
Perm: Efficient Provenance Support for
Relational Databases

DISSERTATION

FOR THE DEGREE OF A
DOCTOR OF INFORMATICS

AT THE FACULTY OF ECONOMICS
BUSINESS ADMINISTRATION AND

INFORMATION TECHNOLOGY
OF THE

UNIVERSITY OF ZURICH

by
BORIS GLAVIC

from
Germany

Accepted on the recommendation of
PROF. DR. MICHAEL BÖHLEN
PROF. DR. GUSTAVO ALONSO

2010

ii

The Faculty of Economics, Business Administration and Information Technology of the University of
Zurich herewith permits the publication of the aforementioned dissertation without expressing any opinion
on the views contained therein.

Zürich, April 14. 20101

The Vice Dean of the Academic Program in Informatics: Prof. Dr. Harald Gall

1Date of the graduation

Abstract

In many application areas like scientific computing, data-warehousing, and data integration detailed infor-
mation about the origin of data is required. This kind of information is often referred to as data provenance.
The provenance of a piece of data, a so-called data item, includes information about the source data from
which it is derived and the transformations that lead to its creation and current representation. In the context
of relational databases, provenance has been studied both from a theoretical and algorithmic perspective.
Yet, in spite of the advances made, there are very few practical systems available that support generat-
ing, querying and storing provenance information (We refer to such systems as provenance management
systems or PMS). These systems support only a subset of SQL, a severe limitation in practice since most
of the application domains that benefit from provenance information use complex queries. Such queries
typically involve nested sub-queries, aggregation and/or user defined functions. Without support for these
constructs, a provenance management system is of limited use. Furthermore, existing approaches use dif-
ferent data models to represent provenance and the data for which provenance is computed (normal data).
This has the intrinsic disadvantage that a new query language has to be developed for querying provenance
information. Naturally, such a query language is not as powerful and mature as, e.g., SQL.

In this thesis we present Perm, a novel relational provenance management system that addresses the
shortcoming of existing approaches discussed above. The underlying idea of Perm is to represent prove-
nance information as standard relations and to generate and query it using standard SQL queries; ”Use
SQL to compute and query the provenance of SQL queries”. Perm is implemented on top of PostgreSQL
extending its SQL dialect with provenance features that are implemented as query rewrites. This approach
enables the system to take full benefit from the advanced query optimizer of PostgreSQL and provide full
SQL query support for provenance information.

Several important steps were necessary to realize our vision of a ”purely relational” provenance man-
agement system that is capable of generating provenance information for complex SQL queries. We de-
veloped new notions of provenance that handle SQL constructs not covered by the standard definitions of
provenance. Based on these provenance definitions rewrite rules for relational algebra expressions are de-
fined for transforming an algebra expression q into an algebra expression that computes the provenance of
q (These rewrites rules are proven to produce correct and complete results). The implementation of Perm,
based on this solid theoretical foundation, applies a variety of novel optimization techniques that reduce
the cost of some intrinsically expensive provenance operations. By applying the Perm system to schema
mapping debugging - a prominent use case for provenance - and extensive performance measurements we
confirm the feasibility of our approach and the superiority of Perm over alternative approaches.

iii

iv

Zusammenfassung

Viele Anwendungsgebiete, wie zum Beispiel Wissenschaftliche Berechnungen, Data-Warehousing und
Datenintegration, benötigen detaillierte Informationen über die Herkunft von Daten. Solche Informationen
werden oft als Data Provenance bezeichnet. Die Herkunft eines so genannten Datenelements, beinhaltet
Informationen über die Eingabedaten von denen das Datenelement abgeleitet wurde und die Transforma-
tionen die zu seiner Entstehung und aktuellen Darstellung beigetragen haben. Provenance für relationale
Datenbanken ist sowohl theoretisch als auch in algorithmischer Hinsicht untersucht worden. Trotz der
Fortschritte auf diesem Gebiet, muss ein Mangel an praktisch einsetzbaren Systemen konstatiert wer-
den, die die Erzeugung und Speicherung von Provenance und Anfragen über solche Informationen un-
terstützen (Im Folgenden bezeichnen wir solche Systeme als Provenance Management Systeme oder kurz
PMS). Herkömmliche Systeme unterstützen nur Teilmengen der Sprachkonstrukte von SQL, was eine erhe-
bliche Einschränkung der Praxis-Tauglichkeit dieser Systeme darstellt, da die meisten Anwendungsgebiete,
die von Provenance Funktionalität profitieren, komplexe Anfragefunktionalität benötigen. Dazu gehören
zum Beispiel geschachtelte Unter-Anfragen, Aggregation und vom Benutzer definierte Funktionen. Ein
PMS, das diese Sprachkonstrukte nicht unterstützt, ist nur von sehr eingeschränktem Nutzen. Die meisten
Ansätze benutzen unterschiedliche Datenmodelle zur Repräsentation von Provenance Informationen und
der Daten für die Provenance berechnet wurde (normale Daten). Dies hat den unvermeidbaren Nachteil,
das eine neue Anfragesprache entwickelt werden muss, um Provenance Daten abfragen zu können. Es ist
nicht verwunderlich, das die Mächtigkeit und Reife solcher Sprachen nicht an die einer langzeitig entwick-
elten Anfragesprache wie SQL heranreicht.

In dieser Dissertation stellen wir das innovative PMS Perm vor, das die oben genannten Nachteile
von herkömmlichen Systemen behebt. Die dem Ansatz zugrundeliegende Idee ist es, Provenance Infor-
mationen als normale Relationen darzustellen, die mit Hilfe von Standard SQL Anfragen generiert und
angefragt werden; ”Benutze SQL um die Provenance von SQL Anfragen zu berechnen und anzufragen”.
Perm wurde basierend auf PostgreSQL umgesetzt und erweitert den SQL Dialekt dieses Systems mit neue
Sprachkonstrukten für die Berechnung von Provenance. Diese Sprachkonstrukte sind intern als Anfrage-
transformationen (query rewrites) realisiert. Dieser Ansatz ermöglicht es Perm von dem fortschrittlichen
Anfrageoptimierer von PostgreSQL zu profitieren und ermöglicht den Einsatz von SQL als Anfragesprache
für Provenance Informationen.

Die Umsetzung unserer Vision eines ”rein relationalen” PMS erfolgte in mehreren Schritten. Zunächst
war die Entwicklung von neuen Provenance Definitionen notwendig, um SQL Konstrukte zu unterstützen,
die von den Standard Provenance Definitionen nicht behandelt werden. Basierend auf diesen Definitio-
nen haben wir Anfragetransformationen entwickelt, die eine Anfrage q in eine Anfrage überführen, die
die Provenance von q berechnet. Diese Anfragetransformationen sind beweisbar korrekt und vollständig.
Die Implementierung von Perm baut auf diesem soliden theoretischen Hintergrund auf. In der Implemen-
tierung werden neuartige Optimierungstechniken eingesetzt, um die Effizienz der inhärent aufwändigen
Provenance Berechnung zu steigern. Der erfolgreiche Einsatz von Perm zur Fehlerdiagnose für Daten-
integration - einem weit verbreiteten Einsatzgebiet von Provenance - und umfangreichen Experimente zur
Analyse der Effizienz der Provenance Berechnung in Perm belegen die Vorteile unseres Systems gegenüber
alternativen Ansätzen.

v

vi

Acknowledgments

First I like to thank my advisors Gustavo Alonso, Michael Böhlen, and Klaus R. Dittrich for supporting
me in writing this thesis and conducting the research reported in this thesis. First and foremost, Gustavo,
thanks for spending so much time on discussions about my work, pushing me to fully implement my ideas,
being patient with my slow process of writing, and opening up opportunities to work with interesting peo-
ple. Michael, thanks for being willing to step in as a adviser at such late stage of my dissertation and
spending the time and effort to get accomplished with my work.

I also would like to thank the guys at the University Zürich Database Technology Research Group and ETH
Systems Group for many helpful discussions and funny social activities like hiking, skiing, drinking, and
bowling to name just a few.

I thank my family and friends. Especially my parents for contributing to my existence.

Last but not least, I thank my co-authors: Gustavo Alonso, Klaus R. Dittrich, Renée Miller, Laura Haas,
Nesime Tatbul, Kyumars Sheykh Esmaili, Peter Fischer, Ira Assent, Ralph Krieger, and Thomas Seidl.

I would like to dedicate this thesis to Klaus who passed away in late 2007. Klaus advised me in the
preliminary research that led to the work reported in this thesis and is the person who got me interested in
provenance in the first place.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Perm Approach . 2

1.2.1 Contribution Semantics for Complex Queries . 2
1.2.2 Relational Representation of Provenance Information 3
1.2.3 Provenance Computation Through Query Rewrite 3
1.2.4 DBMS Integration . 3

1.3 Thesis Outline . 4

2 Related Work and Terminology 5
2.1 Terminology . 7

2.1.1 Data Provenance . 7
2.1.2 Transformation Provenance . 8
2.1.3 Provenance Computation . 9
2.1.4 Classification Scheme for Provenance Management Systems 9

2.2 An Overview of Provenance Research . 11
2.2.1 Provenance in Databases . 11
2.2.2 Non-Database Provenance Systems . 13

2.2.2.1 Distributed Systems and Grid-Computing 13
2.2.2.2 Workflow Management Systems . 13
2.2.2.3 Storage Schemes for Provenance . 14
2.2.2.4 GIS . 14
2.2.2.5 Provenance for Schema Mappings . 15
2.2.2.6 Other Approaches . 15

2.3 Comparison of Contribution Semantics . 17
2.3.1 Why-CS . 17
2.3.2 Where-CS . 18
2.3.3 Lineage-CS . 18
2.3.4 How-CS . 20

2.4 Comparison of Provenance Management Systems . 21
2.4.1 WHIPS . 21
2.4.2 Trio . 21
2.4.3 DBNotes . 22
2.4.4 Mondrian . 22
2.4.5 MMS . 22
2.4.6 BDBMS . 23
2.4.7 ORCHESTRA . 23
2.4.8 Forward Tracing Data Lineage . 24

2.5 Summary and Requirements for a relational PMS . 25

ix

x CONTENTS

3 Contribution Semantics 27
3.1 Perm Relational Algebra . 27
3.2 Influence Data Provenance Contribution Semantics . 32

3.2.1 Lineage Contribution Semantics . 32
3.2.1.1 Transitivity and Sets of Output Tuples 33
3.2.1.2 Bag Semantics . 33
3.2.1.3 Compositional Semantics of Lineage-CS 34

3.2.2 Perm Influence Contribution Semantics . 37
3.2.2.1 Transitivity . 39
3.2.2.2 Compositional Semantics . 40

3.2.3 PI-CS for Sublink Expressions . 42
3.2.3.1 Single Sublinks in Selection Conditions 43
3.2.3.2 Multiple Sublinks Expressions . 47
3.2.3.3 Sublink Expressions in Projections . 49
3.2.3.4 Correlated Sublinks . 51
3.2.3.5 Nested Sublinks . 52

3.2.4 Comparison of the Expressiveness of Lineage-CS and PI-CS 53
3.3 Extensions of PI-CS . 56

3.3.1 Copy Data Provenance Contribution Semantics 56
3.3.2 Transformation Provenance Contribution Semantics 61

3.4 Summary . 64

4 Provenance Computation through Algebraic Rewrite 65
4.1 Relational Representation of Data Provenance Information 66
4.2 Rewrite Rules for Perm-Influence Contribution Semantics 69

4.2.1 Unary Operators Rewrite Rules . 69
4.2.2 Join Operator Rewrite Rules . 71
4.2.3 Set Operations Rewrite Rules . 71
4.2.4 Example Query Rewrite . 71
4.2.5 Proof of Correctness and Completeness . 72

4.3 PI-CS Rewrite Rules for Queries with Sublinks . 81
4.3.1 Gen Rewrite Strategy . 81

4.3.1.1 Proof of Correctness and Completeness 83
4.3.2 Specialized Rewrite Strategies . 87

4.3.2.1 Left Strategy . 88
4.3.2.2 Move Strategy . 89
4.3.2.3 Unn Strategy . 90
4.3.2.4 Unn-Not Strategy . 92
4.3.2.5 JA Strategy . 94
4.3.2.6 Exists Strategy . 96

4.4 Rewrite Rules for Copy-Contribution-Semantics . 98
4.4.1 Rewrite Example . 102
4.4.2 Proof of Correctness and Completeness . 105
4.4.3 Rewrite Rules Simplifications . 107

4.4.3.1 Copy Expression with Fixed Results 108
4.4.3.2 Static Copy Map Simplification . 108
4.4.3.3 Omit Rewrite Simplification . 108
4.4.3.4 Combining Projections . 109

4.5 Relational Representation of Transformation Provenance Information 110
4.6 Rewrite Rules for Transformation Provenance . 112

4.6.1 Rewrite Rules Simplification . 115
4.7 Summary . 117

CONTENTS xi

5 Implementation 119
5.1 SQL Provenance Language Extensions . 120

5.1.1 Provenance Attribute Naming Scheme . 120
5.1.2 Provenance Computation . 121
5.1.3 Limited Provenance Scope . 121
5.1.4 Support for External Provenance . 122
5.1.5 Debugging and Convenience Language Constructs 122
5.1.6 Overview of the SQL-PLE language constructs 123

5.2 Rewrite Rules Translation . 124
5.2.1 A Canonical Translation between SQL and Relational Algebra 124

5.2.1.1 Translation from SQL to Algebra . 124
5.2.1.2 Translation from Algebra to SQL . 125

5.2.2 Query Block Types . 126
5.2.3 Rewrite of SPJ Query Blocks . 127

5.2.3.1 PI-CS Rewrites . 127
5.2.3.2 C-CS Rewrites . 128
5.2.3.3 Transformation Provenance Rewrites 128

5.2.4 Rewrite of ASPJ Query Blocks . 129
5.2.4.1 PI-CS Rewrites . 129
5.2.4.2 C-CS and Transformation Provenance Rewrites 130

5.2.5 Rewrite of SET Query Blocks . 130
5.2.5.1 PI-CS Rewrite . 131
5.2.5.2 C-CS and Transformation Provenance Rewrites 132

5.2.6 Rewrite of SPJ-sub Query Blocks . 133
5.2.6.1 Gen Strategy . 133
5.2.6.2 Specialized Strategies . 134

5.2.7 Rewrite of ASPJ-sub Query Blocks . 136
5.2.8 Rewrite of Query Blocks with a LIMIT, ORDER BY, or DISTINCT ON Clause . . 137

5.3 Architecture . 139
5.3.1 The Perm Approach . 140

5.4 Modification of PostgreSQL Data Structures and Modules 142
5.4.1 Postgres Query Tree Model . 142

5.4.1.1 Perm Extensions of PQTM . 142
5.4.2 Modifications of the Parser and Analyzer Modules 143
5.4.3 Extension of Standard SQL Commands . 143

5.5 The Perm Module . 145
5.5.1 PI-CS Rewrite Algorithm . 145

5.5.1.1 SPJ-sub Rewrite Procedure . 150
5.5.1.2 NONDET Rewrite Algorithm . 151

5.5.2 Example . 152
5.5.3 Extension of the Rewrite Algorithm for C-CS . 154
5.5.4 Transformation Provenance Rewrite Algorithm 155

5.5.4.1 Result Representation . 155
5.5.4.2 Rewrite Algorithm . 157

5.5.5 Extended Selection Push-down . 158
5.5.6 Complete Query Processing Example . 160

5.6 The Perm Browser . 162
5.7 Summary . 164

xii CONTENTS

6 Experimental Evaluation 165
6.1 Experimental Setup . 166

6.1.1 Hardware Configuration . 166
6.1.2 Test Database and Query Generation . 166

6.1.2.1 TPC-H Benchmark . 166
6.1.2.2 Additional Queries for the TPC-H Schema 167
6.1.2.3 Synthetic Data-sets . 167

6.2 Overhead for Normal Operations . 168
6.3 Cost of Provenance Computation . 169

6.3.1 TPC-H Queries . 169
6.3.1.1 Analysis of the Correlation between Normal and Provenance Run-times 171

6.3.2 Analysis of Query Block Types . 173
6.3.2.1 SPJ Query Blocks . 173
6.3.2.2 ASPJ Query Blocks . 173
6.3.2.3 SET Query Blocks . 173

6.3.3 Comparison with Trio . 173
6.4 Evaluation of the Heuristic Rewrite Strategy Selection 176
6.5 Discussion . 178

7 Using Perm to Debug and Understand Schema Mappings 179
7.1 Motivation . 180

7.1.1 Background and Notations . 180
7.1.2 Running Example . 182
7.1.3 Types of Errors . 183

7.1.3.1 Mapping Errors . 183
7.1.3.2 Transformation Errors . 184
7.1.3.3 Other Errors . 184

7.1.4 Tracing Mapping Errors . 184
7.1.4.1 Data Provenance . 184
7.1.4.2 Transformation Provenance . 185
7.1.4.3 Mapping Provenance . 185
7.1.4.4 Meta-Querying . 185
7.1.4.5 Discussion . 185

7.2 TRAMP: Schema Debugging Extensions For Perm . 187
7.2.1 Mapping Provenance Definition . 187
7.2.2 Implementation of TRAMP . 188

7.2.2.1 Relational Representation of Mapping Scenario Data 189
7.2.2.2 Mapping Provenance . 189
7.2.2.3 Meta-Querying . 191
7.2.2.4 Overview of the SQL-PLE Extensions 192

7.3 Evaluation . 194
7.4 Discussion . 196

7.4.1 Comparison with Schema Mapping Debugging Systems 196
7.4.2 Summary . 197

8 Conclusions and Outlook 199
8.1 Thesis Summary . 199
8.2 Future Work . 199

8.2.1 Provenance Aware Physical Operators . 200
8.2.2 Data Models and Transformation Types . 200
8.2.3 Index Structures and Compressed Representations 200

CONTENTS xiii

A SQL-PLE Grammar 201
A.1 SELECT . 202
A.2 EXPLAIN . 204

Bibliography 205

Curriculum Vitae Boris Glavic 219

xiv CONTENTS

List of Figures

2.1 Abstract View of Data Manipulations . 7
2.2 Data Provenance Contribution Semantics Categories . 8
2.3 Why-CS . 17
2.4 Where-CS . 18
2.6 Lineage-CS . 18
2.5 Contribution Semantics Examples . 19
2.7 How-CS . 20

3.1 Perm Relational Algebra . 29
3.2 Notational Conventions for the Relational Model and Perm Algebra 30
3.3 Example Algebra Expressions and Evaluations . 31
3.4 Compositional Semantics for Lineage-CS . 34
3.5 Provenance According to Lineage-CS, WL-CS, and PI-CS 36
3.6 Compositional Semantics for PI-CS for Single Operators 40
3.7 Compositional Semantics for Single Sublink Expressions in Selections 44
3.8 Examples for the Provenance of Single Uncorrelated Sublink Expressions 45
3.9 Ambiguity of Lineage-CS and PI-CS for Multiple Sublinks 47
3.10 Example for Sublinks in Projection . 50
3.11 Example Provenance Derivation for an Algebra Expression using Nested and Correlated

Sublink Expressions . 53
3.12 C-CS types . 56
3.13 C-CS Examples . 57
3.14 Subset Relationships between Contribution Semantics Types 58
3.15 Direct C-CS Copy-Map Definition . 59
3.16 Transitive C-CS Copy-Map Definition . 60
3.17 Transformation Provenance Example . 62
3.18 Overview of Contribution Semantics Refinement . 64

4.1 Running Example . 66
4.2 Example Provenance Representation . 67
4.3 PI-CS Algebraic Rewrite Rules for Queries without Sublinks 70
4.4 Example Application of the Provenance Rewrite Meta-Operator 72
4.5 Gen Strategy Rewrite Rules . 82
4.6 Example Application of the Gen Strategy . 83
4.7 Left Strategy Rewrite Rules and Preconditions . 88
4.8 Move Strategy Rewrite Rules and Preconditions . 89
4.9 Unn Strategy Rewrite Rules and Preconditions . 90
4.10 Unn-Not Strategy Rewrite Rules and Preconditions . 92
4.11 JA Strategy Rewrite Rules and Preconditions . 94
4.12 Exists Strategy Rewrite Rules and Preconditions . 96
4.13 C-CS Copy Expressions Definition . 99
4.14 C-CS Algebraic Rewrite Rules . 101

xv

xvi LIST OF FIGURES

4.15 C-CS Rewrite Example . 103
4.16 C-CS Rewrite Example Query qb . 104
4.17 Transformation Provenance Representation Example . 110
4.18 Transformation Provenance Rewrite Rules . 112
4.19 Transformation Provenance Rewrite Example . 113

5.1 Provenance Attribute Naming Example . 120
5.2 SQL-PLE language constructs . 122
5.3 Translation of Algebraic Rewrites into SQL Rewrites . 124
5.4 Approaches for Implementing SQL-PLE . 139
5.5 Perm Architecture . 141
5.6 Example PQTM Representation of a Query . 142
5.7 traverseQueryTree Procedure . 145
5.8 PI-CS Rewrite Algorithm . 146
5.9 SPJ Block Rewrite Procedure . 147
5.10 ASPJ Block Rewrite Procedure . 147
5.11 SET Block Rewrite Procedure . 148
5.12 Single Set Operation Rewrite Procedure . 149
5.13 Rewrite Procedure for Set Operations Containing only Union 149
5.14 Rewrite Procedure for Set Operations Containing only Intersection 150
5.15 SPJ-sub Block Rewrite Procedure . 151
5.16 Example Application of the PI-CS Rewrite Algorithm . 153
5.17 CM Expression Generation Procedure . 154
5.18 CDC-CS Rewrite Algorithm . 155
5.19 Example Transformation Provenance Representations . 156
5.20 Transformation Rewrite Algorithm . 157
5.21 Transformation Provenance Computation Example . 158
5.22 Example Processing of a SQL-PLE Query by Perm . 161
5.23 Perm Browser User Interface . 163

6.1 Hardware Configurations . 166
6.2 Overhead of Perm for Normal Queries of the TPC-H Benchmark 168
6.3 TPC-H Comparison of Run-times . 170
6.4 TPC-H Average Total and Per-Tuple Execution Times for queries 1, 2, 21, and 22 171
6.5 Scatter Plots for Queries 6 and 14 . 172
6.6 SET Query Blocks: Execution Time Comparison . 174
6.7 Execution Time Comparison with Trio . 175
6.8 Comparison of the Run-times for Different Rewrite Strategies 177

7.1 Example Schemas and Mappings . 182
7.2 Incorrect Mappings For the Example . 183
7.3 Mapping Provenance Example . 187
7.4 Example Use of ANNOT . 189
7.5 XML Representation Examples . 190
7.6 Example of the Computation of Mapping Provenance . 191
7.7 Meta-Querying Example . 192
7.8 New SQL-PLE Language Constructs . 193
7.9 Implementing Transformations . 194

List of Theorems

3.1 Theorem (Equivalence of Declarative and Compositional Semantics of Lineage-CS) 35

3.2 Theorem (Equivalence of Compositional and Declarative Semantics of PI-CS) 40

3.3 Theorem (Compositional Semantics of Single Uncorrelated Sublinks in Selections) 46

3.4 Theorem (Compositional Semantics according to Definition 3.11) 49

3.5 Theorem (Compositional Semantics of Uncorrelated Sublinks in Projection) 50

3.6 Theorem (Non Equivalence of PI-CS and Lineage-CS) 53

3.7 Theorem (Equivalence of the Reduced Representation of Lineage-CS and PI-CS) 54

3.8 Theorem (Subset Relationships of CS types) . 59

4.1 Theorem (Correctness and Completeness of the PI-CS Rewrite Rules) 73

4.2 Theorem (Correctness and Completeness of the Gen Strategy) 83

4.3 Theorem (Correctness and Completeness of the Left Strategy) 88

4.4 Theorem (Correctness and Completeness of the Move Strategy) 89

4.5 Theorem (Correctness and Completeness of the Unn Strategy) 91

4.6 Theorem (Correctness and Completeness of the Unn-Not Strategy) 93

4.7 Theorem (Correctness and Completeness of the JA Strategy) 95

4.8 Theorem (Correctness and Completeness of the Count Strategy) 96

4.9 Theorem (Correctness and Completeness of the C-CS Meta-Operators) 105

4.10 Theorem (Correctness and Completeness of the Transformation Provenance Rewrite Rules) 113

xvii

xviii LIST OF THEOREMS

List of Definitions

3.1 Definition (Lineage-CS) . 32

3.2 Definition (List Subsumption) . 32

3.3 Definition (Witness List) . 37

3.4 Definition (Operator Evaluation over Witness Lists) . 37

3.5 Definition (Witness-List-CS (WL-CS)) . 38

3.6 Definition (Witness List Subsumption) . 38

3.7 Definition (Perm-Influence-CS (PI-CS)) . 38

3.8 Definition (PI-CS for Algebra Expressions) . 39

3.9 Definition (Sublink Influence Roles) . 43

3.10 Definition (Modified PI-CS) . 45

3.11 Definition (Sublink-Safe PI-CS) . 48

3.12 Definition (Correlation-Safe PI-CS) . 52

3.13 Definition (Copy-CS Types) . 58

3.14 Definition (Algebra Tree) . 61

3.15 Definition (Annotated Algebra Tree) . 61

3.16 Definition (Transformation Provenance Contribution Semantics) 62

4.1 Definition (Relational PI-CS Data Provenance Representation) 67

4.2 Definition (Provenance Rewrite Meta-Operator) . 69

4.3 Definition (Relational Representation of C-CS Provenance) 98

4.4 Definition (C-CS Provenance Rewrite Meta-Operators) 100

4.5 Definition (Static Copy Map) . 108

4.6 Definition (Relational Transformation Provenance Representation) 111

4.7 Definition (Transformation Provenance Rewrite Meta-Operator) 112

xix

xx LIST OF DEFINITIONS

7.1 Definition (Mapping Scenario) . 182

7.2 Definition (Mapping Provenance) . 188

Chapter 1

Introduction

In many application domains like scientific computing, data-warehousing, data integration, curated data-
bases, grid-computing, and workflow management detailed information about the origin of data is required.
A large portion of data generated and stored by these application domains is not entered manually by a
user, but is derived from existing data using complex transformations. Understanding the semantics of
such data and estimating its quality is not possible without having extensive knowledge about the data’s
origin and the transformations that were used to create it. This kind of information is often referred to
as data provenance or data lineage. Data provenance is information that describes how a given piece of
data, called data item, was produced. The provenance includes source and intermediate data as well as the
transformations involved in producing the concrete data item. In the context of a relational databases, the
source and intermediate data items are relations, tuples and attribute values. The transformations are SQL
queries and/or functions on the relational data items. For the aforementioned application domains and, in
general, for every application domain where data is heavily transformed, data provenance is of essential
importance. Provenance information can be used to estimate the quality of data and its trustworthiness, to
gain additional insights about it or to trace errors in transformed data back to its origins.

This thesis presents a novel provenance management system called Perm (Provenance Extension of
the Relational Model) and its formal foundations. Perm is capable of computing, storing and querying
provenance for relational databases. The system is implemented on top of PostgreSQL extending its SQL
dialect with provenance features that are implemented as query rewrites.

1.1 Motivation
Efficiently generating, querying and storing relational provenance information is important in a broad range
of application domains and has been studied in a variety of contexts. Most of the approaches for provenance
define it as information that answers the following question: Given a query q and a tuple t from the result
of q, which are the tuples from the relations accessed by q that caused t to appear in the result of q.
Thus, provenance describes a relationship between the input and output data of a query q (or other type of
transformation in the general case) 1. Currently, a user who wants to retrieve provenance information has
to create it manually, which is a labour-intensive and error-prone approach. Several research prototypes
have been developed that support a user in this process by generating provenance automatically for SQL
queries. These systems support only a subset of SQL, a severe limitation in practice since most of the
application domains that benefit from provenance information use complex queries. Such queries typically
involve nested sub-queries, aggregation and/or user defined functions. Without support for these constructs,
a provenance management system is of limited use.

In general, the provenance of a given tuple t includes all the source tuples used as input for the query
that created t. However, to consider the complete input of a query as the provenance of its output is often
misleading and contra-intuitive. As a general rule, a certain part of the input influences only part of the
output. Given that provenance information tends to be quite large, it is important to narrow down exactly

1Some approaches define provenance in a different way. This is discussed in chapter 2.

1

2 CHAPTER 1. INTRODUCTION

which input data contributes to which output data. Different interpretations of what contributes actually
means have been presented. We refer to a notion that defines which subset of the input of a transformation
belongs to the provenance of a given part of the output as contribution semantics. For instance, widely
adopted contribution semantics are Why-provenance [BKT01], Where-provenance [BKT01] and Lineage
[CWW00]. These contribution semantics are only applicable for small subsets of SQL or are not applicable
at all for SQL, because they cannot handle features like bag semantics.

Mere storage and generation of provenance information is not very useful, if no query facilities for
provenance are provided. Existing approaches capture provenance information by extending the underlying
data model. This has the intrinsic disadvantage that the provenance must be stored and accessed using
a different data model than the actual data. In consequence, provenance query support is very limited,
because a new query language for provenance has to be developed and implemented. Even more important,
it is not possible to use provenance and normal data in the same query to, e.g., explore their relationship to
each other.

1.2 The Perm Approach

In the motivation we have outlined the shortcomings of existing provenance management systems. Our
approach to overcome this shortcomings presented in this thesis can be summarized in one sentence as
”Use SQL to compute and query the provenance of SQL queries”. What do we mean by that? We envision
a system that represents the results of a query alongside with its provenance in a single relation using a
representation of this information that is directly interpretable by the user. Even more, provenance should
not only be represented relationally, also the generation of this kind of information should be implemented
as SQL queries. These goals were not chosen randomly, but are based on an analysis of the causes for
the shortcomings of existing systems. As mentioned before these systems tend to use a different data
model for provenance and normal information (The data stored in the database or generated by queries).
This has the intrinsic disadvantage that it is not possible to query provenance and normal data using the
same query language. Thus, the association between information and its provenance cannot be explored
declaratively. Furthermore, a new query language has to be developed for provenance which naturally
is not as sophisticated as a language like SQL that has been in use for several decades and constantly
evolved over time. These problems can be avoided by representing provenance and normal data in the
same data model and explicitly modeling the associations between normal and provenance data. The
motivation for our goal to compute provenance as SQL queries is based on a similar argument. Using the
same computational method for querying data and computing provenance allows for a tighter integration
of provenance functionality into SQL. For instance, this allows to express a query over the result of a
provenance computation as a single SQL statement by using the provenance computation as a sub-query.

To realize our vision of a ”purely relational” provenance management system with Perm several obsta-
cles had to be overcome.

1.2.1 Contribution Semantics for Complex Queries

The quality of provenance information generated by a provenance management system directly depends
on the contribution semantics that is used to derive provenance information. As mentioned before, a con-
tribution semantics defines which tuples from a query’s input belong to the provenance of an output tuple
of the query. Cui el al. presented an intuitive contribution semantics for relational algebra expressions in
[CWW00] (often called Lineage). Unlike other contribution semantics, Lineage is also defined for set op-
erations and aggregation and, therefore, is a good candidate to become the contribution semantics of Perm.
However, Lineage does not extend well to negation and nested sub-queries. Furthermore, the representation
of provenance information applied by this contribution semantics is not suited for our approach. Therefore,
we developed Perm-Influence contributions semantics (PI-CS), a new type of contribution semantics based
on Lineage, that uses a different representation of provenance and solves the problems of Lineage con-
cerning negation and nested sub-queries. Based on PI-CS we present the novel notion of transformation
provenance that models which parts of a query contributed to a result tuple.

1.2. THE PERM APPROACH 3

1.2.2 Relational Representation of Provenance Information
In Perm, if the provenance of a query q is requested by a user, a single relation is returned that contains
both the original query results of q and its provenance. Such a relation is constructed by taking the original
result tuples and extending them with contributing tuples from the base relations accessed by the query.
Thus, a single tuple in this representation associates an original result tuple of the query with tuples in its
provenance. This approach enables functionality that is not found in other systems. For instance, the single
relation approach for results and provenance allows users to query provenance information using SQL to
drill down and identify concrete dependencies, something not supported by most systems.

1.2.3 Provenance Computation Through Query Rewrite
In Perm, the provenance of a relational algebra expressions q according to PI-CS is computed by using al-
gebraic rewrite rules to transform q into an algebra expression q+ that propagates the provenance alongside
with the original query results. The result of q+ is the relational representation of provenance discussed
above. Note that q+ is expressed in the same algebra as q. Besides the ”Use SQL to compute and query
provenance of SQL queries” advantage, representing provenance as algebraic rewrite rules has the addi-
tional advantage that it is possible to formally prove the correctness and completeness of the provenance
computation. I. e., the rewrite rules are guaranteed to generated provenance according to our contribution
semantics definition.

1.2.4 DBMS Integration
Perm has been fully implemented as an extension of PostgreSQL. The SQL dialect of PostgreSQL is en-
riched with new language constructs for triggering and controlling provenance computations. We refer to
the resulting language as SQL-PLE (Provenance Language Extension). To be able to apply the algebraic
rewrites to SQL queries the rewrite rules have been translated into SQL. The provenance rewrites are ap-
plied to the internal query tree representation of PostgreSQL generated by the Parser of this system. A
rewritten query, being represented in the same query tree representation, is executed by the unmodified
execution engine of the underlying database system. Hence, Perm benefits from the advanced query opti-
mization techniques applied by PostgreSQL. Furthermore, this approach enables a user to store provenance
information in a relation or view and use it as a sub-query.

Perm is the first PMS capable of computing the provenance of the (almost) complete set of SQL query
constructs. For instance, Perm can be used to compute the provenance of all queries from the TPC-H
decision support benchmark. Additional features found in Perm include the ability to perform partial
provenance computation (e.g., to know the contributing tuples from a view rather than from base relations,
a feature also found in Trio [Wid05] and [CW00a]) and support for provenance generated manually by the
user or by another provenance management system (external provenance).

Of particular interest is the fact that Perm supports all these features rather than only a subset of them
like existing systems. We integrated a variety of novel optimization techniques that reduce the cost of some
intrinsically expensive provenance operations into the system.

In summary, the major contributions of this thesis are:

• We present PI-CS, a new type of contribution semantics with a relational representation of prove-
nance information that extends traditional contribution semantics with support for complex SQL
constructs like nested sub-queries. Based on this contribution semantics we present the novel notion
of transformation provenance.

• We demonstrate how provenance can be computed according to this contribution semantics using
algebraic rewrites and prove the completeness and correctness of these rules.

• We present the implementation of the Perm system that integrates the algebraic rewrites into Post-
greSQL and provides full SQL support for querying provenance.

Some of the material presented in this dissertation has been published previously. A survey on data
provenance was presented in [GD07]. The underlying idea of the Perm approach and algebraic rewrite

4 CHAPTER 1. INTRODUCTION

rules have been published in [GA09a]. [GA09b] extended this work with extensions of the contribution
semantics and rewrite rules for nested sub-queries. A demonstration of the Perm system has been given at
the SIGMOD 2009 demonstration track [GA09c].

1.3 Thesis Outline
The outline of this thesis is as follows. In chapter 2 we give an overview and comparison of research ap-
proaches in the area of data provenance, introduce a consistent terminology for provenance concepts, and
formulate requirements for a fully fledged provenance management system. We present two comparisons
in this chapter. Firstly, contribution semantics definitions are compared according to their expressiveness.
Secondly, existing provenance management systems are compared regarding the functionality they provide.
The theoretical foundation of Perm is presented in chapters 3 and 4. Chapter 3 introduces the contribution
semantics applied by Perm. This contribution semantics translates the widely used Lineage contribution
semantics to a relational representation and solves the problems of this definition with nested sub-queries
and negation. The query rewrite rules that generate queries for computing provenance with respect to this
contribution semantics are presented in chapter 4. In addition we prove the completeness and correctness
of the rewrite rules in this chapter. Having established the formal background of Perm, chapter 5 discusses
the implementation of the system. The performance of Perm is evaluated by extensive performance mea-
surements in chapter 6. Chapter 7 analyzes the practical impact of the system by means of applying it to
schema mapping debugging, a standard use case for provenance. We conclude and present avenues for
future work in chapter 8.

Chapter 2

Related Work and Terminology

In this section we review related work in the area of data provenance, discuss contribution semantics for
provenance in database systems, and analyze and compare the functionality provided by current provenance
management systems (PMS). We introduce our terminology for provenance concepts. This terminology
differs from terminology presented in the literature if we deem that there is confusion about the name of
a concept or the common terminology is not precise enough. Data provenance, also called lineage or
pedigree, is information about the origin and creation process of data. Provenance information is used to
understand the semantics of processed data, tracing errors from the result of a transformation back to its
input data, and estimating the quality of derived data.

Data provenance is of essential importance in many application domains, especially for application
domains where data is heavily transformed. While the focus of this work is not to discuss every possible
application domain in detail, we still provide a short overview of the most important ones. Scientists in the
fields of biology, chemistry and astronomy use so-called curated databases. Curated databases contain data
that is not the direct result of measurements from real world experiments, but has been manually modified,
annotated and transformed. Examples for curated databases are GenBank [BB88] and Swiss-Prot [BA97].
For a scientist using a curated database it is hard to estimate the quality of such heavily processed data.
Provenance information is needed to understand from which source data a data item is derived and which
transformations were applied to the source data to produce the current version of the data item. The im-
portance of provenance for geographical information systems (GIS) has been recognized early on (e.g., see
[Lan89]). Several meta-data standards that include provenance have been developed in this field. Workflow
management systems and grid-computing are gaining interest from scientific communities, because they
enable scientists without computer science background to compose data processing workflows from trans-
formations developed for their field of research. Workflow systems provide support for data provenance
to allow for the re-execution of workflows, document the origin of data generated by a workflow, and pro-
vide debugging facilities for workflows. Data-warehouses integrate data from different sources and with
different data representations. Views are defined over the integrated data to simplify the retrieval of infor-
mation. Provenance is needed to trace errors in the result of a view result back to erroneous source data and
to understand errors in the process of cleaning and integrating data (Extract-Transform-Load or ETL). In
data integration and data exchange schema mappings, declarative descriptions of the relationships between
schemas, are used to transform data from one schema into another and to rewrite queries over one schema
into queries over another schema. The generation and execution of such mappings is a semi-automatic and
error-prone process. Providing provenance can ease the debugging of data integration processes and aid
a user in understanding complex schema mappings. Provenance can be used for different purposes in the
presented application domains:

• Error Tracing: Errors in the result data of a transformation are caused either by errors in the input
data and/or errors in the transformation. Provenance enables a user to trace errors in derived data
back to erroneous source data and in some cases to distinguish between errors caused by an incorrect
transformation and errors caused by faulty source data (if (s)he can determine if the source data is
correct).

5

6 CHAPTER 2. RELATED WORK AND TERMINOLOGY

• Quality Estimation: Estimating the quality of heavily transformed data is a non-trivial task. The
quality of data produced by a transformation depends on the quality of the input data and the prop-
erties of the applied transformation. Provenance information can ease the quality estimation, if the
quality of the input data is known to the user.

• Understanding Derived Data: Provenance can be used to gain a better understanding of the seman-
tics of data generated by multiple transformations steps. In complex settings the semantics of derived
data are often fuzzy and incomprehensible without examining the origin of the processed data and
transformations that were applied to derive it.

2.1. TERMINOLOGY 7

Figure 2.1: Abstract View of Data Manipulations

2.1 Terminology
In an abstract view arbitrary data manipulations can be modeled as a set of transformations that access
input data and produce output data. E.g., a transformation could be an SQL query, a program written in
C, or a workflow in a workflow management system. Typically, the inputs and outputs of a transformation
exhibit a certain structure. We use the term data item to refer to a structural unit of data. Data items
are often hierarchically structured in the sense that a more complex data item is composed of smaller,
less complex data items. We use the term granularity to specify a certain level in such hierarchies. For
example, in the relational data model a relation is a data item that contains several tuple-granularity data
items. Not only data, but also transformations can be hierarchically structured (e.g., a relational algebra
statement is composed by combining relational algebra operators). Therefore, the notion of granularity is
also applicable to transformation. Figure 2.1 presents an abstract example of these concepts. Data items
(dots) of various granularity are processed by a transformation (rectangles) that is composed of several
simpler transformation parts. As mentioned above, Data Provenance (or short) provenance is information
about the origins of a data item and the transformations that were used to derive it. Therefore, two types of
information are generally considered to form the provenance of a result data item d:

• Information about the data items from which d is derived.

• Information about the transformations that generated d.

In [Tan04] these types of provenance were called provenance of data and provenance of a data product.
We use the notions data provenance and transformation provenance.

2.1.1 Data Provenance
Data provenance is information about the input data items that were used to create (contributed to) an
output data item d. Data provenance approaches can be classified according to which input data items are
considered to belong to the provenance of d, which we refer to as contribution semantics (CS). Several
definitions of contribution semantics have been proposed in the literature. Here we present a higher level
classification of CS types and postpone the discussion of concrete definitions to section 2.3. We consider a
CS definition to belong to the class of input-CS (IN-CS) if it considers all input data items of a transforma-
tion to belong to the provenance of an output of this transformation. Instances of this class of CS are easy
to define and compute, because no knowledge about the inner workings of a transformation is required.
IN-CS is used by provenance-aware workflow systems and in grid-computing approaches where transfor-
mations are modeled as black boxes. For most use cases IN-CS does not provide enough detail to be useful
in practice, but for some application scenarios it is the only type of CS for which automatic provenance
computation can be provided. Under copy-CS (C-CS) a data item is considered to belong to the provenance
of an output data item, if it has been copied literally from the input to the output (we do not specify if com-
plete or just partial copying is required). Thus, the provenance of a data item d includes the data items that
contributed values to d. C-CS class contribution semantics are generally used with fine-granular data items
and allow to trace back the origin of values in the result of a transformation. This class of CS is not well
suited for transformations that generate output data items without copying input values (e.g., aggregation
of values). An extension to C-CS is influence-CS (I-CS). Contribution semantics belonging to this class
include all data items in the provenance of an output data item d, that had some influence on the creation
of d. For instance, data items that were used in a filter condition in the transformation that produced d. In

8 CHAPTER 2. RELATED WORK AND TERMINOLOGY

CS Category Abbreviation Description
Input-CS IN-CS The provenance of a data item d includes all input data items of the

transformation(s) that produced d.
Copy-CS C-CS The provenance of a data item d includes data items which have

been copied (partially or completely) to d.
Influence-CS I-CS The provenance of a data item d includes all data items that have

influenced the creation of d in some way.

Figure 2.2: Data Provenance Contribution Semantics Categories

contrast to IN-CS, both I-CS and C-CS require knowledge about the inner working of the transformation
for which provenance is computed. In spite of this disadvantage, these CS classes are in general preferred
to IN-CS, because they provide more precise information about the relation between the input and output
data items of a transformation. Figure 2.2 summarizes the CS classes discussed above.

Example 2.1. As an example for the contribution semantics classes consider a transformation expressed
as the following SQL query over the database presented below:

SELECT name FROM pe rs on p , c o u n t r y c
WHERE p . c o u n t r y I d = c . i d AND c . name = ’ Germany ’ ;

person
name countryId

Heinz Meier 1
Yu Chen 2

country
id name
1 Germany
2 Canada
3 China

Query Result
name

Heinz Meier

If we assume the granularity to be tuples, then an IN-CS type would include all tuples from relations
person and country into the provenance of the result tuple of the query presented above (the complete
input of the query). An I-CS type would include only the tuples (Heinz Meier, 1) and (1,Germany),
because only these tuples were used to produce the output tuple. A C-CS type would only include tuple
(Heinz Meier, 1), because the value Heinz Meier in the result tuple was copied from this input tuple.
None of the values from tuple (1,Germany) are copied to the result. Therefore, this tuple is not included
in the provenance according to a C-CS type.

2.1.2 Transformation Provenance
In contrast to data provenance, transformation provenance is information about the transformations that
generated a result data item d. For instance, the execution time of the transformation, run-time parameters,
or the parts of the transformation that were active during the execution for hierarchically structured trans-
formations. As mentioned above, the concept of granularity is applicable for transformation provenance
too. For instance, the provenance of a workflow result could be modeled as properties of the workflow as a
whole or as properties of each individual task of the workflow. Also the concept of contribution semantics
translates to transformation provenance. E.g., all parts of a transformation that were executed could be
considered to belong to the provenance, or just the parts that generated a non empty result. Most of the
approaches that use transformation provenance are from the area of workflow systems and grid-computing.

Example 2.2. Consider the following query over the database from the last example:

SELECT i d FROM c o u n t r y WHERE name = ’ Germany ’
UNION
SELECT i d FROM c o u n t r y WHERE name = ’ France ’ ;

We assume transformation provenance is defined as the parts of the transformation that produces
result data. For the example query only SELECT id FROM country WHERE name = ’Germany’ belongs to
the provenance, because the other input of the set union does not produce any results.

2.1. TERMINOLOGY 9

2.1.3 Provenance Computation
Provenance management systems should not rely on a user to manually provide provenance information,
but they should be able to record or compute fine-grained provenance automatically. Surprisingly, quite
a few approaches in provenance research have ignored this fundamental requirement. Provenance can be
either recorded eagerly during the execution of a transformation (eager computation) or computed on-
demand at the time it is requested by a user (lazy computation). Eager computation has access to all
run-time properties of a transformation, and, thus, has the advantage that it can be applied to a wider range
of transformation types. Computing provenance eagerly generates run-time overhead for the transforma-
tion and requires additional storage space to store the produced provenance information. In contrast, lazy
computation mostly does not result in additional storage space and run-time overhead, but is not applica-
ble for all types of transformations and can slow down provenance retrieval. In many settings lazy and
eager aspects can be combined to benefit from the advantages of both methods, by computing provenance
on-demand by re-executing the transformation and recording provenance like in the eager approach. This
combination of eager and lazy computation is not applicable without storing additional information about
a transformation. For example, access to the input data of the transformation is needed. If a transformation
is non-deterministic, in the sense that it may produce different results for two executions over the same
input data, this approach is not applicable1.

Independent of the choice of eager or lazy computation there are two possible ways to generate prove-
nance information. In the propagation approach information about source data items is propagated to the
result of a transformation. Each data item in the result of a transformation will carry information about
the source data items it is derived from (assuming that the propagation scheme reflects the semantics of
the transformation). This is mostly achieved by instrumenting the original transformation to propagate
provenance information. Most propagation approaches use eager computation. The inverse approach uses
information about the structure of the transformation to compute an inverse of the transformation. For
most practical applications the applied transformation functions have no inverse in the strict mathematical
sense. Thus, additional information like, for example, the inputs of the transformation, is needed to be able
to compute the inverse. Alternatively, provenance can be approximated by computing a pseudo inverse.
For many interesting types of transformations the inverse approach cannot be applied because run-time
information is needed to understand which output data item is derived from which input data item. Most
inverse approaches use lazy computation. In Perm, we apply an lazy propagation approach, to avoid the
cost of computing provenance if it is not needed.

2.1.4 Classification Scheme for Provenance Management Systems
To be able to discuss the differences and commonalities of provenance management systems, we present
a classification scheme for comparing the critical properties of such systems and notations of provenance.
Seven aspects of provenance that determine the functionality of a PMS are presented below:

• Type of Provenance: Does the PMS support data provenance, transformation provenance, or both
provenance types?

• Data and Transformation Model: Which kinds of data items and transformation is the provenance
definition applicable to?

• Contribution Semantics: Which type of contribution semantics is used?

• Granularity: Which granularity is supported by the provenance definition?

• Representation: How is provenance information represented?

• Computation: Does the system support automatic generation of provenance information and if so,
how is provenance computed?

1In praxis many non-deterministic transformations can be transformed into deterministic ones by recording extra information. For
instance, if a transformation is non-deterministic because it accesses the current system time, recording the value of this parameter at
the time of the execution removes this source of non-determinism.

10 CHAPTER 2. RELATED WORK AND TERMINOLOGY

• Querying: Which types of queries over provenance information are supported? Is it possible to
query both the data and the provenance using the same query language?

Answers to the questions stated above determine to a great extend the usefulness of a provenance
management system. For example, a PMS is not very useful, if it does not support automatic generation of
provenance and querying of this kind of information. In addition, these aspects enable an objective compar-
ison of provenance management systems. Therefore, we use this classification scheme in the comparison
of relational provenance management system presented in section 2.4.

2.2. AN OVERVIEW OF PROVENANCE RESEARCH 11

2.2 An Overview of Provenance Research

In this section we provide an overview of research on data provenance. Several surveys on data provenance
have been published in the last few years ([CCT09, FKSS08, GD07, IW09, SPG05a, SPG05b, Tan04,
Tan07, DCBE+07]). A theoretical treatment on the relationships between different CS types is given by
Cheney et al. [CCT09]. The surveys presented in [DCBE+07] and [FKSS08] both review provenance
approaches from the workflow and grid-computing communities. Simmhan et al. [SPG05a, SPG05b]
present a taxonomy of systems with provenance support. Glavic et al. [GD07] introduces a classification
scheme of the functionality provided by PMS and analyzes several systems according to this scheme. Tan
et al. [Tan07, Tan04] identify open problems in the area of provenance in databases.

2.2.1 Provenance in Databases

The topic of provenance for relational databases was first discussed in the context of visualization [WS97].
Transformations are represented as functions from one attribute domain to another. Provenance is traced
by using inversions of these functions. Another approach for provenance management in a visualization
environment is presented in [Gro04]. Groth et al. record user actions in an interactive visualization envi-
ronment and present the whole user interaction as a DAG (directed acyclic graph). The user can navigate
in this graph and jump back to previous states of the system.

Buneman et al. [BCCV06, BCC06] represent data from various data sources in a tree data model. In
this framework, updates, insertions, and deletes are copy, paste, and insertion operations on these trees.
The authors present a query language for this data model and define a CS type for copy, paste and insert
operations. This data model was also applied for archiving [BKTT04]. This use case requires unique keys
for every data object. These keys can be used to identify different versions of a data item in different
versions of a database (or data repository).

Several systems integrate support for annotations into a relational database system. If a system provides
support for propagating annotations during query execution, this can be used to compute provenance. For
instance, the source data items may be annotated with unique identifiers. Hence, the annotations of a
query result data item d represent the association between d and the source data items in its provenance.
In DBNotes [BCTV04] each attribute value in a database can be annotated with a set of text annotations.
The Mondrian [GKM05] system provides support for annotations that span multiple attributes of a tuple.
BDBMS [EAE+09, EOA+08, EOA07] allows for annotations over rectangular regions spanning multiple
attributes and tuples (assuming a fixed order on the tuples in the relation). MMS [SV07a, SV07b, SV07c]
is an annotation system that models the associations between data and its annotations as queries. The result
of such a query identifies the data items that carry a specific annotation. Annotation systems vary widely
in their support for querying and propagating annotations, which determines if they are well-suited for
managing provenance. We discuss these systems in detail in section 2.4.

Cui et al. present a system that lazily computes tuple granularity provenance of SQL queries using a
type of I-CS [LZW+97, CW00c, CW00b, CWW00, CW00a, Cui02]. Provenance is generated on demand
by rewriting the original query into one or more reverse queries (inverse approach). Trio is a system that ex-
tends relational databases with support for provenance and uncertainty (called uncertainty-lineage-database
or short ULDB) [Wid05, ABS+06a, ABS+06b, BSHW06, SBHW06, AW07, MTdK+07, SUW07, WM07,
WSU07, DSANW08, DSTW08, Wid08, WTS08, AW09]. Newer versions of Trio represent provenance as
boolean formulas over base relation tuple identifiers. These formulas are used to compute the probability
of a query result tuple based on the probabilities of the base relation tuples in its provenance. Trio applies
a type of I-CS. Combining the ideas from DBNotes and WHIPS Zhang et al. [KP07, ZZZP07a] present a
database system that uses query rewrite to propagate tuple granularity provenance with a type of I-CS. The
original query result schema is extended with an additional attribute that stores provenance as a set of base
relation tuple identifiers. Vansummeren et al. [VC07] present an approach to compute the provenance of a
restricted set of SQL updates.

Provenance information has been used to translate deletions on a view into deletions on relations stored
in the database. Similar results on this topic have been established by Cui et al. [CW01b] and by Buneman
et al. [BKT02].

12 CHAPTER 2. RELATED WORK AND TERMINOLOGY

Early publications on data provenance (e.g., see [CWW00]) suggested that not only the provenance
of existing results, but also for non-existing results could be of interest. Recent approaches address this
problem. Why-not provenance [CJ09] helps a user in understanding why an input data item of a transfor-
mation did not contribute to the output of the transformation. In this work, this functionality was actually
described as why a certain tuple is not in the output, but the system is only able to answer this kind of
question if the query does not change attribute values. For a user provided pattern over the input data the
Why-not provenance contains all parts of the transformation (called picky) where i, one of the input tuples
that conform with the pattern, ”got lost”. ”Got lost” is defined on top of data provenance. If the input of an
operator in the transformation contains a tuple that is derived from i and the output does not contain such a
tuple, then this operator is picky. To compute Why-not provenance the data provenance of several parts of
the query have to be computed. Trio is used to generate the data provenance information.

Another approach that addresses the provenance of non-answers is [HCDN08]. In this approach poten-
tial modifications (inserts and updates) to a given database instance are studied that would result in a tuple
t appearing in the result of a query q. The treatment is limited to select-project-join queries (SPJ) queries
with conjunctive equality predicates. SQL is used to compute the potential modifications by rewriting the
original query. In the result of the rewritten query modifications are represented as strings of the form old
value→ new value. This representation is not well-suited for being queried, because the modifications are
encoded as strings. The approach presented in this work cannot automatically determine if the predicates
used in a query are unsatisfiable. Some kind of constraint solving would be required to solve this problem
(similar to the approach of reverse query processing presented in [Bin08]).

The Artemis system [HHT09] computes potential inserts to a given database instance that would cause
a set of tuples that match a set of user specified patterns E to occur in a list of views. The system effectively
computes the provenance of the tuple patterns in E. The provenance of these patterns is modeled as
so-called generic witnesses that contain labeled nulls. Based on this set of generic witnesses c-table 2

representations of the relations in the database are generated that represent the original database instance
and the witnesses computed from the user provided tuple patterns. The view definitions for the views
for which patterns were specified are executed over these c-tables using the query execution semantics
presented by Tomasz et al. [ILJ84] to generate the original views extended with tuples that match the
patterns and potential side-effects of the modifications. In the resulting views original tuples will carry
the condition true and pattern matches and side-effects are annotated with the conditions that have to be
fulfilled for them to appear in the view. In the current version Artemis supports USPJ views (union-select-
project-join). The system could be extended to support aggregation using the approach for aggregation
over conditional tables presented by Lechtenbörger et al. [LSV02], but will inherit the problems of this
approach (for example, large annotations on the result tuples of an aggregation).

Reverse Query Processing [Bin08, BKL06] bears some similarities with the provenance for non-answers
approaches. Given a query q and a desired result relation R for this query, reverse query processing gen-
erates a database instance D on which the result of executing q would be R. The difference between this
approach and the non-answers provenance approaches is that reverse query processing has a more complete
handling of conditional expressions and supports a broader range of algebra operators, but is not able to
modify an existing database instance to generate the desired query result.

Provenance and annotation management for relational databases has been studied in-depth from a
theoretical point of view. Several types of CS have been proposed: Why-provenance [BKT01], Where-
provenance [BKT01], and Lineage [CW00c]. CS are of considerable importance in provenance research,
because they define which parts of a transformation input belongs to the provenance. Therefore, we dis-
cuss them in detail in section 2.3. In [GKT07a], Green et al. present a provenance representation (How-
provenance) that annotates tuples with elements from a semi-ring. Containment of queries under annotation
propagation has been studied Green [Gre09] and Tan [Tan03]. Geerts et al. [GVdB07] studied the rela-
tional completeness of the color algebra, a relational algebra with support for annotation propagation and
querying. Several theoretical approaches define provenance as data-flow analysis ([CAA07, Che07]). Ch-
eney et al. [CAA08] introduce provenance traces that generalize several CS types for the nested relational
calculus (NRC) and present an operational semantics of NRC that in addition to the normal result builds
a trace of the computation. Traces capture both data and transformation provenance, but are extremely

2C-tables are relations where each tuple is annotated with a condition. See [ILJ84].

2.2. AN OVERVIEW OF PROVENANCE RESEARCH 13

verbose and, therefore, not applicable to real-world problems.

2.2.2 Non-Database Provenance Systems

2.2.2.1 Distributed Systems and Grid-Computing

Provenance plays an important role in GryPhyN [AZV+02, ZWF06, FVWZ02, ZWF+04, AF00, Fos03,
CFV+08], a research project developing techniques for processing and managing large distributed data
sets in data grids. A system called Chimera is introduced that manages the provenance of performed
computations. Chimera offers a Virtual Data Catalog to store provenance information. A user registers
transformations types, data objects and derivations (an execution of a transformation) in the Chimera Vir-
tual Data Catalog (VDC). The VDC is implemented as a relational database. VDL (Virtual Data Language)
provides query and data definition facilities for the Chimera system. While the first prototype is limited to
file system data objects and executable program transformations, the system is to be extended to support
relational or object-oriented databases and SQL-like transformations.

