jeff M Phillips. 2017. Coresets and sketches. In Handbook of discrete and computational geometry. CRC press, 1269–1288.

doi:10.48550/arXiv.1601.00617

https://doi.org/10.1145/1183614.1183705
https://doi.org/10.1145/3588287
https://doi.org/10.1561/1900000004
https://doi.org/10.1017/9781108769938
https://doi.org/10.1017/9781108769938
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/103418.103424
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.14778/1920841.1920869
https://doi.org/10.4230/LIPIcs.ICDT.2024.24
https://doi.org/10.4230/LIPIcs.ICDT.2024.24
https://doi.org/10.14778/3425879.3425892
https://doi.org/10.1145/2902251.2902292
https://doi.org/10.1145/2902251.2902292
https://doi.org/10.1145/3318464.3380573
https://doi.org/10.1145/3584372.3588658
https://doi.org/10.1145/1989284.1989308
https://doi.org/10.14778/2536258.2536267
https://doi.org/10.1145/3448016.3457277
https://doi.org/10.1016/S0166-218X(99)00207-3
https://doi.org/10.1145/3626715
https://doi.org/10.1145/3651605
https://doi.org/10.48550/arXiv.2411.17603
https://doi.org/10.1007/978-3-319-42634-1_50
https://doi.org/10.1145/3299869.3319866
https://doi.org/10.1145/2871148
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.48550/arXiv.1601.00617

113:20 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

[39] Biao Qin, Deying Li, and Chunlai Zhou. 2022. The resilience of conjunctive queries with inequalities. Information
Sciences 613 (2022), 982–1002. doi:10.1016/j.ins.2022.08.049

[40] Evgeny Sherkhonov and Maarten Marx. 2017. Containment of acyclic conjunctive queries with negated atoms or

arithmetic comparisons. Inform. Process. Lett. 120 (2017), 30–39. doi:10.1016/j.ipl.2016.12.005
[41] Tamás G Tarjan. 1975. Complexity of Lattice-Configurations. (1975).

[42] Javier Tuya, Claudio de la Riva, Maria Jose Suarez-Cabal, and Raquel Blanco. 2016. Coverage-aware test database

reduction. IEEE Transactions on Software Engineering 42, 10 (2016), 941–959. doi:10.1109/TSE.2016.2519032

[43] Zsolt Tuza. 1984. Covering of graphs by complete bipartite subgraphs; complexity of 0–1 matrices. Combinatorica 4
(1984), 111–116. doi:10.1007/BF02579163

[44] Jaideep Vaidya, Vijayalakshmi Atluri, Qi Guo, and Haibing Lu. 2009. Edge-rmp: Minimizing administrative assignments

for role-based access control. Journal of Computer Security 17, 2 (2009), 211–235. doi:10.3233/JCS-2009-0341

[45] Jane Xu, Waley Zhang, Abdussalam Alawini, and Val Tannen. 2018. Provenance Analysis for Missing Answers and

Integrity Repairs. IEEE Data Engineering Bulletin (2018), 39.

[46] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random sampling over joins revisited. In

SIGMOD. 1525–1539. doi:10.1145/3183713.3183739

https://doi.org/10.1016/j.ins.2022.08.049
https://doi.org/10.1016/j.ipl.2016.12.005
https://doi.org/10.1109/TSE.2016.2519032
https://doi.org/10.1007/BF02579163
https://doi.org/10.3233/JCS-2009-0341
https://doi.org/10.1145/3183713.3183739

Smallest Synthetic Witnesses for ConjunctiveQueries 113:21

A Missing Material for Section 1
Multiple minimal synthetic witnesses. First, observe that for any query with existential at-

tributes, there will be infinitely few minimal synthetic witnesses as we assume an infinite domain

of values that can be used in synthetic witnesses. Thus, given a synthetic witness, we can construct

new synthetic witnesses 𝐷 of equal size by picking any value 𝑐 in adom𝐷 (𝐴) for some attribute

𝐴 ∈ head(𝑄) − attr(𝑄) and replacing every 𝐴 attribute value in 𝐷 that is equal to 𝑐 with a fresh

value 𝑐′ ∉ adom(𝐷). However, the fact that we can rename domain values for body attributes is not

the only cause for multiple synthetic witnesses to exist. Consider the following query:

𝑄 (𝐴,𝐶) :−𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶).
For 𝑆 = {(𝑎, 1), (𝑎, 2), (𝑏, 2)}, there are two minimal synthetic witnesses:

𝐷1 : 𝑅
𝐷1

1
= {(𝑎, 𝑥), (𝑏,𝑦)} 𝐷2 : 𝑅

𝐷2

1
= {(𝑎, 𝑥), (𝑎,𝑦), (𝑏,𝑦)}

𝑅
𝐷1

2
= {(𝑥, 1), (𝑥, 2), (𝑦, 2)} 𝑅

𝐷2

2
= {(𝑥, 1), (𝑦, 2)}

B Missing Material for Section 3
Proof of Lemma 3.2. From Lemma 3.1, we know that 𝑆 ⊆ 𝑄 (𝐷). It suffices to show that if

there exists a tuple ℎ ∈ 𝑄 (𝐷) such that ℎ ∉ 𝑆 then ESW(𝑄, 𝑆) = false. By contradiction, assume

that ℎ ∈ 𝑄 (𝐷) − 𝑆 . Let {ℎ𝑖 ∈ 𝑅𝑖 : 𝑖 ∈ [𝑚]} be a set of tuples such that 𝜋head(𝑄) (Z𝑖∈[𝑚] ℎ𝑖) = ℎ.