Groth et al. [CTX+05, GLM04a, GJM+06b, GMTM05, GJM+06a, GLM04b, MCG+05, GMM05,
KVVS+06, GGS+03, WMF+05a, SM03, GMF+05, TGM+06, MI06, KTL+03, MGM+08, MGBM07,
WMF+05b] have developed a protocol (PReP: P-assertion Recording Protocol) for recoding the prove-
nance of interactions between services in a service-oriented architecture (SOA). This protocol requires the
communicating services to send so called p-assertions, which are recorded by a provenance store web ser-
vice. P-assertions represent either inputs and outputs sent by the services using IN-CS or metadata provided
by the services about their internal state. Depending on the internal state data provided by the services it
could be possible to record fine-grained provenance with this approach. The p-assertions transmitted by
the services are stored by a provenance store service. To be able to correlate the multiple p-assertions sent
by the communicating services, an identifier is attached to each p-assertion. PReServ [GMTM05] is a web
service implementation of the PReP protocol. The provenance store service provided by this implemen-
tation uses a modular architecture. Thus, enabling multiple storage models for provenance data storage.
Provenance information can be queried through the query API included in PReServ.

ESSW [FB01, Bos02, Bos04], the Earth System Science Workbench, is a scientific computing environ-
ment with a central server that records metadata and provenance about computations executed by scientists
working at client workstations. The metadata collection is realized by client-side perl scripts that act as
wrappers for the transformations applied by the users and send the collected meta-data as XML documents
to the central server. At the server side these XML documents are stored in a relational database.

2.2.2.2 Workflow Management Systems

Several workflow management systems have been extended with provenance recoding functionality. The
Taverna workflow-management-system [ZGG+03b, ZGG+03a, MPL+06, SRG03, GGS+03, ZGSB04,
ZWG+04] was developed by the myGrid project. The goal of myGrid is to apply semantic web technolo-
gies to simplify data analysis for life science research. Taverna represents the provenance of workflows as
RDF data. In Karma [SPG08a, CPS+09, SPG08b] workflows are composed of services. The system pro-
vides an interface through which each service participating in a workflow can publish its provenance. Thus,
provenance generation is offloaded to the actors in the workflow. Karma collects the published provenance
information and stores it in a relational database. Pegasus [KDG+08] and Swift [ZHC+07, ZDF+05] are
workflow management systems based on the ideas developed in Chimera (see discussion above). REDUX
is an extension of the Windows Workflow Foundation that captures the provenance of workflow executions.
Provenance is stored in a relational database and queried using SQL. REDUX supports the generation of
executable workflow definitions from the result of a provenance query.

Kepler [ABJF06, BML+06, ABML09a, ABML09b, LPA+08, BML08, MBZL08, LAB+06] is a work-
flow management system that supports multiple execution paradigms and data models. A generic prove-
nance support was introduced that can handle provenance for different Directors implemented in the sys-
tem. With the COMAD (Collection-oriented modeling and design) paradigm [LAB+06] developed in Ke-
pler each actor in a workflow updates an XML data stream. Fine-grained provenance support and an XPath
based query language for COMAD were introduced by Anand et al. [ABML09a, ABML09b]. The major

14 CHAPTER 2. RELATED WORK AND TERMINOLOGY

advantage of this approach over other workflow based approaches is the support for recording fine-grained
data provenance.

VisTrails [HLB+08, SFC07, DCBE+07, SVK+08, SKS+07, EKA+08, CFS+06] is a workflow man-
agement and visualization system which is designed to support rapidly evolving workflows. The system
traces the history and provenance of a workflow definition and its executions while the definition is mod-
ified by a user. Provenance is stored either as XML or in a relational database. Independent of the data
model used for storage, provenance is queried using the vtPQL query language developed for VisTrails
that supports keyword-based and navigational search (e.g., like ”is a previous version of”) with selection
predicates.

2.2.2.3 Storage Schemes for Provenance

The size of provenance data can easily exceed the combined size of base data and result data. Several
approaches tried to address this problem by introducing compression techniques for provenance. Compres-
sion usually increases the cost of queries over the compressed provenance which lead to the development
of storage schemes that aim at reducing the cost of retrieval instead of minimizing the storage overhead of
provenance.

Chapman et al. [CJR08] present an compression algorithm for a tree model of data and its provenance.
Common subtrees are factored out, thus, stored only once, and references are used to refer to the single
instance of such subtrees. If data items inherit the provenance of the parent data items that include them,
then only the association between provenance and the parent data item is stored. The default behavior
in this case is to propagate provenance from a parent data item d to all children of d that do not have
provenance information attached themselves. Furthermore, if many data items have the same provenance
p, the association between data and provenance information can be described by predicates that evaluate to
true if applied to the data items which are associated to p.

Heinis et al. [HA08] developed a representation for the provenance of workflow executions presented
as graphs that increases the performance of provenance retrieval. This is achieved by a graph encoding that
enables the efficient retrieval of paths in this graph. The provenance of workflow executions is modeled
as a dependency graph that stores the tasks executed by the workflow and the data items used as inputs or
generated as output by these tasks. The authors argue that most systems store such graphs as parent-child
relationships which implies the use of recursive queries to retrieve the provenance of an output data item
because the paths between inputs and outputs of the complete workflow have to be reconstructed from the
parent-child relationship representation. This problem is addressed by using interval tree encoding [Tro05]
to represent provenance graphs. While compression and storage layouts for efficient retrieval are important
issues in data provenance research, it remains to be seen how the proposed schemes perform if included
into a fully-fledged PMS.

Anand et al. [ABML09a] present an compression scheme for provenance of workflow traces gener-
ated as XML by the Kepler workflow management system discussed above. XML traces are stored in a
relational database. Various compression strategies are discussed and their influence on query and update
performance is analyzed. For instance, common subsequences can be factored out similar to the approach
of Chapman et al. [CJR08]. Transitive provenance associations (e.g., A was created from B which in turn
was generated from C, thus C belongs to the provenance of A) can be either stored explicitly or generated
at query time.

2.2.2.4 GIS

In the GIS research area, the importance of provenance has been recognized early on. Most publications
from this area focused on the development of metadata standards (e.g., [HE97, HQGW93, Lan89, Lan93,
SCL01, SCN+93, SCL99]) which model provenance information. A well-designed metadata standard
could provide a basis for a provenance management system, but the proposed standards are limited to the
GIS-domain and cannot be easily generalized. More important the metadata defined by these standards is
meant to be provided by a user and may not be appropriate for automatic generation of provenance.

2.2. AN OVERVIEW OF PROVENANCE RESEARCH 15

2.2.2.5 Provenance for Schema Mappings

Schema mappings, logical specifications of the relationships between schemas, are used in data integration
and data exchange to rewrite queries over a global schema into queries over local schemas or to translate
data from a source to a target schema. Schema mappings typically do not map all elements of the source and
target schema. In data exchange executable transformations (implementing transformations) are generated
from schema mappings that generate an instance of a target schema from a source schema instance and
produce new values for target schema elements that are not specified by the mappings. Mapping data
from one schema to another is a complex semi-automatic process involving multiple correlated steps: Data
cleaning, identification of correspondences between source and target schema elements, generating schema
mappings, and generating implementing transformations from the mappings. Hence, debugging such a
process tends to be quite complex. Recent approaches to schema mapping debugging facilitate provenance
information to simplify the debugging process.

SPIDER [CT06] defines provenance as so-called routes computed for a subset of a target instance.
Each route is a possible way of producing the tuples of interest by sequentially applying schema mappings
to tuples (route-steps) in the source instance (and the tuples generated by previous mapping applications
in the route). A route combines data provenance with transformation provenance for mapping transfor-
mations. Because routes only consider the logical specification of a mapping, they have the advantage of
being independent of the concrete implementation of a mapping in the form of a transformation query or
program. On the other hand this independence can also be problematic if an error is caused by an incorrect
transformation. Furthermore, no query facilities for routes are provided, they can only be explored using
the visual interface of SPIDER.

ORCHESTRA [GKIT07] is a collaborative data sharing system (CDSS) that uses schema mappings to
exchange updates in a peer-to-peer network. How-provenance is used to describe the origin of mapped
updates. The mappings that were used to translate an update are represented as functions in the semi-ring
provenance model. We discuss this model in detail in section 2.3.

MXQL [VMM05] generates provenance information for data exchange settings. Provenance informa-
tion is generated during the execution of a transformation that implements a mapping by generating a target
instance from a source instance. The generated target instance is enriched with relations that store mapping
provenance information and provenance that relates source to target schema elements. MXQL provides full
query language support for provenance and mapping information (SQL).

2.2.2.6 Other Approaches

The Open Provenance model [MFM+07], a graph based representation of data and transformation prove-
nance, was proposed as an attempt to standardize the representation of provenance information. The goal
of this work is to provide a model of provenance that can be used to exchange information between PMS,
allow the representation of different types of provenance in one model, to describe a basic set of struc-
tural constraints that define sound provenance graphs, and introduce inference rules on these graphs (e.g.,
transitivity).

Marathe et al. [MS97, Mar01] study the provenance of the array-manipulation language (AML), an
algebra for querying multi-dimensional arrays. A user can select a part of the output (using an projection-
like operator of the algebra) of an AML expression for which (s)he would like to compute provenance.
Provenance computation is realized by rewriting the algebra expression to generate the provenance.

Seltzer et al. [BGH+06, LNH+05, SMRH+05] developed PASS (Provenance-Aware Storage System),
a prototype of a storage system that integrates provenance information. An extension of a Linux kernel
and file system is used to manage provenance data. The provenance of a file is stored in a new type of file
node. Unlike normal files, provenance information is never deleted and exists as long as the file system
itself. The Lineage Filesystem [SC05] is another approach that extends a file-system with provenance
functionality. The linux kernel is extended to log process and file-related system calls. These logs are
read by a daemon that periodically processes this log to generate provenance information and store this
information in a MySQL database.

ES3 (Earth System Science Server) [FMS08, FS08a, FS08b, FSP07] tracks the execution of processes
and their system calls, enhances this information with unique identifiers, and reconstructs provenance from

16 CHAPTER 2. RELATED WORK AND TERMINOLOGY

these traces that are stored as XML data. The traces are generated by a logger that can be extended with
plugins to allow for different methods of extracting the trace during program execution. Two plugins where
presented in [FMS08]. One that intercepts and logs system calls using the strace facilities of Unix operating
systems. The other one is a plugin for the IDL analysis environment [htt09b] that instruments IDL scripts
to realize the logging.

Following the vision of using program analysis methods to generate provenance outlined Cheney et
al. [Che00, Che07, CAA07], Valgrind [Net09] is used by [ZZZP07b, KP07] to generate provenance in-
formation for arbitrary executable programs. The executable of the program is instrumented to propagate
provenance information alongside with the original computation based on the data-dependencies of the
program. This is similar to the forward computation of a dynamic slice of a program (see e.g., [KR98]
and [KY94]). Control-dependencies are ignored by this approach because they can degrade the quality
of provenance information by inclusion of false positives in the provenance. It would be interesting to
see wether this approach can be extended to include relevant control-dependencies into the provenance
computation.

In many application domains, especially in distributed systems, provenance computation requires the
unique identification of data items used and generated by a transformation. [CJ08] presents and evaluates
several strategies for uniquely identifying data items.

2.3. COMPARISON OF CONTRIBUTION SEMANTICS 17

2.3 Comparison of Contribution Semantics
We now discuss the CS definitions introduced in the literature. The discussion is limited to approaches
that provide formal specifications of CS for the relational data model. Here we are only interested in the
properties of CS types and not their formal specification. The interested reader is refereed to [CCT09] for
formal CS definitions and proofs for some of the properties of CS types we state in this section.

2.3.1 Why-CS
Buneman et al. [BKT01] introduced two types of Granularity tuple

Classification I-CS
Representation Set of Set of Tuples
Invariant Under
Query rewrite

Yes / No

Transformation
Scope

USPJ

Figure 2.3: Why-CS

contribution semantics called Why-provenance and Where-
provenance. In this work a hierarchical data model was
used, but these CS types were later adapted for the rela-
tional model in [BKT02] and for the nested relational cal-
culus (NRC) in [BCV08]. We base our discussion on the
relational version presented in [BKT02] and the extended
discussion of these CS types presented in [CCT09]. Why-
provenance, which we refer to as Why-CS, is a tuple gran-
ularity I-CS type. Two types of Why-CS were defined by the authors; one that is sensitive to query rewrite
(Why-CS) and one that is invariant under query rewrite (IWhy-CS). We call a contribution semantics in-
variant under query rewrite, iff it produces the same provenance for equivalent queries (two queries are
called equivalent, if they produce the same result on every possible database instance). Under Why-CS
the provenance of a result tuple t of a query q executed over a database instance I is represented as a set
Why(Q, I, t) of witnesses (usually we omit the instance I if it is clear from the context). A witness w is a
set of tuples from the instance I with t ∈ Q(w). That means, the result of executing query q on witness w
contains t. A witness for a tuple t may contain tuples that do not contribute to t. For example, the complete
instance I is a trivial witness for every query and result tuple. The set Why(Q, I, t), called the witness-basis,
contains only a subset of all witnesses of t. The witness-basis is defined as a set of construction rules that
operate on the algebra representation of a query. We do not present these rules here, the interested reader is
referred to [CCT09]. Figure 2.5 shows an example database instance, queries defined over the schema of
the example database, the results of executing these queries, and the provenance of result tuples according
to different CS types. The database models shops, items and a stock relation that represents the relationship
between shops and items in their stock. For convenience all base relations and result tuples are labeled with
identifiers (e.g., i2). As an example of Why-CS consider the provenance of result tuple t1 from query q1,
a simple selection on the price attribute of the item relation with a projection on the item name. The set
Why(q1, t1) contains a single witness {i1} that contains the tuple i1 from which t1 is derived. Recall that
Why-CS is sensitive to query rewrite. For instance, queries q2 and q3 from Figure 2.5 are equivalent, but,
e.g., Why(q2, t4) 6= Why(q3, t4). Intuitively, Why-CS provenance contains all the tuples from instance I that
had some influence on the creation of t. E.g., Why(q4, t2) includes the three tuples that were joined by q4 to
produce result tuple t2 in spite of the fact that only data from tuple s2 is copied to t2. The version of Why-
CS that is invariant under query rewrite (IWhy-CS) is defined as the set IWhy(Q, t) of minimal witnesses
contained in Why(Q, t). A witness w is minimal, iff no subset of w is also an element of Why(Q, I, t).
In [CCT09] this set is called the minimal witness basis. The invariance under query rewrite of IWhy-CS
is proven by showing the equivalence of IWhy-CS with an alternative definition of this provenance type
that is invariant under query rewrite by definition (the condition that decides if a witness belongs to the
provenance does not reference the syntactical structure of a query). As an example of IWhy-CS consider
queries q2 and q3 from the example. These queries are equivalent and, therefore, have the same IWhy-CS
provenance: The single minimal witness i4. Both variants of Why-CS are defined for unions of conjunctive
queries (or union of select-project-join queries with only equality selection and join predicates: E-USPJ),
but can be extended for aggregation and other types of set operations. Figure 2.3 summarizes the properties
of Why-CS.

18 CHAPTER 2. RELATED WORK AND TERMINOLOGY

2.3.2 Where-CS

The second type of contribution semantics introducedGranularity attribute value
Classification C-CS
Representation Sets of attribute

value identifiers
Invariant Under
Query rewrite

Yes / No

Query Language
Scope

E-USPJ

Figure 2.4: Where-CS

in [BKT01] is Where-provenance (Where-CS). Where-CS
is a type of C-CS with attribute-value granularity. Un-
der this CS type provenance describes from which input
attribute values a given output attribute value is derived
from. Like Why-CS, two versions of this CS type are de-
fined. One that is sensitive to query rewrite, because it is
defined over the syntactical structure of a query, and, one
that is invariant under query rewrite. We refer to these
types as Where-CS and IWhere-CS. Where-CS is defined

as a set of annotation propagation rules that propagate annotations from the input of a query to its output.
One rule is defined for each supported algebra operator that defines the propagation behavior of this oper-
ator. These propagation rules can be used to compute the provenance of a query, if every attribute value in
the database instance is annotated with a unique identifier. Under this assumption the annotations that are
generated for an attribute value in the result of a query represent the provenance of this value. In contrast to
Why-CS under Where-CS only values that are copied from the input to the output of a query belong to the
provenance of an output. For this type of provenance selection conditions that enforce the equality of two
attributes are also considered as a form of copying. As an example for Where-CS, reconsider query q4 from
the example shown in Figure 2.5. The provenance of the attribute value t11 contains only s12, the name of
the shop that is copied literally from the input of the query (here t1x denotes the attribute value at the x-th
attribute of tuple t1). Note the difference to Why-CS which includes tuples from all relations joined in this
query, because all of these tuples contributed to the result by their participation in the join operation. As
an example for the sensitivity of Where-CS to query rewrite consider queries q5 and q6 from the example.
These queries are equivalent, but their provenance is different. The rewrite invariant version of this contri-
bution semantics (IWhere-CS) is defined over the rewrite sensitive version. The annotations placed on an
output attribute value of a query q are defined as the union of all annotations that are generated by com-
puting the Where-CS annotations for every query q′ that is equivalent to q. Even though there are infinitely
many queries q′ that are equivalent to q, it was proven in [BCTV05] that the number of equivalent queries
with different annotation propagation behavior is finite. This is due to the fact that there are only finitely
many annotations in the database instance. Therefore, the number of different result annotations based on
this set of annotations has to be finite too. Note that while for Why-CS the rewrite invariant version of this
CS type is contained in the rewrite sensitive version, for Where-CS the exact opposite holds. For instance,
the IWhere-CS provenance of queries q5 and q6 for result attribute value t11 is the set {o11,o21,o31} which
contains both the Where-CS provenance of query q5 and query q6. Like Why-CS, Where-CS is defined for
E-USPJ-queries. An extension for aggregation seems possible (at least for the version that is sensitive to
query rewrite), but is not very useful because aggregated values are computed by the transformation and
not copied from the input. Figure 2.4 summarizes the properties of Where-CS.

2.3.3 Lineage-CS

The provenance of views in a datawarehouse was stud-Granularity tuple
Classification I-CS
Representation List of Sets of Tuples
Invariant Under
Query rewrite

No

Query Language
Scope

Set-ASPJ

Figure 2.6: Lineage-CS

ied in the scope of the WHIPS datawarehouse project de-
veloped at Stanford University [CW00a]. The first formal
specification of contribution semantics was developed in
the WHIPS project. The CS type presented in this work
is a type of I-CS with tuple level granularity. Adapting
the terminology of recent data provenance publications
we call this type of contribution semantics Lineage-CS.
Under Lineage-CS the provenance of a result tuple t of

an algebra expression q is modeled as a list Lin(Q, I, t) of subsets of the input relations of q that fulfills
three conditions. First, the result of evaluating q over the provenance of t should produce exactly t and
nothing else. This condition is similar to the definition of a witness in Why-CS. Second, every tuple in
the provenance should contribute to t. Third, the subsets of the input relations in the provenance are the

2.3. COMPARISON OF CONTRIBUTION SEMANTICS 19

item
itemId name price

i1 1 Lawnmower 130
i2 2 Fertilizer 15
i3 3 Shovel 20
i4 4 Pickaxe 30

shop
shopId name location

s1 1 Do-It-Yourself New York
s2 2 Garden-shop Boston

stock
shopId ItemId

o1 1 1
o2 1 2
o3 1 4
o4 2 1
o5 2 3

q1 = SELECT i . name FROM i tem i WHERE i . p r i c e > 100 ;
q2 = SELECT DISTINCT i .∗ FROM i tem i JOIN i t em j ON (i . p r i c e <= j . p r i c e) ;
q3 = SELECT ∗ FROM i tem i ;
q4 = SELECT DISTINCT s . name

FROM i tem i , shop s , s t o c k t
WHERE i . i t e m I d = t . i t e m I d AND t . s ho p I d = s . sho p I d AND i . p r i c e < 100 ;

q5 = SELECT ∗ FROM s t o c k ;
q6 = SELECT DISTINCT a .∗ FROM s t o c k a , s t o c k b WHERE a . s ho p I d = b . sho p I d ;

Result q1
name

t1 Lawnmower

Result q5 and q6

name
t1 Do-It-Yourself
t2 Garden-shop

Result q2 and q3
itemId name price

t1 1 Lawnmower 130
t2 2 Fertilizer 15
t3 3 Shovel 20
t4 4 Pickaxe 30

Result q4
name

t1 Do-It-Yourself
t2 Garden-shop

Lineage-CS

Lin(q1, t1) =< {i1}>

Lin(q2, t4) =< {i4},{i1, i4}>

Lin(q3, t4) =< {i4}>

Lin(q4, t1) =< {i2, i4},{s1},{o2,o3}>

Lin(q4, t2) =< {i3},{s2},{o5}>

Why-CS

Why(q1, t1) = IWhy(q1, t1) = {{i1}}
Why(q2, t4) = IWhy(q2, t4) = {{i4}}
Why(q3, t4) = {{i4},{i1, i4}}

IWhy(q3, t4) = {{i4}}
Why(q4, t1) = IWhy(q4, t1) = {{i2,o2,s1},{i4,o3,s1}}
Why(q4, t2) = IWhy(q4, t2) = {{i3,s2,o5}}

Where-CS

Where(q1, t12) = IWhere(q1, t12) = {{i12}}
Where(q4, t11) = {s12}
Where(q5, t11) = {o11}
Where(q5, t12) = {o12}
Where(q6, t11) = {o11,o21,o31}
Where(q6, t12) = {o12}

IWhere(q5, t11) = IWhere(q6, t11) = {o11,o21,o31}
IWhere(q5, t11) = IWhere(q6, t11) = {o12,o41}

How-CS

How(q1, t1) = i1

How(q2, t4) = i42 + i1× i4
How(q3, t4) = i4
How(q4, t1) = (i2× s1×o2)+(i4× s1×o3)
How(q4, t2) = i3× s2×o5

Figure 2.5: Contribution Semantics Examples

20 CHAPTER 2. RELATED WORK AND TERMINOLOGY

maximal sets that fulfill the first two conditions. We discuss the formal definition in detail in section 3.2.1.
Lineage-CS is similar to Why-CS, because like this CS type it also includes tuples in the provenance that
only have a ”conditional” influence on the output by, e.g., being used in a join condition. The represen-
tation of Lineage-CS is tightly bound to the syntactical structure of a query, because the provenance is
modeled as a list of subsets of the input relations of a query. Hence, this type of CS is sensitive to query
rewrite. For example, exchanging the left and right input of a join modifies its provenance by changing the
order in which the subsets of the input relations appear in the provenance. More examples for Lineage-CS
are shown in Figure 2.5. E.g., note the difference in representation between Lin(q4, t1) and Why(q4, t1).
Lineage-CS is defined for SPJ-queries, aggregation, and set operations (Set-ASPJ). Figure 2.6 reviews the
properties of this CS type.

2.3.4 How-CS
In [GKT07a] Green et al. introduced the concept ofGranularity tuple

Classification I-CS
Representation Polynoms over tu-

ple identifier vari-
ables

Invariant Under
Query rewrite

No

Query Language
Scope

USPJ + datalog re-
cursion

Figure 2.7: How-CS

How-provenance. Relational tuples are annotated with
elements from a semi-ring K. The propagation of these
annotations throughout a query is defined by mapping the
algebra operators to the addition and multiplication op-
erations of the semi-ring. E.g., join is mapped to mul-
tiplication. The semi-ring model was originally defined
for USPJ queries with recursion and later extended for
a subset of XQuery over unordered XML [FGT08]. The
semi-ring model generalizes several important extensions
of the relational model (e.g., bag-semantics and proba-

bilistic databases) and data provenance contribution semantics (Where-CS, Lineage-CS, and Why-CS). For
example, if the semi-ring of natural numbers is used to annotate tuples, then these annotations model bag-
semantics. E.g., joining a tuple s with multiplicity 3 with a tuple t with multiplicity 5 results in a tuple
with multiplicity 15 (3×5 = 15). Note that it was later shown in [CCT09] that for some cases Where-CS
provenance cannot be modeled in the semi-ring-model. The authors of the original paper [GKT07a] also
introduced a new type of CS using the semi-ring model (How-CS). Tuples are annotated with polynomials
over a set of variables where each variable represents one tuple from the database instance. The addition
and multiplication operations in such an polynomial represent alternative and conjunctive use of tuples in
the transformation that produced t. For instance, if query q = R ><a=b S joins tuples r1 and s1 to produce
output tuple t, then the provenance of t would be represented as r1× s1. Because of the indication of al-
ternative and conjunctive use of tuples by How-provenance, this type of provenance can be considered to
carry transformation provenance information in addition to data provenance. Some examples of How-CS
are given in Figure 2.5. For instance, How(q4, t4) is i42 + i1× i4 indicating that the result tuple t4 of query
q4 has two alternative derviations. One that joins tuple i4 with itself (i42) and one that joins tuple i1 with
tuple i4. How-CS is sensitive to query rewrite (e.g., How(q2, t4) 6= How(q3, t4)). Figure 2.7 summarizes
the properties of this CS type.

Note that using an CS type that is invariant under query rewrite may increase the performance of
provenance computation, because it enables the application of relational equivalence rules in provenance
computation, i.e., standard approaches to query optimization can be applied. On the other hand, the com-
putations of the query rewrite invariant CS types are more complex, negating this potential advantage.
For instance, IWhere-CS is computed by executing several Where-CS computations. While extending the
relational model in a way that invalidates query equivalence is considered as ”bad practice”, it can be
advantageous to define contribution semantics that are sensitive to query rewrite. Users usually have an
intention in writing their queries in a certain way. A CS type that is sensitive to query rewrites honors the
user intentions and, thus, may produce provenance information that better fits user expectations.

2.4. COMPARISON OF PROVENANCE MANAGEMENT SYSTEMS 21

2.4 Comparison of Provenance Management Systems
We now discuss several provenance management systems in detail. We only discuss database systems with
provenance support and leave out approaches from the workflow and grid-computing communities because
they are less related to our approach. Furthermore, we leave out systems that are not reasonably mature or
are just mere “proofs of concept “ implementations.

2.4.1 WHIPS
In context of the WHIPS datawarehouse prototype the provenance of views is computed lazily according
to Lineage-CS [LZW+97, CW00c, CW00b, CWW00, CW00a, Cui02]. Cui et al. presented algorithms
that can be used to trace back the provenance of arbitrary Set-ASPJ queries. The algorithms apply the
inverse approach by generating a tracing query that computes the provenance of each relational operator
in a query q, and, thus recursively tracing back the provenance of a result tuple t or set of result tuples
one operator at a time. The authors proved that if a query q is transformed into a canonical form, then the
trace back queries can be generated for segments of several operators in this query, but in general it is not
possible to generate a single trace back query for the complete query q. As mentioned before Lineage-
CS represents provenance as a list of relations (subsets of the input relations). User defined functions
(UDFs) are employed to split the result of a tracing query and produce this representation, because the
relational model does not support queries with more than one output relation. The major drawback of this
approach is that each provenance computation requires the execution of several queries and UDFs and,
thus, does not exploit the whole optimization potential of the underlying DBMS. Another disadvantage of
this approach is that the association between the result tuples and their provenance is not preserved in the
representation applied in WHIPS. The provenance of a set of result tuples is represented in the same way
as the provenance of a single result tuple. In this representation it is not clear to which result tuple a tuple
in the provenance belongs to. In [CW01a] the WHIPS system was extended to support provenance for
non-relational transformation which are applied in ETL-processes that import data into a datawarehouse
system. ETL processes are classified according to their provenance behavior (e.g., a process that produces
one output data item from several input data items is called an aggregator). The authors present rules to
deduce the behavior of a complex transformation from the behavior of the transformations it is composed
of. The classification of a transformation is assumed to be provided by the creator of the transformation.

2.4.2 Trio
Trio is a system that extends relational databases with support for provenance and uncertainty (called
uncertainty-lineage-database) [Wid05, ABS+06a, ABS+06b, BSHW06, SBHW06, AW07, MTdK+07]
[SUW07, WM07, WSU07, DSANW08, DSTW08, Wid08, WTS08, AW09]. In the first versions of Trio
provenance was represented as mappings between input tuple identifiers and output tuple identifiers. These
mappings were stored in so-called lineage tables. Lineage tables are generated eagerly during query ex-
ecution. Recent publications on Trio (e.g., [WTS08]) represent provenance as boolean formulas over the
probabilities of base relation tuples similar to How-provenance. The system implements a query language
called TriQL that is based on SQL and enhanced with features to handle provenance and uncertainty. The
predicate Lineage(R,S) can be used to filter out tuples from the result of a query, if the tuple r from relation
R is not in the provenance of tuple s from relation S (both relations have to be accessed in the FROM
clause of the query). Trio is implemented on top of PostgreSQL as a middleware written in Python with
some part of the functionality outsourced into UDF’s. The current version of Trio supports provenance
computation for a restricted version of Set-ASPJ (Set operations and ASPJ queries). I.e., no sub-queries in
the FROM clause, only a single set operation, and aggregation cannot be combined with set operations or
joins. Because Trio is implemented as a middleware solution with a standard relational back-end, relations
with uncertainty have to be simulated as normal relations. This and the separation of lineage tables result in
a TriQL query being translated into several SQL queries and UDF calls, which has a negative effect on the
performance of the system. Furthermore, the results of these queries have to be post-processed to generate
a result representation that conforms to the Trio data model, causing additional run-time overhead. Prove-
nance results in storage overhead in Trio, because the lineage relations are stored permanently. Despite of

22 CHAPTER 2. RELATED WORK AND TERMINOLOGY

its shortcomings Trio is the first system to combine uncertainty and provenance.

2.4.3 DBNotes
Tan et. al. presented DBNotes, an database system with support for annotations on attribute values
([BKT01, Tan03, BCTV04, CTV05, Ale05]) . DBNotes enables a user to annotate the attribute values
in the relations stored in the database. Provenance is modeled by annotating each attribute value with an
unique identifier. psql, the query language of DBNotes, extends USPJ queries with selection predicates re-
stricted to conjunctive equality conditions (E-USPJ) with language constructs that control propagation of
annotations. The two main propagation schemes default and default-all apply Where-CS and IWhere-CS.
The third propagation scheme enables a user to manually define from which source attributes the annota-
tions of a query result attribute are derived. This propagation scheme makes DBNotes the first PMS with
user defined contribution semantics, though only contribution semantics that are definable on schema level
are supported. For example, it is not possible to change the propagation behaviour of annotations based
on attribute values. DBNotes is implemented as a middleware on top of a standard relational database sys-
tem. Annotated relations are modeled as standard relations by adding an annotation attribute Aa for each
attribute A of the original relation. Annotations are stored as plain text in these annotation attributes. If
an attribute value is associated with more than one annotation, the original tuple to which this attribute
value belongs has to be duplicated. Therefore, this representation can result in significant storage over-
head. psql queries are rewritten into SQL queries over this storage scheme. Depending on the propagation
scheme that is applied in the psql query the result is a wrapper query that unions several modified versions
of the original query and sorts the result on the original result attributes. The result of the wrapper query
contains duplicates of the original result tuples each associated with a part of the annotations for this tu-
ple. A post-processing step that runs in linear time gathers all annotations of a result tuple and returns
the annotated tuple. Like for Trio, the performance of the system suffers from the overhead introduced by
post-processing, but in contrast to this system DBNotes rewrites a psql query into a single, though arguably
more complex, query. The psql language has no constructs to access annotations directly, thus it is not
possible to issue queries over generated provenance information.

2.4.4 Mondrian
Mondrian [GKM06, GKM05], like DBNotes is an annotation management system for relational databases.
Mondrian supports annotations on sets of attributes values, where all attributes values from a set belong to
the same tuple, subsuming the functionality of DBNotes that allows only single attribute value annotations.
In the terminology of [GKM05] annotation values are called colors and a set of attributes that carries a
color is called a colored block. Queries are expressed in the color-algebra that is basically a E-USPJ
(USPJ queries and only equality comparisons are allowed in selection and join predicates) fragment of
relational algebra extended with operators that modify blocks. Mondrian is implemented as a middleware
solution on top of MySQL. Colored relations are represented by extending the attributes of the original
relation with an attribute that stores colors and an additional attribute per original attribute that indicates
whether the attribute belongs to a block. In this representation a tuple represents one original tuple and
one of its blocks. Thus, the original tuple will be duplicated according to the number of blocks for this
tuple. Queries in the color-algebra are translated into SQL queries over this representation. Hence, in
terms of performance and storage overhead Mondrian suffers from the same problems as DBNotes. The
color-algebra is well-suited for annotations created by users, but some of the propagation rules are not
well-suited for provenance annotations. For instance, the join operator of the color-algebra only propagates
annotations to a result tuple that are present in both input tuples. i.e., for provenance annotations this means
the provenance is empty for all tuples except the ones that are produced by joining a tuple with itself.

2.4.5 MMS
In [SV07a, SV07c] the MMS system is introduced that models annotations as normal data. The association
between annotations and the annotated data is described by SQL queries that are stored as attribute values
of a new data type query. The result of such a query identifies the attribute values that carry a specific

2.4. COMPARISON OF PROVENANCE MANAGEMENT SYSTEMS 23

annotation. For instance, a query SELECT name FROM employee WHERE age=30; would annotate the name
attribute values of all employee tuples with an age equal to 30. To enable querying of the associations
between data and annotations a new predicate Q[A1, . . . ,An]

.= [v1, . . . ,vn] is added to SQL that evaluates to
true if the result of the query q stored in attribute Q contains a tuple with values v1, . . . ,vn in the attributes
A = A1, . . . ,An. If q does not contain all attributes in A the predicate evaluates to false. The predicate is
implemented by query rewrites. First, a query is issued to get all the values of the query data-type attribute
Q and check for each query value if its evaluation contains the attributes in A. To be able to perform this
check the result attributes of the evaluation of each query value are stored in additional relations. The
original query is then rewritten into a union of individual query parts that each represent the execution
of the original query and one of the query values from the result of the first step. Thus, the size of the
rewritten query is linear in the number of query values that are extracted in the first step. A problem with
this approach is that if a relation is annotated with many different annotations, like it would be the case for
fine-grained provenance information, the dynamic evaluation of queries will result in a huge performance
overhead. In addition, since in this case most queries will annotate only a single tuple, the main advantage
of this approach is lost. In contrast to DBNotes and Mondrian, MMS has no support for automatic propa-
gation of annotations throughout a query which would be required to compute the provenance of a query
over the base data automatically.

2.4.6 BDBMS

BDMBS [EAE+09, EOA07, EOA+08] is an extension of PostgreSQL with support for annotations. Anno-
tations can be placed on rectangular regions in a table or on combinations of tuples of a join result. The
system uses so-called annotation tables to store all annotations placed on a data relation. Multiple anno-
tation tables for a single data relation enable to distinguish between annotations of different types. For
instance, separate annotation relations could be used for annotations from different users. SQL is extended
with new constructs for adding and querying annotations. In the ADD ANNOTATION command the user
specifies a query to select the rectangular region that should be annotated. During query processing an
annotation a from an annotation table is propagated to a result tuple t if the annotation table is mentioned
after an annotated relation R in the FROM-clause, the result attributes intersect with the rectangle defined
by the annotation, and the input tuple of relation R from which t is produced is covered by the rectangle.
The annotation propagation is implemented as query rewrites, by left-joining the annotation table to the
data relation R. However, it is not specified in detail how annotations are propagated for queries involving
aggregation, set-operations or a DISTINCT-clause.

2.4.7 ORCHESTRA

ORCHESTRA [IKKC05, GKT+07b, IGK+08, GKT07a, Gre09, GKIT07] is a collaborative data sharing
system (CDSS) that uses schema mappings to exchange updates between peers with different schemas. For
each peer updates to other peers are translated into local updates by using the mappings between this peer’s
schema and the schemas of the other peers. Updates are not exchanged instantly but as batch updates on
a scheduled basis. ORCHESTRA uses tuple-granularity data provenance (How-provenance) to store where
updated data is coming from. How provenance is enhanced with mapping annotations that record which
mapping has combined which tuples to generate an updated data item. These annotations are modeled
as functions in the semi-ring provenance model. E.g., if a tuple is derived by mapping m1 from source
tuples t1, t2 through a join and by mapping m2 from source tuple t3 then the provenance polynomial would
be m1(t1× t2)+ m2(t3). Provenance is used in this system mainly for deciding if an update from another
peer should be applied to a peer. Peers have policies that are matched against the provenance of an update
to determine if an update fulfills the policies. ORCHESTRA provides a GUI that can be used to navigate
provenance information, but no query language support for provenance data. The provenance polynomial
of a tuple is recorded in an additional attribute, but it is not possible for queries to access the contents of
this attribute (e.g., is tuple x in the provenance of tuple y).

24 CHAPTER 2. RELATED WORK AND TERMINOLOGY

2.4.8 Forward Tracing Data Lineage
Zhang et al. [KP07, ZZZP07a] compute tuple granularity provenance by rewriting SQL queries to prop-
agate provenance information. This approach uses a variation of Lineage-CS. Provenance is represented
as sets of tuple identifiers. The original schema of a query is extended with a single attribute that is used
to store such a set. Queries are rewritten by recursively rewriting each ASPJ segment in the query to
iteratively build the provenance sets. This approach is the first to consider nested sub-queries, but is re-
stricted to uncorrelated queries and their provenance definition produces false positives if applied to nested
sub-queries. This is due to the fact that the definition considers the complete provenance of a nested sub-
query to belong to the provenance of the query it is used in. For example, consider an SQL sub-query like
... WHERE a IN (SELECT ...);. It is evident that for this query only tuples from the sub-query that are equal

to a are necessary to fulfill the WHERE clause condition. Therefore, only these tuples should be included
in the provenance. The representation as a set of tuple identifiers has two important drawbacks. First, the
query language would have to be extended to allow for efficient querying of the provenance information.
Second, in the set representation it is not clear how tuples were combined by the query to produce a result
tuple.

2.5. SUMMARY AND REQUIREMENTS FOR A RELATIONAL PMS 25

2.5 Summary and Requirements for a relational PMS
In this section we summarize our discussion of competitive PMS and present requirements for a full-fledged
relational PMS. The comparison presented in the last section reveals that the importance of provenance
support has been realized by the database community, but that all of the presented systems have severe
disadvantages. Table 2.1 summarizes the comparison presented in the last section. Similar arguments
apply for the presented CS types. Most of them are defined only for a very limited subset of SQL and may
not produce meaningful results when extended to support more language constructs.

A provenance management system should be developed with the goal of being useful for a wide range
of application domains with different provenance needs. Neither data nor transformation provenance con-
tain all the information needed for most provenance use cases. Thus, both provenance types should be
supported by a PMS. It is our belief that there is no ”one-fits-all” CS type, because each of them exposes
different information about the origin of a data item and its creation process. Therefore, a user should be
able to choose between different CS types for both data and transformation provenance to be able to pick
the one that fits his needs best. A PMS should be able to generate fine-grained provenance automatically
for a preferably complete subset of SQL transformations. For complex queries the PMS should provide
the functionality to compute the provenance according to an intermediate result instead of tracing back
the origin of a data item to the base relations accessed by the query. A PMS should provide support for
external provenance (provenance created manually or by another PMS). Ideally, the system should place no
restrictions on the representation used for external provenance and should be able to process it during the
automatic generation of provenance information. For instance, if a user wants to retrieve the provenance
of a query over data with external provenance, the provenance computation for this query should take the
external provenance into account. The mere generation and storage of provenance information is not very
useful. PMS should provide extensive query language support for provenance data. Ideally, provenance
and normal data and the associations between both can be queried using the same query language. An
expressive representation of provenance information is needed to fulfill this requirement. Storage of prove-
nance information is necessary to preserve it for later use, but provenance information can easily outgrow
the normal data and therefore should only be generated when requested by the user. Below we list the
requirements developed in this paragraph:

1. Automatic generation of provenance information with various CS types

2. Extensive query facilities for provenance

3. Provenance storage and lazy computation

4. Partial provenance computation

5. Data and transformation provenance support

6. Support for external provenance

With the Perm approach presented in this thesis we address the requirements outlined above. Perm
generates tuple-level provenance automatically for an almost complete subset of SQL (1). For instance,
we support aggregation, set operations and correlated sub-queries. Provenance is computed on-demand
by rewriting the query for which provenance should be computed (3). The rewritten query that computes
the provenance behaves like a normal SQL query and, thus, its results can be stored using the SQL INTO
clause (3) or used in a sub-query (2) to enable SQL queries over provenance data. Perm supports data
provenance with different CS types and transformation provenance (5). The user can instruct the system to
include external provenance and handle it as if it was created by the system itself (6). In Perm provenance
can be either traced back to the data stored in base relations of the database or to the results of a sub-query
or view referenced in the query for which provenance should be computed (4).

In contrast to the PMS presented in section 2.4, Perm supports a broader set of SQL language constructs
and is the only system to support both data and transformation provenance. The only other system besides
Perm that supports more than one CS type is DBNotes. We will demonstrate in chapter 5 that Perm is also
more efficient than comparable approaches.

26 CHAPTER 2. RELATED WORK AND TERMINOLOGY

Table
2.1:C

om
parison

ofthe
Functionality

provided
by

PM
S

System
Supported
Transform

ations
Supported
C

S
Provenance
R

epresentation
C

om
putational

M
ethod

Provenance
Q

uery
Support

Supported
G

ranularity

W
H

IP
S

Set-A
SPJ

L
ineage-C

S
L

istofsets
oftuples

lazy,inverse
SQ

L
tuple

Trio
Set-A

SPJ
(TriQ

L
)

w
ith

lim
itations

L
ineage-C

S
Tuple

identifier
pairs

each
associating

a
result

tuple
w

ith
provenance

tuple

eager,propaga-
tion

L
ineage-

predicate
tuple

D
B

N
otes

E
-U

SPJ
(psql)

W
here-C

S,
IW

here-C
S,

C
ustom

-C
S

Setof
attribute

value
identi-

fiers
eager,propaga-
tion

G
U

I
attribute

value

M
ondrian

E
-U

SPJ ∗
(color-algebra)

-
-

eager,propaga-
tion

E
-U

SPJ
(color-
algebra)

sets
ofattribute-values

M
M

S
N

o
autom

atic
prove-

nance
generation

-
-

lazy,
propaga-

tion
SQ

L
regions

that
can

be
ex-

pressed
as

SQ
L

queries
B

D
B

M
S

N
o

autom
atic

prove-
nance

generation
-

-
E

ager,
propa-

gation
Set-A

SPJ
rectangular

regions
over

attributes
and

tuples
O

R
C

H
E

STR
A

U
SPJ

+
R

ecursion
H

ow
-C

S
Sem

i-ring-polynom
ials

over
tuple

identifiers
eager,propaga-
tion

G
U

I
tuple

Forw
ard

Tracing
D

ata
Lineage

A
SPJ

+
uncorrelated

sub-queries
V

ariation
of

L
ineage-C

S
Sets

oftuple
identifiers

eager,propaga-
tion

SQ
L
∗∗

tuple

∗:T
he

applied
annotation

propagation
rules

are
notw

ell-suited
forprovenance

com
putation

∗∗:T
he

representation
ofthe

setoftuple
identifiers

as
a

single
attribute

value
does

preventusefulapplication
ofSQ

L
on

this
representation

Chapter 3

Contribution Semantics

In this chapter we formally define Perm-Influence-Contribution-Semantics (PI-CS) the contribution seman-
tics developed for the Perm system and prove several important properties of the provenance generated by
this CS type. PI-CS is a type of I-CS based on Lineage-CS. We decided to develop our own type of CS,
because the representation used by Lineage-CS (and also other CS types) is not suited for our approach to
implement a “purely relational” provenance management system. Furthermore, as we will demonstrate in
this chapter, Lineage-CS, in contrast to PI-CS, does not extend to queries with nested sub-queries (sublinks)
and queries with negation. We define C-CS types and transformation provenance CS for the use in Perm as
extensions of PI-CS.

First, we introduce an extended relational algebra which allows for a natural algebraic representation of
SQL queries. Afterwards, we introduce PI-CS, demonstrate its applicability to the operators of the algebra,
and study the relationship between this CS type and Lineage-CS. Finally, we present C-CS types and trans-
formation provenance. Note that in this chapter we are only discussing the semantics of provenance and do
not develop algorithms for generating provenance according to this semantics. Provenance computation is
discussed in chapter 4.

3.1 Perm Relational Algebra
In this section we introduce notational preliminaries and the relational algebra that are needed for the theo-
retical foundation of Perm. The algebra is defined in such a way that SQL queries have natural counterpart
algebra expressions and it is easy to translate between the SQL and algebra representation of a query. This
property is important, because it is not feasible to build a formal framework of provenance based on SQL,
but, as we will demonstrate in chapter 5, to be able to integrate provenance computation into a DBMS, the
results established for algebra expressions have to be translated to SQL. As usual a relational database D is
modeled as a database schema S and a database instance I. A database schema is a set of relation schemas:
S = {R1, . . . ,Rn}. Each relation schema is a function from a finite set A⊂A to the set of attribute domains
D (we refer to the elements of this set as data types) where A is the set of possible attribute names. S
is used to denote the set of all possible relation schemas. Every attribute domain is expected to contain
the special value null: ε . Each relation schema is associated with a name by a function Name : S →N
that assigns each relation schema in a database schema to an unique name. We assume a total order on the
attribute names of a relation schema. I.e., a function posR : A→N that assigns each attribute from schema
R to a unique position from the set 1, . . . , | A |. We use R(a1 : d1, . . . ,an : dn) as a notational shortcut for a
relation schema with attributes a1 to an, name R, attribute order a1 : 1, . . . ,an : n, and domains d1, . . . ,dn.

A database instance I = {R1, . . . ,Rn} of a database schema S is a set of relations that contains one
relation R for each relational schema R in S. A relation R for a relation schema R is a subset of RI = d1×
. . .×dn and a function mult : RI→ N. Each element t = (v1, . . . ,vn) in RI is called a tuple and the value m
assigned by mult to t is called the multiplicity of t. This means we are using the so-called bag- or multiset-
semantics where every tuple is allowed to occur more than once in a relation. The elements v1, . . . ,vn of a
tuple are called attribute values. For convenience we use tm to denote a tuple t with multiplicity m and t as

27

28 CHAPTER 3. CONTRIBUTION SEMANTICS

a shortcut for t1.
If q is an algebra expression, then Q denotes the schema of the result relation produced by evaluating

q1. We use [[q]](I) to denote the result of evaluating algebra expression q over the database instance
I. The database instance is omitted if it is clear from the context or irrelevant to the discussion. Q is
used as a shortcut for [[q]]. The Perm algebra includes the standard operators of the relational algebra. The
evaluations of all algebra operators are presented in Figure 3.1. To simplify the definition of some operators
negative or zero multiplicities of tuples indicate that a tuple does not belong to a relation.

Nullary Operators: A relation access is denoted by the name of the accessed relation. We allow for
construction of singleton relations containing only a constant tuple t denoted by t.

Unary Operators: Duplicate removal δ (q1) eliminates duplicates from its input (in other words it sets
the multiplicity of every tuple to one). Selection σC(q1) returns all tuples t from Q1 that fulfill the selec-
tion condition C (written as t |= C). A selection condition is an expression build from attributes, constants,
comparisons (e.g., equality, less than, . . .), function calls, and logical operators (¬,∧,∨, . . .). C is restricted
to return a boolean result. In addition we allow for conditional expressions: i f (e1) then (e2) else (e3)
evaluates to e2 if e1 evaluates to true. Otherwise it evaluates to e3. This is similar to the CASE construct
in SQL. The algebra defines two versions of Projection. One duplicate preserving version (ΠB: the su-
perscript B stands for bag) and one duplicate removing version (ΠS: the superscript S stands for set). The
duplicate preserving version ΠB

A(q1) returns the results of evaluating all projection expressions from the
list A = (a1, . . . ,am) for each tuple in Q1. Projection expressions are similar to selection conditions ex-
cept that they are not restricted to return a boolean result and that the outermost construct in a projection
expression can be a renaming e→ a that causes the attribute which stores expression e to be named a in
the result schema. The duplicate removing version of projection (ΠS

A(q1)) is defined as the application of
the duplicate removal operator to the result of the duplicate preserving projection. Sometimes we use Π

to denote the duplicate preserving version of projection. Aggregation αG,agg groups its input on a list of
group-by attributes and computes the aggregation functions from the list agg of aggregation functions for
each group. One output tuple is produced for each group that contains the values of the group-by attributes
for this group and the results of the aggregation functions 2. In the definition presented in Figure 3.1 aggi
is one aggregation function from the list agg and Bi is the attribute used as input to aggregation function
aggi

3.

Join Operators: The Perm algebra includes several join operators. The Cross product q1×q2 is defined
as in standard relational algebra. In the definition (t1, t2) denotes the concatenation of tuples t1 and t2. Inner
Join q1 ><C q2 is a shortcut for applying a selection with condition C to the result of the cross product
between q1 and q2. Three outer join types are defined in the algebra: Left outer join (><), Right outer
join (><), and Full outer join (><). The outer join types are based on the inner join, but preserve tuples
that are not joined with any other tuple. As the names indicate left outer join preserves only tuples from
its left input, right outer join preserves only tuples from its right input, and full outer join preserves tuples
from both inputs. null(Q) denotes a tuple with schema Q and all attributes values set to null.

Set Operators: The algebra supports the three standard set operations union (∪), intersection (∩), and
set difference (−). Like the projection operator, set operations are provided as a duplicate preserving and
duplicate removing version (denoted by S and B).

1Defining Q independent of an database instance is valid, because the result schema of an algebra expression only depends on the
database schema over which it is defined.

2We define the semantics of the standard aggregation functions sum,avg,count, . . . as in SQL. I. e., applying count to an empty
relation returns zero and applying the other aggregation functions to an empty relations returns null

3Note that allowing only a single attribute as input of an aggregation function and only group-by attributes instead of
group-by expressions does not limit the expressive power of the algebra. Expressions like αc∗d,sum(a+b)(q1) can be written as
αg1,sum(agg1)(Πc∗d→g1,a+b→agg1 (q1)) in our algebra. For brevity, we will use the first notation when appropriate.

3.1. PERM RELATIONAL ALGEBRA 29

Nullary Operators
[[t]] = {t}
[[R]] = {tn | tn ∈ R}

Unary Operators
[[δ (q1)]] = {t | tn ∈ Q1}[[

Π
B

A(q1)
]]

= {t ′ = (v1, . . . ,vm)sum | sum = ∑
tn∈Q1,t.A=t ′

(n)} for A = (A1, . . . ,Am)[[
Π

S
A(q1)

]]
= δ (ΠB

A(q1)) = {a = (a1, . . . ,am)1 | tn ∈ Q1∧ t.A = a} for A = (A1, . . . ,Am)
[[σC(q1)]] = {tn | tn ∈ Q1∧ t |= C}

[[αG,agg(q1)]] = {(t.G,res1, . . . ,resn)1 | t ∈ Q1∧∀i ∈ {1,n} : resi = aggi(ΠB
Bi(σG=t.G(q1))}

Join Operators
[[q1×q2]] = {(t1, t2)n×m | t1n ∈ Q1∧ t2m ∈ Q2}

[[q1 ><C q2]] = {tn×m | tn×m ∈ q1×q2∧ t |= C}
[[q1 ><C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(t1,null(Q2))n | t1n ∈ Q1∧ (6 ∃t2 ∈ Q2 : (t1, t2) |= C)}
[[q1>< C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(null(Q1), t2)n | t2n ∈ Q2∧ (6 ∃t1 ∈ Q1 : (t1, t2) |= C)}
[[q1 >< C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(null(Q1), t2)n | t2n ∈ Q2∧ (6 ∃t1 ∈ Q1 : (t1, t2) |= C)}
∪{(t1,null(Q2))n | t1n ∈ Q1∧ (6 ∃t2 ∈ Q2 : (t1, t2) |= C)}

Set Operators[[
q1∪Sq2

]]
= {t | tn ∈ Q1∨ tm ∈ Q2}[[

q1∩Sq2
]]

= {t | tn ∈ Q1∧ tm ∈ Q2}[[
q1−Sq2

]]
= {t | tn ∈ Q1∧ tm /∈ Q2}[[

q1∪Bq2
]]

= {tn+m | tn ∈ Q1∧ tm ∈ Q2}[[
q1∩Bq2

]]
= {tmin(n,m) | tn ∈ Q1∧ tm ∈ Q2}[[

q1−Bq2
]]

= {tn−m | tn ∈ Q1∧ tm ∈ Q2}

Sublink Expressions
[[e IN qsub]] = ∃t ∈ Qsub : t = e [[e NOT IN qsub]] = ¬∃t ∈ Qsub : t = e

[[e op ANY qsub]] = ∃t ∈ Qsub : e op t [[qsub]] = Qsub

[[e op ALL qsub]] = ∀t ∈ Qsub : e op t [[EXIST S qsub]] = ∃t ∈ Qsub

Figure 3.1: Perm Relational Algebra

30 CHAPTER 3. CONTRIBUTION SEMANTICS

Description Shortcut
Relation R,S,T . . .
Attribute a,b,c . . .
List or Set of Attributes A,B, . . .
Renaming attribute a to b a→ b
Shortcut for comparing all attributes from a list A =
(a1, . . . ,an) with attributes from a list B = (b1, . . . ,bn)

A = B := a1 = b1∧ . . .∧an = bn

Shortcut for renaming all attributes from a list A =
(a1, . . . ,an) to attributes from a list B = (b1, . . . ,bn)

A→ B := a1→ b1,a2→ b2, . . .an→ bn

Concatenation of two tuples t1 and t2 (t1, t2)
Algebra expression q
Result relation generated by evaluation of algebra expres-
sion q

Q or [[q]]

Schema of an relation R or of the result of evaluating al-
gebra expression q

R and Q

Null-value ε

Figure 3.2: Notational Conventions for the Relational Model and Perm Algebra

Sublink Expressions: SQL allows for nested sub-queries in, e.g., the WHERE clause. To be able to
represent such sub-queries (which we refer to as sublinks) in the Perm algebra we introduce nesting ex-
pressions that resemble the nesting constructs of SQL (ALL, ANY, IN, EXISTS, and scalar sublink). Similar
approaches have been presented in [BM95, AB03]. The EXIST S qsub expression evaluates to true, iff Qsub
contains at least one tuple. If an algebra expression qsub is directly applied in an projection expressions or
selection predicate, we call it a scalar sublink. A scalar sublink qsub evaluates to the result of evaluating
the algebra expression ([[qsub]]). This kind of sublink is only defined if qsub returns at most one tuple and
Qsub contains only a single attribute. If Qsub returns the empty set, then this nested expression evaluates to
ε . The sublink expression e op ANY qsub evaluates to true if for at least one tuple t from Qsub the expression
e op t evaluates to true. Here op represents an arbitrary comparison operator. This nested expression is only
defined if Qsub contains a single attribute with a data type that is comparable to the result type of expression
e 4. The counterpart of the ANY-expression is the ALL-expression. e op ALL qsub evaluates to true, iff every
tuple t from Qsub fulfills the condition e op t. An ALL-sublink expression evaluates to true if Qsub is the
empty set. An ANY-sublink expression evaluates to false if Qsub = /0. Two additional nested expressions
are provided for convenience: e IN qsub which is equivalent to e = ANY qsub and e NOT IN qsub which is
equivalent to ¬(e = ANY qsub).

As in SQL we allow for correlations between sublinks and the algebra expression they are used in
(called outer expression or regular input of an operator). A correlation is a reference to an attribute of
the outer expression from inside the sublink. For instance, in the expression σ EXIST S σS.b=R.a(S)(R) the
attribute reference R.a is a correlation, because it references an attribute from relation R that is the regular
input of the selection. Sublinks with correlations are evaluated using so-called nested iteration. Nested
iteration evaluates the sublink expression separately for each tuple from the regular input of the operator.
We call a sublink expression correlated if it contains correlations and uncorrelated otherwise. A sublinks
expression that contains another sublink expression is called nested. In spite of the fact that SQL supports
sublinks in all clauses we limit the use of sublinks to projection and selection to simplify the provenance
computation for these expressions and because this restriction does not limit the expressive power of the
algebra. E.g., the following algebra expression R ><a IN ΠC(T) S is equivalent to σa IN ΠC(T)(R× S) and
α EXIST S (S),sum(a)(R) is equivalent to αnew,sum(a)(ΠB

EXIST S (S)→new,a(R)).
Figure 3.2 shows notational conventions for algebra expressions that we will use throughout this thesis.

Most of these shortcuts have already been used in the definition of the algebra.