For simplicity, whenever we write 𝑥𝑖 for a tuple 𝑥 ∈ 𝑆 , we denote the tuple that our algorithm

adds in relation 𝑅𝑖 given the tuple 𝑥 . As ℎ ∈ 𝑄 (𝐷) and by the construction of 𝐷 based on the

tuples in 𝑆 , it must be the case that there exists a set of tuples 𝑇 = {𝑡 (1) , . . . , 𝑡 (ℓ) } ⊆ 𝑆 , such that

for every index 𝑖 ∈ [𝑚], there exists an index 𝑗𝑖 ∈ [ℓ] such that ℎ𝑖 = 𝑡
(𝑗𝑖)
𝑖

,

⋃
𝑖∈[𝑚]{ 𝑗𝑖 } = [ℓ],

and 𝜋head(𝑄) (Z𝑖∈[𝑚] 𝑡 (𝑗𝑖)𝑖
) = ℎ. As ℎ ∈ 𝑄 (𝐷) and ℎ ∉ 𝑆 , we have |𝑇 | ≥ 2. If not (and cardinality

of 𝑇 was 1) then ℎ ∈ 𝑆 which is a contradiction. Since for every 𝑡 ∈ 𝑆 we create the tuples

{𝑡𝑖 | 𝑖 ∈ [𝑚]} with a distinct value for the body attributes unique to 𝑡 , we know that for any pair

𝑖1, 𝑖2 ∈ [𝑚] with 𝑗𝑖1 ≠ 𝑗𝑖2 , it holds that (attr(𝑅𝑖1) ∩ attr(𝑅𝑖2)) − head(𝑄) = ∅ as otherwise, 𝑡
(𝑗𝑖

1
)

𝑖1

does not join with 𝑡
(𝑗𝑖

2
)

𝑖2
, since they would have different values on body attributes. If 𝑗𝑖1 = 𝑗𝑖2 ,

then again from 𝜋head(𝑄) (Z𝑖∈[𝑚] 𝑡 (𝑗𝑖)𝑖
) = ℎ follows that for every 𝐴 ∈ head(𝑅𝑖1) ∩ head(𝑅𝑖2),

𝜋𝐴 (𝑡
(𝑗𝑖

1
)

𝑖1
) = 𝜋𝐴 (𝑡

(𝑗𝑖
2
)

𝑖2
). Intuitively, any synthetic witness for 𝑆 ⊇ 𝑇 must also create the tuple

ℎ. Assume a synthetic witness 𝐷 ′ exists for (𝑄, 𝑆). For every 𝑡 (𝑝) ∈ 𝑇 ⊆ 𝑆 , let 𝑡
(𝑝)
𝑖

be a tuple

in 𝑅𝐷 ′
𝑖 such that 𝑡 (𝑝) = 𝜋head(𝑄) (Z𝑖∈[𝑚] 𝑡 (𝑝)𝑖

). Hence, by definition, for every 𝑖 ∈ [𝑚], we have
𝜋head(𝑅𝑖) (ℎ𝑖) = 𝜋head(𝑅𝑖) (𝑡

(𝑗𝑖)
𝑖
). By the analysis above, ℎ = 𝜋head(𝑄) (Z𝑖∈[𝑚] 𝑡 (𝑗𝑖)𝑖

) and we get the

contradiction ℎ ∈ 𝑄 (𝐷 ′). □

C Missing Material for Section 4
We start by giving the formal definition of 𝛼-acylic queries.

Definition C.1 (𝛼-acyclic CQs [3, 15]). A CQ 𝑄 is acyclic if there exists a tree T (also called join
tree) such that (1) there is a one-to-one correspondence between the nodes of T and relations in 𝑄 ;

and (2) for every attribute 𝐴 ∈ A, the set of nodes containing 𝐴 forms a connected subtree of T.

Although in section 4, we showed an algorithm that can solve SSW for all SJFCQs with the

head-domination property, motivated by some applications, the set 𝑆 of input tuples itself may be

stored as a result of a SJFCQ, and we may not have direct access to it. For example, a database 𝐷

113:22 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

is stored on a server, and the server needs to send the results of a head-dominant SJFCQ 𝑄 over

𝐷 to a client. One way to perform this task is first to compute the set of the results 𝑆 = 𝑄 (𝐷),
and then get a synthetic witness 𝐷∗ = SSW(𝑄, 𝑆) by calling Algorithm 2 on 𝑆 . However, it may

be computationally expensive to compute the results of 𝑄 (𝐷), since |𝑄 (𝐷) | can be polynomially

larger than |𝐷 |. Next, we show that it is possible to build the smallest synthetic witness directly

from 𝐷 without computing 𝑄 (𝐷). As discussed later, for a large class of queries, this algorithm is

considerably faster.

Instead of computing the join results, we remove all dangling tuples from 𝐷 . Then, we start

from an empty database 𝐷∗ = ∅ and for any tuple 𝑡 ∈ 𝑅𝐷
𝑖 , for all 𝑅𝑖 ∈ rels(𝑄), we build a tuple 𝑡 ′,

such that 𝜋head(𝑅𝑖) (𝑡 ′) = 𝜋head(𝑅𝑖) (𝑡), and 𝜋𝐴 (𝑡 ′) = ∗, for all 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖) and add 𝑡 ′ to
𝑅𝐷∗
𝑖 . Let ModifiedSSW(𝑄, 𝐷), denote the resulting database 𝐷∗ after running this algorithm, and

EasySSW(𝑄,𝑄 (𝐷)) denote the output of the original algorithm described in 4. The pseudo-code for

ModifiedSSW is given in Algorithm 3, and the pseudo-code for EasySSW is given in Algorithm 2.

Note that in line 2 of Algorithm 3, we can use any known algorithm for removing dangling tuples,

as it is discussed later.

Lemma C.2. The results of EasySSW(𝑄,𝑄 (𝐷)) and ModifiedSSW(𝑄, 𝐷) are exactly the same, for
any SJFCQ 𝑄 , and any given database instance 𝐷 .

Proof. Let 𝐷1 and 𝐷2 denote the resulting outputs of EasySSW(𝑄, 𝑆) and ModifiedSSW(𝑄, 𝑆),
respectively. Let 𝑡 ∈ 𝑅𝐷1

𝑖
be and arbitrary tuple from an arbitrary relation 𝑅

𝐷1

𝑖
for some relation

𝑅𝑖 ∈ rels(𝑄). By the definition of EasySSW, we know that there exists a tuple 𝑝 ∈ 𝑅𝐷
𝑖 such that

𝜋head(𝑅𝑖) (𝑝) = 𝑡 . It is easy to verify that 𝑝 is a non-dangling tuple, and in ModifiedSSW we will

not remove it, and hence, there exists a tuple 𝑝′ ∈ 𝑅
𝐷2

𝑖
, such that 𝜋head(𝑅𝑖) (𝑝′) = 𝜋head(𝑅𝑖) (𝑝) =

𝜋head(𝑅𝑖) (𝑡), and by the definition of EasySSW and ModifiedSSW, we know that 𝜋𝐴 (𝑝′) = 𝜋𝐴 (𝑡) = ∗
for all 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖). Therefore, we have 𝑝′ = 𝑡 and can deduce that 𝐷1 ⊆ 𝐷2.

For the other direction, let 𝑡 ∈ 𝑅𝐷2

𝑖
be and arbitrary tuple from an arbitrary relation 𝑅

𝐷2

𝑖
for some

relation 𝑅𝑖 ∈ rels(𝑄). By the definition of ModifiedSSW, we know that there exists a tuple 𝑝 ∈ 𝑅𝐷
𝑖

such that 𝜋head(𝑅𝑖) (𝑝) = 𝑡 and 𝑝 is a non-dangling tuple, so, there exists a tuple 𝑝′ ∈ 𝑄 (𝐷), such
that 𝜋head(𝑅𝑖) (𝑝′) = 𝜋head(𝑅𝑖) (𝑡). Thus, by the definition of EasySSW, we know that there exists

a tuple 𝑡 ′ ∈ 𝑅𝐷1

𝑖
, such that 𝜋head(𝑅𝑖) (𝑡 ′) = 𝜋head(𝑅𝑖) (𝑝′) and hence 𝜋head(𝑅𝑖) (𝑡 ′) = 𝜋head(𝑅𝑖) (𝑡). We

know that 𝜋𝐴 (𝑡) = 𝜋𝐴 (𝑡 ′) = ∗ for all 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖). Therefore, we have 𝑡 = 𝑡 ′ and can

deduce that 𝐷2 ⊆ 𝐷1. □

By Theorem 4.3, we know that EasySSW, outputs a solution to SSW(𝑄,𝑄 (𝐷)) for any head-

dominated SJFCQ 𝑄 , and by the Lemma C.2, we know that ModifiedSSW(𝑄,𝐷) outputs the same

results. Hence, we obtain:

Theorem C.3. For an arbitrary head-dominated SJFCQ 𝑄 and an instance 𝐷 , ModifiedSSW(𝑄, 𝐷)
returns a solution to SSW(𝑄,𝑄 (𝐷)) in polynomial time.

Time and space complexity. In the algorithm EasySSW, the most expensive part is to compute the

result of the SJFCQ 𝑄 . For this part, we can use a known algorithm for reporting the results of the

SJFCQ𝑄 , and the total time complexity of EasySSW would be the same as for this known algorithm.