4In principle a type system would be needed to decide if two data types are comparable. We do not formally define such a type
system for the Perm algebra because it is not needed in the definition and discussion of contribution semantics and would needlessly
increase the complexity of the algebra.

3.1. PERM RELATIONAL ALGEBRA 31

person
SSN name
1-1 Peter Peterson
2-4 Jens Jensen
5-6 Knut Knutsen

newspaper
newsId name publisher

1 NZZ IEEE
2 20 Minuten Springer

reads
pSSN nNewsId

1-1 1
1-1 2
2-4 1

q1 = σ¬ EXIST S (qsub)(person) qsub = σ¬ EXIST S (σpSSN=SSN∧newsId=nNewsId(reads))(newspaper)

q2 = αname,count(∗)(reads><pSSN=SSN person)

q3 = Π
S

person.name→person,newspaper.name→paper(person ><SSN=pSSN (reads><nNewsId=newsId newspaper))

q1 = SELECT ∗ FROM p e r s o n
WHERE NOT EXISTS

(SELECT ∗ FROM newspaper
WHERE NOT EXISTS

(SELECT ∗ FROM r e a d s WHERE pSSN = SSN AND nNewsId = newsId)) ;

q2 = SELECT name , c o u n t (∗) FROM r e a d s , p e r s o n WHERE pSSN = SSN GROUP BY name ;

q3 = SELECT p . name a AS person , n . name AS p a p e r
FROM p e r s o n p LEFT JOIN

(r e a d s r JOIN newspaper n ON (nNewsId = newsId)) ON (SSN = pSSN) ;

Q1
SSN name
1-1 Peter Peterson

Q2
name count

Peter Peterson 2
Jens Jensen 1

Q3
person paper

Peter Peterson NZZ
Peter Peterson 20 Minuten

Jens Jensen NZZ
Knut Knutsen NULL

Figure 3.3: Example Algebra Expressions and Evaluations

Example 3.1. Figure 3.3 presents some example algebra expressions, equivalent formulations in SQL,
and the results of evaluating them over an example database instance. The example database models
newspapers, persons, and which person reads which newspapers. Query q1 from the example returns
the persons that are reading all newspapers stored in the database. This query can be expressed in SQL
as a nested NOT EXISTS: Return all persons for whom no newspaper exists that is not read by this
person. In the algebra this query is expressed using a nested EXISTS sublink expression in the condition
of the selection operator. Query q2 returns the number of newspapers read by each person. In SQL this
query is expressed using the standard aggregation function count grouping on the person relation’s name
attribute. Hence, the equivalent algebra expression uses the aggregation operator. Query q3 returns all
persons and the newspapers they are reading. An outer join is used to also return persons that do not read
any newspapers. The algebra version of q3 is an example for the application of renaming in projection
expressions.

32 CHAPTER 3. CONTRIBUTION SEMANTICS

3.2 Influence Data Provenance Contribution Semantics

In this section we formally define PI-CS (Perm Influence Contribution Semantics), the main data prove-
nance CS type implemented in Perm. We first introduce Lineage-CS, the I-CS type on which PI-CS is
based on, and outline its shortcomings that constitute the motivation for extending this CS type for the use
in Perm. Afterwards, we iteratively define and refine PI-CS , by porting the Lineage-CS definition for a
more suited relational representation and addressing its problems with nested subqueries and other types
of algebra expressions. For both CS types we first present a declarative definition and then prove the equiv-
alence of this definition to a provenance construction that is based on the structure of algebra expressions.
Finally, we compare the expressiveness of Lineage-CS and PI-CS.

3.2.1 Lineage Contribution Semantics

We base the I-CS definition used in Perm on Lineage-CS presented in [CW00a], because this definition
has several advantages over alternative I-CS types. First, users tend to intentionally express queries in a
certain way and, therefore, the strong dependency of Lineage-CS on the syntactical structure of a query
is an advantage (see 2.3). Second, this CS type is defined for a larger set of algebra operators than other
approaches. Third, provenance is defined for single algebra operators which allows easy extension to new
algebra operators. We already discussed some of the properties of Lineage-CS in section 2.3. Here we
extend this discussion and provide a formal definition of Lineage-CS. The definition below is taken from
[CW00a] with the notation adapted to our conventions:

Definition 3.1 (Lineage-CS). For an algebra operator op with inputs Q1, . . . ,Qn from a database in-
stance I and a tuple t ∈ op(Q1, . . . ,Qn) a list W (op, I, t) =< Q∗1, . . . ,Q

∗
n > with Q∗i ⊆ Qi is the witness

set of t if it fulfills the following conditions:

[[op(W (op, I, t))]] = {tx} (1)
∀i, t ′ ∈ Q∗i :

[[
op(< Q∗1, . . . ,Q

∗
i−1,{t ′},Q∗i+1, . . . >)

]]
6= /0 (2)

¬∃W ′ ⊆< Q1, . . . ,Qn >: W ′ ⊃W (op, I, t)∧W ′ |= (1),(2) (3)

The first condition (1) in Definition 3.1 checks that the witness set produces exactly t and nothing else
by evaluating operator op over the witness set. The second condition (2) checks that each tuple t ′ in the
witness set contributes to t and, therefore, guarantees that no superficial tuples are included in the witness
set. Finally, the third condition (3) checks that the witness set is the maximal list with these properties,
meaning that no tuples that contribute to t are left out. Note that in condition 3 two lists of sets are
compared according to their subsumption relationship (⊃). Below we formalize the notion of subsumption
for lists of sets:

Definition 3.2 (List Subsumption). A list of sets U subsumes a list of sets V (U ⊃V), iff both lists have
the same length (|U |=| V |), each set in U contains the elements from the corresponding set in V , and
at least one set from U contains an element that is not included in the corresponding set from V :

U ⊃V ⇔(|U |=|V |)∧ (∀i ∈ {1, . . . , |V |} : Ui ⊇Vi)∧ (∃i ∈ {1, . . . , |V |} : Ui ⊃Vi)

As mentioned in section 2.3 we omit the instance I for a witness set if it is clear from the context.
Lineage-CS was originally studied for selection, projection, join, cross product, aggregation, union and set
difference. In our discussion we include also intersection and outer joins. Note that the definition presented
here is defined for set semantics and under this semantics it was proven that W (q, t) is unique. We postpone
the discussion of bag semantics to later in this section.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 33

Example 3.2. As an example for Lineage-CS provenance consider the algebra expression q = ΠB
a(R)

over the relation presented below.

R
a b
1 2
2 3

Q
a
1
2

The Lineage-CS provenance of the result tuple t = (1) from q is as follows:

W (q,(1)) =< {(1,2)}>

The first condition of definition 3.1 is obviously fulfilled. The result of evaluating q over the set {(1,2)} is
a relation that only contains tuple (1). The second condition is trivially fulfilled, because the provenance
contains only a single tuple. For the third condition we have to check that no super set of W fulfills
conditions 1 and 2. In this case W ′ = {(1,2),(2,3)} the only super-set of W does not fulfill condition 1,
because the result of applying q to W ′ contains tuple (2) 6= t.

3.2.1.1 Transitivity and Sets of Output Tuples

Lineage-CS defines provenance to be transitive. I.e., if tuple t is in the provenance of tuple t ′ according
to an operator op1 and t ′ is in the provenance of t ′′ according to some operator op2, then t belongs to
the provenance of t ′′ according to q = op2(op1). Therefore, the witness set of an algebra expression q is
computed by recursively applying Definition 3.1 to each operator in q. An advantage of Lineage I-CS is
that the focus on a single operator leads to a simple evaluation strategy and the witness set of each operator
can be studied independently of the witness set of other operators. [CW00a] also defines the provenance
of a set T of result tuples according to Lineage-CS as:

W (q,T) =
⊔
t∈T

W (q, t)

Here
⊔

stands for the element-wise union of two lists. E.g.:

< {a},{b}> t< {c},{d}>=< {a,c},{b,d}>

3.2.1.2 Bag Semantics

Lineage-CS was also extended for bag semantics. Under bag semantics two duplicates of a tuple cannot
be distinguished, therefore it is impossible to determine from which duplicate a result tuple is derived.
Consider the query q = R−BS over the relations R = {(1)2} and S = {(1)}. The result tuple (1) could be
either derived from the first or the second tuple in R. Furthermore, if the result of an algebra expression
contains a tuple t with a multiplicity greater than one, each duplicate of t might have been derived from
different input tuples and its not clear which duplicate of t should be associated with which input tuple. As
an example for this problem consider expression q = ΠB

a(R) over relation R = {(1,2),(1,3)} with schema
R = (a,b). If definition 3.1 is applied to this query, then there are two sets W (q,(1))1 =< {(1,2)} >
and W (q,(1))2 =< {(1,3)} > that fulfill the conditions of the definition. Cui et al. present two solu-
tions to this problem. One called the derivation set is the set of all possible witness sets W (q, t) and
the second one called the derivation pool is generated by computing the bag union of the individual Q∗i
elements of all possible witness sets W (q, t). The derivation set of the example query above would be
{W (q,(1))1,W (q,(1))2} and the derivation pool would be < {(1,2),(1,3)}>. The derivation set has the
disadvantage that its size is proportional to the number of different derivations of a result tuple. Therefore,
we use only the derivation pool. The definition we have given for Lineage-CS generates the derivation
pool.

34 CHAPTER 3. CONTRIBUTION SEMANTICS

W (R, t) =< {un | un ∈ R∧u = t}>

W (σC(q1), t) =< {un | un ∈ Q1∧u = t}>

W (ΠA(q1), t) =< {un | un ∈ Q1∧u.A = t}>

W (αG,agg(q1), t) =< {un | un ∈ Q1∧ t.G = u.G}>

W (q1 ><C q2, t) =< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}>

W (q1 ><C q2, t) =

{
< {un | un ∈ Q1∧u = t.Q1},Q2 > if t 6|= C
< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1>< C q2, t) =

{
< Q1,{un | un ∈ Q1∧u = t.Q2}> if t 6|= C
< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1 >< C q2, t) =

< {un | un ∈ Q1∧u = t.Q1},Q2 > if t 6|= C∧ t.Q2 is ε

< Q1,{un | un ∈ Q1∧u = t.Q2}> if t 6|= C∧ t.Q1 is ε

< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1∪q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u = t}>

W (q1∩q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u = t}>

W (q1−q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u 6= t}>

Figure 3.4: Compositional Semantics for Lineage-CS

3.2.1.3 Compositional Semantics of Lineage-CS

To determine the provenance of an algebra expression using the conditions of definition 3.1 can be cum-
bersome, because the definition only states which conditions have to be fulfilled by the provenance, but
not how to construct the provenance. Cui et. al presented how to generate Lineage-CS provenance using
a construction based on the syntactical structure of an algebra expression. In the following we refer to the
conditions of definition 3.4 as the declarative semantics of Lineage-CS and the semantics defined by the set
construction as the compositional semantics of Lineage-CS. The construction rules for the compositional
semantics are presented in Figure 3.4.

Example 3.3. For example, the witness set of an output tuple t of a selection is always the singleton set
containing t, because selection outputs unmodified input tuples. An output tuple t from an aggregation is
derived from a set of input tuples that belong to the same group (have the same grouping attribute values
as t).

Example 3.4. Figure 3.5 presents some examples of provenance according to Lineage-CS. Query qa
is an example for the representation of duplicate removal. The result tuple (1) from this query was
generated from two result tuples of the inner join between R and S. Query qb demonstrates the inclusion
of the complete right input of the left join in the provenance for tuples that do not have join partners.
An example for aggregation is given with query qc. Note that all tuples from relation R with the same
grouping attribute value 1 are in the provenance of the result tuple (1,5). Both queries qd and qe
illustrate the provenance for set difference operations. Query qd is similar to an example from [Cui02]
that was used to show that tuples from the right input of a set difference can contribute to the result of
this operator. Tuple (2) from relation T belongs to the provenance of result tuple u = (2), because it
indirectly contributed to u by removing tuple (2) from the result of (S−T). If t had not been in relation
T , then u would not be in the result of qd . Query qe is a counterexample to this form of reasoning.
According to Lineage-CS tuple v = (2) from relation U is not in the provenance of result tuple x = (2),
but if we apply the same reasoning as used for query qd it contributes to x.

As apparent form the example presented above, the problem with Lineage-CS for set difference is that
it is defined for single algebra operators. But to distinguish between the cases presented with query qd and

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 35

the one of query qe, information about the context an operator is used in is needed. In spite of the fact that
Why-CS is defined for an algebra expression it does not solve this problem, because it generates the same
provenance for both cases.

Cui et. al. proved that the compositional semantics of Lineage-CS is equivalent to the declarative
semantics from definition 3.1. Recall that Lineage-CS was originally not studied for intersection and outer
join types. Therefore, we now prove the equivalence of provenance according to definition 3.1 and the
compositional semantics for these operators. The interested reader is referred to [Cui02] for the proofs for
the remaining operators.

Theorem 3.1 (Equivalence of Declarative and Compositional Semantics of Lineage-CS). The composi-
tional and declarative semantics of Lineage-CS are equivalent.

Proof. We only prove this theorem for the cases not handled in [Cui02]: outer joins and intersection.
Let W (op, t) be the witness set produced by the declarative semantics and O(op, t) be the witness set
produced by the compositional semantics. We have to show that W (op, t) = O(op, t) holds for op ∈
{ ><,>< , >< ,∩} and all t ∈ [[op]]. This proposition can be proven by proving that O(op, t) fulfills
conditions 1 to 3 from definition 3.1 and, thus, is indeed equal to W (op, t).
Case ><:
We present the proof for the case t 6|= C because if t |= C holds then the behavior and provenance of the
left outer join is the same as for the inner join. Thus, O(q1 ><C q2, t) =< {un | un ∈Q1∧u = t.Q1},Q2 >.
Condition (1): From the definition of the left outer join we know that there is no tuple t ′ in Q2 for which
(t.Q1, t ′) |= C holds, because otherwise t |= C would hold. Therefore, [[{un} ><C Q2]] = {tx}.
Condition (2): Both

[[
{u1} ><C Q2

]]
6= /0 and [[{un} ><C {t ′}]] 6= /0 with t ′ ∈ Q2 trivially holds because

for a non empty left hand side input the left join operator never produces an empty result.
Condition (3): We prove the maximality of O(q1 ><C q2) by contradiction. Assume a list O ′ ⊃ O exists
that fulfills conditions 1 and 2 from the definition. Since Q2

∗ cannot be extended, Q1
∗ from O ′ has to

contain at least one tuple t ′ that is not in O with u 6= t ′. From the semantics of the left outer join follows that
[[{t ′} ><C Q2]] produces either a tuple x = (t ′, t ′′) with t ′′ from Q2 or a tuple x′ = (t ′,null(Q2)) depending
on the existence of an join partner for t ′ in Q2. Because t ′ 6= u we know that neither t = x nor t = x′ holds,
and, therefore condition 1 is violated. Hence, we conclude that, since no such O ′ can exists, O has to be
maximal.
Case >< :
The proof for right outer join is analog to the proof for left outer join.
Case >< :
For full outer join we have to distinguish two cases: (t 6|= C∧ t.Q1 is ε) and (t 6|= C∧ t.Q2 is ε). Both cases
can be proven analog to the proof for left join.
Case ∩:
According to the compositional semantics O(q1∩q2, t) =< {un | un ∈Q1∧u = t},{un | un ∈Q2∧u = t}>.
Condition (1): We have to prove [[{un}∩{um}]] = {tx} for some x.

[[{un}∩{um}]] = [[{tn}∩{tm}]] = {tmin(n,m)} (definition of ∩)

Condition (2): Since intersection is symmetric it suffices to show that
[[
{un}∩{u1}

]]
6= /0 which trivially

holds: [[
{un}∩{u1}

]]
= {t1} 6= /0

Condition (3): We prove the maximality of O(q1 ∩ q2, t) by contradiction. Assume a super-set O ′ of O
exists that fulfills conditions 1 and 2 from the definition. Then O ′ has to contain a tuple t ′ 6= t that is not in
O . w.l.o.g. assume t ′ ∈Q∗1. Then for condition 2 to hold [[{t ′}∩Q∗2]] 6= /0 has to be true. Either Q∗2 contains
a tuple t ′′ that is equal to t ′, then condition 2 is fulfilled, but condition 1 is no longer fulfilled because
[[Q∗1∩Q∗2]] 6= {t}. Or Q∗2 does not contain such an tuple and, therefore, [[{t ′}∩Q∗2]] = /0 would hold which
contradicts condition 2. Using the same reasoning as for the left outer join case we conclude that O has to
be maximal.

36 CHAPTER 3. CONTRIBUTION SEMANTICS

R
a b
1 2
1 3
2 3
2 5

S
c
2
3

T
d
2
5

U
e
2
5
6

Qa
a
1
2

Qb
a b c
1 2 2
1 3 3
2 3 3
2 5 ε

Qc
a sum(b)
1 5
2 8

Qd
b
2
5

Qe
c
2
3

Qf
a
1
2

qa = Π
S

a(R><b=c S) qb = R ><b=c S qc = αa,sum(b)(R)

qd = Π
S

b(R)− (S−T) qe = S− (T −U) q f = Π
S

a(R ><b=c S)

W (qa,(1)) =< {(1,2),(1,3)},{(2),(3)}>

W (qb,(2,3,3)) =< {(2,3)},{(3)}> W (qb,(2,5,ε)) =< {(2,5)},{(2),(3)}>

W (qc,(1,5)) =< {(1,2),(1,3)}>

W (qd ,(2)) =< {(2,3),(2,5)},{(3)},{(2),(5)}>

W (qe,(2)) =< {(2)},{},{}>

W (q f ,(2)) =< {(2,3),(2,5)},{(2),(3)}>

L (qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >}
L (qb,(2,3,3)) = {< (2,3),(3) >} L (qb,(2,5,ε)) = {< (2,5),(2) >,< (2,5),(3) >}
L (qc,(1,5)) = {< (1,2) >,< (1,3) >}
L (qd ,(2)) = {< (2,3),(3),(2) >,< (2,3),(3),(5) >,< (2,5),(3),(2) >,< (2,5),(3),(5) >}
L (qe,(2)) = {< (2),⊥,⊥>}
L (q f ,(2)) = {< (2,3),(2) >,< (2,5),(2) >,< (2,5),(3) >}

DD(qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >}
DD(qb,(2,3,3)) = {< (2,3),(3) >} DD(qb,(2,5,ε)) = {< (2,5),⊥>}
DD(qc,(1,5)) = {< (1,2) >,< (1,3) >}
DD(qd ,(2)) = {< (2,3),⊥,⊥>}
DD(qe,(2)) = {< (2),⊥,⊥>}
DD(q f ,(2)) = {< (2,3),(2) >,< (2,5),⊥>}

Figure 3.5: Provenance According to Lineage-CS, WL-CS, and PI-CS

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 37

3.2.2 Perm Influence Contribution Semantics
Definition 3.1 generates useful provenance information and is defined for a larger subset of relational
algebra than the original version Lineage-CS, but there are some issues with this definition that limit its
usefulness:

1. Representation: Modeling provenance as independent sets of tuples has the disadvantage that the
information about which input tuples were combined to produce a result tuple is not modeled and that
in the provenance of a set of result tuples it is not clear to which result tuple a part of the provenance
belongs too.

2. Negation: The maximization condition (2) is problematic if operations with negation or non-existence
checks including set difference and outer joins are involved.

3. Sublinks: Lineage-CS is not unique and produces false positives for queries that use sublink expres-
sions. We postpone the discussion of this problem and its solution to section 3.2.3.

Representation: As an example of the first problem consider query qa from Fig. 3.5. The tuple t = (1)
from the result of qa is derived from two tuples from relations R and S (all tuples from R and S that
were joined and have an a-attribute value of 1). Which tuples contributed to t is apparent from Lineage-
CS (W (qa, t)), but the information about which tuple from R was joined with which tuple from S is not
modeled. To record this information we change the provenance representation from a list of subsets of the
input relations to a set of witness lists. A witness list w is an element from (Qε

1× . . .×Qε
n) with Qε

i = Qi∪⊥.
Thus, a witness list w contains a tuple from each input of an operator or the special value ⊥. The value
⊥ at position i in a witness list w indicates that no tuple from the ith input relation belongs to w (and,
therefore, is useful in modeling outer joins and unions). Each witness list represents one combination of
input relation tuples that were used together to derive a tuple.

Definition 3.3 (Witness List). For an algebra operator op with inputs Q1, . . . ,Qn each element w from
(Qε

1× . . .×Qε
n) with Qε

i = Qi∪ ⊥ is called a potential witness list of op. We use w[i] to denote the ith
component (tuple) of a witness list w and w[i− j] to denote a sub-list containing only the ith till the jth
component of w.

Example 3.5. Consider the following witness list: w =< (1),(3),(5) >. For example the third
component of w is w[3] = (5) and a list containing only the last two elements of w is denoted by
w[2−3] =< (3),(5) >.

The modified version of Definition 3.1 using the witness list representation is presented below. We call
this new contribution semantics type Witness-List-CS or short WL-CS. Note that in condition 1 of the WL-
CS definition we use the evaluation of an operator over a set L of witness lists. We define this evaluation as
the evaluation of the operator over reconstructed subsets of the original input relations. The reconstructed
input relation subsets will contain all the tuples contained in the witness lists from L . The notation Qi

R is
used to denote the reconstructed subset of input relation Qi.

Definition 3.4 (Operator Evaluation over Witness Lists). The evaluation of an operator op with inputs
Q1, . . . ,Qn over a single witness list w or a set of witness lists W from the provenance of this operator is
defined as:

[[op(w)]] = [[op({w[1]}, . . . ,{w[n]})]]
[[op(W)]] =

[[
op(Q1

R, . . . ,Qn
R)

]]
Qi

R = {tn | tn ∈ Qi∧∃w ∈L : w[i] = t}

Qi
R contains all tuples with their original multiplicity that are mentioned by at least one witness list.

E.g., for a query q = R><a=b S over relations R = {(1)2} and S = {(1)}, and witness lists w1 =< (1),(1) >
and w2 =< (1),(1) > the result of q(L (q,(1,1)) would be Q = {(1,1)2}.

38 CHAPTER 3. CONTRIBUTION SEMANTICS

Definition 3.5 (Witness-List-CS (WL-CS)). For an algebra operator op with inputs Q1, . . . ,Qn, and a
tuple t ∈ op(Q1, . . . ,Qn) a set L (op, t)⊆ (Qε

1× . . .×Qε
n) with Qε

i = Qi∪ ⊥ is the set of witness lists of
t according to WL-CS if it fulfills the following conditions:

[[op(L (op, t))]] ={tx} (1)
∀w ∈L (op, t) :[[op(w)]] 6= /0 (2)

¬∃L ′ ⊆ (Qε
1× . . .×Qε

n) :L ′ ⊃L (op, t)∧DD ′ |= (1),(2) (3)

Example 3.6. Some examples for WL-CS are shown in Fig. 3.5. For instance, the provenance of qa
demonstrates that under WL-CS we preserve the information that tuples (1,2) and (2) were joined. This
fact cannot be deduced from the Lineage-CS provenance of qa. Note that besides the representation of
provenance as witness-lists WL-CS bears some similarity with Lineage-CS. For example, under Lineage-
CS the provenance of tuple (1) from query qa would be {{(1,2),(2)},{(1,3),(3)}}. Thus, for queries
like this Lineage-CS also captures which tuples were used together to derive a result tuple. In contrast
to Lineage-CS, our definition also captures this information for, e.g., queries that combine aggregation
with set projection . For instance, the Lineage-CS provenance of tuple t = (1) from the result of query
αa,sum(b)(R ><b=c S) would be a single witness, thus, the information which tuples were joined is lost in
this representation.

Negation: As an example of the problems that arise with operators that use some form of non-existence
check, consider query qb from Figure 3.5. According to Definition 3.1, the witness list of the result tuple
t = (2,5,ε) contains all tuples from relation S, but in fact none of them contributed to t. Definition 3.5 does
not solve this problem - the WL-CS provenance includes witness lists which contain the tuple (2,5) paired
with every tuple in S. Thus, both Lineage-CS and WL-CS do not capture an intuitive notion of influence
when an operator includes negation. We believe a better semantics for the provenance of tuple t = (2,5,ε)
from the result of qb would be a witness list < (2,5),⊥>. This indicates that (2,5) paired with no tuples
from S contributed to t (rather than saying that every value of S is in the provenance of this tuple). To
achieve this semantics, we extend the WL-CS provenance definition with an additional condition (4). This
condition states that we will exclude a witness list w from the provenance, if there is a ”smaller” witness
list w′ in the provenance that subsumes w. A witness list w is subsumed by a witness list w′ (denoted by
w≺ w′) iff w′ can be derived from w by replacing some input tuples from w with ⊥.

Definition 3.6 (Witness List Subsumption). Let w and w′ be two witness lists from L (q, t). We define
the subsumption relationship between w and w′ (written as w≺ w′) as follows:

w≺ w′⇔ (∀i : w[i] = w′[i]∨w′[i] =⊥)∧ (∃i : w[i] 6=⊥ ∧w′[i] =⊥)

We use the definition of subsumption between witness lists to define a CS type with the desired negation
semantics which we call Perm-Influence-CS (PI-CS).

Definition 3.7 (Perm-Influence-CS (PI-CS)). For an algebra operator op with inputs Q1, . . . ,Qn, and a
tuple t ∈ op(Q1, . . . ,Qn) a set DD(op, t)⊆ (Qε

1× . . .×Qε
n) where Qε

i = Qi∪⊥ is the set of witness lists
of t according to PI-CS if it fulfills the following conditions:

[[op(DD(op, t))]] = {tx} (1)
∀w ∈DD(op, t) :[[op(w)]] 6= /0 (2)

¬∃DD ′ ⊆ (Qε
1× . . .×Qε

n) :DD ′ ⊃DD(op, t)∧DD ′ |= (1),(2),(4) (3)
∀w,w′ ∈DD(op, t) : w≺ w′⇒ w /∈DD(op, t) (4)

Condition (4) removes superfluous witness lists from the provenance of queries with outer joins and
other forms of negation. However, it changes the semantics for the ∪ operator from that of Definition 3.1.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 39

Under Definition 3.1, the provenance of a union result tuple would be a single witness list < t1, t2 > if
the result of the union is generated from a tuple t1 from the left input and a tuple t2 from the right input.
We feel this is a bit misleading as it indicates that these two tuples used together influence t, when in fact
each, independently, influences t. PI-CS captures this intuition by defining the provenance as {< t1,⊥>
,<⊥, t2 >}. If the union semantics of Definition 3.1 is desired, we can easily achieve it with a simple
post-processing rule to “repair” the provenance for unions. We define an operation + for two witness lists
w1 and w2 that combines them into a new witness list w by taking an input tuple from w1 if w2 is ⊥ on this
input and vice versa. If both w1 and w2 are not ⊥ on at least one input, the operation is undefined. Notice
that this post-processing does not influence the provenance of outer joins as it is defined on the provenance
of a single tuple t.

∀w,w′ ∈DD(q, t) : w+w′ = w′′⇒ w′′ ∈DD(q, t)∧w,w′ /∈DD(q, t) (U)

For some cases the provenance of set difference under WL-CS represents the semantics of this operation
more accurately than PI-CS (For instance, query qd from Figure 3.5). Therefore, we implement both PI-
CS data provenance after definition 3.7, and an alternative semantics which uses the WL-CS definition for
union and set difference operators.

3.2.2.1 Transitivity

We define the PI-CS provenance of an algebra expression q containing more than one operator as recur-
sively substituting tuples in a witness list for one of the operators in q with the witness lists for this tuple.
I.e., a witness list w of an operator op1 in q contains tuples from the input.

Example 3.7. The provenance of an algebra expression q = σa=b(R×S) is computed by first computing
the provenance of q′ = σa=b([[R×S]]). Assume that W (q′,(1,2)) = w1 =< (1,2) >. (1,2) is a tuple
from the result of the cross product. We proceed by computing the provenance of w2 = (1,2) in R× S.
The provenance of this tuple is the witness list < (1),(2) >. Now (1,2) in w1 is replaced by the contents
of w2 resulting in the witness list < (1),(2) > for DD(q,(1,2)).

Definition 3.8 stated below defines the provenance of an algebra expression according to PI-CS.

Definition 3.8 (PI-CS for Algebra Expressions). The provenance according to PI-CS for an algebra
expression q = un(q1) or q = q1 bin q2 where un is an unary operator and bin is a binary operator is
defined as:

If q = un(q1):

DD(q, t) ={w =< v1, . . . ,vn >p| ∃w′ =< u >m∈DD(un(Q1), t)∧u ∈ Q1∧wp ∈DD(q1,u)}
∪{w =<⊥, . . . ,⊥>m| ∃w′ =<⊥>m∈DD(un(Q1), t)}

If q = q1 bin q2:

DD(q, t) = {w =< u1, . . . ,un,v1, . . . ,vm >q×r|w′ =< u,v >p∈DD(Q1 bin Q2, t)
∧u ∈ Q1∧w′ =< u1, . . . ,un >q∈DD(q1,u)
∧ v ∈ Q2∧w′′ =< v1, . . . ,vm >r∈DD(q2,v)}

∪{w =< u1, . . . ,un,⊥, . . . ,⊥>q|w′ =< u,⊥>p∈DD(Q1 bin Q2, t)
∧u ∈ Q1∧w′ =< u1, . . . ,un >q∈DD(q1,u)}

∪{w =<⊥, . . . ,⊥,v1, . . . ,vm >q|w′ =<⊥,v >p∈DD(Q1 bin Q2, t)
∧ v ∈ Q2∧w′′ =< v1, . . . ,vm >q∈DD(q2,v)}

∪{w =<⊥, . . . ,⊥>1|w′ =<⊥,⊥>1∈DD(Q1 bin Q2, t)}

40 CHAPTER 3. CONTRIBUTION SEMANTICS

DD(R, t) = {< u >n| un ∈ R∧u = t}
DD(σC(q1), t) = {< u >n| un ∈ Q1∧u = t}
DD(ΠA(q1), t) = {< u >n| un ∈ Q1∧u.A = t}

DD(αG,agg(q1), t) = {< u >n| un ∈ Q1∧u.G = t.G}∪{<⊥>| Q1 = /0∧ | G |= 0}
DD(q1 ><C q2, t) = {< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2}

DD(q1 ><C q2, t) =

{
{< u,⊥>n| un ∈ Q1∧u = t.Q1} if ¬t |= C
{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1>< C q2, t) =

{
{<⊥,u >n| un ∈ Q2∧u = t.Q2} if ¬t |= C
{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1 >< C q2, t) =

{< u,⊥>n| un ∈ Q1∧u = t.Q1} if ¬t |= C∧ t.Q2 is ε

{<⊥,u >n| un ∈ Q2∧u = t.Q2} if ¬t |= C∧ t.Q1 is ε

{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1∪q2, t) = {< u,⊥>n| un ∈ Q1∧u = t}∪{<⊥,u >n| un ∈ Q2∧u = t}
DD(q1∩q2, t) = {< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Q2∧ v = t}
DD(q1−q2, t) = {< u,⊥>n| un ∈ Q1∧u = t}

Figure 3.6: Compositional Semantics for PI-CS for Single Operators

Though it might appear to be quite complex, this definition simply states that the witness list of an
algebra expression q is created by replacing tuples in each witness list w of the outmost operator of q with
the content of witness lists for these tuples (or ⊥, if w contains ⊥).

3.2.2.2 Compositional Semantics

Like for Lineage-CS we present an compositional semantics for PI-CS and prove its equivalence to the
declarative semantics defined by Definition 3.7. The compositional semantics of PI-CS for each algebra
operator are shown in Figure 3.6.

Example 3.8. The PI-CS provenance DD of the queries from the running example is presented in
Figure 3.5. Note the difference between WL-CS and PI-CS for queries with outer joins and set difference
(qb,qd ,qe, and q f).

Theorem 3.2 (Equivalence of Compositional and Declarative Semantics of PI-CS). The compositional
and declarative semantics of PI-CS are equivalent.

Proof. Let I (op, t) be the witness set produced by the declarative semantics and DD(op, t) be the witness
set produced by the compositional semantics. We have to show that I (op, t) = DD(op, t) holds. This
proposition can be proven by showing that DD(op, t) fulfills conditions 1 to 4 from definition 3.7 and,
thus, is indeed equal to I (op, t).
Case q = R:
Obvious from the definition of R.
Case q = σC(q1):
Condition (1): Because u = t and t is in the result of q we know that t |= C. Therefore, [[σC(un)]] = {tn}
and condition 1 holds.
Condition (2): Using the same reasoning as for condition 1 we deduce that [[σc({u})]] = {u} 6= /0.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 41

Condition (3): We prove that DD(q, t) is maximal by contradiction. Assume a set O ⊃ DD exists that
fulfills conditions 1, 2, and 4. Then O contains a witness w =< t ′ > with t ′ 6= t. If t ′ |= C then O does not
fulfill condition 1. Else t ′ 6|= C holds. Hence, [[σC({t ′})]] = /0 and condition 2 is not fulfilled.
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q = ΠS/B

A(q1):
Condition (1): Because u.A = t we conclude that

[[
ΠS

A({un})
]]

= {t1} and
[[

ΠB
A({un})

]]
= {tn} holds.

Thus, condition 1 is fulfilled.
Condition (2): Using the same reasoning as in the proof of condition 1 we conclude that

[[
ΠS/B

A({u})
]]

=
{t} 6= /0.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< t ′ > with t ′ 6∈ DD . From the compositional semantics of Π we know that t ′.A 6= t.A, because
otherwise t ′ would be contained in DD . Therefore,

[[
ΠS/B

A({t ′})
]]
6= {tx} and condition 1 is not fulfilled

by O .
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case αG,agg(q1):
Condition (1): Assume

[[
αG,agg(Q1

R)
]]
6= {t}. Then

[[
αG,agg(Q1

R)
]]

contains a tuple t ′ 6= t. We know
t ′.G = t.G because of the definition of aggregation and the compositional semantics of aggregation. There-
fore, t.agg 6= t ′.agg holds. At least for one aggregation function aggi from agg the tuples t and t ′ contain a
different result: t.aggi 6= t ′.aggi. But from

t.aggi = aggi(ΠB
Bi(σG=t.G(q1))) = aggi(ΠB

Bi({u | u.G = t.G∧u ∈ Q1})) = t ′.aggi

follows t = t ′.
Condition (2): We have to distinguish two cases. If aggregation is used without grouping, we know from the
definition of the aggregation operator that the result of this operator is never the empty set. Thus, condition
2 holds. If aggregation is used with grouping then the compositional semantics generates witness lists that
have the same group-by values as one of the output tuples of the aggregation. Evaluating the aggregation
over one of this witness lists generates a single output tuple with this group-by value. Therefore, condition
2 holds for this case too.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1, 2, and 4. Then O contains a witness
list w =< t ′ > with t ′ 6∈ DD . If t ′.G 6= t ′′.G for t ′′ ∈ DD holds, then condition 1 is not fulfilled, because
t ′ belongs to another group than t ′′ which by definition belongs to the same group as t. If t ′ belongs to the
same group as t ′′ then it would be included in DD .
Condition (4): No witness list w from DD contains ⊥ or the DD contains only a single witness list.
Therefore, condition 4 trivially holds.
Case q1 ><C q2:
Condition (1): From the definition of the compositional semantics of PI-CS provenance for the join operator
we know that t = (u,v) holds for each witness list w =< u,v > in DD . Applying the definition of the join
operator we get [[{u}><C {v}]] = {t} and according to the semantics attached to computing an operator
over a set of witnesses: [[op(DD)]] = {tn×m}.
Condition (2): From the proof of condition 1 we know that [[{u}><C {v}]] = {t} 6= /0 and, therefore,
condition 2 holds.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< u′,v′ >6∈DD . We know that (u′,v′) 6= t. Either (u′,v′) |= C which breaks condition 1 or (u′,v′) 6|= C
which breaks condition 2.
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q1 ><q2:
We present only the proof for the case t 6|= C because if t |= C holds then the behavior and provenance of
the left outer join is the same as for the inner join.
Condition (1): For each witness list w =< u,⊥>∈ DD : [[{u} ><C /0]] = {t} . Therefore, [[op(DD)]] =
{tx} and condition 1 holds.
Condition (2): The left join operator never produces the empty set for an non empty left input. Thus,
because each witness list in DD is of the form < u,⊥> we can deduce that condition 2 holds.

42 CHAPTER 3. CONTRIBUTION SEMANTICS

Condition (3): We prove the maximality of DD by contradiction. Assume a set O ⊃DD exists that fulfills
conditions 1, 2, and 4 from the PI-CS definition. Then O contains a witness list w′ =< u′,v′ >6∈ DD .
u′ = t.Q1 has to hold because else condition 1 would not be fulfilled. It follows that v′ 6=⊥, because
< u′,⊥>∈DD . Clearly, w′ ≺< u′,⊥>, which breaks condition 4.
Condition (4): Each witness in DD is of the form < u,⊥>. Thus, for two witness lists w and w′ the
condition w≺ w′ can never be fulfilled. If follows that condition 4 holds.
Case q1>< q2:
The proof for right outer join is analog to the proof for left outer join.
Case q1 >< q2:
For full outer join we have to distinguish two cases: (t 6|= C∧ t.Q1 is ε) and (t 6|= C∧ t.Q2 is ε). Both cases
can be proven analog to the proof for left outer join.
Case q1∪q2:
Condition (1): Each witness list w from DD is either < u,⊥> or <⊥,u > with u = t. Applying the
definition of the union operator we get [[{u}∪ /0]] = [[/0∪{u}]] = {t}. Since [[op(DD)]] is defined as the
applying op to the union of the input to [[op(w)]] for w ∈DD , condition 1 holds.
Condition (2): Using the fact [[{u}∪ /0]] = [[/0∪{u}]] = {t} established in the proof of condition 1 we
conclude that condition 2 is fulfilled.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
list w =< u′,v′ > with w 6∈ DD . If either u′ or v′ are neither ⊥ nor equal to t, then condition 1 is not
fulfilled. If only one of u′ and v′ is equal to ⊥ then w would be in DD . For the remaining two cases
(w =<⊥,⊥> and w =< t, t >) either condition 2 or condition 4 is not fulfilled.
Condition (4): All witness lists from DD are either of the form < u,⊥> or <⊥,u >. Thus, there are no
two witness lists w and w′ from DD for which the precondition w ≺ w′ from condition 4 is fulfilled and
condition 4 holds.
Case q1∩q2:
Condition (1): Each witness list w from DD is of the form w =< u,v > with u = v = t. Since [[{t}∩{t}]] =
{t} condition 1 holds.
Condition (2): Since intersection is symmetric it suffices to show that

[[
{un}∩{u1}

]]
6= /0 which trivially

holds.
Condition (3): We prove the maximality of DD by contradiction. Assume a super-set O of DD exists that
fulfills conditions 1,2 and 4 from the definition. Then O has to contain a witness list that includes a tuple
t ′ 6= t that is not in DD . w.l.o.g. assume t ′ ∈ Q1

R. Then for condition 2 to hold
[[
{t ′}∩Q2

R]]
6= /0 has

to be true. Either Q2
R contains a tuple t ′′ that is equal to t ′, then condition 2 is fulfilled, but condition 1 is

no longer fulfilled because
[[

Q1
R∩Q2

R]]
6= {tx}. Or Q2

R does not contain such an tuple and, therefore,[[
{t ′}∩Q2

R]]
= /0 would hold which contradicts condition 2. Hence, DD is maximal.

Condition (4): No witness list w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q1−q2:
Condition (1): Each witness list in DD is of the form < u,⊥>. Since [[{u}− /0]] = {u} condition 1 holds.
Condition (2): Follows from the proof of condition 1.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< u′,v′ > with w 6∈DD . u′ = t has to hold otherwise condition 1 would break. If v′ =⊥ then w would
be in DD . Else, a w′ =< t,⊥>∈DD subsumes w which would break condition 4.
Condition (4): Every witness list in DD is of the form < u,⊥>. Thus, there are no two witness lists w and
w′ from DD for which the precondition w≺ w′ from condition 4 is fulfilled and condition 4 holds.

3.2.3 PI-CS for Sublink Expressions

Recall that the algebra presented in section 3.1 has constructs that model sublink queries in SQL. For
instance, the sublink expression e IN qsub. We now discuss the provenance of such constructs according to
PI-CS. This discussion is quite complex, so we proceed one step at a time by first limiting the discussion
to single sublink expressions used in the condition of a selection operator and then iteratively extend the
scope towards sublinks in other operators, multiple sublinks, nested sublinks, and correlated sublinks. We
will demonstrate that PI-CS does not naturally extend to these algebra constructs, but needs to be extended

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 43

to deal properly with sublinks. Note that the problems with sublinks are not caused by the representation
of PI-CS. The same problems arises for Lineage-CS, the CS type from which PI-CS is derived from.

3.2.3.1 Single Sublinks in Selection Conditions

At first we discuss the provenance of selection operators containing only a single uncorrelated sublink
according to PI-CS. For a given query q of the form σC(q1) that contains a sublink expression Csub with
a sublink query qsub in condition C, we are trying to find a set of witness lists with tuples from Q1 and
Qsub that fulfill the conditions of Definition 3.7 and, thus, form the provenance of q. Some preliminaries
are needed to be able to apply Definition 3.7 to our algebra extended with sublinks. Note that the value of
a sublink expression is constant for a fixed tuple from the operator’s regular input and fixed tuples of all
correlated relations, if the sublink is correlated. According to Definition 3.7, a set of witness lists DD is
the provenance of a tuple t ∈ Q iff DD produces t (condition 1), each witness list from DD produces not
the empty set (condition 2), DD is the maximal set of witness lists with these properties (condition 3), and
DD does not contain any subsumed witness lists.

From the definition of the selection operator we know that if a tuple t is in the result of the operator,
t is also in the input and t fulfills the condition C (denoted by t |= C). A sublink expression Csub can play
different roles in the condition C of a selection according to a regular input tuple t. One possible role is that
condition C is only fulfilled, iff Csub is true. The second possibility is that C is true iff Csub is false. The last
role is that C is true independent of the result of Csub

5. We refer to these three influence roles as reqtrue,
reqfalse and ind. Note that the inclusion of tuples from Qsub in witness lists can depend on the influence
role of the sublink. Therefore, we consider the provenance of each sublink type for each influence role
separately.

Definition 3.9 (Sublink Influence Roles). Let C(t) for an condition C be the result of evaluating C for
a regular input tuple t. The influence role R(q,Csub, t) of a sublink expression Csub used in a selection
condition C of an algebra expression of the form q = σC(q1) according to an result tuple t of q is defined
as:

R(q,Csub, t) =

reqtrue if Csub(t)⇔C(t)
req f alse if ¬Csub(t)⇔C(t)
ind else

Intuitively, the influence role definition states that a sublink expression is reqtrue/reqfalse if we cannot
change its result without changing the result of evaluating C.

Example 3.9. As an example for the influence roles consider query q = σa IN (S)∨a=3(R) over relations
R = {(1),(3)} and S = {(1)}. The influence role of Csub = a IN (S) for input tuple t = (1) is reqtrue,
because only if Csub evaluates to true then C evaluates to true. For result tuple t ′ = (3) the influence role
of Csub is ind, because a = 3 is fulfilled and, therefore, C evaluates to true independent of the result of
Csub.

ANY-Sublink Expressions in Selections

The influence roles enable us to derive the provenance for ANY-sublinks according to PI-CS, by deter-
mining for each influence role which tuples from Qsub have to be included in witness lists for conditions 1
to 4 of definition 3.7 to be fulfilled. First, we introduce two auxiliary sets that will simplify the derivation of
the provenance of ANY- and ALL-sublinks: Qsub

true(t) and Qsub
f alse(t). Both sets are parameterized by a tu-

ple t from the input of the selection the sublink expression is used in6. For an ANY-sublink (e op ANY qsub)

5The fourth role is that C is false independent of the the result of Csub. We do not consider this role, because if C is false then t is
not in the result of the selection.

6If made clear from the context parameter t is omitted.

44 CHAPTER 3. CONTRIBUTION SEMANTICS

ANY-Sublink Expressions

Let q = σC(q1) with C containing an uncorrelated ANY-sublink expression Csub.

DD(q, t) =

{
{< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Qsub

true(t)} if R(q,Csub, t) = reqtrue
{< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Qsub} else

ALL-Sublink Expressions

Let q = σC(q1) with C containing an uncorrelated ALL-sublink expression Csub.

DD(q, t) =

{
{< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Qsub

f alse(t)} if R(q,Csub, t) = req f alse
{< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Qsub} else

EXISTS- or Scalar-Sublink Expressions

Let q = σC(q1) with C containing an uncorrelated EXISTS- or scalar-sublink expression Csub.

DD(q, t) = {< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Qsub}

Figure 3.7: Compositional Semantics for Single Sublink Expressions in Selections

or ALL-sublink (e op ALL qsub) these auxiliary sets are defined as:

Qsub
true(t) = {t ′ | t ′ ∈ Qsub∧ t.e op t ′}

Qsub
f alse(t) = {t ′ | t ′ ∈ Qsub∧¬(t.e op t ′)}

Let us state some observations about the behavior of ANY-sublink expressions. An ANY-sublink ex-
pression Csub evaluates to true if the comparison condition e op t ′ is fulfilled for at least one tuple t ′ from
Qsub. Thus, if Csub is true for a regular input tuple t, then Csub is true for all subsets of Qsub that contain at
least one tuple from Qsub

true(t). If Csub is false for a regular input tuple t, then Csub is false for all subsets
of Qsub, because there are no tuples in Qsub that fulfill e op t ′. These facts can be used to derive the prove-
nance of an ANY-sublink. If the sublink expression is reqtrue, Qsub makes Csub true and, therefore, having
a witness list for each tuple from Qsub in DD fulfills condition 1 of the PI-CS definition, but condition 2 is
only fulfilled for witness lists that contain a tuple from Qsub

true(t). Thus, DD contains all witness lists of
the form < t, t ′ > with t ′ ∈ Qsub

true(t). If the sublink expression is reqfalse or ind, having a witness list for
each tuple from Qsub is the provenance of t, because conditions 1 to 4 are fulfilled for this set. Figure 3.7
presents the compositional semantics for PI-CS for single sublinks.

ALL-Sublink Expressions in Selections
The provenance for ALL-sublinks is derived analogously to the provenance for ANY-sublinks, except that
an ALL-sublink uses universal quantification instead of existential quantification. An ALL-sublink evaluates
to true if the comparison condition is fulfilled for all tuples from Qsub. If Csub is true then Csub(Q) is true
for all Q ⊆ Qsub. It follows that Qsub fulfills conditions 1 and 2, if Csub is reqtrue or ind. If Csub is false
then Qsub contains at least one tuple t ′ that does not fulfill condition t.e op t ′, but is allowed to contain
tuples that fulfill the condition. Qsub fulfills condition 1 if Csub is reqfalse, but only tuples from Qsub

f alse

fulfill condition 2. It follows that Qsub
R = Qsub

f alse. Recall that an ALL-sublink expression evaluates to
true if Qsub = /0. This would cause a witness list w =< t,⊥> to belong to the provenance of such a sublink
according to PI-CS. In consequence, because of condition 4 of Definition 3.7, all witness lists of the form
< t,v > with v 6=⊥ would be removed from the provenance. To avoid this unwanted behavior we modify
condition 4 to restrict its impact to the parts of a witness list that correspond to the regular inputs of an
algebra operator.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 45

R
a b
1 1
2 1
3 2

S
c d
1 3
2 4
4 5

Qa
a b
1 1
2 1

Qb
b c
4 5

Qc
a b
2 1
3 2

qa = σa = ANY (Πc(S))(R) qb = σc > ALL (Πa(R))(S) qc = σ(a=3)∨¬(a < ALL (σc6=1(Πc(S)))(R)

DD(qa,(1,1)) = {< (1,1),(1,3) >} DD(qa,(2,1)) = {< (2,1),(2,4) >}
DD(qb,(4,5)) = {< (1,1),(4,5) >,< (2,1),(4,5) >,< (3,2),(4,5) >}
DD(qc,(2,1)) = {< (2,1),(2,4) >} DD(qc,(3,2)) = {< (3,2),(2,4) >,< (3,2),(4,5) >}

Figure 3.8: Examples for the Provenance of Single Uncorrelated Sublink Expressions

Definition 3.10 (Modified PI-CS). For an algebra operator op with regular inputs Q1, . . . ,Qn and sub-
link expressions Csub1 , . . . ,Csubm and a tuple t ∈ op(Q1, . . . ,Qsubm) a set DD(op, t)⊆ (Qε

1× . . .×Qsubm
ε)

is the set of witness lists of t according to PI-CS if it fulfills the following conditions:

[[op(DD(op, t))]] = {t} (1)
∀w ∈DD(op, t) : [[op(w)]] 6= /0 (2)

¬∃DD ′ ⊆ (Qε
1× . . .×Qsubm

ε) : DD ′ ⊃DD(op, t)∧DD ′ |= (1),(2),(4) (3)
∀w,w′ ∈DD(op, t) : w≺n w′⇒ w /∈DD(op, t) (4)

with

w≺n w′ := w[1−n]≺ w′[1−n]∧∀i ∈ {1, . . . ,m} : w[n+ i] = w′[n+ i]

EXISTS-Sublink Expressions in Selections

For the provenance derivation of EXISTS-sublinks we can use the fact that an EXISTS sublink evaluates
to true iff Qsub produces a result with at least one tuple. Thus, Csub(Q) is true if Q is a non-empty subset of
Qsub. If Csub is reqtrue Qsub fulfills condition 1 and condition 2. If Csub is reqfalse then Qsub = /0 and, thus,
Qsub fulfills conditions 1 and 2. In summary, Qsub

R = Qsub independently of the influence role.

Scalar Sublink Expressions in Selections

The provenance derivation for scalar sublinks is trivial, because a scalar sublink either produces a single
result tuple or the empty set. In both cases condition 1 is fulfilled for Qsub

R = Qsub. Condition 2 and 3
follows from condition 1, because Qsub contains at most one tuple. Therefore, Qsub

R = Qsub.

Example 3.10. The provenance of three example algebra expressions is given in Figure 3.8. For qa, the
sublink expression Csub = (a = ANY Πc(S)) is reqtrue for all input tuples t from R and for each t, only
one tuple t ′ from S is in (Πc(S))true(t). In query qb the ALL-sublink is also reqtrue. For tuple (4,5),
the only tuple from S that fulfills condition C, all tuples from relation R are included in the provenance
of (4,5). In Query qc the sublink expression is reqfalse for input tuple (2,1) and reqind for input tuple
(3,2).

46 CHAPTER 3. CONTRIBUTION SEMANTICS

We now formally prove that the compositional semantics presented in this section are correct.

Theorem 3.3 (Compositional Semantics of Single Uncorrelated Sublinks in Selections). The compo-
sitional semantics of PI-CS for single uncorrelated sublinks in selection as presented in Figure 3.7 is
equivalent to the declarative semantics as defined by definition 3.10.

Proof.

ANY-sublinks

For a selection σC(q) with a sublink Csub in condition C we have to show that DD generated by the
compositional semantics is the set of witness lists fulfilling conditions 1 to 4. Let C(Q) be condition C with
relation Q substituted for Qsub. We use CR as a shortcut for C(Qsub

R). Let Csub(t) be the sublink Csub with
{t} substituted for Qsub.
Case Csub is reqtrue:
Condition 1: We have to show that

[[
σC(Qsub

R)(Q1
R)

]]
= {tx} holds. From the compositional semantics

we can deduce that Qsub
R = Qsub

true(t). Thus, proving
[[

σCR(Q1
R)

]]
= {tx} is equivalent to proving[[

CR
]]

= true, because t = u for u ∈Q1
R is given and the semantics of the selection operator requires C to

be true for a tuple to be in the result of the selection. From the definition of Qsub
true(t) and the definition of

the ANY-sublink (existential quantification) we deduce that [[Csub(t ′)]] is true for every subset of Qsub that
contains at least one tuple t ′ ∈ Qsub

true(t) and, hence, also for Qsub
R. From Csub is reqtrue we can deduce

that CR is fulfilled.
Condition 2: Let w be a witness list from DD . Then w is of the form < u,v > with u = t and v∈Qsub

true(t).
From the definition of Qsub

true(t) we know that C(v) is fulfilled if evaluated for a regular input tuple t. Thus,[[
σC(v)({tn})

]]
= {tn} 6= /0 holds.

Condition 3: Assume a superset O of DD exists that fulfills conditions 1,2, and 4. We know that O has to
contain a witness list w =< u,v > with either u 6= t or v 6∈ Qsub

true(t). In the first case either condition 1
would break, if

[[
CR

]]
is true for u or otherwise condition 2 is not fulfilled, because

[[
σC(v)({u})

]]
= /0.

In the second case condition 2 breaks, because from the definition of Qsub
true we know the [[C(v)]] is false.

Condition 4: All witness lists in DD are of the form < t,v > with v ∈ Qsub
true(t). Therefore, there are no

witness lists w and w′ that fulfill the precondition w≺ w′ and condition 4 is fulfilled.
Case Csub is reqfalse or ind:
Condition 1: Using the same argument as for the reqtrue case we conclude that condition 1 holds.
Condition 2: Let w be a witness list from DD . Then w if of the form < u,v > with u = t and v ∈ Qsub. If
R(q,Csub, t) = req f alse then [[Csub(v)]] is false and [[C(v)]] is true. Therefore,

[[
σC(v)(u)

]]
= {t} 6= /0. If

R(q,Csub, t) = ind then [[C(t ′)]] is true for all t ′ from Qsub and
[[

σC(v)(u)
]]

= {t} 6= /0 holds.
Condition 3: Assume a superset O of DD exists that fulfills conditions 1,2, and 4. We know that O has
to contain a witness list w =< u,v > with u 6= t (otherwise w would be in DD). If C is true for u then
condition 1 breaks. If C is false then condition 2 breaks, because

[[
σC(v)(u)

]]
= /0.

Condition 4: Since Qsub ⊇ Qsub
true(t) we can apply the same reasoning as for the reqtrue case.

ALL-, EXISTS-, and scalar sublinks

We now prove the correctness of the compositional semantics for ALL-, EXISTS- and scalar sublinks.
Case Csub is reqtrue or ind: We have to prove that Qsub

R = Qsub holds by proving that the witness list
O(op, t) generated by the compositional semantics fulfills conditions 1 to 4 from definition 3.10. The
correctness of Q1

R is given by the compositional semantics of selection.
Condition 1: We have to show

[[
σCR(Q1

R)
]]

= {tx}, which is equivalent to showing that CR evaluates to
true as for ANY-sublinks. For all three types of sublink expressions we are treating here Qsub

R = Qsub.
Thus, CR⇔C and C evaluates to true, because otherwise t would not be in the result of the selection.
Condition 2: Let w be a witness list from DD . Then w is of the form < u,v > with u = t and v ∈Qsub. For
EXISTS- and scalar-sublinks C(v)⇔C trivially holds. For ALL-sublinks every tuple t ′ from Qsub fulfills
condition e(t) op t ′. It follows that C(v)⇔C.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 47

R
a
1
2
...

100

S
b
1
5

U
c
5

Q
c
5

q = σC1∨C2(U) C1 = (c = ANY R) C2 = (c > ALL S)

Solution 1

W (q, t) =< {(5)},{(1),(5)},{(5)}>

DD(q, t) = {< (5),(1),(5) >,< (5),(5),(5) >}

Solution 2

W (q, t) =< {(1), . . . ,(100)},{(1)},{(5)}>

DD(q, t) = {< (1),(1),(5) >,. . . ,< (100),(1),(5) >}

Figure 3.9: Ambiguity of Lineage-CS and PI-CS for Multiple Sublinks

Condition 3: Assume a superset O of DD exists that fulfills conditions 1,2, and 4. We know that O has
to contain a witness list w =< u,v > with u 6= t. If C(v) evaluates to true for u then condition 1 is broken.
Otherwise condition 2 is not fulfilled, because

[[
σC(v)(u)

]]
= /0.

Condition 4: All witness lists in DD are of the form < t,v > with v ∈ Qsub. Therefore, there are no two
witness lists w and w′ from DD that fulfill the precondition w≺n w′ and condition 4 holds.

Case Csub is reqfalse:

Condition 1: For EXISTS- and scalar-sublinks Qsub
R = Qsub holds. As demonstrated for the reqtrue case

it follows that condition 1 holds. For ALL-sublinks we have to show that C⇔C(Qsub
f alse(t)). An ALL-

sublink is false if the condition e op t ′ it not fulfilled for at least one tuple from Qsub. From the definition
of Qsub

f alse(t) we know that this set contains only tuples for which this condition is not fulfilled.

Condition 2: For EXISTS- and scalar-sublinks the same argument as for the reqtrue case applies. For
ALL-sublinks we know from Qsub

R = Qsub
f alse(t) that each witness list in DD(q, t) is of form < t,v >

with e(t) op v evaluates to false. From Csub is reqfalse follows that
[[

σC(v)({t})
]]

= {t} 6= /0.