In the algorithm ModifiedSSW, the most expensive step is to remove the dangling tuples. The main

difference between EasySSW and ModifiedSSW, is that for the first one, we need to compute 𝑄 (𝐷),
and for the latter, we just need to remove the dangling tuples from 𝐷 . In many cases, removing

dangling tuples is less expensive than reporting all the results. For instance, it is known that for

all 𝛼-acyclic queries, using the traditional Yannakakis algorithm, we can remove all the dangling

tuples in 𝑂 (|𝐷 |) time and space. After removing dangling tuples, we go through each relation and

Smallest Synthetic Witnesses for ConjunctiveQueries 113:23

add the corresponding tuple to the output instance. So, after the cleaning part, the algorithm spends

𝑂 (|𝐷 |) time and space. We can conclude with the following corollary.

Corollary C.4. For an arbitrary 𝛼-acyclic SJFCQ 𝑄 with the head-domination property, and an
instance 𝐷 , ModifiedSSW(𝑄, 𝐷) returns a solution to SSW(𝑄,𝑄 (𝐷)) in 𝑂 (|𝐷 |) time.

Algorithm 3:ModifiedSSW(𝑄, 𝐷)
1 𝐷∗ ← ∅;
2 𝐷 ← removeDangling(𝐷) ;
3 foreach 𝑖 ∈ [𝑚] do
4 foreach tuple 𝑡 ∈ 𝑅𝐷

𝑖 do

5 𝑡 ′ ← a tuple defined on attr(𝑅𝑖) such that 𝜋𝐴 (𝑡 ′) = 𝜋𝐴 (𝑡) for each attribute

𝐴 ∈ head(𝑅𝑖) and 𝜋𝐴 (𝑡 ′) = ∗ for each attribute 𝐴 ∈ attr(𝑅𝑖) − head(𝑅𝑖);
6 𝑅𝐷∗

𝑖 ← 𝑅𝐷∗
𝑖 ∪ {𝑡 ′};

7 return 𝐷∗;

D Missing Material for Section 5
Proof of Lemma 5.13. We show the first part of the lemma; 𝑆1 = 𝑄apath (𝐷1).
Direction 𝑆1 ⊆ 𝑄apath (𝐷1). Let 𝑡1 ∈ 𝑆1 be an arbitrary tuple. By definition, there exists a tuple

𝑡2 ∈ 𝑆2 such that 𝜋𝐴1,𝐴𝑘+1𝑡2 = 𝑡1 and 𝜋𝐴𝑡2 = ∗, for each attribute 𝐴 ∈ head(𝑄) − {𝐴1, 𝐴𝑘+1}. By
definition, for every 𝑖 ∈ [𝑘], there exists a tuple 𝑡𝑖 ∈ 𝑅

𝐷2

𝑖
, such that 𝑡2 = 𝜋𝐴1,𝐴𝑘+1 (Z𝑖∈[𝑘] 𝑡𝑖).

It holds that, 𝜋𝐴𝑖+1 (𝑡𝑖) = 𝜋𝐴𝑖+1 (𝑡𝑖+1), 𝜋𝐴1
𝑡1 = 𝜋𝐴1

𝑡2 = 𝜋𝐴1
𝑡1, and 𝜋𝐴𝑘+1𝑡1 = 𝜋𝐴𝑘+1𝑡2 = 𝜋𝐴𝑘+1𝑡1. By

construction, for each 𝑖 ∈ [𝑘], we have 𝜋𝐴𝑖 ,𝐴𝑖+1𝑡𝑖 ∈ 𝑇𝑖 , 𝜋𝐴𝑖
𝑡𝑖 ∈ 𝑇ℎ for all𝑇ℎ ∈ rels(𝑄apath) such that

attr(𝑇ℎ) = {𝐴𝑖 }, and 𝜋𝐴𝑘+1𝑡𝑘 ∈ 𝑇ℎ for all 𝑇ℎ ∈ rels(𝑄apath) such that attr(𝑇ℎ) = {𝐴𝑘+1}. Hence,
𝑡1 = 𝜋𝐴1,𝐴𝑘+1 (Z𝑖∈[𝑘] (𝜋𝐴𝑖 ,𝐴𝑖+1 (𝑡𝑖))) ∈ 𝑄apath (𝐷1).