Condition 3: Since Qsub
R = Qsub holds for EXISTS- and scalar-sublink we only have to prove condition 3

for ALL-sublinks. Assume a superset O of DD exists that fulfills conditions 1,2, and 4. We know that O
has to contain a witness list w =< u,v > with either u 6= t or v 6∈ Qsub

f alse. For the first case if C(u) is true
then condition 1 breaks. If C(u) is false then condition 2 breaks, because

[[
σC(v)(u)

]]
= /0. For the second

case we can deduce from the definition of ALL-sublinks and Qsub
f alse that [[C(v)]] = true and, therefore,

condition 2 is not fulfilled.

Condition 4: Proven using the same arguments as for the reqtrue case.

3.2.3.2 Multiple Sublinks Expressions

In this section we extend the results established for single uncorrelated sublinks to queries with multiple
uncorrelated sublinks and show that if a selection condition contains more than one sublink the provenance
according to PI-CS is not unique anymore. We also demonstrate that the same applies for Lineage-CS.
Hence, this problem is not specific to our contribution semantics definition. To solve this problem, the
definition of PI-CS is extended to produce meaningful and unique results for selections with multiple
sublinks. The extended definition has the additional advantage that tuples are excluded from the provenance
of single sublink queries if they do not contribute to the result.

48 CHAPTER 3. CONTRIBUTION SEMANTICS

Example 3.11. As an example to illustrate this problem consider the query and database instance pre-
sented in Figure 3.9. For the tuple t = (5) from U the sub-condition C1 of the selection condition C
evaluates to true and the sub-condition C2 evaluates to false. The problem of Lineage-CS with this ex-
ample is that there are no unique sets R∗ and S∗ that fulfill conditions 1 to 3, because a solution that
maximizes one set requires that the other set is not maximized. A similar argument applies for PI-CS.
If a witness list contains tuple (5) from relation S, then only tuple (5) from relation R can be used in a
witness list. Otherwise if tuples (1) to (100) from relation R are included in the witness lists, then tuple
(5) from relation S can not be used in any witness list without breaking conditions 1 to 4. This problem
arises because both CS definitions only require the provenance to produce the same result tuples as the
complete input relations, but not to produce the same results for sublink expressions in the query. This
leads to the ambiguity examined in the example. Solution 2 fulfills the conditions of the CS definitions,
but the results of evaluating C1 and C2 are different from the evaluation results of C1 and C2 produced by
the original query.

Intuitively, the provenance of a tuple t according to a sublink query Qsub should include only tuples
that produce the same result of the sublink Csub as in the original query, because other tuples would only
have contributed if a query from another sublink produced a different result. This behavior can be achieved
if the PI-CS definition is extended with an additional condition that checks that the provenance causes all
sublink expressions to evaluate to the same value as for the complete input relations. A side-effect of this
restriction is that the ind influence role does not exist anymore, because it allows the provenance to produce
a different result for a sublink expression.

To be able to define the extension for PI-CS we introduce some notational preliminaries. Recall that
w[i− j] denotes a sub sequence of a witness list w. We define a subset of DD using this notations:

DD(< t1, . . . , tn >) = {w | w ∈DD ∧w[1−n] =< t1, . . . , tn >}

DD(< t1, . . . , tn >) is used to extract all witness lists that contain a certain combination of regular input
relation tuples. The modified definition for PI-CS is presented below.

Definition 3.11 (Sublink-Safe PI-CS). For an algebra operator op with regular inputs Q1, . . . ,Qn, sub-
link expressions Csub1 , . . . ,Csubm , and a tuple t ∈ op(Q1, . . . ,Qsubm) a set DD(op, t)⊆ (Qε

1× . . .×Qsubm
ε)

is the set of witness lists of t according to PI-CS if it fulfills the following conditions:

[[op(DD(op, t))]] = {tx} (1)
∀w ∈DD(op, t) : [[op(w)]] 6= /0 (2)
¬∃DD ′ ⊆ (Qε

1× . . .×Qsubm
ε) : DD ′ ⊃DD(op, t)∧DD ′ |= (1),(2),(4),(5) (3)

∀w,w′ ∈DD(op, t) : w≺n w′⇒ w /∈DD(op, t) (4)

∀O = DD(< t1∗, . . . , tn∗ >) : ti∗ ∈ Qi
R : ∀ j ∈ {1, . . . ,m} : ∀w ∈O :[[

Csub j(Qsub j ,< t1∗, . . . , tn∗ >)
]]

=
[[

Csub j(w[n+ j],< t1∗, . . . , tn∗ >)
]] (5)

The extended PI-CS definition has the effect that the provenance of an operator with multiple sublinks is
unique and the provenance for each sublink in a query is the same as for queries with a single uncorrelated
sublink (Except that only the reqtrue and reqfalse influence roles apply). Condition 5 is not required
for single sublink queries. However, it should be applied to these queries too, because otherwise the
provenance can contain tuples that do not contribute to the result of the sublink query (false positives).

Example 3.12. Consider the query σa=2∨a = ANY S(R) over the relations from Figure 3.8. For the result
tuple t = (2,1) the sublink expression evaluates to true and has influence role ind. Therefore, the prove-
nance of the sublink query is SR = S, but only the tuple t ′ = (2,4) from S contributed to the result of the
sublink.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 49

As mentioned above, definition 3.11 generates the same provenance as the original definitions of PI-CS
if applied to queries with no sublink expression or only a single sublink expression. For queries with more
than one sublink expression the provenance of each sublink query is derived using the same compositional
semantics as for the single sublink case. This means the provenance of each sublink expression can be
evaluated independently of the existence of other sublink expressions in the same query. The following
theorem formalizes this proposition:

Theorem 3.4 (Compositional Semantics according to Definition 3.11). The compositional semantics
of PI-CS according to definition 3.11 coincide with the compositional semantics after definition 3.11
for all operators without sublinks and selections with at most one uncorrelated sublink, if influence
role ind is replaced by reqtrue and reqfalse depending on the actual result of evaluating the sublink
expression. For an operator with more than one sublink expression the provenance of each sublink
expression is independent of the existence of the other sublink expressions and can be generated using
the compositional semantics defined for single sublink expressions.

Proof.
First we prove that the sublink-safe definition of PI-CS does not alter the provenance of operators without
sublink expressions and for selections with at most one sublink expressions. The provenance of operators
without sublink expressions is not influenced by the new conditions of definition 3.11, because these con-
dition only applies to sublink expressions. We prove the equivalence of the definitions for selections with
one uncorrelated sublink together with the claim that the compositional semantics are the same for selec-
tions with an arbitrary number of sublink expressions according to the new definitions and for one sublink
according to the original definitions. This claim is proven by showing that the provenance generated by the
compositional semantics for single sublinks fulfills the conditions of definition 3.11. Let t be a tuple from
the output of a selection σC(q1) with a condition C that contains n sublink expressions Csub1 , . . . , Csubn .
For a single input tuple from Q1 the results of the sublink expressions are fixed and each Csubi(Qsubi

R) is
required to produce this fixed result. Let Qsubi

′ be the provenance of a sublink derived using the composi-
tional semantics for single sublinks. Obviously, each of these sets fulfills condition 5 from Definition 3.11.
It remains to show that these sets fulfill conditions 1 to 4 from definition 3.11.
Condition 1: We know that [[C′]] =

[[
C(Qsub1

′, . . . ,Qsubn
′)
]]

is fulfilled, because t is in the result of the
selection and each Csubi(Qsubi

′) is required to evaluate to the same result as Csubi(Qsubi). Therefore,[[
σC′(Q1

R)
]]

= {tx} holds.
Condition 2: Let w =< t, t1, . . . , tn > be a witness list from DD . We have to prove that [[σC′({t})]] 6= /0 for
C′ = C(t1, . . . , tn). This is the case if for each sublink

[[
Csubi(Qsubi)

]]
=

[[
Csubi({ti})

]]
holds, because then

[[C′]] = [[C]] would hold. The result of a sublink expression is independent of the results of other sublinks
in the expression in C. Therefore, we can deduce from the proof for single sublinks that Csubi(ti) evaluates
to the same result as Csubi(Qsubi). We follow that [[σC′({t})]] = {t} 6= /0 holds.
Condition 3: Assume a set O ⊃ DD fulfills conditions 1,2,4 and 5 from the definition. Then O contains
at least one witness list w =< u, t1, . . . , tn >6∈ DD . Either u 6= t for which we know from the proofs for
single sublinks that it would break one of the condition or w.l.o.g. ti 6∈Qsubi

R. It follows that
[[

Csubi(ti)
]]
6=[[

Csubi

]]
which breaks condition 5.

Condition 4: Condition 4 was explicitly redefined to not include sublink expressions.

3.2.3.3 Sublink Expressions in Projections

A sublink expression used in a projection list A appears in some projection expression a from the list.
Given some input tuple t of the projection, a evaluates to a fixed value v instead of a boolean value as for a
selection condition. Similar to selection the sublink expression evaluates to a fixed result for a given regular
input tuple of the projection it is used in. To be able to derive the compositional semantics for projections
containing sublinks we have to distinguish two cases:

1. For the duplicate removing version of projection different tuples from the regular input of the oper-
ator can produce the same result tuple. The set of tuples from the regular input Q1 that produce a

50 CHAPTER 3. CONTRIBUTION SEMANTICS

R
a
1
2

S
b
1
3

Q1
c

true

Q2
c

true
true

q1 = Π
S

C1∨C2→c(R) q2 = Π
B

C1∨C2→c(R) C1 = (a = ANY S) C2 = (a+1 = ANY S)

DD(q1/2,(true)) = {< (1),(1),(1) >,< (1),(1),(3) >,< (2),(1),(3) >,< (2),(3),(3) >}

Figure 3.10: Example for Sublinks in Projection

tuple t from the output of the projection is the provenance Q1
R of t according to Q1 . Let w.l.o.g.

Q1
R = {t1, . . . , tn}. We know that for every ti ∈Q1

R, the projection expression e in which Csub is used
in produces the same result, because otherwise Q1

R would not fulfill condition 5 of definition 3.11.
For two tuples ti and t j from Q1

R, [[Csub]] and the sets Qsub
true and Qsub

f alse can be different. For
each tuple ti from Q1

R, the results established for duplicate preserving projection can be applied.

2. For the duplicate preserving version of projection the same reasoning applies, because two regular
input tuples may be projected on the same attribute values generating a result tuple t with a multi-
plicity greater than one. This tuple t will contain both regular input tuples in its provenance (see the
discussion of derivation pool vs. derivation set in section 3.2.1).

As we will demonstrate the sublink-safe definition of PI-CS extends naturally to projection.

Example 3.13. Figure 3.10 presents an example for sublinks in projection. Both example queries q1 and
q2 project their input on a tuple (true). For regular input tuple (1) from relation R sublink C1 evaluates
to true and sublink C2 evaluates to false. The opposite holds for regular input tuple (3). Therefore, the
PI-CS provenance of both q1 and q2 contains two witness lists < (1),(1),(1) > and < (1),(1),(3) > for
regular input tuple (1) and two witness lists < (2),(1),(3) > and < (2),(3),(3) > for regular input tuple
(3).

For a projection q = ΠS/B
A(q1) we define an auxiliary set

⋃
DD(q, t) that will be used in the derivation

of the provenance of projection sublinks. Intuitively,
⋃

DD(q, t) is the combination of the PI-CS prove-
nance if computed for each single regular input tuple that is projected on t. The formal definition is given
below.

⋃
DD(q, t) =

⋃
u:u∈Q1∧ΠA({u})={t}

DD(q, t,u)

DD(q, t,u) = DD(ΠS/B
A({u}), t)

We now prove that the provenance of a result tuple t of a projection q = ΠS/B
A(q1) that contains

uncorrelated sublinks is the union of the provenance derived for each regular input tuple t ′ ∈ Q1 that is
projected on t, if the provenance of each t ′ is derived using the compositional semantics for sublinks in
selections.

Theorem 3.5 (Compositional Semantics of Uncorrelated Sublinks in Projection). Let q = ΠS/B
A(q1) be

a projection that contains sublinks Csub1 , . . . ,Csubm in A. The provenance of a result tuple t according to
PI-CS is:

DD(q, t) = {w =< u,v1, . . . ,vm >| w ∈
⋃

DD(q, t)}

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 51

Proof.
For EXISTS- and scalar-sublinks, Qsubi

R = Qsubi holds for every witness list set DD(q, t,u) with u ∈ Q1
R

and, thus, Qsubi
R = Qsubi also holds for

⋃
DD . It follows that conditions 1 to 5 are fulfilled for DD =⋃

DD .
To prove that DD =

⋃
DD holds for ANY and ALL sublinks too, we have to show that the conditions

from definition 3.11 are fulfilled. We only present the proof for ANY-sublinks. The proof for ALL-sublinks
is analog. We write A(Qsubi

′) for the projection list A with Qsubi
′ substituted for Qsubi and use A∗ as a

shortcut for A(Qsub1
R, . . . ,Qsubm

R). Analog A(u) for u ∈ Q1 is the projection list A with attributes from Q1
substituted by the attribute values from u. A∗(u) for u∈Q1 is used as a shortcut for A(u,Qsub1

R, . . . ,Qsubm
R).

Furthermore let Qsubi
R(u) denote Qsubi

R if computed for DD(q, t,u) for a tuple u ∈ Q1
R.

Condition 1:
We have to prove that every tuple u from Q1

R is projected on t:
[[

ΠA∗(u)({u})
]]

= {t}. This con-
dition is fulfilled if [[A∗(u)]] = [[A(u)]] which in turn is true if

[[
Csubi(u,Qsubi)

]]
=

[[
Csubi(u,Qsubi

R)
]]

for every Csubi . If Csubi evaluates to true for all u ∈ Q1
R, then

[[
Csubi(u,Qsubi)

]]
=

[[
Csubi(u,Qsubi

R)
]]

is fulfilled, if
[[

Csubi(u,Qsubi
R)

]]
is true for each such u. From the definition of

⋃
DD(q, t) follows

that Qsubi
R contains each Qsubi

R(u) and, therefore, contains at least one tuple t ′ that fulfills condition
e(u) op t ′. In consequence

[[
Csubi(u,Qsubi)

]]
=

[[
Csubi(u,Qsubi

R)
]]

. If Csubi evaluates to false for at
least one v ∈ Q1

R, no tuple from Qsubi fulfills condition e(v) op t ′. In consequence also no tuple from
Qsubi

R = Qsubi
R(v) = Qsubi fulfills this condition. Hence,

[[
Csubi(v,Qsubi)

]]
=

[[
Csubi(v,Qsubi

R)
]]

. Because
of Qsubi

R = Qsubi ,
[[

Csubi(u,Qsubi)
]]

=
[[

Csubi(u,Qsubi
R)

]]
also holds for all other tuples u from Q1

R. We
have proven that

[[
Csubi(u,Qsubi)

]]
=

[[
Csubi(u,Qsubi

R)
]]

holds for every Csubi Hence, condition 1 holds.
Condition 2:

From the definition of projection we know that the result of a projection with non empty regular input
can never be empty. It follows that condition 2 is fulfilled.
Condition 3:

Assume a set O ⊃ DD fulfills conditions 1,2,4, and 5. O has to contain at least one witness list
w =< u,v1, . . . ,vm > with u ∈Q1

R (otherwise condition 1 or 5 would not be fulfilled) and at least one vi in
w is not used in any witness list w′ ∈ DD(q, t) with w′[1] = u. From the definition of

⋃
DD(q, t) and the

proof for single sublinks in selection we deduce that
[[

Csubi(u,Qsubi) 6= Csubi(u,{v})
]]

.
Condition 4:

Condition 4 only applies for the regular input and, since, the provenance of projection never contains
⊥ the condition is fulfilled.
Condition 5:

Condition 5 is defined for a fixed combination of regular input tuples denoted by tup. In case of
projection this is a single tuple u from Q1. Since by definition

⋃
DD contains all witness lists for u that

would have been generated by the compositional semantics for selection, condition 5 holds.

3.2.3.4 Correlated Sublinks

The difference between correlated sublinks and uncorrelated sublinks is that for correlated sublinks not
only Csub depends on the regular input of the operator the sublink is used in, but Qsub depends on the
regular input too. If we consider single input operators like selection or projection, Qsub is constant for a
fixed input tuple t from the operators regular input Q. For selection, a single output tuple is derived from
one tuple of the input. Thus, the provenance of a tuple t is defined as for uncorrelated sublinks.

For projections, more than one regular input tuple can belong to the provenance of an output tuple t.
The attribute values of each of these input tuples t ′ parameterize the sublink query Qsub. Therefore, the
results of the sublink query Qsub can differ, depending on which of the input tuples is used to parameterize
it.

52 CHAPTER 3. CONTRIBUTION SEMANTICS

Example 3.14. For the query q = Πa = ALL (σa=c(S))(R) on the relations from Figure 3.8, the sublink query
Qsub = σa=c(S) produces three different results for the three tuples from R:

Qsub(1,1) = {(1,3)}
Qsub(2,1) = {(2,4)}
Qsub(3,2) = /0

The notion of Qsub
ε = Qsub∪⊥ does make sense, if there are several versions of Qsub. To cope with this

problem we modify the definition of PI-CS using a parametrization Qsubi
ε(tup) of Qsubi

ε for a combination
tup =< t1, . . . , tn > of regular input tuples and adapting the conditions of the definition to this parameteriza-
tion. In addition we need to parameterize Qsubi

R too and change the evaluation of op over DD(op, t) to use
this parameterization. Hence, op(DD(op, t)) is evaluated as the bag union of [[op(DD(< t1, . . . , tn >)]]
for each combination t1, . . . , tn of regular input tuples that is contained in at least one witness list from DD .

Definition 3.12 (Correlation-Safe PI-CS). For an algebra operator op with regular inputs Q1, . . . ,Qn,
sublink expressions Csub1 , . . . ,Csubm , and a tuple t ∈ op(Q1, . . . ,Qsubm) a set DD(op, t) that is a subset of
PW as defined below is the set of witness lists of t according to PI-CS if it fulfills the following conditions:

[[op(DD(op, t))]] = {tx} (1)
∀w ∈DD(op, t) : [[op(w)]] 6= /0 (2)
¬∃DD ′ ⊆ PW : DD ′ ⊃DD(op, t)∧DD ′ |= (1),(2),(4),(5) (3)
∀w,w′ ∈DD(op, t) : w≺n w′⇒ w /∈DD(op, t) (4)
∀O = DD(< t1∗, . . . , tn∗ >) : ti∗ ∈ Qi

∗ : ∀ j ∈ {1, . . . ,m} : ∀w ∈O :[[
Csub j(Qsub j ,< t1∗, . . . , tn∗ >)

]]
=

[[
Csub j(w[n+ j],< t1∗, . . . , tn∗ >)

]] (5)

PW =
⋃

<t1,...,tn>∈Q1×...×Qn

({t1}ε × . . .×{tn}ε ×Qsub1
ε(< t1, . . . , tn >) . . .×Qsubm

ε(< t1, . . . , tn >))

Note that such a trick can only be applied for PI-CS, but not for Linage-CS. This is due to the fact that
in PI-CS provenance is represented as combinations of input tuples which makes is possible to allow only
certain combinations. Hence, we can restrict the provenance to witness lists that combine a regular input
tuple u with a tuples from each Qsubi(u). Applying the correlation safe definition to the example query q
the following set of witness lists is produced:

DD(q,(true)) = {< (1,1),(1,3) >,< (2,1),(2,4) >,< (3,2),⊥>}

3.2.3.5 Nested Sublinks

As mentioned before, definition 3.12 defines the provenance of single operator expressions. The prove-
nance of an algebra expression q that is composed of multiple operators is computed by recursively com-
puting the provenance for each operator in q starting at the result of the outermost operator. This form
of computation is sound, because provenance is defined to be transitive. Thus, the provenance of nested
sublinks can be computed recursively too, by first computing the provenance of the outermost sublink and
then using the generated results in the following computations.

Example 3.15. Figure 3.11 presents the provenance for query q1 from the newspaper database example
presented at the beginning of this chapter.

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 53

person
SSN name
1-1 Peter Peterson
2-4 Jens Jensen
5-6 Knut Knutsen

newspaper
newsId name publisher

1 NZZ IEEE
2 20 Minuten Springer

reads
pSSN nNewsId

1-1 1
1-1 2
2-4 1

q1 = σ¬ EXIST S (σ¬ EXIST S (σpSSN=SSN∧newsId=nNewsId (reads))(newspaper))(person)

Q1
SSN name
1-1 Peter Peterson

DD(q1,(1−1,Peter Peterson)) = {< (1−1,Peter Peterson),⊥,⊥>}

Figure 3.11: Example Provenance Derivation for an Algebra Expression using Nested and Correlated Sub-
link Expressions

3.2.4 Comparison of the Expressiveness of Lineage-CS and PI-CS

Having iteratively refined the definitions of PI-CS to produce meaningful provenance for a wide set of
algebra expressions we now compare the expressiveness of the two contribution semantics. In detail, we
answer the question: Does the provenance generated by both contribution semantics contain the same
information? Of course this question can only be answered for the operators on which both semantics are
meant to produce the same provenance. For instance, the provenance for left outer joins is different for
Lineage-CS and PI-CS.

Intuitively, it is clear that PI-CS provenance contains information that is not modeled by Lineage-CS,
because, for instance, for a set of result tuples of a join the representation used by Lineage-CS does not
model which tuples were used together by the join. On the other hand, the representation of PI-CS does
not model the original multiplicity of input tuples. Formally, this intuitions can be proven, by showing that
every function that translates between these two representations cannot have an inverse.

Theorem 3.6 (Non Equivalence of PI-CS and Lineage-CS). Let function H be a function that maps a
witness set to a set of witness lists with the property H(W (q, I, t)) = DD(q, I, t). Let H ′ be a function
that maps a set of witness lists to a witness set with H ′(DD(q, I, t)) = W (q, I, t). It follows that both H
and H ′ are not invertible and, therefore, none of them can exist.

Proof.
Case H:

If H has an inverse, then H has to be injective and surjective. Thus, if we find two queries q1 and q2,
database instances I1 and I2, and tuples t1 ∈ Q1 and t2 ∈ Q2 for which W (q1, I1, t1) 6= W (q2, I2, t2) and
DD(q1, I1, t1) = DD(q2, I2, t2) hold, we have proven our claim by demonstrating that H is not injective
(given that either q1 6= q2, I1 6= I2, or t1 6= t2). Consider the following queries, database instances, and result
tuples:

q1 = R><a=b S q2 = R><a=b S

t1 = (1,1) t2 = (1,1)

I1 = {R = {(1)},S = {(1)2}} I2 = {R = {(1)2},S = {(1)}}

As shown below for this parameter combinations no injective function H can exists that fulfills the

54 CHAPTER 3. CONTRIBUTION SEMANTICS

condition H(W (q, I, t)) = DD(q, I, t):

W (q1, I1, t1) =< {(1)},{(1)2}> 6= < {(1)2},{(1)}> = W (q2, I2, t2)
DD(q1, I1, t1) = {< (1),(1) >,< (1),(1) >} = {< (1),(1) >,< (1),(1) >}= DD(q2, I2, t2)

Case H ′:
We present an example for which DD(q1, t1) 6= DD(q2, t2) and W (q1, t1) = W (q2, t2) hold to prove

that H ′ has no inverse:

q1 = Π
S

a(R><b=c S) q2 = Π
S

a(R><b 6=c S)
t1 = (1) t2 = (1)
I1 = {R = {(1,1),(1,2)},S = {(1),(2)}} I2 = {R = {(1,1),(1,2)},S = {(1),(2)}}

W (q1, I1, t1) =< {(1,1),(1,2)},{(1),(2)}> = < {(1,1),(1,2)},{(1),(2)}> = W (q2, I2, t2)
DD(q1, I1, t1) = {< (1,1),(1) >,< (1,2),(2) >} 6= {< (1,1),(2) >,< (1,2),(1) >}= DD(q2, I2, t2)

Despite the fact that PI-CS and Lineage-CS are not equivalent which we have proven above, these CS
types are nonetheless related to each other in the sense that they consider the same input relation tuples
to belong to the provenance (with the obvious exception of operators such as left outer join for which
PI-CS was deliberately defined to generate a different provenance than Lineage-CS). We prove this claim
by presenting a third representation of provenance and functions H and H ′ that translate from the PI-CS
and Lineage-CS representations into this representation. If we are able to define these functions in a way
that H(W (q, I, t)) = H ′(DD(q, I, t)) then we have shown that regarding the information stored in this new
representation both CS types are equivalent. The reduced representation we use is the same as the one
of Lineage-CS except that the Qi

∗ subsets of the input relations are sets instead of bags. Therefore, the
translation from Lineage-CS to the new representation is trivial:

H(W (q, I, t)) =< {t | tx ∈ Q1
∗}, . . . ,{t | tx ∈ Qn

∗}>

The definition of H ′ is straightforward too:

H ′(DD(Q, I, t)) =< {t | ∃w ∈DD ∧w[1] = t}, . . . ,{t | ∃w ∈DD ∧w[n] = t}>

Theorem 3.7 (Equivalence of the Reduced Representation of Lineage-CS and PI-CS). The reduced
representations of Lineage-CS and PI-CS are equivalent for algebra expressions containing only the
following operators: Π,σ ,><,∪,∩,α . Thus, for the translation functions H and H ′ the following holds:

H(W (q, t)) = H ′(DD(q, t))

Proof. We prove this theorem by induction over the structure of an algebra expression q and for an arbitrary
result tuple t of q:
Base Case:
q = σC(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t}>)
= < {t}>

=H ′({< u >n| un ∈ Q1∧u = t})
=H ′(DD(q, t))

3.2. INFLUENCE DATA PROVENANCE CONTRIBUTION SEMANTICS 55

q = ΠA(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u.A = t}>)
= < {u | un ∈ Q1∧u.A = t}>

=H ′({< u >n| un ∈ Q1∧u.A = t})
=H ′(DD(q, t))

q = αG,agg(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u.G = t.G}>)
= < {u | un ∈ Q1∧u.G = t.G}>

=H ′({< u >n| un ∈ Q1∧u.G = t.G})
=H ′(DD(q, t))

q = q1 ><C q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t.Q1},{vm | vm ∈ Q2∧ v = t.Q2}>)
= < {u | un ∈ Q1∧u = t.Q1},{v | vm ∈ Q2∧ v = t.Q2}>

=H ′({< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2})
=H ′(DD(q, t))

q = q1∪q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t},{vm | vm ∈ Q2∧ v = t}>)
= < {u | un ∈ Q1∧u = t},{v | vm ∈ Q2∧ v = t >

=H ′({< u,⊥>n| un ∈ Q1∧u = t}∪{<⊥,v >m| vm ∈ Q2∧ v = t})
=H ′(DD(q, t))

q = q1∩q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t},{vm | vm ∈ Q2∧ v = t}>)
= < {u | un ∈ Q1∧u = t},{v | vm ∈ Q2∧ v = t}>

=H ′({< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Q2∧ v = t})
=H ′(DD(q, t))

Induction step:
Follows from the transitivity of Lineage-CS and PI-CS.

56 CHAPTER 3. CONTRIBUTION SEMANTICS

CS type Description
Complete-Direct-Copy-CS (CDC-CS) Only tuples that have been copied directly as a whole

from the input to the output of a query are considered
to belong to the provenance.

Partial-Direct-Copy-CS (PDC-CS) Only tuples from which at least one attribute value has
been copied directly from the input to the output belong
to the provenance.

Complete-Transitive-Copy-CS (CTC-CS) CTC-CS contains all directly copied tuples. In addition,
implied equalities enforced by selection conditions are
handled as copy operations.

Partial-Transitive-Copy-CS (PTC-CS) Like PDC-CS, but implied equalities are considered as
copy operations.

Figure 3.12: C-CS types

3.3 Extensions of PI-CS

PI-CS is a contribution semantics that is applicaple to wide range of algebra expression and produces
meaningful results, even for queries with complex sublink expressions. In this section we demonstrate that
it is possible to define reasonable C-CS types and transformation provenance CS based on PI-CS.

3.3.1 Copy Data Provenance Contribution Semantics

For some use cases provenance generated by PI-CS is not suited very well, because for these use cases we
are only interested in where result tuple values are derived from and not in all tuples that influenced a result
tuple. For this use case C-CS provenance provides the needed information by explaining from where in the
input values are copied. As mentioned above, we define the C-CS types of Perm as extensions of PI-CS.
Therefore, the C-CS types also apply tuple level granularity and, thus, C-CS describes which tuples have
been copied from the input to the output of an operator. Either we could define that only tuples that have
been copied as a whole to the output of an operator belong to the provenance (complete copy) or also tuples
that have been copied only partially are included in the provenance (partial copy). Also we can decide if
we see equality constraints implied by selection conditions as a form of copy operation (transitive copy).

Example 3.16. As an example of transitive copy consider an equi-join followed by a projection on the
attributes of one of the join relations:

q = Πa(R><a=b S)

For such a query no attributes of the other join relation are directly copied to the output, but implicitly
the values of the attributes used in the equality condition are copied. In query q only attribute a from
relation R is copied to the result, but the result attribute a is forced by the join condition to be equal to
attribute b from relation S.

Figure 3.12 presents the four C-CS types that result from the decision between complete and partial
copy, and between direct and transitive copy. Under Complete-Direct-Copy-CS only tuples that are copied
completely to the output belong to the provenance. Complete-Transitive-Copy-CS (PDC-CS) also includes
tuples that have been copied partially. Complete-Transitive-Copy-CS (CTC-CS) includes only completely
copied tuples, but implied equalities are handled like direct copying. Partial-Transitive-Copy-CS (PTC-CS)
extents CTC-CS with partially copied tuples.

3.3. EXTENSIONS OF PI-CS 57

R
a
1
3

S
b
1
5

U
c d
3 2
3 6

V
e f
3 3
5 4

Q1
a
1
3

Q2
c
3
5

Q3
x
1

Q4
c
3

q1 = σa>2(R) q2 = Π
S

c(U) q3 = Πa→x(R><a=b S) q4 = Πc(U ><c=e V)

C D(q1,(1)) = PD(q1,(1)) = C T (q1,(1)) = PT (q1,(1)) = {< (1) >}
C D(q2,(3)) = C T (q2,(3)) = {<⊥>,<⊥>}
PD(q2,(3)) = PT (q2,(3)) = {< (3,2) >,< (3,6) >}
C D(q3,(1)) = PD(q3,(1)) = {< (1),⊥>}
C T (q3,(1)) = PT (q3,(1)) = {< (1),(1) >}
C D(q4,(3)) = C T (q4,(3)) = {<⊥,⊥>2}
PD(q4,(3)) = {< (3,2),⊥>,< (3,6),⊥>}
PT (q4,(3)) = {< (3,2),(3,3) >,< (3,6),(3,3) >}

Figure 3.13: C-CS Examples

Example 3.17. To gain a better understanding of the differences between these C-CS types consider
the example presented in Figure 3.13. Like for PI-CS the provenance under the presented C-CS types is
modeled as witness lists. We use the following notations for the set of witness lists generated by the C-CS
types: C D for CDC-CS, PD for PDC-CS, C T for CTC-CS, and PT for PTC-CS. Query q1 from the
example is a selection, which means it copies input tuples completely to the output. Therefore, all C-CS
types generate the same provenance for this query. Query q2 projects out one attribute from relation
U. For this query the provenance of all C-CS types that requires complete copying of input tuples is
empty. The provenance of C-CS types that require only partial copying contains the single input tuple
from which the result tuple (3) is produced. Query q3 joins relations R and S and projects the result
on an attribute from R. For this query the provenance for relation S is non empty only for C-CS types
that consider implied equalities. Finally, query q4 requires a C-CS type with partial copying to include
the input tuple from relation U and only for PTC-CS the tuple (3,3) from relation V is included in the
provenance.

It is apparent from the example that the presented C-CS types are not independent of each other and
we can assume that several subset relationships hold. By subset we mean both subset in the set theoretic
sense and subset in the sense that the smaller witness list set contains witness lists that are dominated by
witness lists from the larger set. Intuitively, we would expect that CDC-CS is a subset of PDC-CS, because
PDC-CS considers partially copied tuples in addition to tuples that were copied as a whole. Using the
same argument we argue that CTC-CS is a subset of PTC-CS. CTC-CS should be a superset of CDC-CS,
because it also handles implied equalities as copy operations. Furthermore, since PI-CS considers types
of influence that are not copy operations, we expect PI-CS to be a superset of all presented C-CS types.
Figure 3.14 shows these subset relationships.

We define the introduced C-CS types as restrictions of PI-CS. These restrictions are modeled as so-
called copy maps. A copy map describes which attributes from the input of an algebra operator have been
copied to its output. Formally, a copy map C M is a function C M (E ,A ,Wit,Tup)→ Pow(A). Here
Tup denotes the set of all possible tuples, Pow(S) denotes the power set of a set S, and Wit denotes the set
of all possible witness lists. Recall that A denotes the set of all possible attribute names and E denotes
the set of all possible algebra expressions. A copy map maps an attribute a from the schema Qi of the
input qi of a query q, a result tuple t from Q, and a witness list w from DD(q, t) to all output attributes
of q to which the values of a are copied to. We define two types of copy maps. One is used for C-CS

58 CHAPTER 3. CONTRIBUTION SEMANTICS

CDC−CS ⊆−−−−→ PDC−CSy⊆ y⊆
CTC−CS ⊆−−−−→ PTC−CS ⊆−−−−→ PI−CS

Figure 3.14: Subset Relationships between Contribution Semantics Types

types with direct copying: CDC-CS and PDC-CS. The other one is used for C-CS types with transitive
copying: CTC-CS and PTC-CS. Note that the copy map for C-CS types that consider only direct copying is
independent on the database instance, because it is derived using solely information about the structure of
an algebra expression and the database schema (the only exception from this rule is the use of conditional
expressions in projection expressions).

The provenance according to a C-CS type will contain the same witness lists as provenance according
to PI-CS, but tuples from these witness lists are removed if they have not been copied according to the
copy map function. Figures 3.15 and 3.16 presents the definitions of the copy maps. These definitions use
the following notational conventions: w[q1] for a witness list w is the projection of w on tuples from base
relations accessed by input query q1, ⊥ [q1] is an witness list for q1 that contains only ⊥, and Csub ∈ C
denotes that the expression Csub is used in expression C.

For CDC-CS and CTC-CS we require that tuples are copied as a whole. Thus, for a witness list w from
DD(q, t) each w[i] is replaced with ⊥ if the copy map for at least one attribute from an input relation Qi is
empty indicating that this attribute is not copied to the result of q. For PDC-CS and PTC-CS also partially
copied tuples belong to the provenance. Hence, for these CS types only tuples from relations for which the
copy map of all attributes is empty are replaced with ⊥.

Example 3.18. As an example reconsider query q2 from the example presented in Figure 3.13. The
PI-CS provenance of result tuple (1) is DD(q2,(1)) = {< (3,2) >,< (3,6) >}. According to the copy
map definition given in Figures 3.15 and 3.16 the CDC-CS copy map for q2, witness list < 3,2 > and
result tuple (1) is:

C M (q2,c,< 3,2 >,(1)) = {c}
C M (q2,d,< 3,2 >,(1)) = /0

In the definition presented below we formalize the Perm C-CS types:

Definition 3.13 (Copy-CS Types). A set C D/C T (q, t) of witness lists is the provenance of a tuple t
from the result of a query q according to CDC-CS/CTC-CS, iff:

∀w ∈ C D/C T (q,T) : ∃w′ ∈DD(q, t) :((6 ∃a ∈Qi : C M (q,a,w′, t) = /0)⇒ w[i] = w′[i])
∧((∃a ∈Qi : C M (q,a,w′, t) = /0)⇒ w[i] =⊥)

(1)

| C D/C T (q, t) |=|DD(q, t) | (2)

A set PD/PT (q, t) of witness lists is the provenance of a tuple t from the result of a query q according
to PDC-CS/PTC-CS, iff:

∀w ∈PD/PT (q,T) : ∃w′ ∈DD(q, t) :((∃a ∈Qi : C M (q,a,w′, t) 6= /0)⇒ w[i] = w′[i])
∧((6 ∃a ∈Qi : C M (q,a,w′, t) 6= /0)⇒ w[i] =⊥)

(1)

|PD/PT (q, t) |=|DD(q, t) | (2)

Having formally defined C-CS we now prove the assumptions about subset relationships between the
different CS types.

3.3. EXTENSIONS OF PI-CS 59

Theorem 3.8 (Subset Relationships of CS types). The subset relationships presented in Figure 3.14
hold.

Proof.
Case PTC-CS ⊆ PI-CS:
The subset relationships between PTC-CS and PI-CS follows from the definition of the C-CS types. Each
witness list in PT is either in DD or is dominated by an witness list from DD .
Case PDC-CS ⊆ PTC-CS and CDC-CS ⊆ CTC-CS:
These C-CS types differ only in the definition of the copy map. The transitive copy map version is either
equal to the direct copy map version or includes the direct copy map version (union with additional sets).
Hence, the transitive C-CS types have to be supersets of the direct C-CS types.
Case CDC-CS ⊆ PDC-CS and CTC-CS ⊆ PTC-CS:
Condition 1 in the definition of the partial copy CS types follows from condition 1 for direct copy CS types.
It follows that each witness list from PT / PD is equal to or subsumes a corresponding witness list from
C D / C T .

Note that the distinction between the different copy contribution semantics is not just academic. These
C-CS types generate different provenance and each emphasizes different aspects of how the result was
obtained. We now discuss the relationship between the presented C-CS types and Where-CS. The main
difference is that Where-CS is defined with attribute value granularity while our C-CS types use tuple gran-
ularity. IWhere-CS bears more similarities with CTC-CS and PTC-CS, because it also considers implied
equalities. Attribute values are considered atomic for Where-CS. Therefore, there is no notion of a partial
copy of an attribute value.

C M (R,a,w, t) = {a}
C M (σC(q1),a,w, t) = C M (q1,a,w, t)

C M (q1 ><C q2,a,w, t) = C M (q1,a,w[q1], t.Q1)∪C M (q2,a,w[q2], t.Q2)
C M (q1 ><C q2,a,w, t) = C M (q1,a,w[q1], t.Q1)∪{x | w |= C∧ x ∈ C M (q2,a,w[q2], t.Q2)}
C M (q1>< C q2,a,w, t) = {x | w |= C∧ x ∈ C M (q1,a,w[q1], t.Q1)}∪C M (q2,a,w[q2], t.Q2)

C M (q1 >< C q2,a,w, t) = {x | w |= C∧ x ∈ C M (q1,a,w[q1], t.Q1)}
∪{x | w |= C∧ x ∈ C M (q2,a,w[q2], t.Q2)}
∪{x | w 6|= C∧ t.Q1 is ε ∧ x ∈ C M (q2,a,w[q2], t.Q2)}
∪{x | w 6|= C∧ t.Q2 is ε ∧ x ∈ C M (q1,a,w[q1], t.Q1)}

C M (αG,agg(q1),a,w, t) = {y | y ∈ C M (q1,a,w,x) | x.G = t.G∧a ∈ G}
C M (ΠA(q1),a,w, t) = {x | (x ∈ C M (q1,a,w,y)∧ x ∈ A∧ y.A = t)}

∪{x | (b→ x) ∈ A∧b ∈ C M (q1,a,w,y)∧ y.A = t)}
∪{x | i f (C) then (x) else (e) ∈ A∧ x ∈ C M (q1,a,w,y)∧ y.A = t ∧w |= C)}
∪{x | i f (C) then (e) else (x) ∈ A∧ x ∈ C M (q1,a,w,y)∧ y.A = t ∧w 6|= C)}

C M (q1∪q2,a,w, t) = {x | x ∈ C M (q1,a,w[q1], t)∧w[q1] 6=⊥ [q1]}
∪{x | x ∈ C M (q2,a,w[q2], t)∧w[q2] 6=⊥ [q2]}

C M (q1∩q2,a,w, t) = C M (q1,a,w[q1], t)∪C M (q2,a,w[q2], t)
C M (q1−q2,a,w, t) = C M (q1,a,w[q1], t)

Figure 3.15: Direct C-CS Copy-Map Definition

60 CHAPTER 3. CONTRIBUTION SEMANTICS

C M (R,a,w, t) = {a}
C M (σC(q1),a,w, t) = C M (q1,a,w, t)∪{x | ∃y : (x = y) ∈C∧w |= (x = y)∧ y ∈ C M (q1,a,w, t)}

C M (q1 ><C q2,a,w, t) = C M (q1,a,w[q1], t.Q1)∪C M (q2,a,w[q1], t.Q2)
∪{x | ∃y : (x = y) ∈C∧w |= (x = y)
∧ (y ∈ C M (q1,a,w[q1], t.Q1)∨ y ∈ C M (q2,a,w[q2], t.Q2))}

C M (q1 ><C q2,a,w, t) = C M (q1,a,w[q1], t.Q1)∪{x | w |= C∧ x ∈ C M (q2,a,w[q2], t.Q2)}
∪{x | ∃y : (x = y) ∈C∧w |= (x = y)∧ y ∈ C M (q1,a,w[q1], t.Q1)}
∪{x | ∃y : (x = y) ∈C∧w |= C∧w |= (x = y)∧ y ∈ C M (q2,a,w[q2], t.Q2))}

C M (q1>< C q2,a,w, t) = {x | w |= C∧ x ∈ C M (q1,a,w[q1], t.Q1)}∪C M (q2,a,w[q2], t.Q2)
∪{x | ∃y : (x = y) ∈C∧w |= C∧w |= (x = y)∧ y ∈ C M (q1,a,w[q1], t.Q1))}
∪{x | ∃y : (x = y) ∈C∧w |= (x = y)∧ y ∈ C M (q2,a,w[q2], t.Q2)}

C M (q1 >< C q2,a,w, t) = {x | w |= C∧ x ∈ C M (q1,a,w[q1], t.Q1)}
∪{x | w |= C∧ x ∈ C M (q2,a,w[q2], t.Q2)}
∪{x | w 6|= C∧ t.Q1 is ε ∧ x ∈ C M (q2,a,w[q2], t.Q2)}
∪{x | w 6|= C∧ t.Q2 is ε ∧ x ∈ C M (q1,a,w[q1], t.Q1)}
∪{x | ∃y : (x = y) ∈C∧w |= C∧w |= (x = y)∧ y ∈ C M (q1,a,w[q1], t.Q1))}
∪{x | ∃y : (x = y) ∈C∧w |= C∧w |= (x = y)∧ y ∈ C M (q2,a,w[q2], t.Q2))}

C M (αG,agg(q1),a,w, t) = {y | y ∈ C M (q1,a,w,x) | x.G = t.G∧a ∈ G}
C M (ΠA(q1),a,w, t) = {x | (x ∈ C M (q1,a,w,y)∧ x ∈ A∧ y.A = t)}

∪{x | (b→ x) ∈ A∧b ∈ C M (q1,a,w,y)∧ y.A = t)}
∪{x | i f (C) then (x) else (e) ∈ A∧ x ∈ C M (q1,a,w,y)∧ y.A = t ∧w |= C)}
∪{x | i f (C) then (e) else (x) ∈ A∧ x ∈ C M (q1,a,w,y)∧ y.A = t ∧w 6|= C)}

C M (q1∪q2,a,w, t) = {x | x ∈ C M (q1,a,w[q1], t)∧w[q1] 6=⊥ [q1]}
∪{x | x ∈ C M (q2,a,w[q2], t)∧w[q2] 6=⊥ [q2]}

C M (q1∩q2,a,w, t) = C M (q1,a,w[q1], t)∪C M (q2,a,w[q2], t)
C M (q1−q2,a,w, t) = C M (q1,a,w[q1], t)

Figure 3.16: Transitive C-CS Copy-Map Definition

3.3. EXTENSIONS OF PI-CS 61

3.3.2 Transformation Provenance Contribution Semantics
In this section we present a contribution semantics for transformation provenance based on PI-CS. Data
provenance relates output and input data, but does not provide any information about how data was pro-
cessed by a transformation. More specifically, it does not contain information about which parts of a
transformation were used to derive an output tuple. As an example, consider a transformation that uses
the duplicate preserving union operator. Each output tuple of the union is produced from exactly one of
the relations that are the inputs of the union. Recall that the notion transformation provenance is used to
describe this type of provenance information.

Transformation provenance is similar in motivation to how-provenance[GKT07a] that models some
transformation information by recording alternative and conjunctive use of tuples by a query. Unlike how-
provenance, transformation provenance is operator-centric, describing the contribution of each operator in
a transformation. This is also in contrast to other data CS types, which are in general data-centric. Our
approach is more similar to provenance approaches for workflow-management systems, that traditionally
have focused more on transformations [SPG05a]. Transformation provenance is extremely useful in un-
derstanding how data is processed by an algebra expression, because it allows us to understand which parts
of the expression (that is, which operators) produced a result data item. Hence, we model transformation
provenance as what parts of a query contributed to an output tuple. This approach bears some similarities
with Why-not provenance presented in [CJ09], so we will discuss the relation to this model and the superior
evaluation strategy developed for our model while introducing transformation provenance.

We model the transformation provenance of a query q using an annotated algebra tree for q. For an
output tuple t and a witness list w in the PI-CS data provenance of t, the transformation provenance will
include 1 and 0 annotations on the operators of the transformation q. A 1 indicates this operator on w
influences t, a 0 indicates it does not.

Example 3.19. Consider query qa in Fig. 3.17. The data provenance of output tuple (2) according to
PI-CS contains two witness lists. The transformation provenance of (2) for the first witness list is a tree
with every node annotated by a 1 (the left tree presented in Figure 3.17). The transformation provenance
of (2) with the second witness is a tree with every node annotated by a 1, except the node for the base
relation S which does not contribute and hence would have an annotation of 0 (the right tree presented
in Figure 3.17).

We now formalize annotations for algebra trees and then define transformation provenance based on
the notion of data provenance according to PI-CS.

Definition 3.14 (Algebra Tree). An algebra tree Treeq = (V,E) for a query q is a tree that contains a
node for each algebra operator used in q (including the base relation accesses as leaves). In such tree
there is a parent-child relationship between two nodes n1 and n2, iff the algebra operator represented by
n2 is an input of the algebra operator represented by n1. We define a pre-order on the nodes to give each
node an identifier (and to order the children of binary operators)a.

aThis is necessary, because for non commutative operators like left outer join the order of inputs matters.

Given an algebra expression q and an operator op used in this expression, we denote the subtree under
op by subop. We use subop(w) to denote the evaluation of subop over the witness list w. Based on the
concept of the algebra tree of an algebra expression we define annotated algebra trees and will use them to
represent transformation provenance information.

Definition 3.15 (Annotated Algebra Tree). An A -annotated algebra tree for a transformation q is a pair
(Treeq,θ) where θ : V ∈ Treeq→ Pow(A) is a function that associates each operator in the tree with a
set of annotations from a domain A .

For transformation provenance, the annotations sets will be singleton sets from the domain A = {0,1}
and we assign these annotations specific semantics. However, we include the more general definition as

62 CHAPTER 3. CONTRIBUTION SEMANTICS

R
a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa
a
1
2

R S

1

1

1 1
R S

1

1

1 0

qa = Πa(R ><b=c S)

DD(qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >} DD(qa,(2)) = {< (2,3),(3) >,< (2,5),⊥>}

T (qc,(1)) :
θ<(1,2),(2)>(op) = 1 θ<(1,3),(3)>(op) = 1

T (qc,(2)) :

θ<(2,3),(3)>(op) = 1 θ<(2,5),⊥>(op) =

{
0 if op = S
1 else

Figure 3.17: Transformation Provenance Example

annotations could be used in a more general way to represent other provenance information (the developer
who last checked-in a query, the origin of a transformation).

This representation is conceptually similar to the one use in [CJ09] to model Why-not provenance.
Recall that Why-not provenance models why a certain input (represented as a pattern) does not contribute
to some result. This information is presented as so-called picky parts of a query, which means the parts of
a query where the input of interest ”got lost”. In our representation the picky operations would be labeled
with 0 annotations. In contrast to their work we do not require a user to come up with a certain input that
got lost, but define the annotations based solely on data provenance. As we will demonstrate in chapter
5 transformation provenance can be computed efficiently without the need to compute data provenance
which is the way Why-not provenance is computed in [CJ09].

We now have the necessary preliminaries to formally define transformation provenance based on data
provenance. Intuitively, each witness list of the data provenance of a tuple t represents one evaluation of
an algebra expression q. For each witness list, each part of the algebra expression has either contributed to
the result of evaluating q on w or not. Therefore, we represent the transformation provenance as a set of
annotated algebra trees of q with one member per witness list w. We use data provenance to decide whether
an operator op in q should get a 0 or a 1 annotation. Basically, if evaluating the subtree subop under op on
w results in the empty set, then op has contributed nothing to the result t and should not be included in the
transformation provenance.

Definition 3.16 (Transformation Provenance Contribution Semantics). The transformation provenance
of an output tuple t of q is a set T (q, t) of {0,1}-annotated-trees defined as follows:

T (q, t) = {(Treeq,θw) | w ∈DD(q, t)}

θw(op) =

{
0 if [[subop(w)]] = /0
1 else

3.3. EXTENSIONS OF PI-CS 63

Example 3.20. Fig. 3.17 shows the PI-CS data and transformation provenance for both result tuples
of query qa. The PI-CS provenance of tuple t1 = (1) contains two witness lists w1 =< (1,2),(2) >
and w2 =< (1,3),(3) >. For both witness lists the transformation provenance annotation function θw
annotates each operator of q with 1. We can verify that this is correct by computing [[subop(w1)]]
and [[subop(w2)]] for each operator in the query. For the second result tuple t2 = (2) there are two
witness lists w3 =< (2,3),(3) > and w4 =< (2,5),⊥>. The annotation function θw4 for witness list
w4 annotates S with 0 and every other operator in q with 1. S is not contained in the transformation
provenance, because no tuple from S was joined with the tuple (2,5) from R to produce tuple t2 and,
therefore, the access to relation S does not contribute to t2 according to w4.

64 CHAPTER 3. CONTRIBUTION SEMANTICS

Lineage−CS(Def.3.1)
Representation−−−−−−−−→ WL−CS(Def.3.5)

Negation−−−−−→ PI−CS(Def.3.7)

ALL-sublinks

y
PI−CS(Def.3.10)

Multiple Sublinks
y

PI−CS(Def.3.11)

Correlated Sublinks

y
PI−CS(Def.3.12)

Figure 3.18: Overview of Contribution Semantics Refinement

3.4 Summary
In this chapter we presented the contribution semantics realized in the Perm system. CS types are of
immense importance for a provenance management system, because they define ”What provenance actually
is”. We discussed how our definitions of CS relate to existing CS types and to each other, and how we
extended the existing notion of Lineage-CS to overcome problems of the original definition and make it
applicable to algebra expressions with sublinks. Figure 3.18 summarizes the refinement steps we applied to
derive the final PI-CS definition from the original Lineage-CS definition [CW00a]. We have shown that the
presented C-CS types are all subsets of PI-CS (which would be intuitively expected to hold). Furthermore,
we introduced a contribution semantics for transformation provenance based on the PI-CS data provenance
contribution semantics. In summary, in this chapter we presented sound formal definitions of the semantics
of provenance, but did not discuss how to compute provenance according to a certain CS type. Note that
the compositional semantics can be used to compute provenance by recursively applying the constructions
from this semantics for each operator in a query, but, as we will demonstrate in the next chapter, there are
more practical and efficient approaches for computing provenance.

Chapter 4

Provenance Computation through
Algebraic Rewrite

In the last chapter we introduced the CS types developed for Perm and have proven several import properties
of their compositional semantics and relationships to standard CS types. However, we did not discuss how
provenance can be computed efficiently according to these CS types. In this chapter we present algorithms
that allow the efficient computation of provenance by using algebraic rewrites. In detail, we demonstrate
how to represent provenance information as normal relations and introduce rewrite rules that transform an
algebra expression q into an algebra expression q+ that computes the provenance of q in addition to its
original result.

Out of the possible approaches to provenance computation we choose algebraic rewrite, because this
approach has several important advantages over alternative approaches like, e.g., the inverse approach:

• No Modification of Data Model: Provenance information is modeled as normal relations which can
be, e.g., stored in a standard DBMS, queried using SQL, and stored as a view.

• No Modification of Execution Model: The rewritten query q+ that computes the provenance of a
query q is expressed in the same algebra as q (To be more precise, the Perm algebra introduced in
section 3.1). This will allow for the seamless integration of the rewrite rules into an existing DBMS
and enables us to benefit from the advanced query optimizations applied by this system. Furthermore,
provenance information can be queried using the same query language as for normal data.

• Sound Theoretical Foundation: The algebraic representation of provenance computation enables
us to prove the correctness of the developed algorithms.

In the following we discuss how to represent provenance in the relational model in section 4.1 and
demonstrate how we can transform a query q into a query q+ that generates this representation for PI-
CS provenance (section 4.2) and C-CS provenance (section 4.4). In section 4.5 we present a relational
representation of transformation provenance and rewrite rules for this type of provenance are developed in
section 4.6.

65

66 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

shop
name numEmpl
Merdies 3
Joba 14

sales
sName itemId
Merdies 1
Merdies 2
Merdies 2
Joba 3
Joba 3

items
id price
1 100
2 10
3 25

Qex
name sum(price)
Merdies 120
Joba 50

qex = αname,sum(price)(σname=sName∧itemId=id(shop× sales× items))

DD(qex,(Merdies,120)) = {< (Merdies,3),(Merdies,1),(1,100) >,

< (Merdies,3),(Merdies,2),(2,50) >2}
DD(qex,(Joba,50)) = {< (Joba,14),(Joba,3),(3,25) >2}

Figure 4.1: Running Example

4.1 Relational Representation of Data Provenance Information
The witness lists used by the Perm CS types to represent data provenance have a natural representation in
the relational model. For instance, the set DD of witness lists generated by PI-CS can be represented as a
single relation, because each witness list contains tuples with the same schema (We postpone the discussion
of the representation of ⊥ for now).

Example 4.1. As an example of this representation consider the provenance of query qex presented in
Figure 4.1 that computes the total profit for each shop over an example database of shops (with name
and number of employees), items they are selling, and purchases (sales relation). The witness lists from
DD(qex,(Merdies,120)) can be represented as the following relation:

{(Merdies,3,Merdies,1,1,100),(Merdies,3,Merdies,2,2,10)2}

If this representation is used to represent complete sets of witness lists according to some CS type
the problem arises that it is no longer clear to which output tuple of a query a witness lists belongs to.
Recall that we identified this association between original query results and provenance as one of the main
requirements of a PMS. Therefore, we include the original query results in our representation of data
provenance. The extended representation models each witness list w and the original result tuple it is
associated to as a single tuple.

Example 4.2. The PI-CS provenance of query qex would be represented as (The part of a tuple marked
in red corresponds to the original result tuple) :

{(Merdies,120,Merdies,3,Merdies,1,1,100),

(Merdies,120,Merdies,3,Merdies,2,2,10)2,

(Joba,50,Joba,14,Joba,3,3,25)2,}

Let us now consider the provenance representation for an arbitrary algebra statement q. We use QPI

to denote the relational representation of the provenance of a query q according to PI-CS. To produce
the provenance relation QPI , the original result relation Q is extended with all attributes from all base

4.1. RELATIONAL REPRESENTATION OF DATA PROVENANCE INFORMATION 67

Qex
PI

name sum(price) N (name) N (numEmpl) N (sName) N (itemId) N (id) N (price)
Merdies 120 Merdies 3 Merdies 1 1 100
Merdies 120 Merdies 3 Merdies 2 2 100
Merdies 120 Merdies 3 Merdies 2 2 100
Joba 50 Joba 14 Joba 3 3 25
Joba 50 Joba 14 Joba 3 3 25

Figure 4.2: Example Provenance Representation

relations accessed by q. Multiple references to a base relation are handled as separate relations. For each
original result tuple t and witness list w ∈ DD(q, t) a tuple (t,w[1], . . . ,w[n]) is added to QPI . Hence, the
original tuple has to be duplicated, if there is more than one witness list in the provenance of this tuple.
The attribute names in the schema of QPI are used to indicated from which base relation attribute a result
attribute is derived from. The attributes that correspond to the original result attributes of q are not renamed.
To generate unique and predictable names for attributes storing provenance information we introduce a
function Nq : N→ A that maps each attribute position in QPI to a unique name. The definition of Nq
will be presented in chapter 5. Here we just assume that N exists and present an attribute name that is
generated by Nq from a base relation attribute a as N (a)1. For example, query qex accesses base relations
shop, sales and items. In consequence, the schema of Qex

PI according to the simplified representation is:

Qex
PI = (name,sum(price),N (name),N (numEmpl),N (sName),N (itemId),N (id),N (price))

To be able to represent ⊥ values in a witness list using the same schema as for regular tuple values we
represent a ⊥ at position i of witness list w as a tuple with schema Nq(Ri) and all attributes set to ε . For
instance, a witness list w =< (1),⊥> for tuple t = (3,2) from the provenance of a query over relations R
and S with schemas R = (a) and S = (b,c) would be represented as:

(3,4,1,ε,ε)

Below we present a formal definition of the relational representation of data provenance. This definition
will be used in the correctness proofs of the query rewrite rules that generate queries to compute this
representation.

Definition 4.1 (Relational PI-CS Data Provenance Representation). Let q be an algebra expression over
base relations R1, . . . ,Rn. The relational representation QPI of the provenance of q according to PI-CS
is defined as:

QPI = {(t,w[1]′, . . . ,w[n]′)m | t p ∈ Q∧wm ∈DD(q, t)}

w[i]′ =

{
w[i] if w[i] 6=⊥
null(Ri) else

Example 4.3. Figure 4.1 shows the provenance representation for query qex according to definition 4.1.
For instance, the first tuple in Qex

PI represents the original result tuple t = (Merdies,1) and the relational
representation of witness list w =< (Merdies,3),(Merdies,1),(1,100) > from the provenance of t.

This representation is quite verbose, but has several advantages over alternative representations:

1We ignore the fact that this representation is not necessarily unique. Note that the function Nq presented in chapter 5 generates
unique names.

68 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

• Single Relation: Provenance and original data are represented together in a single relation which
can, e.g., be stored as a view.

• Association between Provenance and Normal Data: Which witness list belongs to which result
tuple is explicitly stored in the representation, because each tuple in Q+ contains one original result
tuple and one of its witness lists.

• Provenance represented as Complete Tuples: We deliberately choose to represent provenance as
complete tuples instead of tuple identifiers to simplify the interpretation and querying of provenance.

We demonstrate the disadvantages of non-relational provenance representations on hand of the run-
ning example from Figure 4.1 and for the representation used for Lineage-CS (e.g., [Cui02]). Lineage-CS
provenance would represent the provenance of qex as the following list of relations2:

<{(Merdies,3),(Joba,14)},
{(Merdies,1),(Merdies,2),(Merdies,2),(Joba,3),(Joba,3)},
{(1,100),(2,10),(3,25)}>

This representation has two major disadvantages. First, a query having a list of relations as its result
can not be expressed in relational algebra, because each algebra operator has only a single result relation.
Thus, provenance queries and data are not in the same data model as the original data and queries. Second,
the result only includes provenance data. There is no direct association between the original result and
the contributing tuples. This is especially problematic if the provenance of a set of tuples is computed,
because one would loose the information about which of the provenance tuples contributed to which of the
original result tuples. The example above presents an extreme case of this problem where the provenance
is the complete original database instance. As already demonstrated, these shortcomings are avoided by
the provenance representation used by Perm.

2The actual representation would be different because we are using bag semantics here.

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 69

4.2 Rewrite Rules for Perm-Influence Contribution Semantics
Having presented the provenance representation for which rewrites should be produced, we now present
how a query q is transformed by the Perm approach into a query q+ that generates the desired provenance
result schema and propagates provenance according to PI-CS. In this section we limit the discussion to
algebra expressions without sublinks. Algebra expressions with sublinks will be handled in section 4.3. The
algebraic rewrites we use to propagate provenance from the base relations to the result of a query is defined
for single algebra operators. Recall, that we have discussed in chapter 2 that the principle of propagation of
information attached to data is used by annotation systems like DBNotes [CTV05] or Mondrian [GKM05].
The approach used by Cui in [CW00a] for Lineage-CS, the CS from which PI-CS is derived from, is based
on inversion of queries that trace the origin of a tuple (or set of tuples) from the result back to the source. A
disadvantage of this approach is that it requires the instantiation of intermediate results for some operators
like aggregation that are not invertible. The Perm approach omits the instantiation of intermediate results.
The provenance computation for each operator in a query depends exclusively on the result relation of its
rewritten inputs and is independent of the computation that generated this rewritten inputs. Thus, we do not
have to keep earlier results to compute the current step. We will demonstrate in chapter 5 that this approach
has additional advantages if the provenance of only a part of a query should be computed.

The Perm algebraic rewrites are modeled as a function + : (E ,< A >)→ (E ,< A >) that transforms
a query q into a provenance computing query q+. Recall that E denotes the set of all possible algebra
expressions and < A > denotes the set of all possible lists of attribute names. The list of attribute names
(called provenance attribute list P of a query) is needed to define + as rewrite rules for each algebra
operator that are independent of each other. P is used to store the list of attributes of Q+ that are used to
store the witness lists. The result of + for a query q that contains multiple algebra operators is computed
by recursively applying the rewrite rules for to each operator in the query. To be able to rewrite a query
incrementally, the rewrite rules have to be applicable to rewritten inputs, i.e., a rewrite has to distinguish
between normal and provenance attributes in its input (This is why P is needed).

Each rewrite rule is modeled as a structural modification (the E → E part of +) and a modification of
the provenance attribute list (the < A >→< A > part of +). For two provenance attribute lists P1 =<
a1, . . . ,an > and P2 =< b1, . . . ,bn >, the list concatenation operation I is defined as P1 I P2 =<
a1, . . . ,an,b1, . . . ,bn >.

Definition 4.2 (Provenance Rewrite Meta-Operator). The provenance rewrite meta-operator + : (E ,<
A >)→ (E ,< A >) maps a pair (q,<>) to a pair (q+,P(q+)). + is defined over the structure of q
as rewrite rules for each algebra operator which are shown in Figure 4.3.

We call + a meta-operator, because, in contrast to algebra operators that transform relational data, it
transforms algebra expressions.

4.2.1 Unary Operators Rewrite Rules
In Figure 4.3 the structural and provenance attribute list rewrites for each algebra operator are presented
separately. We now discuss each rewrite rule in detail. The rewrite rule (R1) for base relation accesses
duplicates the attributes from a base relation R and renames them according to the provenance attribute
naming function Nq

3. The provenance attribute list of the rewritten base relation access contains the
duplicated attributes.

Rewrite rule (R2), the rule for ΠS/B
A(q1), rewrites a projection by adding the list of provenance at-

tributes from q1
+ to the projection list. For example, if q1 is an access of base relation items, P(q+) is

< N (id),N (price) >. (ΠS/B
A(item))+ preserves the complete tuples from relation item that were used

to compute the result of ΠA(item).
The result of applying + to a selection (rewrite rule (R3)) is generated by applying the unmodified

selection to its rewritten input, because adding the provenance attributes to the input of the selection does
not change the result of the selection condition. Therefore, only tuples that are extended versions of original

3Here q is the complete query that is rewritten, because the attribute names depend on the structure of the complete query.

70 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Structural Rewrite
Unary Operators

q+ = R+ = ΠR,R→N (R)(R) (R1)

q+ = (σC(q1))+ = σC(q1
+) (R2)

q+ = (ΠS/B
A(q1))+ = Π

B
A,P(q+)(q1

+) (R3)

q+ = (αG,agg(q1))+ = Π
B

G,agg,P(q+)(αG,agg(q1) ><G=nX Π
B

G→X ,P(q1+)(q1
+)) (R4)

Join Operators

q+ = (q1×q2)+ = Π
B

Q1,Q2,P(q+)(q1
+×q2

+) (R5.a)

q+ = (q1 ><C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ ><C q2

+) (R5.b)

q+ = (q1 ><C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ ><C q2

+) (R5.c)

q+ = (q1>< C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+>< C q2

+) (R5.d)

q+ = (q1 >< C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ >< C q2

+) (R5.e)

Set Operations

q+ = (q1∪S/Bq2)+ = Π
B

Q1,P(q+)(q1∪Sq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)) (R6.a)

q+ = (q1∪S/Bq2)+ = (q1
+×null(P(q2

+)))∪B(ΠB
Q1,P(q+)(q2

+×null(P(q1
+)))) (R6.b)

q+ = (q1∩S/Bq2)+ = Π
B

Q1,P(q+)(q1∩Sq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)) (R7)

q+ = (q1−S/Bq2)+ = Π
B

Q1,P(q+)(Π
S

Q1(q1−S/Bq2)><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+) (R8.a)

q+ = (q1−S/Bq2)+ = Π
B

Q1,P(q+)(Π
S

Q1(q1−S/Bq2)><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)×null(P(q2

+))) (R8.b)

Provenance Attribute List Rewrite

P(q+) =

P(q+) if q = σC(q1)∨q = ΠA(q1)∨q = αG,agg(q1)
P(q1

+) I P(q2
+) if q = (q1 �C q2)∨q = (q1∪S/Bq2)∨q = (q1∩S/Bq2)∨q = (q1−S/Bq2)

N (R) if q = R

Figure 4.3: PI-CS Algebraic Rewrite Rules for Queries without Sublinks

result tuples are in the result of the rewritten selection. The provenance attribute list of a rewritten selection
is the provenance attribute list of its rewritten input.

The rewrite rule (R4) rewrites an aggregation operation. We can not add additional tuples to the in-
put of an aggregation or add additional attributes to its result schema without changing the values of the
aggregation functions. This means we cannot propagate provenance information through an aggregation
directly. Therefore, the rewritten query contains the original aggregation. The result of the original aggre-
gation is joined with the rewritten version of q1 using an equality condition on the grouping attributes. This
is feasible because, according to the compositional semantics of PI-CS, all tuples with the same grouping
attribute values as an result tuple t belong to the witness lists of t. We use an left outer join to handle the
case of an aggregation with an empty input. According to the semantics of the aggregation operator the
result of the aggregation is a single tuple in this case (with empty provenance). Note that the comparison
operator =n instead of normal equality is used in the rewrite rule. This comparison operator is defined as:

a=nb⇔ a = b∨ (a is ε ∧b is ε)

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 71

If the input of an aggregation contains tuples with null values in the group-by attributes, one output
tuple is generated for this group of tuples. The =n comparison operator guarantees that the provenance of
such a group is handled correctly. The provenance attribute list of a rewritten aggregation is the provenance
attribute list of its rewritten input.

4.2.2 Join Operator Rewrite Rules
The rewrite rules (R5.a) to (R5.e) rewrite join operators.The provenance attribute list of a rewritten join
operator is the concatenation of the provenance attribute lists of its rewritten inputs, because each witness
list in the provenance of a join result contains a witness list for the left input and a witness list for a right
input. � is used in the provenance attribute list construction as a placeholder for one of the join types of the
Perm algebra. A join operator is rewritten by applying the join to the rewritten inputs and using a projection
to produce the correct ordering of the result attributes (provenance attribute after normal attributes). This
is possible, because adding provenance attributes to the input relations q1 and q2 does not change the result
of the join condition.

4.2.3 Set Operations Rewrite Rules
The provenance attribute list of a rewritten set operation is the concatenation of the provenance attribute
lists of its rewritten inputs. Recall that we defined two contribution semantics for union. One that combines
two tuples from both inputs into a single witness list if they contributed to the same result tuple (this is the
behaviour of Lineage-CS) and one that generates two separate witness lists for this case. Rewrite rule
(R6.a) implements the first version. The desired combination of rewritten input tuples into a single output
cannot be achieved by applying the union to the rewritten inputs. Thus, each input is rewritten separately
and then joined with original union query on the complete set of original result attributes (Recall that
according to the compositional semantics for union, input tuples belong to a witness list of a result tuple t
if they are equal to t). We have to use outer joins to preserve tuples that are derived from only one of the
inputs. The projection that is applied to the output of the joins removes superficial attributes introduced by
the joins.

Rewrite rule (R6.b) implements the other contribution semantics for union. This rewrite rule simply
extends the tuples from both rewritten inputs with null values to make them union compatible. Each tuple
in the result of the rewritten query is derived from either the left or the right input and has the provenance
attributes of the other rewritten input set to null. Hence, each tuple models a witness list of type < t,⊥> or
<⊥, t > which are the two types of witness lists produced by the second compositional semantics of union.

The rewrite of an intersection operator (rewrite rule (R7)) is similar to rule (R6.a). It also uses joins to
attach the provenance attributes from the rewritten inputs to the original result tuples of the intersection. In
contrast to union it is not necessary to use outer joins, because each result tuple of an intersection is derived
from tuples of both inputs.

Like for union, we proposed two contribution semantics for set difference. One that, like Lineage-CS,
includes tuples from the right input of the set difference in the provenance and the other one that includes
only tuples from the left input. Rewrite rule (R8.a) implements the first semantics in a similar way as the
union and intersection rewrite rules. Rewrite Rule (R8.b) only joins the rewritten left input and fills the
provenance attributes of the rewritten right input with null values. Note that the joins applied by the set
operation rewrite rules use the =n comparison operator to deal with input tuples that contain null values.

4.2.4 Example Query Rewrite
As an example, reconsider query qex from the running example. Figure 4.4 presents the application of +
to this query. The top level operator of qex is an aggregation operator. Applying rewrite rule (R4) we get
qex

+ as shown in 4.4 (step 1). Rule (R4) states that the P-list for qex
+ equals P(q1

+). At this point,
q+ has not been computed, thus, P(qex

+) is not expanded further in this step. The remaining sub-query
q is a selection, which is left untouched by the rewrite (R2). The cross-product qcross = shop× sales×
item is handled by rewrite rule (R5.a) (see 4.4 (step 2)). The P-list of a rewritten cross product is the
concatenation of the P-lists of its rewritten inputs. In this case, the provenance attribute lists of rewritten

72 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Original Query qex = αname,sum(price)(σname=sName∧itemid=id(shop× sales× items))
Step 1 qex

+ = Πname,sum(price),P(q+)(αname,sum(price)(q)><name=x Πname→x,P(q+)(q+))

q = σname=sName∧itemid=id(shop× sales× items)
P(qex

+) = P(q+)
Step 2 q+ = Πname,numEmpl,sName,itemId,id,price,P(q+)(σname=sName∧itemid=id(qcross

+))

qcross
+ = shop+× sales+× items+

P(q+) = P(shop+) I P(sales+) I P(items+)
Step 3 shop+ = Πname,numEmpl,name→N (name),numEmpl→N (numEmpl)(shop)

P(shop+) = (N (name),N (numEmpl))
Step 4 sales+ = ΠsName,itemId,sName→N (sName),itemId→N (itemid)(sales)

P(sales+) = (N (sName),N (itemId))
Step 5 items+ = Πid,price,id→N (id),price→N (price)(items)

P(items+) = (N (id),N (price))

Qex
+

name sum(price) N (name) N (numEmpl) N (sName) N (itemId) N (id) N (price)
Merdies 120 Merdies 3 Merdies 1 1 100

Merdies 120 Merdies 3 Merdies 2 2 100

Merdies 120 Merdies 3 Merdies 2 2 100

Joba 50 Joba 14 Joba 3 3 25

Joba 50 Joba 14 Joba 3 3 25

Figure 4.4: Example Application of the Provenance Rewrite Meta-Operator

base relations shop, sales and items. In Figure 4.4 (steps 3-5) rewrite rule (R1) is used to derive the
rewritten base relations shop+, sales+ and items+. The result of qex

+ is presented at the lower part of
Figure 4.4. Note that qex

+ generates exactly the PI-CS provenance representation introduced in section
4.1.

If one takes a careful look at this example, it is obvious that if qex had been represented as an operator-
tree, we would have computed the structural rewrite top-down and computed the P-lists in a second
bottom-up tree-traversal according to the sequence of operations applied in the example. A single bottom-
up computation of a rewrite is possible as well, because the rewrite rules do not enforce a specific eval-
uation order. It seems that the bottom-up approach is advantageous, because the P-lists of rewritten
sub-expressions of a query q needed to compute q+’s P-list are immediately available, but as we will see
in chapter 5, the bottom-up approach has other disadvantages.

Using the set of rewrite rules, we are able to transform a algebra expression q into a single relational al-
gebra expression q+ generating the provenance of q. A major advantage of this approach is that provenance
computation and normal queries are expressed with the same query language which enables provenance to
be queried like normal data. For example, if a user needs to know which items where sold by shops with
a total sales bigger than 100, this query can be represented as q1 = ΠpId(σsum(price)>100(qex

+)). Note that
it is possible to write down the algebra expression of this query as a query solely on qex

+, because of the
direct association between provenance and original data in Qex

+, i.e., we can use provenance and original
attributes in conditions and projections.

4.2.5 Proof of Correctness and Completeness
As mentioned before computing provenance by evaluating algebra expressions allows us to prove the cor-
rectness of provenance computation. To show that the + meta-operator generates a query that computes

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 73

provenance according to PI-CS we have to prove that the result Q+ of the query q+ generated by the
algebraic rewrite rules is equal to QPI , the relational representation of provenance according to PI-CS.

Theorem 4.1 (Correctness and Completeness of the PI-CS Rewrite Rules). Let q be an algebra expres-
sion without sublink expressions. The result Q+ of the algebra expression q+ generated by applying the
provenance rewrite meta-operator to (q,<>) is equal to QPI and, thus, generates provenance according
to PI-CS:

Q+ = QPI

Proof. We have to show that each tuple in Q+ is of the form (t,w[1]′, . . . ,w[n]′) for an original result tuple
t and one of its witness lists w (soundness) and for each combination of t ∈ Q and w ∈ DD(q, t) there
is a corresponding tuple (t,w[1]′, . . . ,w[n]′) in Q+ (completeness). The proof of this theorem is twofold.
First, we show that each tuple in Q+ is an extension of an tuple from Q and that for each tuple in Q
there is a corresponding extended tuple in Q+. This proves that the tuples in Q+ and QPI agree on the
original result attributes. We call this property result preservation, because it states that all the original
result tuples of q and nothing else is stored in the original result attributes of Q+. Second, we prove that
each extension t+ = (t,w[1]′, . . . ,w[n]′) ∈ Q+ of t ∈ Q contains the relational representation of a witness
list w from DD(q, t) and that Q+ contains an extended tuple t+ for each witness list in DD(q, t). We refer
to this property as witness list preservation.

Result Preservation

The result preservation property is proven by showing that ΠS
Q(q+) = ΠS

Q(q). We prove this proposition
by induction over the structure of an algebra expression. Assuming we have proven ΠS

Q(q+) = ΠS
Q(q) for

all algebra expressions with maximal operator nesting depth i we have to show that ΠS
OP(Q)((op(q))+) =

ΠS
OP(Q)(op(q)) holds for every unary operator op and that ΠS

Q1 OP Q2((q1 op q2)+)= ΠS
Q1 OP Q2(q1 op q2)

holds for every binary operator.

Induction Start:
The only algebra expression with nesting depth 0 is a base relation access R. The other nullary operator t
is not of interest because its result is not derived from base data but instead generated by the query itself.
Therefore, the provenance of this operator is empty.

Π
S

R(R+)

=Π
S

R(ΠB
R,R→N (R)(R)) (algebraic equivalences)

=Π
S

R(R)

Induction Step:
Case q = ΠS/B

A(q1):

Π
S

Q(q+)

=Π
S

A((ΠS/B
A(q1))+)

=Π
S

A((ΠS/B
A,P(q1+)(q1

+)))

=Π
S

A(q1
+)

=Π
S

A(ΠS
Q1(q1

+)) (because expression A is defined solely over attributes from Q1)

=Π
S

A(ΠS
Q1(q1)) (induction hypothesis)

=Π
S

A(ΠS/B
A(q1))

=Π
S

A(q)

74 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Case q = σC(q1):

Π
S

Q(q+)

=Π
S

Q(σC(q1
+))

=Π
S

Q(σC(ΠS
Q1(q1

+))) (since C is defined solely over attributes from Q and Q = Q1)

=Π
S

Q(σC(ΠS
Q1(q1))) (induction hypothesis)

=Π
S

Q(σC(q1))

=Π
S

Q(q)

Case q = αG,agg(q1):

Π
S

Q(q+)

=Π
S

G,agg(αG,agg(q1) ><G=nX Π
B

G→X ,P(q1+)(q1
+))

=Π
S

G,agg(αG,agg(q1)) (semantics of left join and duplicate removal of projection)

=Π
S

Q(q)

Case q = q1 �C q2:

Π
S

Q(q+)

=Π
S

Q1,Q2(q1
+ �C q2

+)

=Π
S

Q1,Q2(Π
B

Q1(q1
+)�C Π

B
Q2(q2

+)) (equivalence of ΠB
Q(q) with q)

=Π
S

Q1,Q2(Π
S

Q1(q1
+)�C Π

S
Q2(q2

+)) (pushing duplicate removal into the join)

=Π
S

Q1,Q2(Π
S

Q1(q1)�C Π
S

Q2(q2)) (induction hypothesis)

=Π
S

Q(q)

Case q = q1∪S/Bq2 (R6.a):

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1∪S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
B

Q1(q1∪S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
S

Q1(q1∪S/Bq2)) (semantics of left outer join and duplicate removal of projection)

=Π
S

Q(q)

Case q = q1∪S/Bq2 (R6.b):

Π
S

Q(q+)

=Π
S

Q1((q1
+×null(P(q2

+)))∪B(ΠQ1,P(q+)(q2
+×null(P(q1

+)))))

=Π
S

Q1(Π
S

Q1((q1
+×null(P(q2

+))))∪B
Π

S
Q1((Π

B
Q1,P(q+)(q2

+×null(P(q1
+))))))

Pushing projection into union:

=Π
S

Q1(Π
S

Q1(q1
+))∪B

Π
S

Q2(Π
B

Q2(q2
+))

=Π
S

Q1(Π
S

Q1(q1))∪B
Π

S
Q2(Π

S
Q2(q2)) (induction hypothesis)

=Π
S

Q(q)

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 75

Case q = q1∩S/Bq2:

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
B

Q1(q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

From the semantics of intersection and the induction hypothesis we know that every tuple from q1∩q2 will
find join partners in ΠB

Q1→X ,P(q1+)(q1
+) and ΠB

Q2→Y,P(q2+)(q2
+).

=Π
S

Q1(Π
B

Q1(q1∩S/Bq2))

=Π
S

Q(q)

Case q = q1−S/Bq2 (R8.a):

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1−S/Bq2 ><Q1=nX ΠQ1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+))

=Π
S

Q1(Π
B

Q1(q1−S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+))

From the semantics of set difference we know that every tuple from q1−S/Bq2 will find at least one join
partner in ΠQ1→X ,P(q1+)(q1

+).

=Π
S

Q1(Π
B

Q1(q1−S/Bq2))

=Π
S

Q(q)

Case q = q1−S/Bq2 (R8.b):

Π
S

Q(q+)

=Π
S

Q1(ΠQ1,P(q+)(q1−S/Bq2 ><Q1=nX ΠQ1→X ,P(q1+)(q1
+)×null(P(q2

+))))

=Π
S

Q1(Π
B

Q1(q1−S/Bq2)) (same argument as for rewrite rule (R8.a))

=Π
S

Q(q)

Witness List Preservation

To prove the witness list preservation property we have to show that each tuple in Q+ is an extension of an
original result tuple t with the relational representation of one of t’s PI-CS witness lists. Let q be an algebra
expression defined over base relations R1, . . . ,Rn then we have to proof the following equivalence:

Q+ = QPI

This equality can be expressed as:

u = (t,v1, . . . ,vn) ∈ Q+⇔ w ∈DD(q, t)∧∀i : w[i]′ = vi

This is equivalent to Q+ = QPI because we have already proven that q+ fulfills the result preservation
property. Otherwise we would have to include an additional condition t ∈ Q on the right side of the
equivalence. As for Result Preservation we proof this property by induction over the structure of an algebra
expression.

76 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Induction Start:
Case q = R:
⇒:

um = (t,v1)m ∈ R+

⇒v1 = t ∧ tm ∈ R (R+ duplicates the attribute values of attributes in R)
⇒wm ∈DD(q, t)∧w[1]′ = v1 (since DD(R, t) = {< t >m| tm ∈ R})

⇐:

wm ∈DD(q, t)∧w[1]′ = v1

⇒v1 = t (compositional semantics of DD)

⇒u = (t,v1)m ∈ R+ (R+ duplicates values of attributes in R)

Induction Step for Unary Operators:
Assuming that witness list preservation holds for algebra expressions with a maximal nesting depth i

we have to show that this property holds for algebra expressions with maximal nesting depth i+1. Hence,
for unary operators op we have to show that for an algebra expression q = op(q1) with nesting depth i+1
the following holds under the assumption that (t,v1, . . . ,vn) ∈ Q1

+⇔ w ∈DD(q1, t)∧w[i]′ = vi holds:

(t,v1, . . . ,vn)m ∈ Q+⇔ wm ∈DD(q, t)∧w[i]′ = vi

Using the definition of transitivity for DD the right hand side can be transformed into:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧w1
m ∈DD(q1, t ′)∧w1[i]′ = vi)

∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

Substituting the induction hypothesis we get:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1
+)

∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

Thus, we have to prove the following equivalence:

(t,v1, . . . ,vn) ∈ Q+

⇔
(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1

+)
∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

This means q+ produces correct results if it propagates witness list representations correctly. For a
witness list representation w′ from the rewritten input, q+ has to attach w′ to a tuple t in the output iff t is
derived from a tuple t ′ from the input and in the rewritten input t ′ is attached to w′.

Case q = σC(q1):
Applying rewrite rule (R2) to q we get q+ = σC(q1

+). From the compositional semantics of PI-CS for
selection we know that a witness list w in DD(σC(Q1), t) will never contain ⊥. Therefore, the right
disjunct of the right hand side of the equivalence we have to prove is never fulfilled. It follows that we can
simplify the right hand side to:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1
+)

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 77

Using the simplified equivalence we get:

(t,v1, . . . ,vn)m ∈ Q+

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′ = t (definition of selection)

⇔(t ′,v1, . . . ,vn) ∈ Q1
+∧wm =< t ′ >∈DD(σC(Q1), t) (compositional semantics of PI-CS)

Case q = ΠS/B
A(q1):

Applying rewrite rule (R3) to q we get q+ = ΠB
A,P(q+)(q1

+) = ΠB
A,P(q1+)(q1

+). Using the same argu-
ments as applied in the proof for selection we deduce that the simplified equivalence can be applied in the
proof for projection too.

(t,v1, . . . ,vn)m ∈ Q+

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′.A = t (definition of projection)

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧wm =< t ′ >∈DD(ΠS/B

A(Q1), t) (compositional semantics of PI-CS)

Case q = αG,agg(q1):
Applying rewrite (R2) to q we get q+ = ΠB

G,agg,P(q+)(αaggr,G(q1) ><G=nX ΠB
G→X ,P(q1+)(q1

+)) with
P(q+) = P(q1

+). We distinguish between two cases:

1. G = () and Q1 = /0

2. else

Case 1: For the first case we know that DD(q, t) = {<⊥>}. Therefore, the left disjunction of the right-
hand side of the equivalence we have to prove can be removed. In the following let v = (v1, . . . ,vn).

(t,v1, . . . ,vn)m ∈ Q+

⇔t ∈ Q∧ (((u,v)m ∈ Q′∧q′ = Π
B

G→X ,P(q1+)(q1
+)∧u.X=nt.G)∨ (v = ε, . . .ε ∧Q1 = /0))

⇔t ∈ Q∧ (v = ε, . . . ,ε) ∈ Q′

⇔<⊥>∈DD(αG,agg(Q1), t)

Case 2: For the second case we know that every result tuple t in [[αG,agg(q1)]] will find a join partner in
ΠB

G→X ,P(q1+)(q1
+), because otherwise t would not in Q.

(t,v1, . . . ,vn)m ∈ Q+

⇔(u,v)m ∈ Q′∧q′ = Π
B

G→X ,P(q1+)(q1
+)∧u.X = t.G∧u.v = t.v (definition of left join)

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′.G = t.G

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧wx =< t ′ >∈DD(αG,agg(Q1), t)

Induction Step for Binary Operators:
To prove witness list preservation for binary operators we use the same approach as applied for unary

operators. The difference is that applying the transitivity definition of PI-CS to q = q1 op q2 generates a
more complex equivalence:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+⇔ case1∨ case2∨ case3∨ case4

where

78 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

case1 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′, t ′′ >

∧w[q1]p ∈DD(q1, t ′)∧w[i]′ = vi∧w[q2]r ∈DD(q2, t ′′)∧w[i+n]′ = ui)
case2 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′,⊥>

∧w[q1]p ∈DD(q1, t ′)∧w[i]′ = vi∧∀i : ui = (ε, . . . ,ε)∧ r = 1)
case3 =(wx ∈DD(Q1 op Q2, t)∧w =<⊥, t ′ >

∧∀i : vi = (ε, . . . ,ε)∧ p = 1∧w[q2]r ∈DD(q2, t ′)∧w[n+ i]′ = ui)
case4 =(w ∈DD(Q1 op Q2, t)∧w =<⊥,⊥> ∧∀i : vi = (ε, . . . ,ε)∧∀i : ui = (ε, . . . ,ε)∧ p = r = 1)

Substituting the induction hypothesis for each of these cases produces the following equivalent formu-
lation:

case1 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′, t ′′ >

∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)r ∈ Q2

+)
case2 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′,⊥>

∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧∀i : ui = (ε, . . . ,ε)∧ r = 1)

case3 =(wx ∈DD(Q1 op Q2, t)∧w =<⊥, t ′ >

∧∀i : vi = (ε, . . . ,ε)∧ (t ′,u1, . . . ,um)r ∈ Q2
+)

case4 =(w ∈DD(Q1 op Q2, t)∧w =<⊥,⊥> ∧∀i : vi = (ε, . . . ,ε)∧∀i : ui = (ε, . . . ,ε)∧ p = r = 1)

We prove this equivalence by identifying under which pre-conditions each of the cases is fulfilled
(the individual case are non-overlapping) and then under assumption of these pre-conditions prove the
equivalence of the left hand side with this case. Note that some of these cases can be precluded for several of
the binary operators, because the provenance of these operators never contains witness lists of the requested
format.
Case q = q1×q2:

According to the compositional semantics of PI-CS for cross product each witness list is of the form
w =< u,v > where u respective v are tuples from Q1 respective Q2. Therefore, all cases except case1 can
be excluded.

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t.Q1,v1, . . . ,vn)p ∈ Q1
+∧ (t.Q2,u1, . . . ,um)r ∈ Q2

+ (semantics of projection and cross product)

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)r ∈ Q2

+∧ t ′ = t.Q1∧ t ′′ = t.Q2

⇔wx =< t ′, t ′′ >∈DD(Q1×Q2, t)

∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)r ∈ Q2

+ (compositional semantics for cross product)

Case q = q1 ><C q2:
According to the compositional semantics of PI-CS for join each witness list is of the form w =< u,v >

where u respective v are tuples from Q1 respective Q2. Therefore, all cases except case 1 can be excluded.

4.2. REWRITE RULES FOR PERM-INFLUENCE CONTRIBUTION SEMANTICS 79

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t.Q1,v1, . . . ,vn)p ∈ Q1
+∧ (t.Q2,u1, . . . ,um)r ∈ Q2

+ (semantics of projection and join)

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)r ∈ Q2

+∧ t ′ = t.Q1∧ t ′′ = t.Q2

⇔wx =< t ′, t ′′ >x∈DD(Q1 ><C Q2, t)∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)r ∈ Q2

+

(compositional semantics for join)

Case q = q1 ><C q2:
Each witness list w in the PI-CS provenance for left outer join is either of the form < u,v > with u from

Q1 and v from Q2 or of form < u,⊥> with u from Q1. Hence, only cases 1 and 2 have to be considered.
Case 1: According to the compositional semantics for left outer join case 1 applies if t |= C. In this case the
semantics of left outer join, its compositional semantics and rewrite rule coincide with the inner join case.
Case 2: Case 2 applies if t 6|= C and, therefore, t = (t ′,ε, . . . ,ε) where t ′ ∈ Q1. This means t is generated
from a left hand side input tuple that does not have a join partner in Q2.

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+∧ t 6|= C

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ t = (t ′,ε, . . . ,ε) ∈ Q∧ t 6|= C

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧wx =< t ′,⊥>x∈DD(Q1 ><C Q2, t)

Case q = q1>< C q2:
For right outer join only cases 1 and 3 apply. The proves for both cases are analog to the proves for left

outer join.
Case q = q1 >< C q2:

For full outer join case 1 to 3 apply and are proven as for the other outer join types.
Case q = q1∪S/Bq2 (PI semantics):

All witness lists in the provenance of a union are either < u,⊥> or <⊥,v > with u ∈ Q1 and v ∈ Q2 if
PI-CS semantics are applied. This means only cases 2 and 3 apply.
Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧wx ∈DD(Q1∪Q2)∧w =< t,⊥>

Case 3: Is symmetric to the proof of case 2.
Case q = q1∪S/Bq2 (alternative semantics):

For the alternative semantics of the provenance fo union (rewrite rule 6.a) cases 1,2, and 3 apply.
Case 1:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+ (semantics of left outer join)

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+∧wx ∈DD(Q1∪S/BQ2)∧w =< t, t >

Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+∧¬∃(t,u1, . . . ,um) ∈ Q2
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧¬∃(t,u1, . . . ,um) ∈ Q2

+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧wx ∈DD(Q1∪S/BQ2)∧w =< t,⊥>

80 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Case 3: Is symmetric to the proof of case 2.
Case q = q1∩S/Bq2:

For intersection all witness lists are of the form < u,v > with u ∈ Q1 and v ∈ Q2. Only case 1 applies.

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+ (semantics of join)

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+∧< t, t >x∈DD(Q1∩S/BQ2)

Case q = q1−S/Bq2 (PI-CS semantics):
All witness lists for set difference are of the form < u,⊥> with u ∈ Q1. Therefore, only case 2 applies

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧< t,⊥>x∈DD(Q1−S/BQ2)

Case q = q1−S/Bq2 (alternative semantics):
Under the alternative semantics a witness lists from DD(q, t) is either of form < t,v > with t ∈Q1 and

v ∈Q2 if Q2 contains tuples that are not equal to t or of form < t,⊥> otherwise. This means cases 1 and 2
apply.
Case 1:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)r ∈ Q2

+∧ t 6= t ′

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)r ∈ Q2

+∧< t, t ′ >x∈DD(Q1−S/BQ2, t)

Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ 6 ∃(t ′,u1, . . . ,um) ∈ Q2

+ : t 6= t ′

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧< t,⊥>x∈DD(Q1−S/BQ2, t)

With the prove of theorem 4.1 we have established an very important property. Given a query q (without
sublinks) we know how to transform it into a query q+ by applying the meta-operator +. q+ is guaranteed
to compute the provenance of q according to PI-CS alongside with the original results of q. Furthermore,
in the result of Q+ each original tuple t is extended with the relational representations of its PI-CS witness
lists. The correctness and completeness of + was proven in two steps. First, we demonstrated that q+

preserves the original result tuples of q (result preservation). I.e., if Q contains a tuples t then Q+ will
contain extended versions of t and all tuples (t,v) in Q+ are extended versions of tuples from Q. Second,
we have proven that each extended version of a tuple t in Q+ is generated by attaching the relational
representation of a witness list from DD(q, t) to t (witness list preservation). This means only relational
representations of witness lists from DD(q, t) are included in Q+ and q+ generates the correct associations
between witness lists and original result tuples as requested by the relational representation QPI of PI-CS
provenance. In the next section we extend the rewrite rules for algebra expressions with sublinks and prove
the correctness and completeness of these extensions.

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 81

4.3 PI-CS Rewrite Rules for Queries with Sublinks
In this section we present rewrite rules that compute the + meta-operator for algebra expression that contain
sublinks. We first introduce one set of rewrite rules, called the Gen rewrite strategy, that is applicable to
all algebra expressions with sublinks, but is not very efficient. Afterwards, we present several specialized
rewrite strategies that use un-nesting and de-correlation (see, e.g., [Kim82]) to reduce the complexity of the
rewritten algebra expressions. Thus, increasing the likelihood that the optimizer of a DBMS generates an
efficient execution plan for the rewritten query. The disadvantage of these specialized rewrite strategies is
that they are only applicable to algebra expressions that fulfill certain preconditions. E.g., some strategies
are only applicable to algebra expressions that contain only uncorrelated sublink expressions.

4.3.1 Gen Rewrite Strategy
We now present the Gen rewrite strategy for algebra expressions that contain sublinks and prove that the
rewrite rules of the strategy compute provenance according to Definition 3.12. The Gen strategy uses the
PI-CS rewrite rules for standard algebra expressions and additional rewrite rules to transform sublinks.

The two main problems in developing rewrite rules for sublinks are that (1) the result of a sublink query
is not included in the query result which complicates the propagation of provenance information, and that
(2) it is not immediately clear how to determine the influence role of a sublink (see 3.2.3.1) which is needed
to determine the provenance of the sublink. We approach the first problem by joining the original query
with the sublink query, and the second by restricting the join to filter out tuples according to the influence
role of the sublink. For correlated sublinks it is not possible to simply join the sublink query, because
correlations are only allowed in sublinks but not in standard algebra expressions.

One approach to overcome this problem is to completely de-correlate the query by injecting the top
query into the sublink query, produce results for each correlated attribute binding and propagate the bind-
ings throughout the query. The propagated attributes are then used to bind the correlated attributes values
in the join condition. This is similar to the query un-nesting and de-correlation problem studied in area of
query optimization (see [Cha98]). However, the solutions from this field are only applicable for specific
correlations. Even if we do not consider the performance of rewritten queries, the limitations to a subset of
sublink expressions is not acceptable. Therefore, we first aim at developing a strategy that is applicable to
all algebra expressions with sublinks and postpone the discussion of more efficient strategies with limited
applicability to section 4.3.2.

To circumvent de-correlation the Gen strategy joins the original query with all theoretically possible
relational witness list representations and simulates a join by an additional sublink that filters out witness
list representations that do not belong to the provenance. All possible witness list representations for the
provenance of a sublink can be produced using the cross product of all base relations accessed by the
sublink query. In some cases, e.g. if a base relation is the empty set or a witness list contains ⊥, a tuple
consisting of null values is the representation of a witness list for this relation. Therefore, we extend each
base relation R with a tuple null(R). Recall that null(R) is a singleton relation that has the schema R with
all attributes set to ε .

Let R1, . . . ,Rn be the list of all base relations accessed by a sublink query qsub. The algebra expression
CrossBase(qsub) is defined as follows:

CrossBase(qsub) =Π
B

R1→N (R1)(R1∪Bnull(R1))× . . .×Π
B

Rn→N (Rn)(Rn∪null(Rn))

CrossBase(qsub) is the set of all relational representations of witness lists that may occur in the provenance
of a sublink qsub according to PI-CS.

To restrict the CrossBase of a sublink to the representations of witness lists from DD(q, t), we need to
know which influence role Csub has for every regular input tuple t. In addition, we need to know the set of
witness lists for the sublink query qsub. The provenance of the sublink query can be computed by applying
+ to produce qsub

+. To access the influence role, we can make use of the sublink condition Csub itself.
The join condition can then be formulated using Csub and a condition Csub

′ that filters out the witness list
representations from the CrossBase according to the influence role of Csub.

82 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

(σC(q1))+ =σC∧Csub1
+...∧Csubn

+(q1
+×CrossBase(qsub1) . . .×CrossBase(qsubn)) (G1)

(ΠS/B
A(q1))+ =σCsub1

+∧...∧Csubn
+(ΠB

A,P(q1+)(q1
+)×CrossBase(qsub1) . . .×CrossBase(qsubn)) (G2)

Csubi
+ = EXIST S (σJsubi∧P(qsubi

+)=nX (ΠB
P(qsubi

+)→X (qsubi
+))

∨ (¬ EXIST S (qsubi)∧P(qsubi
+) is ε)

Figure 4.5: Gen Strategy Rewrite Rules

As presented in section 3.2.3, the provenance of a sublink contains either all tuples from Qsub, Qsub
true

or Qsub
f alse. Thus, the correct filter condition for filtering out witness list representations is either true,

e op t or ¬(e op t). We use the following notations:

Csub
′ = e op t

¬Csub
′ = ¬(e op t)

Csub
′ and Csub are used in combination to define a selection condition Jsub for each sublink type that

is used to filter out witness list representations from the provenance of qsub
+ that do not belong to the

provenance according to the influence role of qsub:

Jsub = (Csub∧Csub
′)∨¬Csub (ANY-sublink)

Jsub = Csub∨ (¬Csub∧¬Csub
′) (ALL-sublink)

Jsub = true (EXISTS- or scalar sublink)

By applying logical equivalences, Jsub for ANY- and ALL-sublink can be simplified into:

Jsub = Csub
′∨¬Csub (ANY-sublink)

Jsub = Csub∨¬Csub
′ (ALL-sublink)

The condition Jsub is used to restrict qsub
+ to the actual provenance of Csub. For instance, if Csub = a =

ANY (σb>3(S)) then Jsub would be:

Csub
′∨Csub = (a = b)∨¬(a = ANY (σb>3(S)))

Before presenting the application of Jsub let us discuss how the join between CrossBase and q+ is
simulated with equality conditions between the attributes from CrossBase and the attributes from qsub

+. In
this comparison we have to consider null values as equal and, therefore, use the comparison operator =n.
The rewritten sublink expression Csub

+ that simulates the join condition between CrossBase and qsub
+ and

applies Jsub is defined as follows:

Csub
+ = EXIST S (σJsub∧P(qsub

+)=nX (ΠB
P(qsub

+)→X (qsub
+)))

∨ (¬ EXIST S (qsub)∧P(qsub
+) is ε)

The first EXISTS sublink expression in Csub
+ checks that a tuple from the CrossBase actually is a part of

the relational representation of a witness list that belongs to the provenance of the sublink Csub. To belong
to the provenance a tuple has to be an element of qsub

+. This is checked by the condition P(qsub
+)=nX .

In addition, the tuple has to fulfill the condition Jsub. The second EXISTS sublink expression is needed to
handle the special case of an empty sublink query result. In this case the provenance attributes are filled
with null values.

Csub
+ enables us to define the Gen strategy rewrite rules for selections and projections with multiple

sublinks. These rules are presented in Figure 4.5 as rewrite rules (G1) and (G2).

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 83

R
a b
1 1
2 1
3 2

S
c
1
2
4

Q
a b
1 1

q = σCsub(R) Csub =(a = ANY (σc=b(S)))

DD(q,(1,1)) = {< (1,1),(1) >}

q+ =σCsub∧Csub
+(Πa,b,a→N (a),b→N (b)(R)×Πc→N (c)(S∪B{(ε)}))

Csub
+ = EXIST S (σ(a=c∨¬Csub)∧N (c)=nxc(Πc,N (c)→xc(σc=b(Πc,c→N (c)(S)))))

∨ (¬ EXIST S (σc=b(S))∧N (c) is ε)

Q+

a b N (a) N (b) N (c)
1 1 1 1 1

Figure 4.6: Example Application of the Gen Strategy

Example 4.4. As an example for an application of the Gen strategy consider the query q presented in
Figure 4.6. The sublink query in Csub accesses only base relation S. Therefore, the CrossBase of Csub
is ΠB

c→N (c)(S∪Bnull(S)) = ΠB
c→N (c)(S∪{(ε)}). The regular input of the selection in q is the base

relation access R. Hence, the cross produce between the rewritten regular input and the CrossBase is
qcross = ΠB

a,b,a→N (a),b→N (b)(R)×ΠB
c→N (c)(S∪{(ε)}). The result of qcross contains all tuples from

the rewritten regular input and the provenance attribute part of all potential result tuples of qsub
+:

{(1),(2),(4),(ε)}. The rewritten sublink condition Csub
+ uses qsub

+ to retrieve the provenance of qsub
+.

The witness list representations in the provenance are filtered according to the influence role of Csub. In
this case Csub is reqtrue for all regular input tuples. Therefore, only tuples that fulfill the condition a = c
are not filtered out by the Jsub condition (a = c∨¬Csub). The condition a = c holds for all regular input
tuples for which the selection condition C is true and for tuples from Qsub

+ that are extended versions
of tuples from Qsub

true. Finally, the condition N (c)=nxc checks that only tuples from the CrossBase
that have the same provenance attribute values as the tuples from Qsub

+ are in the result of Q+. The
result relation Q+ is presented at the lower part of Figure 4.6. As expected it contains a single tuple that
represents the result tuple (1,1) and the only witness list < (1,1),(1) > in the set DD(q,(1,1)).

4.3.1.1 Proof of Correctness and Completeness

In the last section we demonstrated by means of an example that the Gen strategy generates correct prove-
nance information. Let us now formally prove the correctness of this strategy for arbitrary algebra expres-
sions.

Theorem 4.2 (Correctness and Completeness of the Gen Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rules (G1) and (G2) is the provenance
derived according to definition 3.12:

Q+ = QPI

84 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Proof.
To prove the correctness of the Gen rewrite rules, we have to show that each tuple t produced by the
rewritten query is an original tuple with attached provenance, and that for every original tuple with attached
provenance this tuple is included in the result of the rewritten query. Similar to the proof for the standard
operator rewrite rules, we proof this equivalence by showing that the result preservation and witness list
preservation properties are fulfilled.
Result Preservation:
Case (G1):
To show that the original result attributes Q of a rewritten query q+ contain exactly the result tuples from
Q, we have to show that ΠS

Q(q+) = ΠS
Q(q). For rewrite rule G1 the input to the outer most selection

is: inn = q1
+×CrossBase(qsub1) . . .×CrossBase(qsubn). Trivially ΠS

Q(inn) = ΠS
Q(q), because none of

the CrossBases evaluates to the empty set. Therefore, ΠS
Q(q+) = ΠS

Q(q) iff the selection condition C of
the outermost selection of q+ is fulfilled for ever tuple from Q1

+ and for each condition Csubi
+ there is at

least one tuple ti from CrossBase(Qsubi) that fulfills condition Csubi
+. The first requirement is always meet,

because every tuple from the result of q fulfills the selection condition C. The selection condition Csubi
+

filters out tuples from CrossBase(qsubi) that do not belong to the provenance of Csubi . If no tuples belong
to the provenance of Csubi , the second EXISTS condition selects a tuple with all attributes set to ε . Thus,
the second requirement is fulfilled too.
Case (G2):
The only difference between (G1) and (G2) is that q1

+ is a projection and, therefore, we have to prove that
ΠS

A(q+) = ΠS
A(q) holds. As for selection ΠS

Q(inn) = ΠS
Q(q) trivially holds. Also each tuple from q1

+

fulfills the selection condition of the outermost selection in q+, because none of the attributes from Q1 are
used in this condition. Finally, the Csubi

+ conditions are defined in the same way as for (G1). Hence, the
same argument holds.

Witness List Preservation:
Recall from the proof of witness list preservation for the standard algebra operators that proving this

property is equivalent to showing that the following equivalence holds for unary operators:

(t,v1, . . . ,vn) ∈ Q+

⇔
(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1

+)
∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

For queries with sublinks each witness list also contains tuples from the base relations accessed by the
sublink queries. Let q be an query with sublink expressions Csub1 to Csubs used in selection predicate C or
projection list A. Then we have to show that the following equivalence holds:

(t,v1, . . . ,vn,v11 , . . . ,v1n , . . . ,vs1 , . . . ,vsn)
p ∈ Q+

⇔
wp ∈DD(q, t)∧w[i]′ = vi

We prove this equivalence individually for both Gen strategy rewrite rules by induction over the number
of sublink expressions in the selection predicate C respective projection expression list A. This is a correct
approach, because we have demonstrated in chapter 3 that the provenance of a sublink used in an algebra
expression q is independent of the existence of other sublinks in q.
Induction Start:

For an algebra expressions q = σC(q1) or q = ΠS/B
A(q1) with zero sublinks the witness list preservation

property has been proven in the proof of theorem 4.1.
Induction Step:

Given that the witness list preservation property holds for algebra expressions q = σC(q1) with at most
s sublink expressions in C we have to show that this property also holds for algebra expressions with s+1

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 85

sublink expressions. Given query q = σC(q1) with sublink expressions Csub1 to Csubs+1 in selection predicate
C we define two auxiliary queries qs(t) and qs+1(t) that are defined for a result rule t of q. qs(t) is derived
from q by substituting Csubs+1 with the result of evaluating Csubs+1 for t (Csubs+1(t)). We denote the selection
condition that is the result of this substitution as Cs. Note that qs(t) is a query with s sublink expressions
and has the property that for a regular input tuple t it generates the same result as q (namely t) and for all
sublink expressions Csubi the modified query qs(t) generates the same evaluation result as q. Thus, given
the fact that the provenance of a sublink expression is independent of the existence of other sublinks in
the query we know that if w =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1 > is a witness lists in DD(q, t)
then w1 =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s , . . . ,vns > is a witness list in D(qs(t), t) and if w1 ∈ D(qs(t), t)
if follows that ∃v1s+1 , . . . ,vns+1 : w =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1 >∈ DD(q, t). From the
induction hypothesis we know that in this case a tuple (t,w1[1]′, . . .) is in Qs(t)+. The second auxiliary
query qs+1(t) is derived by replacing every sublink expression except Csubs+1 with its evaluation over t and
replacing q1 with Q1. For input tuple t, qs+1 produces the same result tuple t as q and agrees with q on
the result of evaluating Csubs+1 . From the independence of the provenance of sublinks from each other we
can follow that iff w as defined above is in DD(q, t) then < t, t ′ >∈DD(qs+1, t) and < v1s+1 , . . . ,vns+1 >∈
DD(qsubs+1 , t

′). Using the facts stated about qs(t) and qs+1(t) we deduce that the following equivalence
holds:

wp×r =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1 >p×r∈DD(q, t)
⇔w1

p =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s , . . . ,vns >p∈DD(qs(t), t)
∧ ((w2

x =< t, t ′ >x∈DD(qs+1(t), t)∧w3
r =< v1s+1 , . . . ,vns+1 >r∈DD(qsubs+1(t), t

′))∨
(w2

x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : w[i] =⊥))

Thus, we can transform the equivalence that we have to prove into:

(t,v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1)
p×r ∈ Q+

⇔w1
p =< v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s , . . . ,vns >p∈DD(qs(t), t)

∧ ((w2
x =< t, t ′ >x∈DD(qs+1(t), t)∧w3

r =< v1s+1 , . . . ,vns+1 >r∈DD(qsubs+1(t), t
′))∨

(w2
x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : w[i] =⊥ ∧r = 1))

Substituting the induction hypothesis and using the witness list preservation property of algebra expres-
sions without sublinks the ride hand side of this equivalence can be rewritten into:

(t,v1, . . . ,vns)
p ∈ Qs(t)+∧

((w2
x =< t, t ′ >x∈DD(qs+1(t), t)∧ (t ′,v1s+1 , . . . ,vns+1)

r ∈ Qs+1(t)+)∨
(w2

x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : vi = ε, . . . ,ε))

Hence, it remains to prove that the following equivalence holds:

(t,v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1)
p×r ∈ Q+

⇔(t,v1, . . . ,vns)
p ∈ Qs(t)+∧

((w2
x =< t, t ′ >x∈DD(qs+1(t), t)∧ (t ′,v1s+1 , . . . ,vns+1)

r ∈ Qs+1(t)+)∨
(w2

x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : vi = ε, . . . ,ε))

We prove this equivalence in two steps. First, we prove that (t,v1, . . . ,vns)
p ∈ Qs

+ follows from
(t,v1, . . . ,vn,v11 , . . . ,v1n , . . . ,v1s+1 , . . . ,vns+1)

p×x ∈ Q+ for some x. Second, we prove the remaining dis-
junction by separately handling the two disjuncts.
Applying rewrite rule (G1) to q and qs(t) we get:

q+ =σC∧Csub1
+...∧Csubs+1

+(q1
+×CrossBase(qsub1) . . .×CrossBase(qsubs+1))

qs(t)
+ =σCs∧Csub1

+...∧Csubs
+(q1

+×CrossBase(qsub1) . . .×CrossBase(qsubs))

86 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

If computed only for regular input tuple t using algebraic equivalences the relationship between q+ and
qs(t)

+ can be expressed as:

q+ =σCsubs+1
+(qs(t)

+×CrossBase(qsubs+1))

Since CrossBase(qsubs+1) contains at least one tuple, the assumed equivalence holds if Csubs+1
+ if ful-

filled for at least one tuple from the result of the cross product. The condition Csubs+1
+ is defined as:

EXIST S (σJsubs+1∧P(qsubs+1
+)=nX (ΠB

P(qsubs+1
+)→X (qsubs+1

+))

∨ (¬EXIST S(qsubs+1)∧P(qsubs+1
+) is ε)

If Qsub = /0 then the sub-condition (¬EXIST S(qsub)∧P(qsub
+)=nnull) is fulfilled for the tuple (ε, . . . ,ε)

contained in CrossBase(qsubs+1). Otherwise Qsubs+1
+ contains at least one tuple (t ′,u1, . . . ,um). Since

CrossBase(qsubs+1) contains all possible relational representations of witness lists for Qsubs+1 , for each tu-
ple u from q′= ΠB

P(qsubs+1)→X (qsubs+1
+), there exists a tuple in CrossBase(qsubs+1) for which the condition

P(qsubs+1)=nX is fulfilled. It remains to show that at least one tuple from q′ fulfills the selection predicate
Jsubs+1 . For EXISTS- and scalar sublinks Jsubs+1 = true and, therefore the condition is always fulfilled. For
ANY-sublinks Jsubs+1 = C′subs+1

∨¬Csubs+1 . If Csubs+1 evaluates to false then Jsubs+1 is fulfilled. If Csubs+1
evaluates to true then Jsubs+1 = es+1 ops+1 t and we know from the semantics of the ANY-sublink expres-
sion that at least one tuple from q′ fulfills this condition. The argument for ALL-sublinks is analog. The
proof for rewrite rule (G2) uses the same argumentation.

It remains to show that all tuples from CrossBase(qsubs+1) that are attached to an original result tuple t
by q+ actually belong to the provenance. If Csubs+1 is an EXISTS-sublink or scalar sublink then all tuples
from Qsubs+1

+ belong to the provenance and the following equivalence trivially holds:

(t,v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1)
p×r ∈ Q+

⇔(t,v1, . . . ,vns)
p ∈ Qs(t)+∧

((w2
x =< t, t ′ >x∈DD(qs+1(t), t)∧ (t ′,v1s+1 , . . . ,vns+1)

r ∈ Qs+1(t)+)∨
(w2

x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : vi = ε, . . . ,ε)∧ r = 1)

If Csubs+1 is an ANY-sublinks that evaluates to false for t, then Jsubs+1 evaluates to true for each tuple
from Qsubs+1

+ which is correct because according to the compositional semantics all witness lists of form
< t ′,u > with u∈Qsubs+1 belong to the provenance of qs+1(t). If Csubs+1 evaluates to true then the condition
Jsubs+1 = es+1 ops+1 t guarantees that only tuples from Qsubs+1

true(t) belong to the result.
If Csubs+1 is an ALL-sublink that evaluates to true for t, then Jsubs+1 = Csubs+1 ∨¬C′subs+1

evaluates to
true for all tuples from Qsubs+1

+ which is the correct behaviour according to the compositional semantics
of PI-CS provenance. If Csubs+1 evaluates to false, then Jsubs+1 = ¬(es+1 ops+1 t) filters out tuples that do
not belong to Qsubs+1

f alse(t).
We deduce that the equivalence holds:

(t,v1, . . . ,vn,v11 , . . . ,vn1 , . . . ,v1s+1 , . . . ,vns+1)
p×r ∈ Q+

⇔(t,v1, . . . ,vns)
p ∈ Qs

+∧
((w2

x =< t, t ′ >x∈DD(qs+1(t), t)∧ (t ′,v1s+1 , . . . ,vns+1)
r ∈ Qs+1

+)∨
(w2

x =< t,⊥>x∈DD(qs+1(t), t)∧∀i ∈ {1s+1, . . . ,ns+1} : vi = ε, . . . ,ε)∧ r = 1)

We conclude that the Gen strategy rewrite rules fulfill the witness list preservation property.

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 87

4.3.2 Specialized Rewrite Strategies
The Gen strategy presented in the last section is inefficient, because it uses a cross product that is restricted
by complex sublink expressions and sublinks in general are hard to optimize. Hence, we developed strate-
gies that are more efficient but are only applicable to algebra expressions that fulfill certain preconditions.
These strategies utilize results from query optimization that are used to un-nest and de-correlated sublinks.
Some of these results are directly applicable to provenance computations, while other had to be adapted
to preserve the semantics of a provenance computation. We present two rewrite strategies (Left and Move
strategy) for uncorrelated sublinks that apply the original sublink expressions in the rewritten query and
use joins to add the provenance of the sublinks to the query result. Afterwards, we present the Unn and the
Unn-Not strategies that un-nest uncorrelated sublinks. The JA and Exists strategies un-nest and de-correlate
correlated sublinks.

88 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Rewrite Rules
(σC(q1))+ =Π

B
Q,P(q1+),P(qsub1

+),...,P(qsubn
+)(σC(q1

+ ><Jsub1
qsub1

+ . . . ><Jsubn
qsubn

+)) (L1)

(ΠS/B
A(q1))+ =Π

B
A,P(q1+),P(qsub1

+),...,P(qsubn
+)(q1

+ ><Jsub1
qsub1

+ . . . ><Jsubn
qsubn

+) (L2)

Preconditions
1. All sublinks in C/A are uncorrelated

Figure 4.7: Left Strategy Rewrite Rules and Preconditions

4.3.2.1 Left Strategy

Uncorrelated sublinks enable us to directly join rewritten sublink queries with the rewritten regular input
of a query. The Left strategy uses left outer joins to join the rewritten regular input of a query with the
rewritten sublink queries. To join only tuples from a rewritten sublink query that belong to the provenance
of the sublink we can utilize the join condition Jsub from the last section. We have to use outer joins to
produce correct results for empty sublink queries. The rewrite rules (L1) and (L2) of the Left strategy are
presented in Figure 4.7.