Direction 𝑆1 ⊇ 𝑄apath (𝐷1). Let 𝑡 ∈ 𝑄apath (𝐷1) be an arbitrary tuple. By definition, there exists a

set of tuples {𝑡𝑖 ∈ 𝑇𝑖 : 𝑖 ∈ [𝑘]} such that 𝑡 = 𝜋𝐴1,𝐴𝑘+1 (Z𝑖∈[𝑘] 𝑡𝑖). By definition, for every 𝑖 ∈ [𝑘],
there exists a tuple 𝑡 ′𝑖 ∈ 𝑅𝑖 such that 𝜋𝐴𝑖 ,𝐴𝑖+1𝑡

′
𝑖 = 𝑡𝑖 . As 𝐷2 is a solution to SSW(𝑄, 𝑆2), every tuple

in 𝐷2 contributes to at least one full join result of 𝑄 . As 𝑄 is Berge-acyclic, |attr(𝑅ℎ) ∩ 𝑃 | ≤ 1

for each 𝑅ℎ ∈ rels(𝑄) − 𝑌 and |attr(𝑅𝑖) ∩ attr(𝑅𝑖+1) | = 1 for 𝑖 ∈ [𝑘 − 1]. Hence, if for each
𝑖 ∈ [𝑘] there exists a tuple 𝑡∗𝑖 ∈ 𝑅𝑖 , such that 𝜋𝐴𝑖+1 (𝑡∗𝑖) = 𝜋𝐴𝑖+1 (𝑡∗𝑖+1) for 𝑖 ∈ [𝑘 − 1], leading to

Z𝑖∈[𝑘] 𝑡
∗
𝑖 ≠ ∅, then additional relations in rels(𝑄) − 𝑌 do not prune Z𝑖∈[𝑘] 𝑡

∗
𝑖 , constructing a

tuple 𝑡∗ ∈ 𝑄 (𝐷2) = 𝑆2 with 𝜋𝐴1
(𝑡∗) = 𝜋𝐴1

(𝑡∗
1
), 𝜋𝐴𝑘+1 (𝑡∗) = 𝜋𝐴𝑘+1 (𝑡∗𝑘), and 𝜋𝐴 (𝑡∗) = ∗ for each

attribute 𝐴 ∈ head(𝑄) − {𝐴1, 𝐴𝑘+1}. Let 𝑡 ′ =Z𝑖 𝑡 ′𝑖 (notice that Z𝑖 𝑡 ′𝑖 ≠ ∅). By the discussion

above, it follows that there exists a tuple 𝑡 ∈ 𝑄 (𝐷2) = 𝑆2 such that 𝜋𝐴1
𝑡 = 𝜋𝐴1

(𝑡 ′
1
) = 𝜋𝐴1

(𝑡),
𝜋𝐴𝑘+1𝑡 = 𝜋𝐴𝑘+1 (𝑡 ′𝑘) = 𝜋𝐴𝑘+1 (𝑡), and 𝜋𝐴𝑡 = ∗ for any other attribute 𝐴 ∈ head(𝑄) − {𝐴1, 𝐴𝑘+1}. By
definition, there should be a tuple 𝑡 ∈ 𝑆1 such that 𝑡 = 𝜋𝐴1,𝐴𝑘+1𝑡 = 𝑡 . □

Proof of Theorem 5.15. We show a reduction from the vertex cover problem to the SSW problem
for 𝑄pyramid. Let 𝐺 (𝑉 , 𝐸) be the input graph with the vertex set 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} and the

edge set 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒𝑚}. We construct the set 𝑆 ⊆ dom(𝐴) × dom(𝐵) × dom(𝐶) of tuples as
follows. We set dom(𝐵) = 𝑉 ∪ {∗} for some special value ∗, dom(𝐴) = 𝐸, dom(𝐶) = {𝑐1, 𝑐2}, and
𝑆 = {(𝑒𝑖 , 𝑣 𝑗 , 𝑐1) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑒𝑖 } ∪ {(𝑒𝑖 , ∗, 𝑐1) : 𝑒𝑖 ∈ 𝐸} ∪ {(𝑒𝑖 , 𝑣 𝑗 , 𝑐2) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑉 }. Next, we
show that having a solution for SSW(𝑄pyramid, 𝑆), we can find the vertex cover of 𝐺 in polynomial

time. The intuitive idea behind constructing 𝑆 , as described, is to force any witness of 𝑄pyramid to

113:24 Aryan Esmailpour, Boris Glavic, Xiao Hu, & Stavros Sintos

have many tuples in 𝑅1, 𝑅2, 𝑅3, so that these relations become irrelevant and we can focus only on

minimizing |𝑅4 | + |𝑅5 | + |𝑅6 |. Let 𝐷 = SSW(𝑄pyramid, 𝑆) be an optimal witness of 𝑆 .

Lemma D.1. Any solution for SSW(𝑄pyramid, 𝑆) such as 𝐷 , has the following structure.

(1) 𝑅𝐷
1
= {(𝑒𝑖 , 𝑣 𝑗) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑉 } ∪ {(𝑒𝑖 , ∗) : 𝑒𝑖 ∈ 𝐸}.

(2) 𝑅𝐷
2
= {(𝑣𝑖 , 𝑐1) : 𝑣𝑖 ∈ 𝑉 } ∪ {(𝑣𝑖 , 𝑐2) : 𝑣𝑖 ∈ 𝑉 } ∪ (∗, 𝑐1).

(3) 𝑅𝐷
3
= {(𝑐1, 𝑒𝑖) : 𝑒𝑖 ∈ 𝐸} ∪ {(𝑐2, 𝑒𝑖) : 𝑒𝑖 ∈ 𝐸}.