Example 4.5. For instance, consider example query qa presented below. Applying rewrite rule (L1)
generates the rewritten query qa

+ as shown in this figure.

qa = σa = ALL (S)(R)

qa
+ = Π

B
a,b,N (a),N (b),N (c)(σCsub(Π

B
a,b,a→N (a),b→N (b)(R)) ><Csub∨¬Csub

′ Π
B

c,c→N (c)(S))

Csub = (a = ALL (S))
Csub

′ = (a = c)

Theorem 4.3 (Correctness and Completeness of the Left Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rules (L1) and (L2) is the provenance
derived according to definition 3.12:

Q+ = QPI

Proof.
Similar to the proofs presented beforehand we prove the correctness and completeness of the Left strategy
by demonstrating that it fulfills the result preservation and witness list preservation properties.
Result Preservation:
From the semantics of left outer join we know that the left join never produces an empty result for a non
empty left hand input. Therefore, ΠS

Q(q+) = ΠS
Q(q) holds.

Witness List Preservation:
w.l.o.g. we assume that none of the sublink queries contains sublinks themselves. Since each rewritten
sublink algebra expression qsubi

+ is an algebra expression without sublinks it remains to show that Jsubi

guarantees that witness list representations are filtered out from Qsubi
+ if they do not belong to the prove-

nance of q+. For EXISTS- and scalar sublinks all tuples from Qsubi
+ belong to the provenance. In this case

Jsubi = true and none of these tuples is excluded. For ANY- and ALL- sublinks we have shown in the proof
of theorem 4.2, that Jsubi only filters out tuples that do not belong to the provenance.

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 89

Rewrite Rules
q+ = (σC(q1))+ =Π

B
Q,P(q+)(σC′(Π

B
Q,P(q1+),Csub1→C1,...,Csubm→Cm(q1

+) ><Jsub1
′ qsub1

+ . . . ><Jsubn
′ qsubn

+)) (M1)

q+ = (ΠS/B
A(q1))+ =Π

B
A′′,P(q+)(Π

S/B
A′(q1

+) ><Jsub1
′ qsub1

+ . . . ><Jsubn
′ qsubn

+) (M2)

Preconditions
1. All sublinks in C/A are uncorrelated

Figure 4.8: Move Strategy Rewrite Rules and Preconditions

4.3.2.2 Move Strategy

The rewrite rules of the Left strategy have the disadvantage that the sublink Csub is duplicated in the condi-
tion Jsub. This is unproblematic if the query optimizer is aware of the duplication and computes Csub only
once. If the duplication is not recognized, query performance will suffer dramatically. To circumvent this
potential problem, we introduce the Move strategy that uses modified versions of the Left rewrite rules.
These rewrite rules have been modified to move selection sublinks into a projection. Thus, we are able to
use the results of a sublink in both the selection and the join condition Jsub. Rewrite rule (M1) uses this
strategy for sublinks in selection. Selection condition C′ is a modified version of selection condition C
where all sublinks are replaced by the new projection attributes C1, . . . ,Cm. Each Ci stores the result of one
sublink expression Csubi . Similar Jsub

′ is the join condition Jsub with the sublink expressions replaced by
the new projection attributes.

Rewrite rule (M2) is the modified rewrite rule for projection sublinks. A new inner projection on A′ is
used to project on all expressions from A that do not contain a sublink, on the sublinks used in A as new
attributes C1, . . . ,Cm, and on the provenance attributes of q1

+. The modified outer projection on A′′ includes
all expressions from A′ that do not contain a sublink and all expressions from A that contain sublinks with
the sublinks replaced by the new attributes from A′. For each projection expression containing sublinks,
the sublinks are replaced with the new C1, . . . ,Cm attributes.

Example 4.6. As an example consider the queries qa and qb, and their rewritten versions (qa
+ and qb

+)
presented below.

qa = σa = ALL (S)(R)

qa
+ = Π

B
a,b,N (a),N (b),N (c)(σC1(Π

B
a,b,a→N (a),b→N (b),(a = ALL (S))→C1(R) ><C1∨¬(a=c) Π

B
c,c→N (c)(S)))

qb = Π
B

a,S(R)

qb
+ = Π

B
a,C1,N (a),N (b),N (c)(Π

B
a,S→C1(R) ><true (S))

Theorem 4.4 (Correctness and Completeness of the Move Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rules (M1) and (M2) is the provenance
derived according to definition 3.12:

Q+ = QPI

Proof.
For an algebra expression q with sublinks let qM be the result of applying the Move strategy rewrite rules to
q and qL be the result of applying the Left strategy rewrite rules. qM can be transformed into qL using alge-
braic equivalence rules (Factoring out a sub-condition in a selection predicate into a projection expression).
For qL we have already proven that QL = QPI holds. Hence, QM = QPI holds.

90 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Rewrite Rules
q+ = (σC(q1))+ = Π

B
Q1,P(q+)(σC+(q1

+ ><C1
+ qsub1

+ . . .><Cm
+ qsubm

+)) (U1)

Preconditions
1. All sublinks in C are uncorrelated.

2. All sublinks are ANY- or EXISTS-sublinks.

3. Each sublink Csub is either the only expression in selection condition C or if C is represented as
an expression tree, all ancestors of Csub are logical conjunctions (∧).

Figure 4.9: Unn Strategy Rewrite Rules and Preconditions

4.3.2.3 Unn Strategy

Provenance computation can benefit from the de-correlation and un-nesting techniques developed for query
optimization [CB07, EGLGJ07, AB03, Cha98, Mur92, Day83, Kim82]. Besides the fact that these ap-
proaches are normally only suitable for specific types of sublink queries, the performance gain can be
significant. We will demonstrate in chapter 6 that the performance gain is even higher for provenance
queries, because most techniques transform sublinks into joins for which the provenance rewrite rules are
very efficient. In addition, the complex join conditions containing sublinks used in the Left and Move
strategies can be omitted.

The first strategy using un-nesting we introduce is the Unn strategy. The Unn strategy completely
un-nests sublinks by transforming them into standard join operations. In the rewritten result of the Unn
rewrite rule (U1) the provenance computation for the sublink query and the evaluation of the sublink itself
are performed by a single join. This is similar to one of the un-nesting rule described in [Kim82] (the
authors call this type of sublink type N). In contrast to this approach we do not need to apply a duplicate
removing projection in the provenance computation, because the produced duplicates of the original result
tuples are required to fit in all witness list representations.

Rewrite rule (U1) transforms a selection with uncorrelated sublinks Csub1 , . . . ,Csubn in selection con-
dition C into joins between the rewritten regular input and the rewritten sublink queries. Here each Ci

+

denotes a modified version of C where Csubi is replaced with Csubi
′ as defined for the Gen strategy and

all other sublinks expressions are substituted with true. The selection condition C+ is derived from the
original selection condition C by replacing each sublink expression with true. We replace the sublinks with
true, because the preconditions of the strategy guaranty that all sublinks evaluate to true if C is fulfilled.

The Unn strategy has several preconditions. First, all sublinks in C have to be uncorrelated ANY-,
EXISTS-, or scalar sublinks (1 and 2). Second, each sublink expression Csubi is either the only expres-
sion in C or all ancestors of Csub in the expression tree for C are boolean conjunctions (3). For instance,
C1 = (a = 3∨ EXIST S (S)) does not fulfill this precondition, but C2 = (a = 3∧ EXIST S (S)) does. All
this preconditions are needed to guaranty that the rewrite does not change the semantics of the sublink
expressions. E.g., disjunctions may lead to false positives in the provenance and ALL-sublinks cannot be
expressed directly as joins.

Example 4.7. As an example application of rewrite rule (U1) consider query qa presented below. The
sublink expression is checked by the join condition a = c. This condition also guarantees that all tu-
ples from Qsub

+ that fulfill the join condition are extended versions of tuples from Qsub
true. These are

exactly the tuples that contain relational representations of witness lists that are in the provenance of qa
according to the compositional semantics of ANY-sublinks.

qa = σa = ANY (S)(R)

qa
+ = Π

B
a,b,N (a),N (b),N (c)(Π

B
a,b,a→N (a),b→N (b)(R)><(a=c) Π

B
c,c→N (c)(S))

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 91

Theorem 4.5 (Correctness and Completeness of the Unn Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rewrite rule (U1) is the provenance derived
according to definition 3.12:

Q+ = QPI

Proof.

Result Preservation:
The result preservation property is fulfilled if for all regular input tuples t for which C is fulfilled,

each join condition Ci evaluate to true for at least one tuple from the right hand side input, because the
preconditions of the Unn strategy guaranty that C cannot be true if one of the sublink expressions evaluates
to false. If Csubi is an EXISTS-sublink then it evaluates to true, iff Qsubi contains at least one tuple. Ci is
defined as true and, thus a tuple (t,u) from the rewritten regular input is joined successfully iff Qsubi is not
the empty set. If Csubi is an ANY-sublink then Csubi evaluates to true if Qsubi

true(t) contains at least one
tuple. For all tuples from Qsubi

true(t) the join condition Ci = ei opi t is fulfilled. It follows that q+ generated
by the Unn strategy fulfills the result preservation property.
Witness List Preservation: We have to show that only witness list representations from qsubi

+ that belong
to the provenance are propagated. If Csubi is an EXISTS-sublink all witness list representations from qsubi

+

belong to the provenance and the join condition Ci = true guarantees that all these witness list representa-
tions appear in the result of q+. If Csubi is an ANY-sublink then only witness list representations attached
to tuples in Qsubi

true(t) belong to the provenance (Recall that the preconditions of the Unn strategy require
all sublink conditions to evaluate to true). In this case the join condition Ci = ei opi t filters out tuples that
do not belong to Qsubi

true(t).

92 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Rewrite Rules
(σC(q1))+ =Π

B
Q,P(q+)(σC+,(q1

+ ><C1
+ Π

B
Qsub1 ,1→dummy1(qsub1) ><true Π

B
P(qsub1

+)(qsub1
+)

. . . ><Cm
+ Π

B
Qsubm ,1→dummym(qsubm) ><true Π

B
P(qsubm

+)(qsubm
+)))

(N1)

(σC(q1))+ =Π
B

Q,P(q+)(σC+,(q1
+ ><C1

+ Π
B

Qsub1 ,1→dummy1(qsub1)×null(P(qsub1
+))

. . . ><Cm
+ Π

B
Qsubm ,1→dummym(qsubm)×null(P(qsubm

+))))
(N2)

Preconditions
1. All sublinks in C are uncorrelated

2. Each sublink Csub is negated and if C is represented as an expression tree, all ancestors of Csub
except for its direct parent are logical conjunctions (∧).

3. (N1): All sublinks are ANY-sublinks

4. (N2): All sublinks are EXISTS-sublinks

Figure 4.10: Unn-Not Strategy Rewrite Rules and Preconditions

4.3.2.4 Unn-Not Strategy

The basic idea of the Unn-Not strategy is to transform the provenance computation of a sublink into two
joins; one that simulates the sublink and a second one that propagates provenance information. This strat-
egy rewrites negated ANY- and EXISTS-sublinks by using the left outer join operator to simulate negation.
The original sublink query is joined with each sublink Csubi on condition Ci

+ = Csubi
′ (see section 4.3.1

for the definition of Csubi
′). If for a regular input tuple t none of the tuples from Qsub fulfill this condition,

then the left join will produce null values for the attributes from Qsubi which is checked by an additional
selection condition C+ that is applied to the result of the join. In this case the negated sublink expression
would evaluate to true. C+ is derived from C by replacing each sublink Csubi in C with dummyi is ε . The
additional constant valued attributes dummyi are needed to cope with tuples from the sublink query that
contain ε values. Such tuples are problematic, because we cannot distinguish between them and a ε pro-
duced by the left outer join. The left join of q1

+ with qsubi only checks the negated sublink condition. To
propagate provenance information an additional join with qsubi

+ is added to the rewritten query. Figure
4.10 presents (N1), the Unn-Not strategy rewrite rule for ANY-sublinks. EXISTS-sublinks evaluate to false,
iff the sublink query returns the empty set. Therefore, the provenance propagation is implemented in the
rewrite rules for EXISTS-sublinks as a cross product with null values (rule (N2)). The Unn-Not strategy
cannot be applied to correlated sublinks, ALL-sublinks, or sublinks that are not guaranteed to be reqfalse
for all regular input tuples.

Example 4.8. As an example for the application of this rewrite strategy consider query qa presented
below. In the rewritten query qa

+ the selection condition dummy is ε guarantees that there are no tuples
in S that fulfill the condition a = c of the ANY-sublink. For regular input tuples for which this condition is
fulfilled all witness list representations from qsub

+ are joined as required by the compositional semantics
of an ANY-sublink.

qa =σ¬(a = ANY (S))(R)

qa
+ =Π

B
a,b,N (a),N (b),N (c)(σdummy is ε(ΠB

a,b,a→N (a),b→N (b)(R) ><a=c Π
B

c,1→dummy(S)

><true Π
B

N (c)(Π
B

c,c→N (c)(S))))

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 93

Theorem 4.6 (Correctness and Completeness of the Unn-Not Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rewrite rule (N1) is the provenance derived
according to definition 3.12:

Q+ = QPI

Proof.

Result Preservation: All tuples from q1
+ are propagated to the result of the joins in the rewritten query,

because all sublink queries and rewritten sublink queries are joined with the rewritten regular input. The
preconditions of the Unn-Not strategy guarantee that the selection predicate C can only evaluate to true
iff all sublink expressions evaluates to false, because all sublink expressions are negated and used in con-
junctions. If Csubi is an EXISTS-sublink then Qsubi has to be the empty set for Csubi to evaluate to false.
In this case dummyi is ε and the modified selection predicate C+ evaluates to the same result as C in the
original query. If Csubi is an ANY-sublink Ci

+ = ei opi t evaluates to false for each tuple from Qsubi and,
thus, dummyi is ε is fulfilled.
Witness List Preservation:

According to the compositional semantics of ANY- and EXISTS-sublinks, all witness list representations
from Qsubi

+ belong to the provenance if the sublink expression evaluates to false. In the rewritten query all
tuples from Qsubi

+ are propagated to the result, because they are joined on condition true using a left outer
join.

94 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Rewrite Rules
(σC(q1))+ = Π

B
Q,P(q+)(σC+(q1

+ ><C1 xsub1
+ . . . ><Cm xsubm

+)) (J1)

Preconditions
1. Each sublink query has as outermost operator an aggregation without group-by attributes. I.e., it

is of the form αagg(q′).

2. All correlations used in sublink queries are used in selection conditions C and are of form reg =
corr where reg is a correlated attribute from the regular input and corr is an attribute from the
sublink query. reg = corr is either the only expression in C or all of its ancestors are logical
conjunctions. Furthermore, the selection condition C has to be applied by a selection that is not
below any set operations or aggregations (except the outermost one).

3. For ANY sublinks the expression e is not allowed to contain other sublinks.

4. Each sublink Csub is either the only expression in selection condition C or all ancestors of Csub in
C are logical conjunctions.

5. All sublinks are correlated ANY- or scalar sublinks.

Figure 4.11: JA Strategy Rewrite Rules and Preconditions

4.3.2.5 JA Strategy

The JA strategy is a modified version of the rewrite for so called JA queries from [Kim82]. The rewrite
rule of this strategy is applicable to queries with correlated sublink expressions (Csub1 , . . . ,Csubm) that have
an aggregation without group-by attributes as their outermost operator. The rationale behind the strategy is
that the correlation can be simulated as a group-by and join. Thus, de-correlating the sublink expression.
For this strategy to be applicable all correlations have to be of form reg = corr for an regular input attribute
reg and a sublink query attribute corr and each of this correlations has to be used in a selection condition
C (for further preconditions see Figure 4.11). The rewrite rule (J1) joins a modified version xsubi of each
sublink query qsubi with the rewritten regular input. For a sublink query qsubi = αagg(qx), the modified
version xsubi is derived from qsubi by removing all correlation expressions (replacing them with true) and
for each correlation expression adding corr to the list of group-by attributes. Furthermore, we add a new
outermost projection that adds a constant valued attribute dummyi. xsub is joined with the rewritten regular
input on a condition Ci. Ci contains all the correlation expressions from qsub with the attributes from qsub
replaced by the new group-by attributes from xsub. The output of the left joins is then filtered by a selection
condition C+ that is equal to the original selection condition C but each sublink Csubi in C is replaced by an
expression Ci

′. The definition of Ci
′ depends on the type of the sublink and the aggregation function that

is applied in qsubi . If Csubi = ei opi ANY qsubi is an ANY-sublink that uses the aggregation function count,
then

Ci
′ = ei opi aggi∨ (dummyi is ε ∧ ei opi 0)

If an aggregation function different from count is used, then

Ci
′ = ei opi aggi∨ (dummyi is ε ∧ ei opi ε)

If Csubi = qsubi is a scalar sublink that uses aggregation function count, then

Ci
′ = i f (dummyi is ε) then (0) else (aggi)

If Csubi = qsubi is a scalar sublink that uses an aggregation function other than count, then

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 95

Ci
′ = i f (dummyi is ε) then (ε) else (aggi)

The constant valued attribute dummy is needed to prevent the so-called count bug (see, e.g., [Mur92]).
The count bug is an error in the original de-correlation rewrite rule for JA queries presented in [Kim82]. If
the input to the aggregation used in a sublink is the empty set, the aggregation will result in a single tuple
containing either value 0 (if the aggregation function is count) or ε (for all other aggregation functions). In
the de-correlated version of the sublink query no tuple will be returned, because aggregation only outputs
tuples for existing groups. The dummy attribute is used to circumvent this problem. If the de-correlated
sublink query returns no tuples for a specific group-by attribute then the dummy attribute will be ε , and
the second part of Ci

′ simulates the sublink expression with the aggregation function value that would have
been generated by the original sublink query.

Example 4.9. As an example for the application of rule (J1) consider query qa presented below. The
sublink query qsub contains a single correlation expression d = b. This expression is transformed into
the group-by on d and the join predicate d = b.

qa = σa = ANY (qsub)(R)

qsub = αsum(c)(σd=b(S))

qa
+ = Π

B
a,b,N (a),N (b),N (c)(σa=sum(c)∨(dummy is ε∧a=ε)(Π

B
a,b,a→N (a),b→N (b)(R) ><d=b xsub

+))

xsub = Π
B

d,sum(c),1→dummy(αd,sum(c)(S))

xsub
+ = Π

B
d,sum(c),1→dummy,N (c),N (d)(αd,sum(c)(S) ><d=nx Π

B
d→x,c→N (c),d→N (d)(S))

Theorem 4.7 (Correctness and Completeness of the JA Strategy). For a query q with sublinks, the prove-
nance computed by the rewritten query q+ according to rules (J1) is the provenance derived according
to definition 3.12:

Q+ = QPI

Proof.

Result Preservation:
The result preservation property is fulfilled for a regular input tuple t if the join conditions Ci are only

fulfilled for tuples from Qsubi(t) and if the modified selection predicate C+ evaluates to the same result
over t as the original selection predicate C. For a tuple t ∈Q the group-by used in xsubi in combination with
the join predicate on the correlation expressions filters out tuples from Qsubi that do not belong to Qsubi(t).
This has been demonstrated in [Kim82]. For scalar sublinks the expression C′i applied in C+ is bound
to evaluate to the same result as Csubi , because it just references aggi, the result of Csubi and handles the
count bug using the constant valued attribute dummyi. Qsubi(t) is an aggregation without group-by, which
means it returns exactly one result tuple. Therefore, if Csubi is an ANY-sublink then Csubi is equivalent to
the expression ei opi aggi which is used in C′i (in addition to the condition that handles the count bug).
Witness List Preservation:

For scalar-sublinks all witness list representations from Qsubi
+(t) are propagated to the result because

the join condition Ci only filters out tuples that do not belong to Qsubi
+(t) by applying the correlation

expressions on the group-by attributes. For ANY-sublink expressions, the additional condition ei opi t in
C′i filters out witness list representations that are not attached to tuples from Qsubi

true(t). This is correct,
because the preconditions of the JA strategy guarantee that all ANY-sublinks are required to return true.

96 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Rewrite Rules
q+ = (σC(q1))+ = Π

B
Q,P(q+)(σC+(q1

+ ><C1 qsub1
E . . .><Cm qsubm

E)) (E1)

Preconditions
1. All sublinks are correlated EXISTS- or scalar sublinks.

2. The outermost operator of each sublink query is not an aggregation or set operation.

3. Each correlation used in a sublink query is used in a selection conditions C and is of form reg =
corr where reg is an correlated attribute from the regular input and corr is an attribute from the
sublink query. reg = corr is either the only expression in C or all of its ancestors are logical
conjunctions. Furthermore, the selection condition C has to be applied by a selection that is not
below any set operations or aggregations.

4. Each sublink Csub is either the only expression in selection condition C or all ancestors of Csub in
C are logical conjunctions.

Figure 4.12: Exists Strategy Rewrite Rules and Preconditions

4.3.2.6 Exists Strategy

The Exists strategy un-nests and de-correlates correlated EXISTS-sublinks by transforming the sublink
expression into a simple join. The rationale behind this strategy is that the EXISTS-sublink expression
evaluates to true if the sublink query returns at least one tuple and that all witness list representations
generated by the rewritten sublink query belong to the provenance. This can be simulated by replacing
the sublink expression with a join over the correlated attributes. In rewrite rule (E1) (Figure 4.12) the
expression qsubi

E is the rewritten sublink query with true substituted for the correlation expressions and
each attribute a that is used in a correlation expression added to an additional outermost projection. The
join condition Ci is a conjunction of expressions for each correlation expression in qsubi . Each of the
transformed correlation expressions is of the form reg j = x j where reg j is the regular input attribute used in
the correlation expression and x j is the correlated attributed from Qsub used in the correlation expression.
The modified selection condition C+ is derived from C be replacing the sublink expressions with true.

Example 4.10. As an example for the exists strategy consider query qa presented below. The modified
selection condition is just the constant true, because the sublink is the only expression in C.

qa = σ EXIST S (σc=a(S))(R)

qa
+ = Π

B
a,b,N (a),N (b),N (c)(σtrue(ΠB

a,b,a→N (a),b→N (b)(R)><a=x Π
B

c,c→x,c→N (c)(S)))

Theorem 4.8 (Correctness and Completeness of the Count Strategy). For a query q with sublinks, the
provenance computed by the rewritten query q+ according to rewrite rule (E1) is the provenance derived
according to definition 3.12:

Q+ = QPI

Proof.

Result Preservation:
All sublinks expressions in q are EXISTS-sublinks and because of the precondition of the Exists strategy

have to evaluate to true for all tuples t in the result of q. In the modified selection predicate C+ all sublink
expressions are replaced with true. The sublink expressions are simulated by using joins on the correlation

4.3. PI-CS REWRITE RULES FOR QUERIES WITH SUBLINKS 97

expressions. A tuple from q1
+ has at least one join partner in qsub1

E iff Qsubi(t) contains at least one tuple.
Therefore, the result preservation property is fulfilled.
Witness List Preservation:

All witness list representations that are attached to a tuple t ′ from Qsubi(t) belong to the provenance
of t. The correlation expressions in the join condition filter out all witness list representations that are not
attached to these tuples. Hence, the witness list preservation property holds.

98 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

4.4 Rewrite Rules for Copy-Contribution-Semantics
In this section we present rewrite rules for the C-CS types used in Perm. Recall that the C-CS types
were defined as restrictions of PI-CS modeled by the so-called copy maps. Therefore, we can compute
provenance according to this CS types by using the rewrite rules for PI-CS and adding filter conditions that
implement these restrictions. We first present the rewrite rules that implement this approach. Afterwards,
we demonstrate that according to the copy map definitions the C-CS provenance of some types of algebra
expressions is independent of the database instance. It follows, that for these algebra expressions it is not
necessary to apply the possibly complex PI-CS rewrites, but instead the provenance computation can be
implemented as additional projections. The relational representation of provenance according to one of the
C-CS types is defined as for PI-CS, because these CS types also use witness lists to represent provenance
information:

Definition 4.3 (Relational Representation of C-CS Provenance).

QC D/C T /PD/PT = {(t,w[1]′, . . . ,w[n]′)m | t p ∈ Q∧wm ∈ C D(q, t)/C T (q, t)/PD(q, t)/PT (q, t)}

To integrate the restrictions imposed by the copy-maps into the rewrites we add additional attributes
that store intermediate versions of copy maps for parts of a rewritten query. C (q) denotes this list of copy
map attributes for a query q. Let B(q) be the list of all attributes from the base relations accessed by q.
C (q) contains one attribute for each attribute a in B(q) that is used to store the part of the copy map of q
that corresponds to that attribute (C M (q,a,w, t)). The names of the attributes in C (q) are derived using
a function C that generates unique attribute names for each attribute in C (q) (similar to the provenance
attribute naming function N). We do not discuss the concrete naming scheme here, but instead use C (a)
to indicate the new name generated for attribute a. Each attribute C (a) stores a set of attribute identifiers.
Therefore, we assume the existence of a data type for these sets and standard set operations for this data
type. We define ε as an alternative representation of the empty set, because this will simplify the definition
of the rewrite rules.

Example 4.11. For example, if q is R><C S over relations R and S with schemas R = (a) and S = (b,c)
then:

C (q) = C (a),C (b),C (c)

Using C (q) we define expressions CM(q) (called copy expressions) that are used to simulate an in-
cremental computation of the copy maps. E.g., for projection the result of the copy map may depend on
the attribute values of an tuple, thus, attributes have to be included or excluded from C (q) if the currently
processed tuple fulfills certain conditions. Figure 4.13 presents the definition of CM. Like the rewrite rules
CM is defined recursively over the structure of an algebra expression. We first discuss CM in detail before
presenting the C-CS meta-operators and the rewrite rules that implement them. Two version of CM are
introduced. One that implements the direct-copy copy map and one that implements the transitive-copy
copy map (see 3.3.1).

For the direct-copy version of CM the copy expressions of a base relation access initialize each C (a)
attribute with a singleton set containing a. The copy expression for selection, join operators, union, and in-
tersection simply pass on the copy map attributes from their input algebra expression(s). For projection the
conditional inclusion of attributes is modeled as a union

⋃
x∈A C ∗(ai,x) of conditional attribute inclusions

C ∗(ai,x). E.g., attribute z is included in the copy map of an attribute ai, if an expression y→ z is one of the
projection expressions in A and the copy map of ai for the input of the projection includes y.

This is modeled as i f (y ∈ C (ai)) then (z) else (/0). The CM for aggregation intersects each C (ai)
set with the set G of group-by attributes. The transitivity-copy version of CM agrees with the direct-copy
version on all algebra operators except for the join operators and selection. For these operators the inclusion
of an attributes due to a sub-condition x = y in C is modeled as i f ((x = y)∧ x ∈ C (a)) then (y) else (/0).

The inclusion of a part of a PI-CS witness list into the C-CS provenance of a query q is determined by
a condition over the copy map of q. This check is implemented in the rewrites as an outermost projection

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 99

Direct-Copy-CS Copy Expressions

CM(R) = {a1}→ C (a1), . . . ,{an}→ C (an) for R = (a1, . . . ,an)
CM(σC(q1)) = CM(q1)

CM(q1 �C q2) = CM(q1),CM(q2)
CM(αG,agg(q1)) = (C (a1)∩G)→ C (a1), . . . ,(C (an)∩G)→ C (an) for B(q1) = (a1, . . . ,an)

CM(ΠA(q1)) =
⋃
x∈A

C ∗(a1,x)→ C (a1), . . . ,
⋃
x∈A

C ∗(an,x)→ C (an) for B(q1) = (a1, . . . ,an)

C ∗(ai,x) =

{x}∩C (ai) for x ∈Q1

i f (C) then ({y}∩C (ai)) else (/0) for x = i f (C) then (y) else (e)
i f (C) then (/0) else ({y}∩C (ai)) for x = i f (C) then (e) else (y)
i f (y ∈ C (ai)) then ({z}) else (/0) for x = (y→ z)
/0 else

CM(q1∪q2) = CM(q1),CM(q2)
CM(q1∩q2) = CM(q1),CM(q2)
CM(q1−q2) = CM(q1),null(C (q2))→ C (q2)

Transitive-Copy-CS Copy Expressions

CM(R) ={a1}→ C (a1), . . . ,{an}→ C (an)
for R = (a1, . . . ,an)

CM(σC(q1)) =(C ∗(q1,a1)∪C (a1))→ C (a1) . . . ,(C ∗(q1,an)∪C (an))→ C (an) for B(q1) = (a1, . . . ,an)
CM(q1 �C q2) =(C ∗(q1,a1)∪C (a1))→ C (a1) . . . ,(C ∗(q1,an)∪C (an))→ C (an),

(C ∗(q2,b1)∪C (b1))→ C (b1), . . . ,(C ∗(q2,bm)∪C (bm))→ C (bm)
for B(q1) = (a1, . . . ,an) and B(q2) = (b1, . . . ,bm)

C ∗(qi,a) =
⋃

((x=y)∈C∧x∈Qi)∨((y=x)∈C∧x∈Qi)

i f ((x = y)∧ x ∈ C (a)) then ({y}) else (/0)

CM(αG,agg(q1)) = (C (a1)∩G)→ C (a1), . . . ,(C (an)∩G)→ C (an) for B(q1) = (a1, . . . ,an)

CM(ΠA(q1)) =
⋃
x∈A

C ∗(a1,x)→ C (a1), . . . ,
⋃
x∈A

C ∗(an,x)→ C (an) for B(q1) = (a1, . . . ,an)

C ∗(ai,x) =

{x}∩C (ai) for x ∈Q1

i f (C) then ({y}∩C (ai)) else (/0) for x = i f (C) then (y) else (e)
i f (C) then (/0) else ({y}∩C (ai)) for x = i f (C) then (e) else (y)
i f (y ∈ C (ai)) then ({z}) else (/0) for x = (y→ z)
/0 else

CM(q1∪S/Bq2) = CM(q1),CM(q2)

CM(q1∩S/Bq2) = CM(q1),CM(q2)

CM(q1−S/Bq2) = CM(q1),null(C (q2))→ C (q2)

Figure 4.13: C-CS Copy Expressions Definition

100 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

that includes parts of a generated witness list representation depending of the content of the sets stored in
the C (q) attributes.

Example 4.12. For instance, assume the CDC-CS provenance is computed for a query q = R ><a=b
S over the relations presented in example 4.11 (R and S with schemas R = (a) and S = (b,c)). For
each witness list w in DD(q, t) for some t, the part of w that stores a tuple from S is included in the
corresponding witness list for CDC-CS of t if C M (q,b, t,w) 6= /0∧C M (q,c, t,w) 6= /0.

Our approach to generate the PI-CS witness lists and check the inclusion of parts of the witness lists in
the C-CS provenance is as follows:

• Extend the PI-CS rewrite rules to propagate the copy attributes in addition to the provenance at-
tributes using the CM copy expressions. These extended rewrites are modeled as a meta-operator
C.

• Apply an outermost projection to the rewritten algebra expression to check the inclusion of wit-
ness list parts according to the copy sets stored in the C attributes. The projection expressions that
implement this check are denoted as P∗(q).

In the inclusion conditions over the CM copy expressions these conditions are modeled as projections of
the form i f (C∗(Ri)) then (N (a)) else (/0)→N (a). Here Ri denotes one of the base relations accessed
by q and a is an attribute from Ri. For C-CS types with direct copying, the condition C∗(Ri) for Ri =
(a1, . . . ,an) is defined as:

C (a1) 6= /0∧ . . .∧C (an) 6= /0

For the transitive copy C-CS types C∗(Ri) is defined as:

C (a1) 6= /0∨ . . .∨C (an) 6= /0

Example 4.13. The inclusion conditions for q from example 4.12 are modeled as the following projection
expressions:

i f (C (b) 6= /0∧C (c) 6= /0) then (N (b)) else (/0)→N (b),
i f (C (b) 6= /0∧C (c) 6= /0) then (N (c)) else (/0)→N (c)

With the copy expressions and the inclusion conditions in place the C-CS rewrites are modeled as a
meta-operator for each C-CS type: CD for CDC-CS, CT for CTC-CS, PD for PDC-CS, and PT for PTC-
CS.

Definition 4.4 (C-CS Provenance Rewrite Meta-Operators). The provenance rewrite meta algebra op-
erators CD/CT/PD/PT : E → E map an algebra expression q to a rewritten algebra expression
qCD/CT/PD/PT . CD/CT/PD/PT are defined over the structure of q, the inclusion expressions P∗(qC)
(Figure 4.14), and an additional meta-operator C that is defined as rewrite rules for each algebra oper-
ator which are shown in Figure 4.14:

qCD/CT/PD/PT = Π
B

Q,P∗(qC)(q
C)

The rewrite rules that implement C are simple extensions of the PI-CS rewrite rules. The only difference
is that in addition to the provenance attributes P also the copy attributes C are propagated by the rewritten
algebra expressions. Note that we define only PI-CS semantics rewrites for union and set difference. In the
definition of P∗(q) we use R j to denote a base relation accessed by q.

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 101

Structural Rewrite
Unary Operators

qC = RC = Π
B

R,R→N (R),CM(q)(R) (C1)

qC = (σC(q1))C = Π
B

Q1,P(qC),CM(q)(σC(q1
C)) (C2)

qC = (ΠS/B
A(q1))C = Π

B
A,P(qC),CM(q)(q1

C) (C3)

qC = (αG,agg(q1))C = Π
B

G,agg,P(qC),CM(q)(αG,agg(q1) ><G=nX Π
B

G→X ,P(q1C),C (q1)(q1
C)) (C4)

Join Operators

qC = (q1×q2)C = Π
B

Q1,Q2,P(qC),CM(q)(q1
C×q2

C) (C5.a)

qC = (q1 ><C q2)C = Π
B

Q1,Q2,P(qC),CM(q)(q1
C ><C q2

C) (C5.b)

qC = (q1 ><C q2)C = Π
B

Q1,Q2,P(qC),CM(q)(q1
C ><C q2

C) (C5.c)

qC = (q1>< C q2)C = Π
B

Q1,Q2,P(qC),CM(q)(q1
C>< C q2

C) (C5.d)

qC = (q1 >< C q2)C = Π
B

Q1,Q2,P(qC),CM(q)(q1
C >< C q2

C) (C5.e)

Set Operations

qC = (q1∪S/Bq2)C =(ΠB
Q1,P(q1C),P(q2C),C (q1),C (q2)(q1

C×null(P(q2
C))×null(C (q2))))

∪B(ΠB
Q2,P(q1C),P(q2C),C (q1),C (q2)(q2

C×null(P(q1
C))×null(C (q1))))

(C6)

qC = (q1∩S/Bq2)C =Π
B

Q1,P(qC),CM(q)(q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1C),CM(q1)(q1
C)

><Q1=nY Π
B

Q2→Y,P(q2C),CM(q2)(q2
C))

(C7)

qC = (q1−S/Bq2)C =Π
B

Q1,P(qC),CM(q)(q1−S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1C),CM(q1)(q1
C)

×null(P(q2
C))×null(CM(q2)))

(C8)

Provenance Attribute Inclusions Expressions

P∗(qC) = i f (C ∗(a1)) then (N (a1)) else (ε)→N (a1), . . . , i f (C ∗(an)) then (N (an)) else (ε)→N (an)
C ∗(ai) =(C (b1) 6= /0∧ . . .∧C (bx) 6= /0) for a ∈ Rj = (b1, . . . ,bx) (CDC-CS / CTC-CS)
C ∗(ai) =(C (b1) 6= /0∨ . . .∨C (bx) 6= /0) for a ∈ Rj = (b1, . . . ,bx) (PDC-CS / PTC-CS)

Figure 4.14: C-CS Algebraic Rewrite Rules

102 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

4.4.1 Rewrite Example
Figures 4.15 and 4.16 presented example rewrites for CDC-CS and PTC-CS for the example queries qa and
qb. The CDC-CS meta-operator rewrites the algebra expression qa into an algebra expression qa

CD. The
base relation accesses of q (R and S) are rewritten (rewrite rule (C1)) by duplicating the attributes of the
base relation to generate P(R+) and P(S+). In addition the copy attributes are initialized with singleton
sets. E.g., {a} → C (a). Rewrite rule (C5.b) is used to rewrite the join in qa by applying an additional
projection that produces the correct ordering of the original result attributes of the join, the provenance
attributes, and the copy attributes. The projection on a→ x is transformed into a modified projection
(C3). Additional projection expressions are added to the projection for attributes from P and conditional
expressions for attributes from C . Applying the definition of CM for projection leads to the following
projection expressions:

i f (a ∈ C (a)) then ({x}) else (/0)→ C (a),
i f (a ∈ C (b)) then ({x}) else (/0)→ C (b)

Each of these expressions checks if attribute a is included in the set stored in a C attribute and if so
adds x to this set. This is valid behavior because if a is present in a set C (y) this means that the projection
is copying the value of attribute y to x. Finally, an outermost projection is used to evaluate the inclusion
conditions for attribute values from P . E.g., i f (C (a)) then (N (a)) else (ε)→N (a).

Figure 4.15 also presents the rewritten algebra expression for PTC-CS (qa
PT). The only difference

between qa
PT and qa

CD are the CM expressions used for the join rewrite. For PTC-CS these expressions
check for copy operations induced by the join condition. For instance:

i f (a = b∧b ∈ C (a)) then ({a}) else (/0)
∪ i f (a = b∧a ∈ C (a)) then ({b}) else (/0)
∪C (a)

→C (a)

This expression includes a in the copy set for attribute b if the join condition a = b is fulfilled. For
qa the condition a = b∧ b ∈N (b) is fulfilled for all input tuples, but in the general case the condition is
required. E.g., for join conditions that use disjunction. For instance, if the join condition is a = b∨a = 3
then a = b is not necessarily fulfilled by all result tuples of the join.

Figure 4.16 presents the C-CS rewrites for a second example query qb. The join and base relations
accesses in qb are rewritten using rewrite rules (C1) and (C3). This is similar to the rewrite of qa except
that the base relations have two attributes. For CDC-CS the projection on attribute c is rewritten by adding
copy expressions that intersect the individual C sets with the singleton set containing solely attribute c.
Each condition used by the P∗ projection expressions applied in the outermost selection of the rewritten
query references all copy sets for a base relation. For instance, the schema of base relation U is U = (c,d).
Therefore, the inclusion expressions for attributes c and d both use the following condition:

C (c) 6= /0∧C (d) 6= /0

For PTC-CS the rewrite is similar except that the generated join CM and inclusion expressions are
different. The CM expressions take the transitive copying of the join condition into account by merging
each input C (x) attributes with the following conditional expressions:

i f (c = e∧{c} ∈ C (x)) then ({e}) else (/0)
i f (c = e∧{e} ∈ C (x)) then ({c}) else (/0)

If the selection condition c = e is fulfilled the input C sets are unioned with the singleton set {c} and
{e}. In contrast to qb

CD the P∗ expressions in qb
PT use disjunctions instead of conjunctions.

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 103

R
a
1
3

S
b
1
5

Qa
x
1

qa = Π
S

a→x(R><a=b S)

C D(qa,(1)) = {< (1),⊥>} PT (qa,(1)) = {< (1),(1) >}

qa
CD =Π

B
x,P∗(qa)(

Π
B

a→x,N (a),N (b), i f (a∈C (a)) then ({x}) else (/0)→C (a), i f (a∈C (b)) then ({x}) else (/0)→C (b)(

Π
B

a,b,N (a),N (b),C (a),C (b)(Π
B

a,a→N (a),{a}→C (a)(R)><a=b Π
B

b,b→N (b),{b}→C (b)(S))))

P∗(qa) = i f (C (a) 6= /0) then (N (a)) else (ε)→N (a),
i f (C (b) 6= /0) then (N (b)) else (ε)→N (b)

qa
PT =Π

B
x,P∗(qa)(

Π
B

a→x,N (a),N (b), i f (a∈C (a)) then ({x}) else (/0)→C (a), i f (C (b)6= /0) then (N (b)) else (ε)→N (b)(

Π
B

a,b,N (a),N (b),CM(R><a=bS)(

Π
B

a,a→N (a),{a}→C (a)(R)><a=b Π
B

b,b→N (b),{b}→C (b)(S))))

CM(R><a=b S) = i f (a = b∧a ∈ C (a)) then ({b}) else (/0)
∪ i f (a = b∧b ∈ C (a)) then ({a}) else (/0)
∪C (a)→ C (a),
i f (a = b∧b ∈ C (b)) then ({a}) else (/0)
∪ i f (a = b∧a ∈ C (b)) then ({b}) else (/0)
∪C (b)→ C (b)

P∗(qa) = i f (C (a) 6= /0) then (N (a)) else (ε)→N (a),
i f (C (b) 6= /0) then (N (b)) else (ε)→N (b)

Qa
CD

a N (a) N (b)
1 1 ε

Qa
PT

a N (a) N (b)
1 1 1

Figure 4.15: C-CS Rewrite Example

104 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

U
c d
3 2
3 6

V
e f
3 3
5 4

Qb
c
3

qb = Π
S

c(U ><c=e V)

C D(qb,(3)) = {<⊥,⊥>} PT (qb,(3)) = {< (3,2),(3,3) >,< (3,6),(3,3) >}

qb
CD =Π

B
c,N (c),N (d),N (e),N (f),P∗(qb)(

Π
B

c,N (c),N (d),N (e),N (f),{c}∩C (c)→C (c),{c}∩C (d)→C (d),{c}∩C (e)→C (e),{c}∩C (f)→C (f)(

Π
B

c,d,e, f ,N (c),N (d),N (e),N (f),C (c),C (d),C (e),C (f)(

Π
B

c,d,c→N (c),d→N (d),{c}→C (c),{d}→C (d)(U)><c=e Π
B

e, f ,e→N (e), f→N (f),{e}→C (e),{ f}→C (f)(V))))

P∗(qb) = i f (C (c) 6= /0∧C (d) 6= /0) then (N (c)) else (ε)→N (c),
i f (C (c) 6= /0∧C (d) 6= /0) then (N (d)) else (ε)→N (d),
i f (C (e) 6= /0∧C (f) 6= /0) then (N (e)) else (ε)→N (e),
i f (C (e) 6= /0∧C (f) 6= /0) then (N (f)) else (ε)→N (f)

qb
PT =Π

B
c,N (c),N (d),N (e),N (f),P∗(qb)(

Π
B

c,N (c),N (d),N (e),N (f),{c}∩C (c)→C (c),{c}∩C (d)→C (d),{c}∩C (e)→C (e),{c}∩C (f)→C (f)(

Π
B

c,d,e, f ,N (c),N (d),N (e),N (f),CM(U><c=eV)(

Π
B

c,d,c→N (c),d→N (d),{c}→C (c),{d}→C (d)(U)

><c=e Π
B

e, f ,e→N (e), f→N (f),{e}→C (e),{ f}→C (f)(V))))

CM(U ><c=e V) = i f (c = e∧{c} ∈ C (c)) then ({e}) else (/0)
∪ i f (c = e∧{e} ∈ C (c)) then ({c}) else (/0)
∪C (c)→ C (c),
i f (c = e∧{c} ∈ C (d)) then ({e}) else (/0)
∪ i f (c = e∧{e} ∈ C (d)) then ({c}) else (/0)
∪C (d)→ C (d),
i f (c = e∧{c} ∈ C (e)) then ({e}) else (/0)
∪ i f (c = e∧{e} ∈ C (e)) then ({c}) else (/0)
∪C (e)→ C (e),
i f (c = e∧{c} ∈ C (f)) then ({e}) else (/0)
∪ i f (c = e∧{e} ∈ C (f)) then ({c}) else (/0)
∪C (f)→ C (f)

P∗(qb) = i f (C (c) 6= /0∨C (d) 6= /0) then (N (c)) else (ε)→N (c),
i f (C (c) 6= /0∨C (d) 6= /0) then (N (d)) else (ε)→N (d),
i f (C (e) 6= /0∨C (f) 6= /0) then (N (e)) else (ε)→N (e),
i f (C (e) 6= /0∨C (f) 6= /0) then (N (f)) else (ε)→N (f)

Qb
CD

c N (c) N (d) N (e) N (f)
3 ε ε ε ε

Qb
PT

c N (c) N (d) N (e) N (f)
3 3 2 3 3
3 3 6 3 3

Figure 4.16: C-CS Rewrite Example Query qb

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 105

4.4.2 Proof of Correctness and Completeness

Similar to the proofs for PI-CS we have to show that the C-CS meta-operators generate the relational
representation of C-CS.

Theorem 4.9 (Correctness and Completeness of the C-CS Meta-Operators). Let q be an algebra state-
ment. The rewritten queries produced by the meta-operators CD, CT , PD, and PT produce the relational
representation of provenance according to CDC-CS, CTC-CS, PDC-CS, and PTC-CS:

QCD = QC D

QCT = QC T

QPD = QPD

QPT = QPT

Proof.

Result Preservation

The only difference between a rewritten query qCD/CT/PD/PT and the query q+ generated by the meta-
operator for PI-CS is the existence of additional projection expressions and duplicate preserving projec-
tions. The additional projections do not project out original result attributes. From the definition of projec-
tion we know that a duplicate preserving projection generates an output tuple for each of its input tuples.
Since q+ fulfills the result preservation property we conclude that this property is fulfilled for qCD/CT/PD/PT

too.

Witness List Preservation

The C-CS provenance of a query q contains the same witness lists as the PI-CS provenance of q except that
tuples in these witness lists may be replaced by ⊥ depending on the copy map of q. Since the rewrite rules
for C-CS produce the same P attribute values as the PI-CS rewrite rules, it remains to show that the copy
map expressions CM of the C-CS rules model the copy map correctly and that the provenance attribute
inclusion expressions P∗ exclude parts of a witness list representation according to the definition of the
C-CS types.
Correctness of the Copy Expressions:
We first prove that the copy map of q is modeled correctly by the CM(q) expressions. This assumption is
proven by induction over the structure of an algebra expression. We have to prove that for each attribute a
from a base relation accessed by q, a result tuple t of q, and a witness list w from DD(q, t) the following
holds:

Π
S
C (a)(σQ=t∧P(q+)=w′(q

+)) = C M (q,a,w, t)

This property has to be proven for both the direct copy and the transitive copy definition of CM(q).
Induction Start:
For q = R both the direct copy map and the transitive copy map of q is independent of the t and w. This
means the equality we have to prove can be simplified to the following equality that trivially holds:

C M (q,a,w, t) = {a}= Π
S
C (a)(Π

B
R,R→N (R),{a1}→C (a1),...(R))

Induction Step:
Given that for an algebra expression with nesting depth n the copy expressions model the copy map cor-
rectly we have to prove that this is also the case for algebra expressions with nesting depth n+1.

106 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Case q = σC(q1) (Direct Copy):
The direct-copy copy map for selection is equal to the copy map of the input to the selection. The same
holds for the direct-copy copy expressions for selection.
Case q = σC(q1) (Transitive Copy):

The transitive copy version of CM for selection unions each C (a) from C (q1) with

i f ((x = y)∧ y ∈ C (a)) then ({x}) else (/0)

for each condition (x = y) or (y = x) in the selection predicate C. In C M (q,a, t,w) the input copy map is
unioned with

{x | ∃y : (x = y) ∈C∧w |= (x = y)∧ y ∈ C M (q1,a,w, t)}

If attribute y is in C M (q1,a,w, t) then we know from the induction hypothesis that C (a) contains y.
The condition w |= (x = y) is equivalent to that the tuple t ′ ∈ Q1 representing w fulfills (x = y). Since Q1

+

contains a tuple (t ′,w′,CM(q1)) if t ′ is derived from w, the copy expressions model the copy map correctly.
Case q = ΠS/B

A(q1):
Both the copy map of q and the copy expressions for q include attributes from the copy map respec-

tive copy attributes of q1 if they appear in the projection list A. For other constructs in A both the copy
map and copy expressions of projection union the input attribute sets with additional attributes depend-
ing on certain preconditions. For a renaming y→ z the copy map of the projection for an attribute a
contains z, if y is contained in the copy map of a for q1. This is modeled in the copy expressions as
i f (y ∈ C (a)) then ({z}) else (/0) which is equivalent to the formulation used in the definition of the copy
map. If one the projection expressions is a conditional expressions of the form i f (C) then (y) else (e), then
the copy map of the projection for some attribute a includes y if C is fulfilled and y is also included in the
copy map of C1. The copy expressions use the equivalent formulation i f (C) then (/0) else ({y}∩C (a)).
The case of a projection expression of form i f (C) then (e) else (y) is symmetric to the case we have just
presented. If follows that the copy map and copy expressions for projection are equivalent.
Case q = αG,agg(q1):

The copy map for aggregation removes attributes from the copy map of the input if they do not belong
to the group-by attributes. This is modeled in the copy expression by intersecting the input copy maps with
the set of group-by attributes.
Case q = q1×q2:
Case q = q1 ><C q2 (Direct Copy):

The direct-copy copy map for a join simply unions the copy maps of the join’s inputs. The copy
expressions model this behaviour correctly by concatenating the copy expressions of the inputs. The same
applies for the direct and transitive copy maps for cross product.
Case q = q1 ><C q2 (Transitive Copy): The transitive copy map for join contains the attributes from the
direct copy map unioned with additional attributes based on selection conditions of the form (x = y). The
mechanisms applied by the copy map and the copy expressions for join to evaluate the selection conditions
are the same as for selections. Therefore, using the same argument as for selection we conclude that the
copy map and copy expressions for join are equivalent.
Case q = q1 ><C q2:

The copy map for a left outer join contains the same attributes as the copy map for a join expect that
attributes from the right hand side input of the join are only included for witness lists w that fulfill C. The
copy expressions do not check this condition explicitly, but if w does not fulfill C, then in the result tuple of
the rewritten left outer join that represents w the attributes from the rewritten right hand side will contain
only null values. Recall that we use ε as an equivalent representation of the empty set. Therefore, the copy
map and copy expressions for left outer join are equivalent.
Case q = q1>< C q2:
Case q = q1 >< C q2:

The proofs for right outer and full outer join are analog to the proof for left outer join.
Case q = q1∪S/B

Cq2:
For both direct copy and transitive copy the copy map of union is the union of the input copy maps

except that attributes from one input are omitted if the witness list w[qi] is ⊥ [qi] for this input. The copy

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 107

expressions for union are the concatenation of the copy expressions of the inputs of the union. If w[qi] is
⊥ [qi] then q+ will produce an output tuple with the P(q1

+) and C (q1) attributes set to ε . Recall that ε is
an alternative representation of /0 for the data type used to represent the C sets. Therefore, each attribute
C (a) will contain the same set of attribute names as the copy map of a.
Case q = q1∩S/B

Cq2:
The copy maps for intersection is the union of the copy maps of the inputs of the intersection. The copy

expressions for intersection are the concatenation of the copy expressions of its inputs. Therefore, each
C (a) attributes is guaranteed to represent the same set as the copy map of a.
Case q = q1−S/B

Cq2: The copy map of a set difference q is the copy map of the left input q1. The copy
expressions for a set difference are the concatenation of the copy attributes from q1 with null values which
represent empty sets. From the induction hypothesis we know that the copy expressions for q1 model the
copy map of q1 correctly. Therefore, the copy map and copy expressions are equivalent for this operation.
Correctness of the Inclusion Conditions:
We have proven that the CM expressions model the copy maps correctly. It remains to show that the
inclusion conditions applied in the outermost projection in the C-CS rewrites simulate the behaviour of the
inclusion conditions of the C-CS definitions. In the definition of the C-CS types with direct copying, a part
w[i] of a witness list is replaced with /0, if the copy map is empty for at least one attribute a from the schema
Ri the part of the witness list corresponds to (C M (q,a,w, t) = /0). w.l.o.g. Ri = (a1, . . . ,an). In the copy
expressions the copy map of each attribute a is stored in one copy attribute C (a). The inclusion expressions
for attribute a are defined as i f (C ∗(a)) then (N (a)) else (ε) with C ∗(a) = (C (a1) 6= /0∧ . . .∧C (an) 6= /0).
The condition C ∗(a) is not fulfilled if at least one attribute C (ai) stores the empty set which is exactly the
condition applied in the definition of the C-CS types with direct copying. The proof for transitive copy is
analog.

4.4.3 Rewrite Rules Simplifications

Surprisingly, in spite of the fact that the provenance of all C-CS types is a subset of the provenance accord-
ing to PI-CS, the computation of the C-CS types is more complex than the computation of PI-CS. However,
for a wide range of algebra expressions the rewritten query for C-CS can be simplified to a great extend.
The potential simplifications are derived from the following observations:

1. Copy Expressions with Fixed Results: The projection copy expressions were designed to cope with
arbitrary rewritten inputs. In a wide range of cases we can deduce from the input expression that some
conditional clauses will always return the empty set and, therefore, can be omitted. Furthermore, if
an input copy attribute is guaranteed to store the empty set, the empty set can just be passed on
omitting conditional expressions and intersections completely for this attribute.

2. Static Copy Map: For many algebra operators the copy-map is independent of the instance data
(t) and PI-CS witness list (w) parameters. For these algebra expressions the costly computation of
the copy-map during run-time can be omitted, because it is known beforehand if tuples from a base
relation will be included in the C-CS provenance. Hence, in these cases we can simply apply the
PI-CS rewrite rules and replace provenance attributes with ε values where necessary.

3. Omit Rewrite Simplification: Based on the first observation we can deduce that if the provenance
attributes for a base relation are guaranteed to be ε , it is not necessary to compute this part of the
provenance at all. This means the sub-expression that produces this part of the relational representa-
tion of a witness is not rewritten at all.

4. Combine Projections: Adjacent projections added by the C-CS rewrites can often be combined into
a single projection.

108 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

4.4.3.1 Copy Expression with Fixed Results

The copy expressions as defined CM were defined to be applicable for all possible input algebra expres-
sions. Depending on the input they are applied to, some of the conditional expressions or set operations
will always generate the same result. E.g., in query qa

CD (Figure 4.15) the expression

i f (a ∈ C (a)) then ({x}) else (/0)

will evaluate to {x} for all input tuples. Hence, it can be simplified to {x}. Another example are the
intersections {c}∩C (e/ f /g) in qb

PT (Figure 4.16). A set stored in C (e/ f /g) is guaranteed to contain
only attribute e/ f /g. Therefore, these intersections will evaluate to /0 for all input tuples. One approach to
identify fixed copy expressions is to use a bottom up traversal starting at the rewritten base relations that
use only fixed copy expressions. In each step the copy expressions have to be examined to determine if
they produce fixed results. As an example of this approach reconsider query qa

CD. The CM expressions
for the join applied in qa are fixed, because they simply pass on the copy sets of their inputs. The copy
expressions for the rewritten projection are conditional expressions. If we substitute the fixed input copy
sets in the conditions of these expressions we get:

i f (a ∈ {a}) then ({x}) else (/0) = {x}
i f (a ∈ {b}) then ({x}) else (/0) = /0

This means the conditional expressions are fixed too and can be substituted with their fixed evaluation
result.

4.4.3.2 Static Copy Map Simplification

A static copy map is an extreme case of copy expressions with fixed results. As an example for a static copy
map consider query qa from Figure 4.15. Applying the definition of the direct-copy copy-map generates
the following copy map that is independent of the t and w parameters:

C M (qa,a,w, t) = {x} C M (qa,b,w, t) = /0

Therefore, the complex original rewrite is not necessary for this query. The CDC-CS provenance can be
computed by simply using the outermost projection in qa

+ to replace provenance attributes with ε if the
copy map indicates that the relation they are derived from should not be included in the provenance:

qa
CD′ = Π

B
a→x,N (a),ε→N (b)(Π

B
a,a→N (a)(R)><a=b Π

B
b,b→N (b)(S))

In general, if a query q contains a sub-query sub for which the copy map is static, this sub-query can
be rewritten by appending the static copy expressions to the outermost projection in sub (if the outermost
operator is not a projection, a new projection is introduced).

Definition 4.5 (Static Copy Map). For an algebra expression q the copy map of q is called static if it
fulfills the following condition:

∀t, t ′ ∈ Q,w ∈DD(q, t),w′ ∈DD(q, t ′),a : C M (q,a,w, t) = C M (q,a,w′, t ′)

4.4.3.3 Omit Rewrite Simplification

Reconsider qa
CD′, the simplified version of query qa

CD presented above. In this query the rewrite of
base relation access S is superficial, because the generated provenance information is projected out by the
outermost projection. This means we can simplify qa

CD′ even further:

4.4. REWRITE RULES FOR COPY-CONTRIBUTION-SEMANTICS 109

qa
CD′′ = Π

B
a→x,N (a),ε→N (b)(Π

B
a,a→N (a)(R)><a=b S)

This simplification can be applied to a sub-expression sub of an algebra expression q if all the base
relations accessed by sub are guaranteed to be excluded from the provenance according to the copy map.