Proof. It is easy to verify that 𝜋𝐴𝐵 (𝑆) ⊆ 𝑅𝐷
1
, because otherwise, if there exists a tuple 𝑡 ∈ 𝑆

such that 𝜋𝐴𝐵 (𝑡) ∉ 𝑅𝐷
1
, then 𝑡 ∉ 𝑄pyramid (𝐷), which contradicts the fact 𝑄pyramid (𝐷) = 𝑆 . With

the same argument we have 𝜋𝐵𝐶 (𝑆) ⊆ 𝑅𝐷
2
and 𝜋𝐶𝐴 (𝑆) ⊆ 𝑅𝐷

3
. By the construction of 𝑆 , we have

𝜋𝐴𝐵 (𝑆) = dom(𝐴)×dom(𝐵), and 𝜋𝐵𝐶 (𝑆) = dom(𝐵)×dom(𝐶)− (∗, 𝑐2), and 𝜋𝐶𝐴 (𝑆) = dom(𝐶)×dom(𝐴).
For the first and the third condition, since 𝜋𝐴𝐵 (𝑆) and 𝜋𝐶𝐴 (𝑆) contain all the possible tuples in

dom(𝐴)×dom(𝐵) and dom(𝐶)×dom(𝐴) respectively, and we showed that 𝜋𝐴𝐵 (𝑆) ⊆ 𝑅𝐷
1
and 𝜋𝐶𝐴 (𝑆) ⊆

𝑅𝐷
3
, we can directly deduce that 𝑅𝐷

1
= 𝜋𝐴𝐵 (𝑆) = {(𝑒𝑖 , 𝑣 𝑗) : 𝑒𝑖 ∈ 𝐸, 𝑣 𝑗 ∈ 𝑉 } ∪ {(𝑒𝑖 , ∗) : 𝑒𝑖 ∈ 𝐸}, and

𝑅𝐷
3
= 𝜋𝐶𝐴 (𝑆) = {(𝑐1, 𝑒𝑖) : 𝑒𝑖 ∈ 𝐸} ∪ {(𝑐2, 𝑒𝑖) : 𝑒𝑖 ∈ 𝐸}, and the first and third condition follows.

For the second condition, since 𝜋𝐵𝐶 (𝑆) contains all the tuples in dom(𝐵)×dom(𝐶) except the single
tuple (∗, 𝑐2), we need to show that (∗, 𝑐2) ∉ 𝑅𝐷

2
. By the construction of 𝑆 , there is no 𝑡 ∈ 𝑆 , such that

𝜋𝐵𝐶 (𝑡) = (∗, 𝑐2), and by definitionwe have𝑄pyramid (𝐷) = 𝑆 . Thus, if𝑅𝐷
2
contains the tuple (∗, 𝑐2), we

can remove this tuple from it without changing the query results𝑄pyramid (𝐷) and this contradicts the
optimality of 𝐷 . Hence, we have 𝑅𝐷

2
= 𝜋𝐵𝐶 (𝑆) = {(𝑣𝑖 , 𝑐1) : 𝑣𝑖 ∈ 𝑉 } ∪ {(𝑣𝑖 , 𝑐2) : 𝑣𝑖 ∈ 𝑉 } ∪ (∗, 𝑐1). □

Let 𝐹1 = {𝑓 ∈ dom(𝐹) : (𝑐1, 𝑓) ∈ 𝑅𝐷
6
}, and 𝐹2 = {𝑓 ∈ dom(𝐹) : (𝑐2, 𝑓) ∈ 𝑅𝐷

6
}.

Lemma D.2. Any optimal witness of 𝑆 such as 𝐷 , has the following structure.
(1) 𝐹1 ∩ 𝐹2 = ∅.
(2) |𝐹2 | = 1.

Proof. For any vertex 𝑣𝑖 ∈ 𝑉 , there exists an edge 𝑒 𝑗 ∈ 𝐸, such that 𝑣𝑖 ∉ 𝑒 𝑗 , otherwise we could

simply report 𝑣𝑖 as the minimum vertex cover of𝐺 . It is easy to see that there is no 𝑓1 ∈ 𝐹1, such that

(𝑒 𝑗 , 𝑓1) ∈ 𝑅𝐷
4
∧ (𝑣𝑖 , 𝑓1) ∈ 𝑅𝐷

5
, since if such 𝑓1 exists, we will have (𝑒 𝑗 , 𝑣𝑖 , 𝑐1) ∈ 𝑆 , which contradicts

the construction of 𝑆 . Moreover, we know that (𝑒 𝑗 , 𝑣𝑖 , 𝑐2) ∈ 𝑆 , so there should exist a value 𝑓2 ∈ 𝐹2