4.4.3.4 Combining Projections

Using standard relational algebra equivalences, two adjacent projections can be combined into one or a
projection can be pulled up trough a join. For instance, in qa

CD the projections introduced by the base
relation access rewrite can be pulled trough the join and combined with the projection introduced by the
rewrite of the join.

Example 4.14. The simplified versions of the C-CS queries from the example in Figure 4.15 are pre-
sented below.

qa
CD = Π

B
a→x,a→N (a),ε→N (b)(R><a=b S)

qb
CD = Π

B
c,ε→N (c),ε→N (d),ε→N (e),ε→N (f)(U ><c=e V)

qa
PT = Π

B
a→x,a→N (a),b→N (b)(R><a=b S)

qb
PT = Π

B
c,c→N (c),d→N (d),e→N (e), f→N (f)(U ><c=e V)

Note that none of the simplified queries make use of the copy map construction. Even more, some of
these queries are simpler than the rewritten queries for PI-CS. To simplify query qa

CD we use the fact that
the conditional copy expressions introduced by the projection rewrite are fixed. Thus, they are replaced
with their constant result ({x}→C (a), /0→C (b)). The copy map is static for both base relations and for
S is guaranteed to be the empty set. This means, the base relation access to S does not have to be rewritten
at all, and for R we can omit the copy expression construction. In the resulting algebra expression,
the projection that implements the rewrite of R can be pulled through the join and combined with the
outermost projection. In the simplified version of qa

CD presented above, the provenance computation is
implemented by a few additional projection expressions. As a second example consider the simplified
version of qb

PT . The copy map for this query is constant, because the conditions in the conditional
expressions used in the join rewrite are always fulfilled. All tuples in the result of the join trivially
fulfill the condition c = e and the copy expressions of the inputs of the join are fixed. Therefore, also
the intersections used by the projection rewrite generate a fixed result. Note that for the general case
the conditional expression for join rewrites are necessary to guaranty correctness for, e.g., disjunctive
join expressions. Because of the static copy map the copy expressions can be omitted in the rewritten
query. qa

PT is further simplified by omitting the rewrite for V (the copy map result for attributes from
V is guaranteed to be the empty set) and combining projections. In summary, applying the presented
simplifications may lead to rewritten algebra expressions that are much more efficient and easier to
comprehend. Note that the applicability of the projection combination is not limited to C-CS queries, but
can be applied for PI-CS queries too.

110 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

R
a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa
a
1
2

R S

1

2

3 4

qa = Π
S

a(R ><b=c S)

T (qc,(1)) :θ<(1,2),(2)>(op) = 1 θ<(1,3),(3)>(op) = 1

T (qc,(2)) :θ<(2,3),(3)>(op) = 1 θ<(2,5),⊥>(op) =

{
0 if op = S
1 else

Θ<(1,2),(2)> = {1,2,3,4} Θ<(1,3),(3)> = {1,2,3,4}
Θ<(2,3),(3)> = {1,2,3,4} Θ<(2,5),⊥> = {1,2,3}

Qa
Trans

a T
1 {1,2,3,4}
1 {1,2,3,4}
2 {1,2,3,4}
2 {1,2,3}

Figure 4.17: Transformation Provenance Representation Example

4.5 Relational Representation of Transformation Provenance Infor-
mation

In this section we introduce a simplistic relational representation of transformation provenance. More user-
friendly representations that are based on the SQL representation of queries will be presented in chapter
5. Recall that the transformation provenance of an algebra expression q contains one annotated algebra
tree for each witness list in the PI-CS data provenance of q. These annotated trees all have the same nodes
and edges; they only differ in their annotations functions θw. Therefore, we factor out the static part (that
is the tree) in the relational representation of transformation provenance and only represent the annotation
functions. Each annotation function θw is represented as the set of nodes from the algebra tree for which
θw evaluates to 1. To simplify this representation identifiers for the nodes in an algebra tree are created by
a pre-order traversal of the tree. We call the set representation of an annotation function θw the annotation
set Θw.

Example 4.15. In Figure 4.17 we reconsider the transformation provenance example from chapter 3.
The algebra tree presented on the top right of this figure shows the generated node identifiers. These
node identifiers are used in the set representations of the θw annotations functions for the transformation
provenance of example query qa. For instance, Θ<(2,5),⊥> contains the identifiers for all nodes except
the one for the base relation access S, because θ<(2,5),⊥ > evaluates to 0 for this node.

Similar to the relational representation of data provenance we represent transformation provenance and
the original result data in a single relation Qtrans. The annotation sets for the witness lists of a original result
tuple are stored in a single additional attribute T . Each tuple in Qtrans stores one original result tuple and

4.5. RELATIONAL REPRESENTATION OF TRANSFORMATION PROVENANCE INFORMATION111

one annotation set Θw for a w ∈DD(q, t).

Definition 4.6 (Relational Transformation Provenance Representation). Let q be an algebra expression.
The relational representation QTrans of the provenance of q according to the transformation provenance
CS is defined as:

QTrans = {(t,Θw)m | t p ∈ Q∧wm ∈DD(q, t)}

Example 4.16. The relational representation Qa
trans of the transformation provenance of example query

qa is shown at the bottom of Figure 4.17. For instance, the last tuple in this relation represents the
original result tuple (2) and the annotation set Θ<(2,5),⊥> and, therefore, the set stored in the T attribute
of this tuple includes all node identifiers except the one for the access to base relation S.

112 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Structural Rewrite

qT = (R)T =Π
B

R,T (qT)→T (R) (T1)

qT = (σC(q1))T =Π
B

Q1,T (qT)→T (σC(q1
T)) (T2)

qT = (ΠS/B
A(q1))T =Π

B
A,T (qT)→T (q1

T) (T3)

qT = (αG,agg(q1))T =Π
B

G,agg,T (qT)→T (αG,agg(q1) ><G=nX Π
B

G→X ,T (q1
T)) (T4)

qT = (q1 �C q2)T =Π
B

Q1,Q2,T (qT)→T (q1
T �C q2

T) (T5)

qT = (q1∪S/Bq2)T =Π
B

Q1,T (qT)→T (q1
T∪S/Bq2

T) (T6)

qT = (q1∩S/Bq2)T =Π
B

Q1,T (qT)→T (q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,T (q1
T)><Q1=nQ2 q2

T) (T7)

qT = (q1−S/Bq2)T =Π
B

Q1,T (qT)→T (q1−S/Bq2 ><Q1=nX Π
B

Q1→X ,T (q1
T)) (T8)

Transformation Provenance Attribute Rewrite

T (RT) = {R}
T ((σC(q1))T) = {σc(q1)}∪Q1.T

T ((ΠS/B
A(q1))T) = {ΠS/B

A(q1)}∪Q1.T

T ((αG,agg(q1))T) = {αG,agg(q1)}∪Q1.T

T ((q1 �C q2)T) = {q1 �C q2}∪Q1.T ∪Q2.T

T ((q1∪S/Bq2)T) = {q1∪S/Bq2}∪Q1.T

T ((q1∩S/Bq2)T) = {q1∩S/Bq2}∪Q1.T ∪Q2.T

T ((q1−S/Bq2)T) = {q1−S/Bq2}∪Q1.T

Figure 4.18: Transformation Provenance Rewrite Rules

4.6 Rewrite Rules for Transformation Provenance
We now present a meta-operator T for transformation provenance that transforms an algebra expression
q into an algebra expression qT that computes the relational representation QTrans of the transformation
provenance of q. Like for data provenance this meta-operator is defined inductively over the structure of
an algebra expression as rewrite rules for each algebra operator.

Definition 4.7 (Transformation Provenance Rewrite Meta-Operator). The transformation provenance
rewrite meta-operator T : E → E is defined inductively over the structure of an input algebra expression
q by applying the rewrite rules presented in Figure 4.18 to each operator in q.

Fig. 4.18 presents the rewrite rules that implement T . For each rewrite rules the structural modifica-
tion of the algebra expression and the computation of the new transformation provenance attribute T is
presented separately. For the transformation provenance attribute rewrite we use the following notational
conventions: {q} denotes the node identifier of the top operator of q in the algebra tree of q. E.g., for the
algebra expression σC(R ><a=b S) the expression {R ><a=b S} represents the node identifier 2. The ∪ used
in the definition of the annotation sets is the normal set union operation except that we define T ∪ ε = T .

The rewrite rule (T1) for a base relation access adds the singleton annotation set containing the node
identifier of the base relation access {R} as the value for attribute T to each generated result tuple. A
selection is rewritten by rule (T2) by applying the unmodified selection to q1

T and adding an outermost
projection that simply adds the node identifier of the selection operator to the annotation set of the rewritten
input q1

T . (T3), the rewrite rule for projection, works analogously. An aggregation is rewritten (T4) by
joining the rewritten input q1

T with the original aggregation and using a projection to add the node identifier
for the aggregation to the annotation set of qT .

4.6. REWRITE RULES FOR TRANSFORMATION PROVENANCE 113

qa = Π
S

a(R ><b=c S)

qa
T = Π

B
a,{1}∪T→T (ΠB

a,b,c,{2}∪R+.T ∪S+.T→T (ΠB
a,b,{3}→T (R) ><b=c Π

B
c,{4}→T (S)))

Qa
T

a T
1 {1,2,3,4}
1 {1,2,3,4}
2 {1,2,3,4}
2 {1,2,3}

Figure 4.19: Transformation Provenance Rewrite Example

The rewrite rule for join operators (T5) (here � denotes one of the algebra join operators) unions the
annotation sets of the rewritten inputs and add the node identifier of the join to the result. Note that this is
correct behavior for outer joins, because we have defined the union of a annotation set with ε as T ∪ε = T .

Rewrite rule (T6) for the union operator unions the rewritten inputs and uses a projection to union the
annotation sets of both rewritten inputs with the node identifier of the union operator. In the transformation
provenance attribute rewrite the T attribute of the input is referenced without using a qualification (e.g.,
S+.T), because the result schema of the union operator is the schema of its the left hand input. (T7), the
rewrite rule for intersection works in a similar way as the PI-CS rewrite rule for this operator: the original
intersection is joined with the rewritten left and right input on the original result attributes. The applied
projection unions the annotation sets from both rewritten inputs with the node identifier of the intersection
operator. A set difference is rewritten by (T8) using the same approach. For set difference the right input is
not rewritten, because the PI-CS provenance of the right input is ⊥. Hence, the annotation set of the right
input is always the empty set.

Example 4.17. Figure 4.19 shows the application of the T meta-operator to the example query qa
from Figure 4.17. In qa

T the node identifiers of the individual operators are added to the intermediate
annotation sets produced by the rewritten inputs of the operator. Note that some node identifiers (1,2,
and 3) are guaranteed to be contained in each annotation set produced by qa

T . Thus, the rewritten query
could be simplified to:

Π
B

a,{1,2,3}∪S+.T→T (R ><b=c Π
B

c,{4}→T (S))

Note that in the simplified query R is not rewritten at all. This kind of simplification is not specific to
the example, but can be applied to a wide range of algebra expressions. We now prove the correctness and
completeness of the rewrite rules and then discuss the simplification in detail.

Theorem 4.10 (Correctness and Completeness of the Transformation Provenance Rewrite Rules). For a
algebra expression q the transformation provenance rewrite rules as presented in Figure 4.18 compute
the relational representation of transformation provenance as defined in Definition 4.6:

QTrans = QT

Proof.
To prove this theorem we use a modified version of the transformation provenance rewrite rules (denoted
by qT+ that in addition to the annotation sets also propagate PI-CS witness list representations. The meta-
operator implemented by the modified rewrite rules is called T+. The transformation provenance rewrite

114 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

rules use the same structural rewrites as the PI-CS. Therefore, the modified rewrites can be derived from the
original T meta-operator rewrite rules by simply adding the provenance attribute list P to each outermost
projection of an rewritten operator. E.g., the modified rule for projection is:

qT+ = (ΠS/B
A(q1))T+ = Π

B
A,T (qT+)→T ,P(q+)(q1

T+)

The modified versions allow us to reason about the witness list over which a T set is defined. Instead of
the original equivalence QTrans = QT we proof the equivalence QTransPI = QT+ where QTransPI is defined
as

QTransPI = {(t,Θw,w′)m×p | t p ∈ Q∧wm ∈DD(q, t)}

The only difference between QTrans and QTransPI respective QT and QT+ is that, in addition to the an-
notation sets, also the witness list is represented from which the annotation set is derived from. Therefore,
the equivalence QTrans = QT follows from QTransPI = QT+. Similar to the proof for PI-CS, the equivalence
QTransPI = QT+ is proven in two steps. First the result preservation property of T+ is proven. Afterwards,
we prove that for tuple (t,w′,x)∈QT+, the set x is the annotation set Θw derived for witness list w (correct-
ness), and that for every witness list w∈DD(q, t) the tuple (t,w′,Θw) is in QT+ (completeness)4. We refer
to this property as annotation set preservation. From the proof of PI-CS we know that for each witness list
w ∈ DD(q, t) there exists a tuple (t,w′,x) in QT+. Hence, only the correctness part of the annotation set
preservation has to be proven.

Result Preservation

The transformation provenance rewrite rules apply the same structural rewrites as the PI-CS rewrite
rules. For the PI-CS rewrite rules we have proven that they fulfill the result preservation property. There-
fore, this property is also fulfilled for the transformation rewrite rules.

Annotation Set Preservation

We prove the annotation set preservation by induction over the structure of an algebra expression q.
We have to show that each result tuple in QT+ is of the form (t,w′,Θw).
Induction Start:

For q = R each tuple in QT+ is of form (t,w′,T) with w′ = t and T = {R}. We have to show that
{R} = Θw. {R} is contained in Θw if [[R(w)]] = [[R(< t >)]] 6= /0 which is trivially fulfilled, because
[[R(< t >)]] = {tx}.
Induction Step: Given that the transformation provenance rewrite rules produce correct annotation sets
for algebra expressions with a maximal nesting depth of n we have to prove that the same holds for algebra
expressions with nesting depth n + 1. Let op be an unary operator and q1 be an algebra expression with
maximal nesting depth n + 1. We have to show that for (t,w′,T) in

[[
(op(q1))T+]]

the following holds:
T = Θw.
Case σC(q1):

The rewrite rule for selection applies the unmodified selection and adds the annotation for the selection
to the annotation set from Q1

T+. Hence, each tuple from QT+ is of form (t,w′,{q}∪Θv)) where Θv is the
annotation set of the witness list v in DD(q1, t ′) from which w is derived from. To prove that {q}∪Θv = Θw
we have to show that (1) Θw contains {q} and that (2) Θw∩OP(q1) agrees with Θv∩OP(q1). Here OP(q1)
denotes the node identifiers for all operators in q1. If w is a witness list for q then [[q(w)]] 6= /0. Thus, the
first property is fulfilled. From the compositional semantics of PI-CS we know that w = v. Therefore, the
property (2) is fulfilled, because each [[subop(w)]] = [[subop(v)]] for op in q1.
Case ΠS/B

A(q1):
Case αG,agg(q1):

4Recall that w′ denotes the relational representation of witness list w (see section 4.1).

4.6. REWRITE RULES FOR TRANSFORMATION PROVENANCE 115

As for selection the rewrite rules for projection and aggregation produce tuples of the following form
(t,w′,{q}∪Θv). Property (1) and (2) holds for the same reason as for selection.

For binary operators we can use the same reasoning as for unary operators to prove property (1) (the
node identifier of op is included in the annotation set of op). For the proof of property (2) for binary
operators the following cases have to be considered (based on the three cases in the definition of transitivity
for PI-CS):

1. The witness list w = v1 I v2 for v1 and v2 being the witness lists for q1 respective q2 from which w
is derived trough transitivity.

2. The witness list w = v1 I<⊥, . . . ,⊥> for v1 being the witness lists for q1 from which w is derived
trough transitivity.

3. The witness list w =<⊥, . . . ,⊥>I v2 for v2 being the witness lists for q2 from which w is derived
trough transitivity.

Case q1×q2:
Case q1 ><C q2:
Case q1∩S/Bq2:

For cross product, join, and intersection only the first case applies and the proof is analog to the proof
for unary operators, because each of these operators combines the Θv1 and Θv2 sets.
Case q1 ><C q2:

For left outer join the first and the second case apply. The first case applies for tuples which fulfill
the join condition. Therefore, the annotation set construction ({q1 ><q2}∪Q1.T ∪Q2.T) applied by
the rewrite rule generates the correct set. The second case applies for tuples t that do not fulfill the join
condition. In this case all parts of w that correspond to q2 are set to /0. It follows that [[q2(w)]] = /0. This
means in Θw does not include any node identifiers from OP(q2). This correctly modeled in the rewrite rule,
because t does not fulfill the join condition and, therefore, attribute Q2.T is ε (Recall that we use ε is an
alternative representation of the empty set).
Case q1>< C q2:
Case q1 >< C q2:
Case q1∪S/Bq2:

The proof for right outer join, full outer join, and union are analog to the proof of left outer join.
Case q1−S/Bq2:

For set difference only the second case applies. The rewrite rule discards the annotation set for q2.
Hence, no node identifiers from OP(q2) are included in the resulting annotation set.

4.6.1 Rewrite Rules Simplification
Recall that in example 4.17 we presented a simplification of the rewritten example query qa

T that uses
the fact that some node identifiers are guaranteed to be in the annotation sets of Qa

T . In general a node
identifier for an operator op is guaranteed to be in the annotation set of a rewritten query if computing
[[subop(w)]] for a witness list w ∈ DD(q, t) for t ∈ Q never returns the empty set. We use this fact to
identify criteria for applying the presented simplification. According to the compositional semantics of
PI-CS the only operators that include ⊥ in witness lists are the outer joins, union, aggregation, and set
difference. According to the transitivity of PI-CS the only possibility ⊥ can occur in a witness list of a
query q is that one of the aforementioned operators is used in q. From the definition of PI-CS (condition
2) and the definition of the algebra operators we can deduce that the evaluation of q over a witness list will
never result in the empty set if none of the⊥ generating operators is used in q. Even though aggregation can
have witness lists that contain ⊥, evaluating this operator over <⊥> does not produce the empty set. This
means queries involving only operators that never include ⊥ in their witness lists or aggregation (which
we refer to as transformation static) are rewritten by simply adding a projection to the query that generates
the static annotation set for this query. By static we mean that the annotation set is independent of the

116 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

input data. Even more, if a query includes non-static operators, a sub-expression that contains only static
operators can be rewritten by adding the annotation set trough a projection.

Proposition 4.1 (Transformation Provenance Rewrite Simplification). An algebra expression that con-
tains solely static operators has static transformation provenance. For an algebra expression q, all sub-
expressions that are static and do not have a non-static operator as their ancestor in the algebra tree of
q or are only in the left/right sub-tree of left/right outer joins have static transformation provenance.

4.7. SUMMARY 117

4.7 Summary
In this chapter we introduced relational representations for provenance according to the contribution se-
mantics presented in chapter 3 and demonstrated how to generate these representations by evaluating rewrit-
ten algebra expressions. Several meta-operators were discussed that transform an algebra expression q into
a rewritten form that computes the relational representation of a type of provenance for q. For each of the
meta-operators we proved that the rewritten algebra expressions generated by this operator compute the
corresponding relational representation of provenance. For PI-CS provenance of algebra expressions with
sublinks we have introduced several rewrite strategies that utilize un-nesting and de-correlation techniques
to rewrite these queries. Furthermore, for C-CS and transformation provenance we presented simplifica-
tions for the rewrites and demonstrated when they can be applied. In summary, we have theoretically sound
algorithms for computing relational provenance representations according to several CS types. The rela-
tional representations allow us to store provenance in a relational database and query it using SQL. Which
is a huge advantage over existing approaches that do not support querying of provenance information at
all or supply only very limited query capabilities. Modeling provenance computation as algebraic rewrites
has the intrinsic advantage that provenance computations can be seamlessly integrated into SQL which is
not the case for other provenance approaches, because they usually develop a new language for provenance
computation and querying. Note that even though these languages may be implemented as rewrites, in gen-
eral it is not easily possible to integrate them into SQL. This is due to the fact that the applied provenance
representation are not relational and are produced by post-processing the result of rewritten queries. In the
next chapter we will demonstrate how to integrate the Perm provenance representation and computation
into a relational DBMS.

118 CHAPTER 4. PROVENANCE COMPUTATION THROUGH ALGEBRAIC REWRITE

Chapter 5

Implementation

In the previous chapters we introduced the theoretical background of our approach for provenance com-
putation in relational databases. In this chapter we present the implementation of the Perm system as an
extension of PostgreSQL [Mom01]. While the theoretical treatment already lays out some parts of the im-
plementation, implementing a complete provenance system is far from trivial and, thus, is one of the major
contributions of this thesis. As discussed in the previous chapters our goal is to add provenance support
as an orthogonal extension of the relational model. Hence, we first present the additional constructs that
we added to SQL to achieve this goal (section 5.1). To be able to implement the provenance rewrite rules
in a relational system, they had to be translated from relational algebra into SQL. These translations are
presented in section 5.2. Section 5.3 presents the architecture of Perm. The extension to PostgreSQL stan-
dard functionality that were necessary to seamlessly integrate provenance computation into PostgreSQL are
discussed in section 5.4. Afterwards, we present the Perm module, the core of the system, that implements
the translated rewrite rules and discuss optimizations which are applied to increase the performance of
provenance computation (section 5.5). The Perm-Browser, a graphical user interface for Perm is presented
in section 5.6.

119

120 CHAPTER 5. IMPLEMENTATION

shops
name numEmpl
Merdies 3
Joba 14

sales
sName itemId
Merdies 1
Merdies 2
Merdies 2
Joba 3
Joba 3

items
id price
1 100
2 10
3 25

qa = SELECT s . sName , i . p r i c e FROM s a l e s s JOIN i t e m s i ON s . i t e m I d = i . i d ;

qa = Π
B

sName,price(sales><itemId=id items)

Figure 5.1: Provenance Attribute Naming Example

5.1 SQL Provenance Language Extensions

In chapter 4 we have introduced a relational representation of provenance information and demonstrated
how this representation can be generated by evaluating rewritten relational algebra expressions. Recall that
this approach has several advantages over alternative approaches. One major advantage is that this ap-
proach enables us to seamlessly integrate provenance computation in a relational query language. The goal
we want to achieve with the SQL-PLE (Provenance Language Extension) is exactly that: An orthogonal
language extension. E.g., it should be possible to combine standard SQL constructs with the SQL-PLE
constructs in a single SQL statement. SQL-PLE contains language constructs that trigger provenance com-
putation, limit the scope of a provenance computation, handle external provenance, and several additional
constructs for debugging and investigating the inner workings of the system.

5.1.1 Provenance Attribute Naming Scheme

Recall that for the relational representation of provenance according to a CS type we introduced an attribute
renaming function that generates unique names for provenance attributes. Until now we have not presented
how these unique names are generated. To enable a user to query provenance data, a mechanism for
addressing provenance attributes in a query is needed. Thus, the names generated for provenance attributes
should not only be unique, but the naming scheme should produce predictable and self-explanatory names.

In the naming scheme applied by Perm each provenance attribute name consists of the fixed prefix prov
followed by the name of the base relation, the attribute is derived from, and the original attribute name.
Each part of a provenance attribute name is separated by an underline character. If a relation is referenced
more than once in a query, an identifying number is attached to the relation name. To guarantee uniqueness,
underline characters in original attribute names are escaped (replaced by two underscore characters).

For example, consider SQL query qa (and its algebra representation) presented in Figure 5.1. This
query accesses base relations sales and items (in this order). Applying the naming scheme generates the
following schema for the relational representation of the provenance of qa:

sName , p r i c e ,
p r o v s a l e s s N a m e , p r o v s a l e s i t e m I d ,
p r o v i t e m s i d , p r o v i t e m s p r i c e

This naming scheme is predictable, because the attribute names can be derived from the structure of an
SQL query. It is also self-explanatory, because the generated names identify the base relation and original
attribute from which a provenance attribute is derived from. To keep the following examples concise we
use the prefix p for provenance attribute names instead of the names generated by the naming scheme (e.g.,
pName instead of prov shops name).

5.1. SQL PROVENANCE LANGUAGE EXTENSIONS 121

5.1.2 Provenance Computation
A user can request provenance computation for an SQL query q in SQL-PLE by adding the keyword
PROVENANCE to the select clause of q. A query q that is marked by this keyword is substituted with a
query that computes the relational representation of the provenance of q. For example:

SELECT PROVENANCE name FROM shops ;

The default is to compute provenance according to PI-CS. If another data provenance CS type is desired
the optional ON CONTRIBUTION parameter can be used to indicate this. For instance, if the CDC-CS
provenance of the example query presented above should be computed this is expressed in SQL-PLE as:

SELECT PROVENANCE ON CONTRIBUTION (COPY COMPLETE NONTRANSITIVE) name
FROM shops ;

As mentioned before one main goal in the design of SQL-PLE was to fully integrate provenance com-
putation into the SQL language. Therefore, a provenance computation can be applied in any place where
the use of a standard SELECT statement is allowed. One important benefit of this integration is the ability
to ask queries over provenance information by using a provenance query as a sub-query in a standard SE-
LECT statement. For example, consider the following query qa that computes the total revenue for each
shop:

SELECT name , sum (p r i c e) AS sum
FROM shops , s a l e s , i t e m s
WHERE name=sName AND i t e m I d = i d
GROUP BY name ;

If a user wants to know which revenues were influenced by a sale of an item with a price greater than
50, this query can be expressed in SQL-PLE as:

SELECT name , sum , p r o v i t e m s i d
FROM

(SELECT PROVENANCE name , sum (p r i c e) AS sum
FROM shops , s a l e s , i t e m s
WHERE name=sName AND i t e m I d = i d
GROUP BY name) AS prov

WHERE p r o v i t e m s p r i c e > 5 0 ;

Note that the use of SQL-PLE constructs is not limited to SELECT queries. For example, the following
SQL-PLE statement would store the result of a provenance computation as a view:

CREATE VIEW provview AS
SELECT PROVENANCE sum (i . p r i c e)
FROM i t e m s ;

SQL-PLE contains three keywords for computing the transformation provenance of a query that are
applied in the same way as the PROVENANCE keyword: TRANSPROV, TRANSSQL, and TRANSXML. All
three keywords compute the same provenance information, but each uses a different result representation.
These representation are discussed in detail in section 5.5.4.

5.1.3 Limited Provenance Scope
The huge amount of provenance information produced for complex queries over large database instances
can be overwhelming for a user. Asking queries over the generated provenance information reduces the
complexity and can be used to focus on interesting parts of the provenance or transformation provenance
can be used to gain a better understanding of the query itself. However, this does not limit the complexity
of the original query that has to be understood. In such cases it would be helpful to be able to compute
provenance according to an intermediate result used in the query instead of tracing provenance to the base
relations accessed by the query. This functionality is supported by SQL-PLE through the BASERELATION
keyword. Appending the keyword BASERELATION to a FROM clause item instructs Perm to handle
this FROM clause item as a base relation. For example, for the query presented below the result of the

122 CHAPTER 5. IMPLEMENTATION

Construct Description
PROVENANCE Marks a query for provenance computation.
ON CONTRIBUTION (cs type) Instructs Perm to use a certain CS type.
BASERELATION Handle a FROM clause item as if it were a base relation.
PROVENANCE (attr list) Handle attributes from attr list as provenance attributes.
TRANSPROV/TRANSSQL/TRANSXML Mark a query for transformation provenance computation.
EXPLAIN SQLTEXT Return the (rewritten) SQL text of a query.
EXPLAIN GRAPH Return an algebra tree for a query (as a dot-language script).

Figure 5.2: SQL-PLE language constructs

provenance computation would include the tuples from the result of FROM clause item sub that contributed
to a result tuple of the query instead of the tuples from the base relation items.

SELECT PROVENANCE t o t a l ∗ 10 FROM
(SELECT sum (p r i c e) AS t o t a l FROM i t e m s) BASERELATION AS sub ;

5.1.4 Support for External Provenance

A user may store data in Perm that carries provenance information which has been created manually or
by another provenance management system. We call such provenance information external. SQL-PLE
contains language constructs that can be used to make Perm aware of external provenance and handle it
as if it was created by Perm itself. External provenance may be either stored in the same relation as the
data it refers too or in separate relation(s). To not impose any restrictions on the schema used to store
external provenance information, SQL-PLE enables a user to generate a relation that contains the original
data alongside with its provenance and then inform the system about which attributes store provenance
information. A user can define that a subset of a FROM clause item’s attributes are provenance attributes
by appending PROVENANCE (attrlist) to a FROM clause item. Perm is instructed by the PROVENANCE
clause to not rewrite the FROM clause item this keyword is appended to and handle the information stored
in the provenance attributes identified by this clause as if they contain provenance information generated
by Perm.

For example, assume a relation provItem stores information about the provenance of tuples in the items
relation from the example database. An attribute itemId is used to store the association between an item
and its provenance. In addition, provItem contains a dbName attribute that contains the name of the original
database from which the information about an item is imported from. The example query below demon-
strates how to make Perm aware of the provenance information stored in relation provItem:

SELECT PROVENANCE sum (p r i c e) AS t o t a l
FROM

(SELECT ∗
FROM i t e m s JOIN p r o v I t e m ON (i d = i t e m I d)) PROVENANCE (dbName) AS p r o v I t e m ;

Note that implementing support for external provenance and limited scope in Perm is simplified to a
great extend by the recursive nature of the query rewrite rules developed for Perm.

5.1.5 Debugging and Convenience Language Constructs

SQL-PLE contains language constructs for debugging Perm and inspecting the query rewrites applied by
the system. EXPLAIN SQLTEXT returns the SQL text of an SQL query. This construct can be used to
investigate the rewrites applied by the Perm system, because provenance constructs are rewritten before
the SQL text is returned. Similar EXPLAIN GRAPH returns the algebra tree of a query1. As an example
application of these constructs consider the following statement:

1Actually this construct returns a script in the dot language (see [GN00]), a graph description language. The graphviz tools can be
used to visualize the graph.

5.1. SQL PROVENANCE LANGUAGE EXTENSIONS 123

EXPLAIN SQLTEXT SELECT PROVENANCE ∗ FROM shops ;

5.1.6 Overview of the SQL-PLE language constructs
Figure 5.2 presents an overview of the SQL-PLE language constructs introduced in this section. An gram-
mar for an excerpt of the SQL-PLE language is given in appendix A. In contrast to other approaches for
relational provenance computation, SQL-PLE has the following advantages:

• Provenance computation for a larger subset of SQL constructs (e.g., sublinks).

• Full integration in SQL.

• Support for multiple CS types and transformation provenance.

• Support for external provenance.

• Ability to limit the scope of provenance computations.

124 CHAPTER 5. IMPLEMENTATION

SQL Query SQL Rewrite−−−−−−−→
(2)

Rewritten SQL Query

Translation to Algebra
y(1) (1)

x Translation to SQL

Algebra Expression Algebraic Rewrites−−−−−−−−−−→
(1)

Rewritten Algebra Expression

Figure 5.3: Translation of Algebraic Rewrites into SQL Rewrites

5.2 Rewrite Rules Translation

A translation between SQL and relational algebra is needed to be able to implement the rewrite rules
developed in chapter 4. Given such a translation, an SQL query can be rewritten by either (1) translating it
into relational algebra, applying the algebraic rewrites, and translating it back to SQL, or by (2) using the
mapping between relational algebra and SQL to translate the rewrite rules to SQL. Figure 5.3 illustrates
this process. The translation of the rewrite rules to SQL is more complex, but it has the advantage that no
translation between algebra and SQL has to be applied at run-time (The downward and upward arrows in
Figure 5.3). Therefore, we have chosen to implement the second approach. We first introduce an canonical
translation between SQL and relational algebra. Afterwards, types of queries are classified regarding their
provenance behaviour. Finally, we present how each query type is rewritten.

5.2.1 A Canonical Translation between SQL and Relational Algebra

We present the canonical translation between SQL and relational algebra in both directions. First from
SQL to algebra expressions and afterwards from algebra expression to SQL. Using common terminology
we refer to each SELECT ... FROM ... WHERE ... GROUP BY ... HAVING part in an SQL statement as a query
block. Sub-queries in the FROM clause of an SQL statement are separate query blocks. A query block
represents either a tree of set operations or an ASPJ-query.

5.2.1.1 Translation from SQL to Algebra

We translate an ASPJ query into the following algebra expression, where some of the operators may be left
out if their corresponding part is not present in the SQL-query.

Π
S/B

A1(σH(αG,agg(ΠA2(σC(q1 �C1 . . .�Cn qn)))))

The FROM clause of the query is translated into a list of joins (� represents one of the join operators of
the algebra). Sub-queries in the FROM clause are recursively transformed using the same approach. The
WHERE clause is represented by σC and the expressions of the SELECT clause are handled in ΠS/B

A2 . If
the query block contains aggregation functions, then the aggregation is transformed into αG,agg. Projections
on aggregation functions (e.g., sum(a)+2) are modeled as another projection ΠS/B

A1 and σH represents the
HAVING clause. For query blocks that use DISTINCT the duplicate removing version of projection is used
as the outermost projection operator in the resulting algebra expression. Otherwise the duplicate preserving
version is applied. LIMIT, ORDER BY, and OFFSET clauses do not have an algebraic counterpart. The
algebra was deliberately defined to not include these operators, because they are either non-deterministic
(LIMIT and OFFSET) or produce an output that cannot be modeled without extending the relational model
with an order over the tuples in a relation (ORDER BY). We will demonstrate later in this section that it
is nonetheless possible to generate useful provenance information for queries containing these clauses. As
an example for the translation between ASPJ query blocks and relational algebra expressions consider the
following SQL query:

5.2. REWRITE RULES TRANSLATION 125

SELECT sum (R . a) + 2 AS one , avg (T . c ∗ 50) AS two
FROM R JOIN S ON (a = b) , T
WHERE T . c = S . b
GROUP BY S . b
HAVING c o u n t (∗) > 5 ;

This query is translated into the following algebra expression:

Π
B

sum(a)+2→one,avg(x)→two(σcount(∗)>5(αb,sum(a),avg(x),count(∗)(Π
B

a,b,c,c×50→x(σc=b((R><a=b S)×T)))))

A query block that represents a tree of set operations is translated into an algebra expression by re-
placing each SQL set operation with its algebraic counterpart. E.g., UNION ALL is translated into ∪B and
INTERSECT is translated into ∩S. For instance, the following query

(SELECT ∗ FROM R
UNION
SELECT ∗ FROM S)
INTERSECT ALL
SELECT ∗ FROM T ;

is translated into:

(R∪SS)∩BT

If a query block contains sublinks, these are translated into the corresponding sublink expression in
the algebra. Recall that in the Perm algebra sublink expression are only allowed in selection predicates
and projection expressions. In contrast the SQL standard allows sublinks to be used in any place where
expressions are applicable. For instance, in group-by expressions, the HAVING clause, or join conditions.
Sublink expressions in aggregation functions, GROUP BY clause, or HAVING clause are translated using
the approach for aggregation presented above (details are given in section 5.2.7). E.g., the following query

SELECT sum (R . a) ∗ (SELECT sum (b) FROM S) AS x
FROM R ;

is translated into:

Π
B

sum(a)×(αsum(b)(S))→x(αsum(a)(R))

Sublinks in join conditions are translated into algebra by modeling the join as a cross product followed
by a selection. For outer joins algebraic equivalences have to be applied to transform the outer join into an
inner join.

5.2.1.2 Translation from Algebra to SQL

A simple translation from the Perm algebra into SQL is to create a query block for each operator in the
algebra expression and add the SQL representation of the inputs of the operator to the FROM clause of
the resulting query block. This approach is straightforward, but it creates an unnecessary large number of
query blocks. Therefore, adjacent operators in the algebra expression are modeled as a single SQL query
block if possible. Adjacent set operations are merged into a single query block. Furthermore, adjacent join
operators are integrated into a single FROM clause. Projections and selections above a join operation are
integrated into the query block of the join operation. The same applies for aggregation. Note that only
a single aggregation operator per query block is allowed. For example, consider the algebra expression
present below:

αavg(suma)(Π
B

sum(a)→suma,b(αb,sum(a)(R×S)))

126 CHAPTER 5. IMPLEMENTATION

This expression is translated into:

SELECT avg (suma)
FROM

(SELECT sum (a) AS suma , b
FROM R , S
GROUP BY b) AS sub ;

5.2.2 Query Block Types

We now classify types of query blocks in a query tree according to the algebra expression they represent
and their provenance. Below we present each identified block type with an example in SQL.
SPJ (Select-Project-Join): A query block that does not contain aggregation, set operations or sublinks is
equivalent to an algebra sequence of the format:

ΠA(σC(q1 � . . .�qn))

The association of joins is defined by brackets (not included in the representation to keep the expression
simple). As usual � represents one of the join operators of the algebra.

SELECT ∗
FROM R LEFT JOIN (S NATURAL JOIN T)

ON (R . a = S . b) ;

ASPJ (Aggregate-Select-Project-Join): If a query block contains aggregation functions, a GROUP BY
clause and/or a HAVING clause, this block is equivalent to an algebra expression of the following format:

ΠA1(σH(αG,agg(ΠA2(σC(q1 � . . .�qn)))))

SELECT sum (R . a) FROM R GROUP BY R . b ;

SET (Set operations): As mentioned before a list of set operations is represented as a single query block.
A SET query block is equivalent to an algebra expression of the following format where • denotes one of
the set operators of the algebra (brackets are left out to keep the expression simple):

q1 • . . .•qn

SELECT ∗ FROM R UNION
(SELECT ∗ FROM S INTERSECT SELECT ∗ FROM T) ;

SPJ-sub (Sublinks in Projection or Selection): This type of query block is an SPJ query block that con-
tains sublink queries in the SELECT clause, join predicates or WHERE clause expressions. Except for
these sublinks the algebra expression for an SPJ-sub query block is the same as for an SPJ query block.

SELECT (SELECT sum (S . b) FROM S) AS sums , R . a
FROM R ;

ASPJ-sub (Sublinks in Aggregation): An ASPJ-sub block is a query block with aggregation and sublink
queries in the SELECT, GROUP BY, and/or HAVING clause.

SELECT avg (R . a) FROM R
GROUP BY R . a IN (SELECT S . b FROM S)

5.2. REWRITE RULES TRANSLATION 127

5.2.3 Rewrite of SPJ Query Blocks

The general approach we follow for translating the algebraic rewrite rules to SQL is to first transform
a query block QB into an algebra expression q, apply the rewrite rules for one of the provenance meta-
operators to generate, e.g., q+, and finally transform q+ back into SQL, thus, generating a rewritten SQL
statement QB+. In the implementation of the rewrite rules the direct translation from QB to QB+ is applied
(The horizontal arrow from the SQL query to the rewritten SQL query in Figure 5.3).

5.2.3.1 PI-CS Rewrites

The algebra expression q of an SPJ query block consists of a single projection and selection applied to the
result of join operations over sub-queries and base relations. For PI-CS such algebra expression is rewritten
by applying rewrite rules (R1), (R2), (R3), and (R5.a-R5.e). Except for adding projections and replacing
duplicate removing projections with duplicate preserving projections, these rewrite rules do not alter the
structure of q. The rewrite rules for joins (R5.a-R5.e) add an additional projection to the rewritten algebra
expression to generate a correct order of result attributes. In q+ this projection can be omitted because the
rewritten projection operator in q+ guarantees a correct attribute order. If one of the inputs qi to q (the
FROM clause items in the SQL query block) is a base relation access, rewrite rule (R1) transforms qi into
a projection that generates the provenance attributes for the base relation. This projection can be merged
into the rewritten projection operator. We denote the modified provenance attribute list in this projections
as P ′.

Example 5.1. For instance, the result of applying the + meta-operator to algebra expression q = ΠA(R×
S) over relations R and S with schemas R = (a) and S = (b) is:

q+ = Π
B

a,N (a),N (b)(Π
B

a,b,N (a),N (b)(Π
B

a,a→N (a)(R)×Π
B

b,b→N (b)(S)))

Merging the projections in q+, the query is transformed into:

q+ = Π
B

a,a→N (a),b→N (b)(R×S)

For an arbitrary algebra version q of an SPJ query block the resulting simplified version of q+ is as
follows:

q+ = ΠA,P ′(q+)(σC(q1
+ �C1 . . .�Cn qn

+)

Using the translation between algebra and SQL, q+ is translated into a single SQL query block QB+.
Of course, inputs qi that are not base relation accesses are not merged into this query block. The result of
translating q+ into SQL is:

SELECT A, P ′(q)
FROM q1

+ . . . qn
+

WHERE C ;

Thus, an SPJ query block QB is rewritten as follows:

QB
SELECT A
FROM q1 . . . qn
WHERE C

→
QB+

SELECT A, P ′(q)
FROM q1

+ . . . qn
+

WHERE C ;

128 CHAPTER 5. IMPLEMENTATION

5.2.3.2 C-CS Rewrites

The C-CS and transformation provenance rewrite rules use a data-type that stores a set of integer number
or sets of attribute names. PostgreSQL does not natively support set data-types, but sets of integers can
be modeled using the build-in variable length bit-vector data-type. A bit-vector of length n is used to
represent a subset of the set {1, . . . ,n} by using a 0 respective 1 in the ith position to indicate if i is included
in the set. The union and intersection operations applied in the rewrite rules are modeled as the build-in
bit-wise-or and bit-wise-and operations of the bit-vector data-type. The C-CS rewrite rules also use the
i f (e1) then (e2) else (e3) expression. This expression is represented in SQL using the CASE construct.

For the C-CS types the algebra expression q for an SPJ query block QB is rewritten into qC using rewrite
rules (C1), (C2), (C3), and (C5.a-C5.e). As for the PI-CS rewrite rules the additional projections added by
these rules can be merged into a single outermost projection (CM′ denotes the merged copy expressions).
The resulting algebra expression is presented below.

qC = ΠA,P ′(qC),CM′(q)(σC(q1
C �C1 . . .�Cn qn

C)

Recall that an algebra expressions is rewritten according to a C-CS type by applying the P∗ inclusion
expressions to qC to generate the final witness list representations from the information stored in the C
attributes. Thus, if QB is the outermost query block in the SQL query, then the inclusion expressions have
to be applied to QB to create the rewritten version qCD/CT/PD/PT . This final projection can be merged with
the outermost projection of qC too. Similar to the rewrite for PI-CS the rewritten algebra statement qC can
be translated into a single query block QBC. The resulting SQL rewrite is as follows:

QB
SELECT A
FROM q1 . . . qn
WHERE C

→
QBC

SELECT A, P ′(qC) , CM′(q)
FROM q1

+ . . . qn
+

WHERE C ;

5.2.3.3 Transformation Provenance Rewrites

The transformation provenance rewrite rules for the operators applied in the algebraic version q of an
SPJ query block QB are (T1), (T2), (T3), and (T5). These rewrite rules only modify q by adding additional
projections that manipulate the T attribute that is used to store the transformation provenance information.
As for PI-CS, these projections can be merged into a single outermost projection. We denote the merged
expressions for T (qT) as T ′(qT). The resulting simplified version of qT is:

qT = ΠA,T ′(σC(q1
T �C1 . . .�Cn qn

T)

As for the data provenance CS types, the rewritten algebra expression can be translated into a single
query block. The SQL rewrite rule that is derived from this translation is presented below.

QB
SELECT A
FROM q1 . . . qn
WHERE C

→
QBT

SELECT A, T ′

FROM q1
+ . . . qn

+

WHERE C ;

5.2. REWRITE RULES TRANSLATION 129

Example 5.2. As an example for the PI-CS SQL rewrite consider the following query over base relations
R and S with schemas R = (a,b) and S = (c):

SELECT R . a ∗ 2 AS two
FROM R , S
WHERE R . a = S . c

Applying the SQL rewrite for PI-CS this query is rewritten into:

SELECT R . a ∗ 2 AS two , R . a AS prov R a , R . b . AS prov R b , S . c AS p r o v S c
FROM R , S
WHERE R . a = S . c

In the rewritten query the projections of the rewritten base relation accesses are merged into the SELECT
clause.

5.2.4 Rewrite of ASPJ Query Blocks

An ASPJ query block is equivalent to an algebra expression q that applies a projection and selection (the
HAVING clause) to the result of an aggregation. Recall that all rewrite rules for aggregation use a join
between the original aggregation and its rewritten input, because it is not possible to propagate provenance
directly trough an aggregation.

5.2.4.1 PI-CS Rewrites

The algebraic translation q of an ASPJ query block QB is rewritten using rewrite rules (R1), (R2), (R3),
(R4), and (R5.a-e). Let q1 denote the input of the aggregation operator applied in q. q1 is the relational
representation of an SPJ query and, thus, rewritten as presented in the discussion of SPJ query blocks.
In q+ the projections added by the rewrite rules for projection (R3) for the outer projection ΠS/B

A1 and
aggregation (R4) can be combined into a single projection. The simplified version of q+ is as follows:

q+ = Π
B

A,P(q+)(q ><G=G′ Π
B

G→G′,P ′(q1+)(q1
+))

q+ cannot be translated into a single query block, because it is not possible to compute an aggregation
function and join its result with another query in one query block. Therefore, q+ is translated into three
query blocks. Query block QB, a query block that contains the translated version of q1

+, and a query
block that models the outermost projection in q+ and the join between q1

+ and q. In SQL the group-by
attributes used in an aggregation are not necessarily present in the result schema of the query. Therefore,
in the translation of q+ to SQL we add omitted group by attributes to the SELECT clause in QB. This
modified version of QB is denoted as QB′. The projection over q1

+ used in q+ to rename the group by
attributes can be omitted in SQL, because using the same attribute names in difference FROM clause items
is unproblematic. The resulting SQL rewrite is as follows. Note that we use notations like “A = B” and
“A AS B” as abbreviations for comparisons or re-naming of attribute lists.

QB
SELECT A
FROM q1 . . . qn
WHERE C
GROUP BY G
HAVING H

→

QB+

SELECT o r i g . A, sub . P ′(q)
FROM

QB′ AS o r i g
LEFT JOIN

(SELECT G, P ′(q)
FROM q1

+ . . . qn
+

WHERE C) AS sub
ON o r i g .G = sub .G;

130 CHAPTER 5. IMPLEMENTATION

5.2.4.2 C-CS and Transformation Provenance Rewrites

The C-CS and transformation provenance rewrites rules for aggregation use the same approach to prop-
agate provenance information by joining the original aggregation with its rewritten input as in the PI-CS
aggregation rewrite rule. They only differ from the PI-CS rule in the type of provenance information they
propagate. Therefore, the same simplifications can be applied to the rewritten algebra statement as for
PI-CS. The resulting simplified versions of qC and qT are:

qC = Π
B

A,P ′(qC),CM′(q)(q ><G=G′ Π
B

G→G′,P ′(q1C),C (q1)(q1
C))

qT = Π
B

A,T ′(qT)(q ><G=G′ Π
B

G→G′,T ′(q1T)(q1
T))

Using the same approach as for PI-CS we translate the rewritten algebra expression into three query blocks:

QB
SELECT A
FROM q1 . . . qn
WHERE C
GROUP BY G
HAVING H

→

QBC/T

SELECT o r i g . A, sub .X
FROM

QB′ AS o r i g
LEFT JOIN

(SELECT G, X
FROM q1

C/T . . . qn
C/T

WHERE C) AS sub
ON o r i g .G = sub .G;

In the SQL rewrite X denotes P ′(q),CM′(q) for C-CS and T ′(qT) for transformation provenance
rewrites.

Example 5.3. As an example of the PI-CS SQL rewrite of an ASPJ query block consider the following
query:

SELECT sum (a) AS suma
FROM R JOIN S ON (R . b = S . c)
GROUP BY R . b

The SQL rewrite for this query generates a new top level query block that joins the original query with
the rewritten input of the aggregation on the group-by attributes. The group-by attribute R.b has to be
added to the SELECT clause of the original query to be able to perform the join. The rewritten SQL
query is presented below:

SELECT suma , prov R a , prov R b , p r o v S c
FROM

(SELECT sum (a) AS suma , R . b
FROM R JOIN S ON (R . b = S . c)
GROUP BY R . b) AS o r i g

LEFT JOIN
(SELECT R . b , R . a AS prov R a , R . b AS prov R b , S . c AS p r o v S c
FROM R JOIN S ON (R . b = S . c)) AS sub

ON (o r i g . b = sub . b)

5.2.5 Rewrite of SET Query Blocks
A SET query block QB contains a tree of set operations and is translated into an algebraic expression q that
contains a sequence of set operators that are associated with brackets to preserve the tree structure. The
rewrite rules for set operators are quite diverse. In contrast to the rewrites of SPJ and ASPJ query blocks it
is not possible to present a single rewritten form q+ for an arbitrary SET query block. Therefore, we first
present how such a query block can be rewritten by processing one set operation at a time. Afterwards, we
present simplifications that are are applicable for SET blocks that have a certain structure.

5.2. REWRITE RULES TRANSLATION 131

5.2.5.1 PI-CS Rewrite

The algebraic version q of a query block QB can be represented as q1 • q2 where • denotes one of the set
operators of the algebra. Such an algebra expression is rewritten using rewrite rule (R6.b), (R7), or (R8.b).
We do not present the translations for rules (R6.a) and (R8.a) to simplify the discussion and because the
translation of these rules is similar to the other translations. q is transformed by the rewrite rules into one
of the algebra expression presented below:

q+ = (q1∪S/Bq2)+ = (q1
+×null(P(q2

+)))∪B(ΠB
Q1,P(q+)(q2

+×null(P(q1
+))))

q+ = (q1∩S/Bq2)+ = Π
B

Q1,P(q+)(q1∩Sq2 ><Q1=X Π
B

Q1→X ,P(q1+)(q1
+)><Q1=Y Π

B
Q2→Y,P(q2+)(q2

+))

q+ = (q1−S/Bq2)+ = Π
B

Q1,P(q+)(Π
S

Q1(q1−S/Bq2)><Q1=X Π
B

Q1→X ,P(q1+)(q1
+)×null(P(q2

+)))

Union: If q has a union as top level set operator, then the rewritten query q+ is translated into three query
blocks. One query block for the union operation, a query block for the cross product between q1

+ with
null(P(q2

+)), and one query block for the cross product between q2
+ with null(P(q1

+)). Note that
instead of a cross product between a rewritten input to q and null values, a projection can be used that adds
the null values to the result schema. This approach is taken in the SQL rewrite for union:

QB
q1
UNION [ALL]
q2 ;

→
QB+

SELECT Q1 , P(q1
+) , NULL AS P(q2

+)
FROM q1

+

UNION ALL
SELECT Q2 , NULL AS P(q1

+) , P(q2
+)

FROM q2
+ ;

Intersection: If the top level set operation in q is an intersection, then q+ is translated into four query
blocks: A new top query block that joins the original query with the rewritten inputs of the top level
intersection, a query block containing the original query QB, and a query block for each rewritten input.
The resulting SQL rewrite is as follows:

QB
q1
INTERSECT [ALL]
q2 ;

→

QB+

SELECT o r i g . ∗ , P(q+)
FROM

QB′ AS o r i g ,
q1

+ AS sub1 ,
q2

+ AS sub2
WHERE

o r i g .∗ = sub1 . Q1 AND
o r i g .∗ = sub2 . Q2 ;

Set Difference: For algebra expressions q with a top level set difference, the rewritten algebra expression
q+ is translated into SQL as three query blocks. Similar to intersection a query block is introduced that joins
the original query with the rewritten left hand side input. As for union, the cross product with ε constants
is modeled as a projection. In q+ a duplicate removing projection is applied to q1

+. In the translation an
additional query block is added that uses DISTINCT to model the duplicate removing projection on the
original query. If possible, this query block is merged into the original query QB. Below we present the
SQL rewrite:

132 CHAPTER 5. IMPLEMENTATION

QB
q1
EXCEPT [ALL]
q2 ;

→

QB+

SELECT o r i g . ∗ , P(q1
+) , NULL AS P(q2

+)
FROM

(SELECT DISTINCT ∗ FROM QB) AS o r i g ,
q1

+ AS sub1
WHERE

o r i g .∗ = sub1 . Q1

If a SET query block QB contains more than one set operation, then the rewrite for one set operation
presented above is applied recursively to the set operations in QB. The recursive application of these
rewrites can result in a large number of additional query blocks. The number of query blocks can be
reduced if QB uses only unions or only intersections. In this case the rewritten algebra statement q+ can be
transformed into the following algebra statements using algebraic equivalences:

q+ = (q1∪S/B . . . ∪S/Bqn)+ =Π
B

Q1,P(q1+) ... ε→P(qn+)(q1
+)∪B . . .∪B

Π
B

Qn,ε→P(q1+) ... P(qn+)(qn
+)

q+ = (q1∩S/B . . . ∩S/Bqn)+ =Π
B

Q1,P(q+)((q1∩S . . . ∩Sqn)><Q1=X1

Π
B

Q1→X1,P(q1+)(q1
+) . . . ><Q1=Xn Π

B
Qn→Xn,P(qn+)(qn

+))

This simplified versions of q+ can be translated into SQL as a top level query block that handles the
union respective join operations, a query block for the modified original set operation, and a query block
for each rewritten input qi. We only present the resulting SQL rewrite rule for union. The SQL rewrite for
intersection is analog.

QB
q1
UNION [ALL]
. . .

UNION [ALL]
qn ;

→

QB+

SELECT Q1 , P(q1
+) , . . . , NULL AS P(qn

+)
FROM q1

+

UNION ALL
. . .

UNION ALL
SELECT Qn , NULL AS P(q1

+) , . . . , P(qn
+)

FROM qn
+ ;

The recursive definition of the SQL rewrites for set operations implies that this optimization can also
be applied to a sub-tree in a SET query block, if this sub-tree only contains unions or intersections.

5.2.5.2 C-CS and Transformation Provenance Rewrites

The C-CS and transformation provenance rewrite rules for set operations use the same structural rewrites as
the PI-CS rules. The translation of these rewrites into SQL is analog to the translation for PI-CS presented
above. Therefore, we do not present the corresponding SQL rewrites.

5.2. REWRITE RULES TRANSLATION 133

Example 5.4. Consider the following query over base relations R, S, and T with schemas R = (a),
S = (b), and T = (c) as an example of the simplified PI-CS SQL rewrite for SET query blocks that
contain only union set operations.

(SELECT ∗ FROM R
UNION
SELECT ∗ FROM S)
UNION
SELECT ∗ FROM T)

Applying the SQL rewrite for union the query is rewritten into:

(SELECT a , a AS prov R a , NULL AS prov S b , NULL AS p r o v T c FROM R)
UNION ALL
SELECT b , NULL AS prov R a , b AS prov S b , NULL AS p r o v T c FROM S)
UNION ALL
SELECT c , NULL AS prov R a , NULL AS prov S b , c AS p r o v T c FROM T ;

5.2.6 Rewrite of SPJ-sub Query Blocks

The algebraic representation q of an SPJ-sub query block QB is generated like for an SPJ query block
except that each sublink in QB is translated into an algebraic sublink expression (see section 5.2.1 on how
sublinks in join conditions are translated into algebra). The result of this translation is an algebra expression
of the following format:

q = ΠA(σC(q1 � . . . qn))

q may contain sublink expressions in A and/or C. This algebra expression is rewritten using the same
rewrite rules applied for SPJ query blocks except for the sublink expressions in q that are rewritten using
one of the sublink rewrite strategies. To translate these rewrite strategies into SQL the rewrite rules have to
be translated into SQL and the preconditions of the strategies have to be adapted for SQL queries.

5.2.6.1 Gen Strategy

The rewrite rules of the Gen strategy rewrite sublinks in q = σC(q1) or q = ΠS/B
A(q1) by adding additional

selection predicates that contain modified versions of the sublinks in q and using a cross product between
the rewritten input of q and the CrossBase of each sublink. The Gen strategy rewrite rules are quite
complex. Therefore, we discuss each part of the translation in detail for rewrite rule (G1), the rewrite rule
for sublinks in selection predicates. The translation of (G2) is omitted, because it is analog. The CrossBase
of a sublink contains the cross product of all base relations accessed by the sublink query with attributes
renamed into the provenance attribute names unioned with a tuple of ε constants. For a sublink query qsub
over base relations R1 to Rn the CrossBase is expressed in relational algebra as:

CrossBase(qsub) = Π
B

R1→N (R1)(R1∪Bnull(R1))× . . . Π
B

Rn→N (Rn)(Rn∪Bnull(Rn))

The translation of a CrossBase into SQL is straightforward:

134 CHAPTER 5. IMPLEMENTATION

(SELECT R1 AS P(R1
+)

FROM R1
UNION ALL
SELECT NULL AS P(R1

+))
CROSS JOIN
. . .