such that (𝑒 𝑗 , 𝑓2) ∈ 𝑅𝐷
4
∧ (𝑣𝑖 , 𝑓2) ∈ 𝑅𝐷

5
. Therefore, for any 𝑣𝑖 ∈ 𝑉 , there exists a tuple (𝑣𝑖 , 𝑓) ∈ 𝑅𝐷

5

such that 𝑓 ∈ 𝐹2 − 𝐹1. Let𝑇𝐵 = {(𝑣𝑖 , 𝑓) ∈ 𝑅𝐷
5

: 𝑣𝑖 ∈ 𝑉 , 𝑓 ∈ 𝐹2 − 𝐹1}, by the above argument we have

that |𝑇𝐵 | ≥ |𝑉 |. Similarly, for any edge 𝑒𝑖 ∈ 𝐸, we know that there exists a 𝑣 𝑗 ∈ 𝑉 , such that 𝑣 𝑗 ∉ 𝑒𝑖 ,

since 𝐺 has at least 2 edges. Thus, with the same argument we can show that for any 𝑒𝑖 ∈ 𝐸, there
exists a value 𝑓 ∈ 𝐹2 − 𝐹1, such that (𝑒𝑖 , 𝑓) ∈ 𝑅𝐷

4
. Let 𝑇𝐴 = {(𝑒𝑖 , 𝑓) ∈ 𝑅𝐷

4
: 𝑒𝑖 ∈ 𝐸, 𝑓 ∈ 𝐹2 − 𝐹1} and

we have 𝑇𝐴 ≥ |𝐸 |. We do the following operation on 𝐷 to build another database instance 𝐷̂ such

that 𝑄pyramid (𝐷̂) = 𝑆 , and show that if any of (1) or (2) does not hold, we will have |𝐷̂ < 𝐷 |, which
contradicts the optimality of 𝐷 .

We start by setting 𝐷̂ = 𝐷 . Then, we remove all the tuples 𝑡 ∈ 𝑇𝐴 from 𝑅𝐷̂
4
, and all the tuples

𝑡 ∈ 𝑇𝐵 from 𝑅𝐷̂
5
. Until this stage, we have removed at least |𝑉 | + |𝐸 | tuples. Next, we add a special

character ∗ to dom(𝐹), and add the tuple (𝑒𝑖 , ∗) to 𝑅𝐷̂
4
, for every edge 𝑒𝑖 ∈ 𝐸, and add the tuple (𝑣𝑖 , ∗)

to 𝑅𝐷̂
5
, for every vertex 𝑣𝑖 ∈ 𝑉 . In this stage we added |𝑉 | + |𝐸 | tuples to 𝐷̂ . We also add the tuple

(𝑐2, ∗) to 𝑅𝐷̂
6
. At last, we remove all the tuples (𝑐2, 𝑓) : 𝑓 ∈ 𝐹2. After all these operations, it is easy

to verify that 𝑄pyramid (𝐷̂) = 𝑄pyramid (𝐷) = 𝑆 .

In the first step, we removed at least |𝑉 | + |𝐸 | tuples, then, in the second step we added |𝑉 | + |𝐸 |
tuples. In the third step, we added the single tuple (𝑐2, ∗) and removed at least |𝐹2 | tuples. So, overall

Smallest Synthetic Witnesses for ConjunctiveQueries 113:25

we have |𝐷̂ | ≤ |𝐷 | − |𝑉 | − |𝐸 | + |𝑉 | + |𝐸 | + 1 − |𝐹2 | = |𝐷 | + 1 − |𝐹2 |. Thus, if |𝐹2 | > 1, we have

|𝐷̂ | < |𝐷 |, which contradicts the optimality of 𝐷 . Therefore, we have |𝐹2 | ≤ 1, and since we showed

earlier that 𝐹2 − 𝐹1 is not empty, we can deduce that |𝐹2 | = 1 and 𝐹2 ∩ 𝐹1 = ∅. □

Next, we show that 𝑄pyramid (𝐷) = 𝑅𝐷
4
Z 𝑅𝐷

5
Z 𝑅𝐷

6
. Let

ˆ𝑓 denote the only value in 𝐹2. We

have (∗, ˆ𝑓) ∉ 𝑅𝐷
5
, since otherwise we can remove this tuple and reduce the size of 𝐷 , because

there exists no tuple 𝑡 ∈ 𝑆 such that 𝜋𝐵𝐶 (𝑡) = (∗, 𝑐2). By reordering the relations, we have

𝑄pyramid (𝐷) = 𝑄1 Z 𝑄2, where 𝑄1 = 𝑅𝐷
4
Z 𝑅𝐷

5
Z 𝑅𝐷

6
and 𝑄2 = 𝑅𝐷

1
Z 𝑅𝐷

2
Z 𝑅𝐷

3
. Let 𝑡 be any tuple

in dom(𝐴) × dom(𝐵) × dom(𝐶), such that 𝜋𝐵𝐶 (𝑡) ≠ (∗, 𝑐2). By Lemma D.1, we can easily see that

𝑡 ∈ 𝑄2. Moreover, we showed that there is no tuple 𝑡 ∈ 𝑄1, such that 𝜋𝐵𝐶 (𝑡) = (∗, 𝑐2). Hence, we
have 𝑄1 ⊆ 𝑄2 and so 𝑄pyramid (𝐷) = 𝑄1 (𝐷) = 𝑅𝐷

4
Z 𝑅𝐷

5
Z 𝑅𝐷

6
.

Let 𝐻1 = 𝑅𝐷
4
⋉ 𝐹1 and 𝐻2 = 𝑅𝐷

5
⋉ 𝐹1 and 𝐻3 = 𝑅𝐷

6
⋉ 𝐹1, be the set of tuples in 𝑅𝐷

4
, 𝑅𝐷

5
and 𝑅𝐷

6
that

have a 𝐹 value in 𝐹1. By Lemma D.2, we know that for all tuples 𝑡 ∈ 𝐻3, 𝜋𝐶 (𝑡) = 𝑐1, and we have

|𝐻3 | = 𝐹1. Therefore, we have

|𝑅𝐷
4
| + |𝑅𝐷

5
| + |𝑅𝐷

6
| = (|𝐻1 | + |𝐸 |) + (|𝐻2 | + |𝑉 |) + (|𝐻3 | + 1) = |𝐻1 | + |𝐻2 | + |𝐹1 | + |𝐸 | + |𝑉 | + 1.

Moreover,

|𝐷 | = |𝑅𝐷
4
| + |𝑅𝐷

5
| + |𝑅𝐷

6
| + |𝑅𝐷

1
| + |𝑅𝐷

2
| + |𝑅𝐷

3
|

= (|𝐻1 | + |𝐻2 | + |𝐹1 | + |𝐸 | + |𝑉 | + 1) + (|𝐸 | (1 + |𝑉 |) + (2(1 + |𝑉 |) − 1) + 2|𝐸 |).
= |𝐻1 | + |𝐻2 | + |𝐹1 | +𝑤,

where𝑤 is a number that only depends on the structure of the graph 𝐺 .

It is easy to check that 𝐻1 Z 𝐻2 Z 𝐻3 = 𝑆 . Let 𝑄̂ = 𝜋𝐴𝐵 (𝑅4 (𝐴, 𝐹) Z 𝑅5 (𝐵, 𝐹)), and let

𝑆 = {𝑡 ∈ 𝑆 : 𝜋𝐶 (𝑡) = 𝑐1}. In Theorem 5.2, we showed that SSW(𝑄̂, 𝑆) is not poly-time solvable unless

P = NP. Now, we show that the database instance 𝐷̂ = 𝐻1 ∪ 𝐻2, is an optimal solution to SSW(𝑄̂, 𝑆),
and hence SSW(𝑄pyramid, 𝑆) is not poly-time solvable, since otherwise, we can go through 𝐷 and

find 𝐻1 and 𝐻2 in polynomial time and have an optimal solution 𝐷̂ for SSW(𝑄̂, 𝑆) in poly-time. First,

since 𝐻1 Z 𝐻2 Z 𝐻3 = 𝑆 , the instance 𝐷̂ is a witness for 𝑆 . In Lemma 5.3, we showed that in any

witness of 𝑆 , the size of the active domain of 𝐹 is at least |𝑉 |, thus we have |𝐹1 | ≥ |𝑉 |. Second, let
𝐷∗ be the optimal witness for 𝑆 . In Lemma 5.6, we showed that in polynomial time we can change

𝐷∗ such that it remains an optimal witness for 𝑆 and the size of the active domain of 𝐹 denoted

by 𝐹 is exactly |𝑉 |. Now, we show that |𝐷̂ | = |𝐷∗ |. Since 𝐷̂ is a witness for 𝑆 and 𝐷∗ is optimal we

have |𝐷∗ | ≤ |𝐷̂ | = |𝐻1 | + |𝐻2 |. Also, we have,
|𝐻1 | + |𝐻2 | + |𝐹1 | ≤ |𝑅𝐷∗

5
| + |𝑅𝐷∗

6
| + |𝐹 |

= |𝑅𝐷∗
5
| + |𝑅𝐷∗

6
| + |𝑉 |,

and since |𝐹1 | ≥ |𝑉 |, we have |𝑅𝐷∗
5
| + |𝑅𝐷∗

6
| ≥ |𝐻1 | + |𝐻2 | = |𝐷̂ |. Thus, we have |𝐷̂ | = |𝐷∗ | and hence

𝐷̂ , is an optimal witness for 𝑆 . This implies that the optimal solution 𝐷 for SSW(𝑄pyramid, 𝑆) can not

be obtained in polynomial time unless P = NP. □

Received December 2024; revised February 2025; accepted March 2025

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 ESW for SJFCQs
	4 SSW for Head-Dominated SJFCQs
	5 SSW for SJFCQs Without the Head-domination Property
	5.1 Path Queries
	5.2 Augmented Path Queries
	5.3 Berge-acyclic SJFCQs
	5.4 Beyond Berge-acyclic SJFCQs

	6 Approximating SSW
	7 Conclusions and Future Work
	References
	A Missing Material for Section 1
	B Missing Material for Section 3
	C Missing Material for Section 4
	D Missing Material for Section 5