CROSS JOIN
(SELECT Rn AS P(Rn

+)
FROM Rn
UNION ALL
SELECT NULL AS P(Rn

+))

The selection predicate Csubi
+ added for each sublink expression Csubi by the Gen strategy contains the

original sublink expression, the rewritten sublink query qsubi
+, the predicate Jsubi , and correlation expres-

sions between the CrossBase(qsubi) and attributes from Qsubi
+:

Csubi
+ = EXIST S (σJsubi∧P(qsubi

+)=nX (ΠB
P(qsubi

+)→X (qsubi
+))∨ (¬ EXIST S (qsubi)∧P(qsubi

+) is ε)

The elements of Csubi
+ are translated into SQL as follows. qsubi

+ is translated into SQL using the
translation for the query block types used in the original SQL sublink from which qsubi is derived from.
Depending on the type of sublink Jsubi contains the original sublink expression Csubi and/or an equality
predicate. Csubi is translated into its SQL counterpart (The SQL sublink from which it is derived from).
The same applies for the correlation expressions P(qsubi

+) =n X . Recall that an algebra expression σC(q1)
is rewritten by Gen strategy rewrite rule (G1) into:

(σC(q1))+ =σC∧Csub1
+...∧Csubn

+(q1
+×CrossBase(qsub1) . . .×CrossBase(qsubn))

The algebraic representation q of an SPJ-sub query block QB may contain joins and a projection in
addition to the selection that contains the sublinks. Assume that Csub1 to Csubm are the sublink expressions
in q. Applying rewrite rules (R1), (R3), and (R5.a-R5.e) in combination with (G1), q is rewritten into:

q+ = Π
B

A,P ′(q+)(σC∧Csub1
+...∧Csubm

+((q1
+ � . . . �qn

+)×CrossBase(qsub1) . . .×CrossBase(qsubm))

The rewritten algebra expression q+ is translated into a query block for the rewritten SPJ part and one
query block for each CrossBase using the SQL versions of Csubi and the CrossBase(qsubi):

QB
SELECT A
FROM q1 . . . qn
WHERE C ;

→

QB+

SELECT A, P(q+)
FROM

(q1
+ . . . qn

+) ,
CrossBase(qsub1) ,
. . .

CrossBase(qsubm)
WHERE

C AND Csub1 AND . . . AND Csubm ;

5.2.6.2 Specialized Strategies

The translation of the specialized rewrite strategies for sublinks is to a large extended analog to the transla-
tion of the Gen strategy. Therefore, we do not present the translated rewrites for each strategy, but instead
discuss only the differences between these translations and the translation for the Gen strategy.

5.2. REWRITE RULES TRANSLATION 135

Left Strategy The Left strategy has the single precondition that it is only applicable for uncorrelated
sublink expressions. This precondition can be checked for an SQL query in the same manner as for an al-
gebra expression: By searching for references to correlated attributes in the expressions used in the sublink
query. The rewrite rules of the Left strategy rewrite an algebra expression by joining the rewritten input to
the selection respective projection that contains the sublinks with the rewritten sublink algebra expressions
on the Jsubi conditions. This rewrite is translated into SQL by adding query blocks for the rewritten sublink
queries to the FROM clause of the rewritten query that uses sublinks. The Jsubi expressions are rewritten
as presented for the Gen strategy.

Move Strategy Recall that the Move strategy is derived from the Left strategy through the application of
algebraic equivalence rules. The difference between a query qM produced by the Move strategy rewrites
and a query qL produced by the Left strategy rewrites is that in qM the result of sublink expressions is reused
by outsourcing them into projection expressions. The same approach is applied in the SQL translation of
the Move rewrite rules: Sublink queries are moved into the SELECT clause of the original SPJ query block
and selection predicates and projection expressions that use the result of these sublinks are moved into a
new top level query block. The joins with the rewritten sublink queries is processed in the FROM clause
of this query block.

Unn Strategy The Unn strategy un-nests sublink expressions by transforming them into joins with the
sublink query. In the SQL translation of the Unn rewrite rule this is implemented by moving sublink queries
from the WHERE clause to the FROM clause. The preconditions of this strategy require that none of the
sublink expressions used in the algebra expression is an ALL sublink and that the sublinks are used in
logical conjunctions. This preconditions are checked for an SQL query in the same way as for an algebra
expression (in SQL logical conjunctions are denoted as AND).

Unn-Not Strategy The Unn-Not strategy transforms each sublink in an algebra expressions into two
joins. One join simulates the sublink expression and the other one is used to propagate the provenance
of the sublink query. In the SQL translation two duplicates of the sublink query are added to the FROM
clause. The only major difference to the translation of the Unn strategy is the projection on a constant value
1→ dummyi which is translated into 1 AS dummy i in SQL.

JA Strategy The rewrite rules of the JA strategy apply de-correlation and un-nesting to transform cor-
related sublink expressions into joins with the rewritten sublink queries. This rewrite strategy is only
applicable to sublink queries that have an aggregation as their outermost operator. To de-correlate such
sublinks group-by expressions are added to the aggregation (See, e.g., [Kim82]). In the SQL translation
of this strategy these expressions are added to the GROUP BY clause of the rewritten sublink query. The
correlation expressions are transformed into join predicates in both the algebraic and the SQL version of
this strategy.

Exists Strategy Like the JA strategy, the Exists strategy uses de-correlation and un-nesting techniques.
This strategy is only applicable for correlated EXISTS sublinks. In contrast to the JA strategy no grouping
is required to de-correlated the sublinks for this strategy. Besides that, the translation into SQL is analog to
the one for the JA rewrite rule.

136 CHAPTER 5. IMPLEMENTATION

Example 5.5. We now present example rewrites for an SQL query with sublinks using SQL rewrites of
the Gen and the Unn strategy. Consider the query presented below that accesses base relations R and S
with schemas R = (a) and S = (b).

SELECT ∗
FROM R
WHERE EXISTS (SELECT ∗ FROM S) ;

The SQL translation of the Gen strategy rewrites transform this query into:

SELECT R . a , cbase . p rov S b , R . a AS p r o v R a
FROM

R ,
(SELECT S . b AS p r o v S b
FROM S
UNION ALL
SELECT NULL AS b) AS cbase

WHERE
EXISTS (SELECT ∗ FROM S)) AND
(

(EXISTS (SELECT S . b , S . b AS p r o v S b
FROM s
WHERE NOT S . b IS DISTINCT FROM cbase . p r o v S b))

OR
(NOT EXISTS (SELECT ∗ FROM S) AND cbase . p r o v S b IS NULL)

) ;

The rewritten query contains two additional sublinks - one of them with correlations to the CrossBase.
The application of the Unn strategy SQL rewrite to this query generates the following query:

SELECT
R . a , r e s u b . p rov S b , R . a AS p r o v R a

FROM
R ,
(SELECT S . b , S . b AS p r o v p u b l i c S b FROM S) AS r e s u b ;

It is apparent from the example that the rewritten queries produced by different rewrite strategies for
the same input query vary considerably. We discuss in section 5.5.1.1 how to determine which rewrite
strategy minimizes the execution time of the provenance computation.

5.2.7 Rewrite of ASPJ-sub Query Blocks

As mentioned in the discussion of the translation between algebra expressions and SQL queries, the Perm
algebra only supports sublinks in selection predicates and projection expressions. To translate the algebraic
rewrites to ASPJ-sub query blocks, either the algebra and rewrite rules have to be extended to support
sublink expressions in aggregations or the ASPJ-sub query blocks have to be transformed into query blocks
for which equivalent expressions in the Perm algebra exist. We choose to use the second approach, because
it requires no further extensions of the already quite complex algebra and rewrite rules. Even more, only
selection, projection, and join sublink rewrites have to be realized which simplifies the implementation of
sublink rewrites to a great extend.

Sublinks in aggregation can either be used in a group-by expression (1), in the input of an aggregation
function (2), in an expression that contains an aggregation function (3), or in the HAVING clause (4). For
example, the query presented below contains all types of aggregation sublinks.

SELECT sum (a1) IN (SELECT ∗ FROM S) AS suma(3)
sum (a1 ∗ (SELECT c o u n t (∗) FROM T)) AS sumb(2)

FROM R
GROUP BY a2 = ANY (SELECT ∗ FROM U) (1)
HAVING avg (a1) = ALL (SELECT ∗ FROM V) ; (4)

5.2. REWRITE RULES TRANSLATION 137

The four types of aggregation sublinks can be transformed into equivalent selection or projection sub-
links. For sublinks of type (1) and (2) a new query block is added below the aggregation query block and
the sublinks are moved to the new query block. To handle types (3) and (4) a new query block is added
above the aggregation and the sublinks are moved to the target list or WHERE clause of the new query
block. E.g., the query above would be transformed into the following query:

SELECT suma IN (SELECT ∗ FROM S) AS suma(3) ,
sumb

FROM
(SELECT sum (a1) AS suma(3) , sum (x) AS sumb(2) , avg (a1) AS newagg(4)
FROM

(SELECT
(a1 ∗ (SELECT c o u n t (∗) FROM T)) AS x(2) ,
(a2 = ANY (SELECT ∗ FROM U)) AS y(1)

FROM R) AS sub
GROUP BY y) AS agg(1)

WHERE newagg = ALL (SELECT ∗ FROM V) ; (4)

5.2.8 Rewrite of Query Blocks with a LIMIT, ORDER BY, or DISTINCT ON
Clause

The LIMIT, ORDER BY, and DISTINCT ON clauses of SQL do not have an algebraic counterpart. LIMIT
and DISTINCT ON are not modeled in the Perm algebra, because their result is non-deterministic. E.g.,
the LIMIT clause returns only a specified number n of result tuples from a query, but it is not specified in
the SQL standard which result tuples are left out if the query returns more than n tuples (unless a ORDER
BY clause is used on an attribute with unique values). The ORDER BY clause causes a query to return
its results in a specified order. This operation cannot be modeled in an algebra that is defined over bags,
because there is no intrinsic order between the tuples in a bag. One approach to overcome this problem is to
define an algebra that operates on ordered bags. However, the relational algebra operators (and their SQL
counterpart) do not specify the order of results. Thus, the operators would be non-deterministic operators;
an undesirable property. Therefore, the Perm algebra was deliberately defined without an ordering operator.

If the SQL rewrite rules of Perm are applied to a query with a LIMIT or DISTINCT ON clause this
may result in the exclusion of original result tuples by the rewritten query. This is due to the fact that the
provenance rewrites duplicates original result tuples to output their complete provenance. The following
observation enables us to nonetheless generate meaningful provenance information for queries that use
these clauses. Because of the non-deterministic nature of these clauses subsequent executions of a query
that uses these clauses may return different results, but each execution generates a fixed, though unpre-
dictable result. Since the provenance of an SQL query is generated by a single query, we can achieve
consistent results for the provenance computation by preserving the original query in the provenance com-
putation and matching its results with the provenance for all tuples that may be generated by the original
query. I.e., a LIMIT or DISTINCT ON clause is rewritten by joining the original query with the rewritten
query (without the LIMIT clause) on the original result attributes.

Example 5.6. For example, the query presented below over base relation R (R = (a))

SELECT ∗ FROM R LIMIT 3;

is rewritten into
SELECT

o r i g . a , prov . p r o v R a
FROM

(SELECT ∗ FROM R LIMIT 3) AS o r i g
JOIN
(SELECT R . a , R . a AS p r o v R a FROM R) as prov
ON (org . a = prov . a)

138 CHAPTER 5. IMPLEMENTATION

The join between the original query and the rewritten query guarantees that the correct amount of
original result tuples is produced. This additional join operation can be omitted if the LIMIT clause is used
in a set operation or aggregation because the original query is used in the rewrite rule and, thus, the LIMIT
clause can be applied to this query. We also do not need the join if the LIMIT clause is used in a query that
is guaranteed to include at most one contributing tuples from each base relation for a single result tuple
(e.g., an SPJ query without duplicate elimination).

For a query block QB with an ORDER BY clause we apply the SQL rewrite defined for the block type of
QB and apply the unmodified ORDER BY clause in the top-level query block of the rewritten query. Thus,
the query results will be returned in the same order as in the original query (except for the non-determinism
of the order of tuples which have the same values in the order-by expressions intrinsic to the ORDER BY
clause).

5.3. ARCHITECTURE 139

JDBC

DB DB DB

JDBC

Perm Module

SQL
Reconstruction

SELECT
PROVENANCE *

FROM ...

SELECT
p_1, p_2, ...
FROM ...

Result

Result

User

Parser

Analyzer
Query

Schema
Data

Query
Schema

Data

JDBC

Analyzer

SELECT
PROVENANCE *

FROM ... User

Parser

Perm
Module

Executor

Storage Engine

Result

Optimizer

Figure 5.4: Approaches for Implementing SQL-PLE

5.3 Architecture
There are basically two approaches for implementing the SQL-PLE language extension. One approach is
to implement a middle-ware solution. A user sends queries in SQL-PLE to this middle-ware, these queries
are transformed into standard SQL by the middle-ware and send to a standard DBMS. The query results
returned by the DBMS are passed on by the middle-ware to the user. The other approach is to integrate the
SQL-PLE features into an existing DBMS.

A possible architecture of the middle-ware approach and how this approach would realize the execution
of a SQL-PLE query is shown on the left of Figure 5.4. Like a DBMS the middle-ware has to provide one
or more interfaces through which a user can connect to the system, send queries and retrieve results. For
example, the middle-ware might implement the JDBC interface. To be able to transform incoming SQL-
PLE queries into SQL and execute these queries using a DBMS, the system has to implement a full parser
and analyzer for the SQL-PLE language. Under the term analyzer we understand the part of a query
compiler that checks a query for semantic correctness. E.g., expands ∗ expressions or checks that a relation
referenced by the query exists. Most of the checks applied by the analyzer need access to the database
catalog of the underlying DBMS. While a valid approach would be to not do these checks at all and rely on
the underlying DBMS to check the semantic correctness of a query, access to the database catalog is still
necessary for rewriting a query. For instance, the rewrite rules need to be aware which attributes belong to a
relation. The result of the analyzer would be an internal representation of the SQL-PLE query that contains
all the necessary information to substitute provenance queries with their rewritten SQL counterpart. The
resulting rewritten query would then be serialized into SQL text and send to the underlying DBMS. Finally,
the query results returned by the DBMS are send to the user. The middle-ware approach has the advantage
that it is possible to use various database systems as back-ends2. However, this approach also has several
disadvantages. First, it is necessary to implement a full parser and analyzer. Second, incoming queries
are parsed and analyzed twice; once by the middle-ware and once by the underlying DBMS. Third, the

2Given that queries are restricted to a subset of SQL that is understood by all these systems or that a translation between SQL
dialects is implemented.

140 CHAPTER 5. IMPLEMENTATION

database catalog accesses applied by the analyzer (the Query Schema Data arrows in Figure 5.4) incur in
the execution of additional SQL queries which results in additional run-time overhead.

As mentioned above an alternative approach is to extend an existing DBMS with SQL-PLE language
constructs. To implement this approach the parser and analyzer of the underlying DBMS have to be ex-
tended to handle the SQL-PLE language constructs. Furthermore, the output of the analyzer has to be
modified to implement the query rewrites before it is send to the optimizer of the DBMS. The optimizer,
unaware that it is processing a provenance computation, creates an execution plan that in turn is executed
by the DBMS and result are send back to the user. This approach has several advantages. First, less im-
plementation effort has to be spend on the parser and analyzer component which allows to focus on the
core functionality - the provenance computation. Second, the extended DBMS provides the same inter-
faces as the original one. This means application programs that access the database do not have to be
modified, but can benefit from the SQL-PLE extensions. Third, it is possible to extend the system with
performance optimizations that are not possible in SQL. E.g., implement specialized physical operators
for computations that are common in provenance queries. The only disadvantage of this approach is that
the provenance support is limited to the extended DBMS and porting it to another database system would
require the reimplementation of large parts of the system.

Note that in comparison with middle-ware solutions that use a non-relational data model like, e.g.,
DBNotes, both approaches for Perm presented here have the advantage that they use the full potential of
the query optimizer of the DBMS, because of the complete integration of provenance computation in SQL.
Furthermore, approaches with a non-relational data model incur in additional overhead for transforming
the relational data returned by the DBMS into this data model.

Besides the choice of architecture, we had to decide whether to use the lazy or eager approach for
provenance computation. Recall that the lazy approach instantiates provenance information only if it is
requested. The eager approach generates provenance information for every query send to the system and
stores it for later use. We choose to use the lazy approach, because it has several advantages:

• No Storage Overhead: The provenance of a query can be several magnitudes larger than its result.
Therefore, it is not feasible to store provenance information for all queries.

• No Run-time Overhead for Normal Operations: In most applications provenance information is
only needed for a subset of the queries send to the systems. If the lazy approach is applied normal
operations do not have to suffer from the overhead introduced by provenance computation.

• Optimization of Queries: If queries are asked over the result of an provenance computation, the
PostgreSQL optimizer may be able to push selection predicates into the provenance query. This kind
of optimization can increase the performance of such queries tremendously.

If provenance should be preserved for later use or performance benefits are expected by storing prove-
nance instead of computing it on the fly, this is still possible using the lazy approach. The user can store
provenance information permanently using, e.g., the INSERT INTO construct of SQL.

5.3.1 The Perm Approach
We choose to take the second approach and implement Perm as an extension of PostgreSQL, because in our
opinion the advantages of this approach outweigh the advantages of the middle-ware approach. PostgreSQL
was chosen because of the availability of well-documented source code and its extensive support of the SQL
standard. The architecture of Perm is shown in Figure 5.5. The only major modification to PostgreSQL
was adding the Perm module between the Rewriter and the Optimizer.

If a user sends a query to Perm, the query is first checked for syntactical correctness by the Parser and
afterwards checked for semantic correctness by the Analyser. The output of the Parser module is a tree
structure (query tree) that contains a node for each block of the parsed query. The Analyser traverses the
query tree and possibly modifies the tree structure. If the query tree contains no semantic or syntactical
errors it is passed to the Postgres Rewriter. This module is responsible for view expansion (replacing
references to a view with the view definition). The output of the Postgres Rewriter is passed to the Perm
module that rewrites any query block that uses SQL-PLE extensions using the SQL rewrite rules presented

5.3. ARCHITECTURE 141

Postgres
Parser

Query Tree

Perm
Module

Rewritten Query Tree

Optimizer

Query Plan

Perm
Module

Execution
Engine

Postgres
Analyser

Parser &
Analyzer

Postgres
Rewriter

Query Tree
(expanded Views) Executor

Query Results
a prov_a prov_b

123 'hello' 2.45
445 'test' 1.333

SELECT
PROVENANCE *

FROM ...

Figure 5.5: Perm Architecture

in 5.2. The modified query tree is then passed to the unmodified PostgreSQL Optimizer that creates a query
plan that in turn is passed to the Executor. The query plan is executed by the Executor and results are send
back to the user.

From a users point of view Perm appears to be a normal PostgreSQL server. Application programs
connect to a Perm server through the same APIs as used for PostgreSQL. SQL-PLE, the SQL dialect of
Perm, is a strict superset of the SQL dialect of PostgreSQL. Thus, existing PostgreSQL applications can
be run without modifications on Perm, but may take advantage of the provenance language extensions
implemented by this system.

142 CHAPTER 5. IMPLEMENTATION

R S

a b

RT

TARGET LIST

JOIN

Query

WHERE

Figure 5.6: Example PQTM Representation of a Query

5.4 Modification of PostgreSQL Data Structures and Modules
In this section we present the realization of the Perm module that implements the SQL-PLE query rewrites
in Perm. As mentioned in section 5.3 Perm uses the unmodified Optimizer module, Executor module, and
Storage Engine of PostgreSQL. The Parser and Analyzer modules had to be adapted to cope with our the
provenance language extension. In the following we first introduce the internal representation of an SQL
query used in PostgreSQL. Afterwards, we discuss the modification of the Parser and Analyzer modules.
Finally, in section 5.5 we present the implementation of the Perm module, the core of the Perm system, that
implements the provenance computation and other query rewrites.

5.4.1 Postgres Query Tree Model
PostgreSQL internally represents an analyzed SQL query (the output of the Analyzer module) in a tree
model. We refer to this model as Postgres Query Tree Model or short PQTM. Such a tree contains a query
node for each query block of a query. PostgreSQL is implemented in C. Hence, the nodes used in the PQTM
model are C-structs (see [KR88]). The projection expressions from the SELECT clause of a query block
are stored in the target list field of a query node (The target list is a single-linked list). The range table
contains the FROM clause items of a query stored as RangeTableEntry nodes. Joins between range table
items are stored in the join tree. The join-tree contains a node for each join operation (this node also stores
the join condition) of the query block and references to the range table items. For example, a join between
two base relations would be represented as a top level join node with two children that are references to the
range table entries of the two base relations. WHERE clause and HAVING clause predicates are stored as
expression trees in the qual and having fields of a query node. The group-by list contains a list of grouping
expressions with references to the target list. Several node types are defined for the expressions trees used
in the target list, having, group by, qual fields and join conditions. For instance, nodes that represent
boolean operators, function calls, or constants. Set operations are represented as a tree of set operators and
range table references. If a query node represents a set operation, only the target list, range table, and set
operation parts of this query node are used. In the following we use a graphical representation for query
nodes that abstracts some detail where appropriate.

Example 5.7. Figure 5.6 present the graphical notation for the example query presented below.

SELECT ∗
FROM R JOIN S ON (a = b) ;

5.4.1.1 Perm Extensions of PQTM

Only minor modifications to PQTM were necessary to model the SQL-PLE language constructs. Before
discussing these extensions we present some details about the implementation of PQTM in PostgreSQL.
PostgreSQL uses pseudo-inheritance to handle node types which can have child nodes of different types.
In PQTM each node type is implemented as a C struct. All node types are inherited from a base type

5.4. MODIFICATION OF POSTGRESQL DATA STRUCTURES AND MODULES 143

Node that contains only one field: an integer that stores a numerical identifier of the node’s type. The
C language does not support inheritance. Therefore, “all node types are inherited from Node” actually
means that all other node type structs also have a node identifier as their first field3. Therefore, a pointer
to a specific node type can be cast into a generic Node* without losing the ability to access its node type,
and, thus, cast it into its concrete type to access its data. In a PQTM node type struct, fields that store
pointers to child nodes are usually of type Node* enabling a node to have children with arbitrary node
types. PostgreSQL implements node creation, deep copy of nodes, serialization and de-serialization, and
deep equality comparison for all node types through functions that take as inputs Node pointers. These
generic functions internally call specific functions defined for each node type. The pseudo-inheritance of
node types and generic functions for standard operations on nodes simplify the extension of PQTM with
new node types. To add a new node type, a new node struct is defined and the specific functions for, e.g.,
copying a struct of this type, are implemented. To extend an existing node type, new fields are added to the
struct for this node type and the functions that implement the standard operations for this node type have
to be adapted to the changes. In most cases extending a node type does require to alter code that uses this
node type, because almost all accesses to nodes of this type that require information about the structure of
the node type struct are handled by calling one of the generic functions.

We extended the PQTM node types to store markers for provenance computation. A new field of
type ProvInfo is added to the Query node type that indicates if one of the SQL-PLE keywords that trigger
provenance computation is used in a query block (E.g., the TRANSSQL keyword). The new query node
field is ignored by all modules except for the Perm module. Besides being used to indicate which (if any)
provenance rewrites should be applied to a query node, the ProvInfo node is also used to store auxiliary
information that is produced and consumed by the Perm module rewrites. For instance, the implementation
of the C-CS rewrites stores information about the copy map of a query block in the ProvInfo node. Some
of the SQL-PLE language extensions alter the rewrite of FROM clause items (E.g., the keyword BASERE-
LATION). To be able to represent this constructs, the RangeTableEntry node type is extended with a field
that stores the necessary information for the Perm module to be able to handle these constructs.

5.4.2 Modifications of the Parser and Analyzer Modules
For the use in Perm, the parser of PostgreSQL had to be modified to recognize the SQL-PLE language
extensions and output their PQTM representation. For instance, if the parser encounters the PROVENANCE
keyword in a select clause, the query node for the current query block is marked for provenance rewrite
using the ProvInfo field of the query node. If a provenance query is used as a sub-query and provenance
attributes are used in selection or projection expressions, then the Analyser will throw an error, because it is
not aware of the existence of provenance attributes. To circumvent this problem we modified the Analyser
to make it aware of provenance attributes. I.e., if the Analyzer analyzes a query block it first checks if
this block is marked for provenance rewrite. For query blocks that are marked for provenance rewrite
the Analyzer extends the target list (SELECT) with the provenance attributes for this query block. This is
feasible, because the provenance attributes of a query can be derived from its structure without access to
any run-time information. The provenance attributes of a query depend only on the schemas of the base
relations accessed by the query and the order of these accesses.

5.4.3 Extension of Standard SQL Commands
The implementation of some of the standard SQL commands of PostgreSQL have been extended to achieve
a full integration of the SQL-PLE language extensions.

CREATE VIEW To enable a user to store the result of a provenance computation as a view the CREATE
VIEW command needs to be expanded to deal with queries that are marked for provenance rewrite. Before
the view description is stored in the database catalog tables it is passed to the Perm module to rewrite

3C compilers tend use a different memory layout for structs than the order of fields in the definition of the struct to achieve a better
alignment for the struct. While this is desirable behaviour in general it has to be de-activated for compiling PostgreSQL, because it is
only possible to cast node type pointers to Node* if these structs have the same layout in memory.

144 CHAPTER 5. IMPLEMENTATION

provenance queries. This means the standard SQL query produced by the Perm rewrites is actually stored
in the view.

INSERT, UPDATE, and DELETE The three data manipulation statements of SQL allow SQL queries
to be nested inside the manipulation statement.

Example 5.8. For instance, a SELECT statement can be used instead of a VALUES clause in an INSERT
statement:

INSERT INTO t a b l e (SELECT ∗ FROM R) ;

To enable the use of SQL-PLE constructs in these statements, their implementation had to be adapted
to call the Perm module to rewrite the language extensions.

EXPLAIN The implementation of the EXPLAIN command of PostgreSQL has been extended to handle
the SQL-PLE extensions of this command. The original implementation of EXPLAIN uses the Parser,
Analyzer and Optimizer modules to generate a query plan for the query it is applied to, serializes this
plan into text, and returns it as a query result. To rewrite provenance computations, a call to the Perm
module is added to the implementation of EXPLAIN. Recall that SQL-PLE defines two extensions of the
EXPLAIN command. The first extension (EXPLAIN SQLTEXT) returns the SQL text of the query passed
to the command. This construct can be used to investigate the rewritten form of a provenance computation.
The serialization of a query tree into SQL text utilizes build-in PostgreSQL functionality to perform the
serialization (This functionality is used by PostgreSQL to present view definitions to a user). The second
extension (EXPLAIN GRAPH) returns an algebra tree for the input query expressed in the dot language, a
graph description language (see [GN00]). The translation into dot is performed by a traversal of the query
tree. The structure of each query node is analyzed and an algebra tree fragment is generated for this node.

5.5. THE PERM MODULE 145

1 Input : QueryNode q
2 Output : m o d i f i e d QueryNode q
3
4 traverseQueryTree (QueryNode q) {
5 i f (I s M a r k e d F o r P I R e w r i t e (q))
6 q ←r e w r i t e P I Q u e r y N o d e (q) ;
7 i f (IsMarkedForCCSRewri te (q))
8 q ←rewri teCCSQueryNode (q) ;
9 i f (I s M a r k e d F o r T r a n s R e w r i t e (q))

10 q ←r e w r i t e T r a n s Q u e r y N o d e (q) ;
11 e l s e
12 f o r e a c h q′ i n q . r a n g e t a b l e
13 i f (IsA (q′ , QueryNode)
14 q′ ←t r a v e r s e Q u e r y T r e e (q′) ;
15 r e t u r n q ;
16 }

Figure 5.7: traverseQueryTree Procedure

5.5 The Perm Module
The Perm module is the core of the Perm system. It operates on the extended PQTM representation of a
query produced by the Analyzer module. The SQL-PLE language extensions are implemented by trans-
forming any SQL-PLE extensions found in an input query into the standard PQTM representation under-
stood by the PostgreSQL optimizer. Particularly, provenance computations are rewritten using the SQL
version of the Perm rewrites.

The PostgreSQL analyzer was modified to pass a pointer to the root query node of the input query to
the Perm module instead of directly handing it over to the Optimizer module. The Perm module rewrites
this query tree and returns the root query node of the rewritten query tree to the Analyzer which in turn
passes it on to the Optimizer module.

The pseudo code for the main procedure (traverseQueryTree) of the Perm module is shown in Figure
5.7. traverseQueryTree recursively traverses the input query tree one query node at a time and for each
query node q checks if it is marked for provenance rewrite (or uses other SQL-PLE language extensions).
If a query block uses one of the extensions, the appropriate rewrites are applied to transform the query block
and replace it with the rewritten version. The isMarkedForXRewrite procedure checks if the ProvInfo field
of the query node indicates that it is a provenance query. If this is the case the appropriate rewrite procedure
is called. E.g., rewritePIQueryNode to rewrite a query node according to PI-CS. These rewrite procedures
are discussed in the subsequent sections. The rewritten query tree is then returned to the Analyzer.

5.5.1 PI-CS Rewrite Algorithm
The procedure rewritePIQueryNode (Figure 5.8) of the Perm module implements the PI-CS SQL rewrites
developed in section 5.2. Because of the recursive nature of the SQL rewrites, the obvious approach to
implement them is a procedure that traverses the query tree and recursively rewrites each query node.
Procedure rewritePIQueryNode computes the rewritten query q+ top down by first rewriting the input
query node q, leaving the sub-queries in its range table untouched. In a second step, all direct child query
nodes are rewritten by recursive calls to rewritePIQueryNode. Afterwards, the list of provenance attributes
(P) of q is computed using the provenance attribute lists of its child nodes. Provenance attribute lists are
stored on a global stack data structure (pStack). Before returning from rewritePIQueryNode, q+’s P-list
is pushed on the stack. The first step distinguishes between the query block types presented in section 5.2
using the procedure identifyBlockType. Depending on the result of identifyBlockType the procedure that
rewrites the identified block type is called. These procedures return a modified query node and push the
list of provenance attributes of this query node on pStack. Afterwards, rewritePIQueryNode creates P for
the current query node and returns q+ the modified version of q. Note that we do not compute the rewrite

146 CHAPTER 5. IMPLEMENTATION

1 Input : QueryNode q
2 Output : QueryNode q+

3 Variables : p S t ac k ← /0
4
5 rewritePIQueryNode (Querynode q) {
6 P ← /0 / / Provenance attrs of q
7 s w i t c h i d e n t i f y B l o c k T y p e (q)
8 c a s e NONDET
9 q+ ←rewriteBlockNONDET (q)

10 P ← pop (p S t a c k)
11 c a s e BASE
12 push (pStack , N (Q)) ;
13 r e t u r n q
14 c a s e EXTERNAL
15 push (pStack , e x t e r n a l a t t r s)
16 r e t u r n q
17 c a s e SPJ
18 q+ ←r e w r i t e B l o c k S P J (q)
19 P ← pop (p S t ac k)
20 c a s e ASPJ
21 q+ ←r e w r i t e B l o c k A S P J (q)
22 P ← pop (p S t ac k)
23 c a s e SET
24 q+ ←r ewr i t eB loc k SET (q)
25 P ← pop (p S t ac k)
26 c a s e SPJ−sub
27 q′ = r e w r i t e S u b l i n k s (q)
28 P ← pop (p S t ac k)
29 q+ = r e w r i t e B l o c k S P J (q′)
30 P ← pop (p S t ac k) I P
31 c a s e ASPJ−sub
32 q = t r a n s f o r m A g g S u b l i n k s (q)
33 q+ = r e w r i t e P I Q u e r y N o d e (q)
34 push (pStack , P)
35 r e t u r n q+

36 }

Figure 5.8: PI-CS Rewrite Algorithm

bottom-up instead of top-down, because we would have to keep references to unmodified copies of sub-
trees of the original query in memory. For example, for an aggregation over a projection, the bottom-up
computation would rewrite the projection first. To rewrite the aggregation the original projection is needed.
This means we have to keep a copy of the original projection. For complex query trees access to certain
sub-trees of the original query would be cumbersome. Hence, we compute provenance top-down to avoid
this additional complexity.

identifyBlockType accesses fields of the Query node to determine whether a query node represents a
SET query block, an ASPJ query block, or contains sublinks. If the set operation field of query node q
is not used then q is not a SET query block. The boolean field hasAggs is true if the SELECT clause
of the query block contains aggregation functions. Together with inspection of the groupClause field
that contains the GROUP BY clause expressions, this field is used to distinguish between ASPJ and SPJ
query blocks. If sublinks are used in the query block is determined by examining the boolean hasSublinks
field. To distinguish between ASPJ-sub and SPJ-sub query blocks, all expressions (projection expressions,
selection and join predicates, group-by expressions, . . .) of the query node have to be searched to find
all sublinks used in that query node. This is necessary, because a query node may contain no aggregation
functions, but contain a sublink in one of the group-by expressions, and, thus, be an ASPJ-sub query block.

5.5. THE PERM MODULE 147

identifyBlockType introduces three new block types: BASE, EXTERNAL, and NONDET. BASE is returned
if the query node is a base relation access or the SQL-PLE keyword BASERELATION is used. EXTERNAL
is used if the FROM clause item the query node represents uses the PROVENANCE(attr list) construct. In
this case the user provided list of provenance attributes (attr list) is pushed on pStack. A query block is
NONDET if it uses clauses that cause the query result to be non-deterministic or to be output in a certain
order (LIMIT, DISTINCT ON, and ORDER BY clause).

We now discuss the procedures that implement the SQL rewrites of the individual query block types.
We have already given an outline of the process of rewriting a query while presenting the SQL rewrites, but
here we present a more precise and algorithmic representation that is closer to the actual implementation
of these rewrites in the Perm system.

1 rewriteBlockSPJ (Querynode q) {
2 P ← /0
3 f o r e a c h q′ i n q . r a n g e t a b l e
4 q′ ←r e w r i t e P I Q u e r y N o d e (q′) / / rewrite sub-query
5 P ← P I pop (p S t ac k) / / add sub-query provenance attribtutes to P
6 a d d A t t r T o T a r g e t L i s t (q , P)
7 push (pStack , P)
8 r e t u r n q
9 }

Figure 5.9: SPJ Block Rewrite Procedure

SPJ Rewrite Procedure The SQL rewrite for SPJ query blocks transforms a query block QB into a
single query block QB+. The procedure rewriteBlockSQJ (Figure 5.9) that implements this rewrite calls
procedure rewritePIQueryNode for every entry in the rangetable (the FROM clause) of the input query
node q. The provenance attributes of each rewritten rangetable entry are concatenated to build P(q+).
Afterwards, P(q+) is pushed on pStack and appended to the target list (the SELECT clause) of q using
procedure addAttrToTargetList.

1 rewriteBlockASPJ (Querynode q) {
2 P ← /0
3 t o p ← c rea t eQueryNode ()
4 sub ← copy (q)
5 sub ← removeAgg (sub) / / remove aggregation from sub
6 sub ← r e w r i t e P I Q u e r y N o d e (sub)
7 t o p . r a n g e t a b l e ← q Isub
8 c r e a t e A g g J o i n (top , q , sub)
9 P ← pop (p S t ac k)

10 a d d A t t r T o T a r g e t L i s t (top , P)
11 push (pStack , P)
12 r e t u r n t o p
13 }

Figure 5.10: ASPJ Block Rewrite Procedure

ASPJ Rewrite Procedure Recall that an ASPJ query block is rewritten into a new top query block that
implements the join between the original aggregation and its rewritten input. Procedure rewriteBlockASPJ
(Figure 5.10) first creates a new query node top using procedure createQueryNode. Afterwards, a copy
sub of the input query node q is created, the aggregation functions and GROUP BY and HAVING clauses
are removed from sub, and sub is rewritten using rewritePIQueryNode. Then the rewritten query node
sub and the original query node are added to the rangetable of top. Procedure createAggJoin is called to

148 CHAPTER 5. IMPLEMENTATION

generate the join between q and sub on the group-by expressions. Finally, the provenance attributes of sub
are added to the target list of top and pushed on pStack.

1 rewriteBlockSET (Querynode q) {
2 i f (i s A l l U n i o n (q))
3 q+ ←r e w r i t e A l l U n i o n (q)
4 r e t u r n q+

5 i f (i s A l l I n t e r s e c t i o n (q))
6 q+ ←r e w r i t e A l l I n t e r s e c t i o n (q)
7 r e t u r n q+

8 q+ ←r e w r i t e S e t O p e r a t o r (q , g e t S e t T r e e (q))
9 r e t u r n q+

10 }

Figure 5.11: SET Block Rewrite Procedure

SET Rewrite Procedure The SQL rewrite of a SET query blocks depends on the set operations applied
by this block. Therefore, rewriteBlockSET (Figure 5.11), the procedure that rewrites such blocks, first
applies some checks to determine which rewrite should be applied. If the input query node q uses solely
union or intersection, procedure rewriteAllUnion respective rewriteAllIntersection are used to rewrite q.
Otherwise, procedure rewriteSetOperator is applied. This procedure takes two parameters - a query node
and a tree of set operations. In rewriteBlockSET, the complete set operation tree of q is extracted using
getSetTree.

Recall that in the general case a tree of set operations is rewritten by processing one set operation at
a time starting at the root of the tree. Procedure rewriteSetOperator (Figure 5.12) retrieves the root set
operation (root) from its set operation tree parameter set. Query nodes (q1 and q2) are extracted for the left
and right sub-tree under root (root.left and root.right). createQueryForSetOps extracts a query node for a
sub-tree of the set operation tree of q by creating a new query node, adding the sub-tree as the set operation
tree for this query node, and adding all range table entries from q to the range table of the new query node
that are referenced by the sub-tree. For instance, assume q is a query node representing the SET query
block presented below.

(SELECT ∗ FROM R INTERSECT SELECT ∗ FROM S) UNION SELECT ∗ FROM T)

In this case the q1 and q2 query nodes created by createQueryForSetOps would represent the following
SQL queries:

q1 = (SELECT ∗ FROM R INTERSECT SELECT ∗ FROM S)
q2 = SELECT ∗ FROM T

As apparent in the example, q1 and q2 may or may not contain set operations. To omit additional
checks, these query nodes are rewritten using calls to rewritePIQueryNode. Following the generation of
q1 and q2 a new query node top is created. Each set operator requires a different rewrite. Therefore,
identifySetType is used to distinguish between the operators. If the root is a union, the SELECT clauses
of q1

+ and q2
+ are extended with constant null values to make them union compatible (adaptProvAttrs).

Both q1
+ and q2

+ are added to the rangetable of top. Afterwards the set operations for top is set to the bag
union of q1

+ with q2
+ and P is generated by concatenating the provenance attribute lists of these queries.

For intersections the range table of top includes the original query q and the rewritten children of the set
operation (q1

+, and q2
+) which are joined with q (createSetJoin). Similar to the algorithm for union the

provenance attribute list is build as the concatenation of the provenance attribute lists of q1
+ and q2

+. Set
differences are rewritten by adding q and q1

+ to the range table of top and joining this two range table
entries. P is generated by retrieving P of q1

+ from pStack and appending constant null values for the
provenance attributes of q2

+. Finally, for all three set operation types, the provenance attribute list P is
appended to the target list of top and pushed on pStack.

5.5. THE PERM MODULE 149

1 rewriteSetOperator (Querynode q , S e t T r e e s e t) {
2 r o o t ← getRootNode (s e t)
3 q1 ←c r e a t e Q u e r y F o r S e t O p s (r o o t . l e f t)
4 q2 ←c r e a t e Q u e r y F o r S e t O p s (r o o t . r i g h t)
5 q1

+ ←r e w r i t e P I Q u e r y N o d e (q1)
6 q2

+ ←r e w r i t e P I Q u e r y N o d e (q2)
7 t o p ← c rea t eQueryNode ()
8 s w i t c h i d e n t i f y S e t T y p e (root)
9 c a s e un ion

10 a d a p t P r o v A t t r s (q1
+)

11 a d a p t P r o v A t t r s (q2
+)

12 t o p . r a n g e t a b l e ← q+
1 Iq+

2
13 t o p . s e t o p e r a t i o n s = q1

+∪Bq2
+

14 P ← pop (p S t ac k)
15 P ← pop (p S t ac k) I P
16 c a s e i n t e r s e c t i o n
17 t o p . r a n g e t a b l e ← q Iq+

1 Iq+
2

18 c r e a t e S e t J o i n (top , q1
+)

19 c r e a t e S e t J o i n (top , q2
+)

20 P ← pop (p S t ac k)
21 P ← pop (p S t ac k) I P
22 c a s e s e t d i f f e r e n c e
23 t o p . r a n g e t a b l e ← q Iq+

1
24 c r e a t e S e t J o i n (top , q1)
25 P ← pop (p S t ac k) I null(P(q2

+))
26 a d d A t t r s T o T a r g e t L i s t (top , P)
27 push (pStack , P)
28 r e t u r n t o p
29 }

Figure 5.12: Single Set Operation Rewrite Procedure

A SET query block q that uses solely union is rewritten by procedure rewriteAllUnion (Figure 5.13)
extending the algorithm for single unions. All range table entries of q are rewritten with rewritePIQueryN-
ode and null constants are added to their SELECT clauses to make them union compatible. For each range
table entry q′ null constants are added for the provenance attributes of all other range table entries in q.
The provenance attribute list for q is build incrementally. After each range table entry rewrite the resulting
provenance attribute list is appended to P .

1 rewriteAllUnion (Querynode q) {
2 P ← /0
3 f o r e a c h q′ i n q . r a n g e t a b l e
4 q′ ←r e w r i t e P I Q u e r y N o d e (q′)
5 a d a p t P r o v A t t r s (q′)
6 P ← P I pop (p S t ac k)
7 push (Ps t ack , P)
8 r e t u r n q
9 }

Figure 5.13: Rewrite Procedure for Set Operations Containing only Union

Figure 5.14 presents rewriteAllIntersection, the rewrite procedure for a SET query block that contains
only intersection. Similar to the rewrite of a single intersection, a new query node top is created that joins
the original query q with all rewritten range table entries of q. The range table, provenance attribute list,
and join operations are generated by iteratively extending these constructs with the information from the

150 CHAPTER 5. IMPLEMENTATION

rewritten range table entries of q.

1 rewriteAllIntersection (Querynode q) {
2 P ← /0
3 t o p ← c rea t eQueryNode ()
4 t o p . r a n g e t a b l e = copy (q)
5 f o r e a c h q′ i n q . r a n g e t a b l e
6 q′ ←r e w r i t e P I Q u e r y N o d e (q′)
7 t o p . r a n g e t a b l e ← t o p . r a n g e t a b l e I q′

8 P ← P I pop (p S t ac k)
9 c r e a t e S e t J o i n (top , q′)

10 a d d A t t r s T o T a r g e t L i s t (top , P)
11 push (pStack , P)
12 r e t u r n t o p
13 }

Figure 5.14: Rewrite Procedure for Set Operations Containing only Intersection

5.5.1.1 SPJ-sub Rewrite Procedure

Sublinks can be rewritten using one of the rewrite strategies developed for these constructs (Though not
all strategies may be applicable to a certain sublink). Thus, the Perm module has to (1) determine which
rewrite strategies are applicable for a sublink and (2) choose which one should be used to rewrite the
sublink. To determine which rewrite strategies can be applied for the sublinks of an SPJ-sub query node q,
the preconditions of each rewrite strategy are checked for each sublink in q. To be able to evaluate these
checks the following tasks have to be processed:

1. Find all sublinks in q by traversing the expressions of q (e.g., the selection predicate).

2. Build a data structure (called SublinkInfo) for each sublink to store information that is needed to
determine the pre-conditions of the rewrite rules and is used later on to simplify the rewrite process.

• Find all correlation expressions used in the sublink query and analyze the context they are used
in.

• Search for sublinks nested inside the sublink.

• Analyze the context of the sublink. For instance, are all parent nodes in the expression tree, the
sublink is used in, logical conjunctions.

Based on the SublinkInfo for each sublink in q, the preconditions of the rewrite strategies are evaluated.
Afterwards, the Perm module has to decide which of the applicable rewrite strategies is used to rewrite
each sublink. The general goal is to choose the rewrite strategy that results in the most efficient query.
I.e., the query for which the optimizer will generate the plan that has the lowest execution time. But how
can we determine which rewrite strategy will generate the query that results in the most efficient execution
plan? One approach for choosing the rewrite strategy is to use a heuristic that based on, e.g, the structure
of a query. Another approach is to generate a rewritten version of q for each combination of applicable
rewrite strategies, use the optimizer to generate a query plan for each version, and execute the query plan
with the lowest cost estimate. Though the second approach seems to be more feasible, we nonetheless
use the first approach for the following reasons. First, in the second approach the number of queries for
which we have to produce a query plan can grow exponentially in the number of sublinks in q. Second, it
is evident that some rewrite strategies are superior to others. E.g., queries produced Gen strategies have a
higher degree of complexity than the queries produced by the other rewrite strategies. However, we also
implemented the second strategy to be able to experimentally verify this claim (see section 6.4). We use a
simple preference order O between strategies as the heuristic for the first approach. I.e., if both strategies X

5.5. THE PERM MODULE 151

and Y are applicable, we use the strategy that is preferred according to O. The heuristic is to always prefer
strategies that use un-nesting and de-correlation techniques to other types of rewrites.

The rationale behind this decision is that the rewritten sublink queries have to be joined with the rewrit-
ten remainder of the original query to compute the provenance. If sublinks are transformed into joins
by un-nesting, these joins can be used to propagate the provenance of the sublink. Therefore, un-nesting
strategies often avoid additional join operations if applied to provenance queries.

1 rewriteSublink (Querynode q) {
2 s u b l i n k L i s t ← f i n d S u b l i n k s (q)
3 i n f o L i s t ← /0
4 f o r e a c h s i n s u b l i n k L i s t
5 i n f o L i s t ← i n f o L i s t I c r e a t e I n f o (s)
6 f o r e a c h i i n s u b l i n k L i s t
7 a p p S t r a t e g i e s ← g e t A p p l i c a b l e S t r a t e g i e s (i)
8 b e s t S t r a t e g y ← a p p l y H e u r i s t i c (a p p S t r a t e g i e s)
9 a p p l y R e w r i t e S t r a t e g y (q , i , b e s t S t r a t e g y)

10 r e t u r n q
11 }

Figure 5.15: SPJ-sub Block Rewrite Procedure

Figure 5.15 presents an abstract overview of the algorithm used to rewrite sublinks. Note that we have
left out some implementation details in the discussion of the rewrite strategies. Several problems had to
be overcome in the implementation of the sublink rewrites that do not show in the algebraic version of the
rewrite strategy. For example, in SQL there are severe restrictions on which outer attributes can be used
in correlation expressions inside a sublink. This restrictions prohibit the application of the Unn strategy
to sublinks that contain nested sublinks that have been rewritten with the Gen strategy. While it is beyond
the scope of this thesis to discuss every problem faced in implementing Perm, we nonetheless included this
example to demonstrate that it is necessary to fully implement a concept to be able to understand all its
implications.

5.5.1.2 NONDET Rewrite Algorithm

We have discussed in section 5.2.8 how to rewrite queries that use the LIMIT, ORDER BY, or DISTINCT ON
clause. For query nodes with a LIMIT clause the original query node q has to be joined with the rewritten
query node (with striped of LIMIT clause) on the original result attributes. This join can be omitted if either
(1) we can determine that the rewritten query will not duplicate result tuples (e.g., q is an SPJ query block
without DISTINCT) or (2) the original query is preserved unmodified in the rewrite (e.g., if q is a ASPJ
query block). A DISTINCT ON clause is handled in the same way. An ORDER BY clause is removed from
q prior to the application of the rewrites and then added to the top query node of the rewritten query. We
do not present the procedure rewriteBlockNONDET as pseudo-code, because its representation is obvious.

152 CHAPTER 5. IMPLEMENTATION

5.5.2 Example
We now present an example application of the PI-CS rewrite algorithm implemented by rewritePIQueryN-
ode. Reconsider the example database from Figure 5.1 (section 5.1, a database with shops, items, and
sales). The SQL-PLE statement presented below computes the provenance of a query q that computes the
total revenue for each shop in the database.

SELECT PROVENANCE name , sum (p r i c e)
FROM shops , s a l e s , i t e m s
WHERE name=sName AND i t e m I d = i d
GROUP BY name ;

In PQTM this query is represented as a single query node q that contains the aggregation functions in
its target list, the group by on name, the selection predicate, and the base relation accesses in its range
table. A simplified representation of q is depicted in Figure 5.16.(1). The traverseQueryTree procedure
(Figure 5.7) recognizes that its input, the top query node q, is marked for provenance rewrite and calls
rewritePIQueryNode to rewrite q. rewritePIQueryNode (Figure 5.8) uses procedure identifyQueryBlock
to determine the type of query block it is processing. q is an ASPJ query node, so rewritePIQueryNode
calls rewriteBlockASPJ (Figure 5.10) to rewrite q. The rewriteBlockASPJ procedure creates a new query
node top (line 3), creates a copy sub of q and removes the aggregation function calls, GROUP BY, and
HAVING clauses from sub (lines 4 and 5). The result of this operations in presented in Figure 5.16.(2).
Afterwards procedure rewritePIQueryNode is called to rewrite the sub query node. sub is an SPJ query
block. Therefore, procedure rewriteBlockSPJ (Figure 5.9) is used to rewrite it. This procedure rewrites
each range table entry of sub by another call to rewritePIQueryNode. Since the range table entries of sub
are the base relation accesses to shops, items, and sales, rewritePIQueryNode rewrites these query nodes
by pushing their provenance attribute lists on pStack. The state after each of these rewrites is presented in
Figure 5.16.(3) to 5.16.(5). For instance, after rewrite of shops (Figure 5.16.(3)) the provenance attribute
list for shops is on the top of pStack. After the rewrite of all base relations accesses there are three attribute
lists on pStack (see Figure 5.16.(5)). In the last step of rewriteBlockSPJ the provenance attribute lists of
the range table entries of sub are popped from pStack and are combined to form the provenance attribute
list for sub, which is pushed on pStack before rewriteBlockSPJ returns (5.16.(6)). Afterwards, procedure
rewriteBlockASPJ adds the original query node q and the rewritten query node sub to the range table of the
new query node top and adds the join between q and sub on the group-by expressions (Figure 5.16.(7)).
Finally, rewriteBlockASPJ pops the provenance attribute list of sub from pStack, adds it to the target list
of top, and pushes it on pStack again. The query node top returned by rewriteBlockASPJ is then return to
traverseQueryTree via rewritePIQueryNode.

5.5. THE PERM MODULE 153

Q

sales shop items

pStack

(1)
Q Top

Q

sales shop items

Qd

sales shop items

(2)

pStack
Q Top

Q

sales shop items sales shop items

Q -d

(3)

salesshop+ items

Q Top

Q

sales shop items

Q -d

pStack
pNumEmplpName

(4)

sales+shop+ items+

Q Top

Q

sales shop items

Q -d

pStack
pNumEmplpName

pPricepId
pItemIdpSName

(5)

sales+shop+ items+

Q Top

Q

sales shop items

Q -d

pStack

pNumEmplpName pPricepId pItemIdpSName

(6)

Figure 5.16: Example Application of the PI-CS Rewrite Algorithm

154 CHAPTER 5. IMPLEMENTATION

1 generateCMExpr (Querynode q) {
2 subCM ← /0
3 f o r e a c h q′ i n q . r a n g e t a b l e
4 subCM ← subCM I generateCMExpr (q′)
5 opTree = g e t O p e r a t o r s (q)
6 CM ←generateCMForOps (q , subCM , opTree)
7 CM ←s impl i fyCMExpr (CM)
8 r e t u r n CM
9 }

10
11 simplifyCMExpr (CopyInfo c i) {
12 f o r e a c h i f (C) then (e1) else (e2) i n c i
13 i f (i s C o n s t a n t T r u e (C))
14 s u b s t i t u t e (c i , i f (C) then (e1) else (e2) ,e1)
15 i f (i s C o n s t a n t F a l s e (C))
16 s u b s t i t u t e (c i , i f (C) then (e1) else (e2) ,e2)
17 f o r e a c h e1∪ e2 i n c i
18 i f (i s C o n s t a n t (e1) ∧ i s C o n s t a n t (e2))
19 s u b s t i t u t e (c i , e1∪ e2 , [[e1∪ e2]])
20 f o r e a c h e1∩ e2 i n c i
21 i f (i s C o n s t a n t (e1) ∧ i s C o n s t a n t (e2))
22 s u b s i t u t e (c i , e1∩ e2 , [[e1∩ e2]])
23 r e t u r n c i
24 }

Figure 5.17: CM Expression Generation Procedure

5.5.3 Extension of the Rewrite Algorithm for C-CS

The algebraic and SQL rewrites that implement provenance computation for the C-CS types are derived
from the ones for PI-CS, because these CS types are extensions of PI-CS. In Perm we currently implement
only CDC-CS as a proof of concept on how to integrate these CS types in a provenance management
system. In this section we describe how this has been achieved by extending the PI-CS rewrite algorithm
and point out how the approach could be modified to implement the other C-CS types. The only difference
between C-CS rewrites and the PI-CS rewrite are the C copy attributes that are propagated in addition to the
provenance attributes of a query and the inclusion expressions that filter out parts of the provenance based
on the content of these attributes. A straightforward approach to implement the C-CS rewrites is to add the
generation of the CM expressions to the rewrite rules. However, we have demonstrated in section 4.4.3 that
several simplifications are applicable for C-CS rewrites that do not apply to PI-CS rewrites. For instance,
the rewrite of a part of a query can be completely omitted, if the provenance of this part is guaranteed to be
filtered out by the inclusion conditions applied in the outermost projection of a C-CS rewrite. To be able
to apply these simplifications, we use the following approach. In a first step the CM expressions of the
query tree to be rewritten are generated bottom-up and analyzed for simplification potential. The following
simplification opportunities are investigated starting at the CM expressions for base relations (which are
constant):

• Derive constant parts of CM expressions.

– A conditional i f (C) then (e1) else (e2) is replace with e1 if C evaluates to true for all inputs
and replaced with e2 if C evaluates to f alse on all inputs.

– A union or intersection is precomputed if both of its inputs are constant.

• If all CM expressions for a sub-query q are constant, we do not need to rewrite the sub-query at all.

5.5. THE PERM MODULE 155

Figure 5.17 presents the algorithm for the CM generation. The procedure generateCMExpr produces
the CM expressions (stored in a so-called CopyInfo data structure) for a query node q. First, the CM expres-
sions of all the range table entries of q are generated by recursive calls to generateCMExpr. Afterwards,
the current query node is analyzed regarding the algebra tree it represents. This step is needed to determine
how the CM expressions for q should be build. Afterwards, the CM for q are generated by recursively
generating the CM expression for each operator in q using the precomputed CM expressions for the range
table entries of q (procedure generateCMForOps). Finally, the CM expressions are simplified using pro-
cedure simplifyCMExpr. simplifyCMExpr searches for expressions in the input CopyInfo that are constant
and, hence, can be replaced with their evaluation result (Recall that [[e]] denotes the result of evaluating e).
substitute is used to replace all occurrences of the second parameter in ci with the third parameter of this
procedure.

The result of CM expression generation and simplification is used in the adaptation of the PI-CS rewrite
algorithm to C-CS. Figure 5.18 presents rewriteCSQuery, the entry point for C-CS rewrites. This procedure
calls generateCMExpr to generate the CopyInfo for its input query. Afterwards, rewriteCSQueryNode is
called to recursively rewrite each query node in q. In a last step the inclusion conditions P∗ are added to
the SELECT clause of the outermost query node in q+.

For an input query node q, procedure rewriteCSQueryNode determines if it is necessary to rewrite this
query node by inspecting the CopyInfo data structure. For query nodes that do not need to be rewritten,
constant CM expressions are added to the SELECT clause of q before returning. Otherwise, a modified
version of rewritePIQueryNode is called to determine the query node type of q and rewrite it accordingly.
rewriteModPIQueryNode basically works like rewritePIQueryNode with the sole exception that it also adds
CM expressions to rewritten query nodes.

1 Input : QueryNode q
2 Output : QueryNode q+

3
4 rewriteCSQuery (Querynode q) {
5 c i ← generateCMExpr (Querynode q)
6 qC ←rewr i teCSQueryNode (q , c i)
7 g e n e r a t e I n c l u s i o n E x p r (qC , c i)
8 r e t u r n qC

9 }
10
11 rewriteCSQueryNode (Querynode q , CopyInfo c i) {
12 i f (I s F i x e d (q , c i)
13 q ←addConstantCMExpr (q , c i)
14 r e t u r n q
15 qC ←rewri teModPIQueryNode (q , c i)
16 r e t u r n qC

17 }

Figure 5.18: CDC-CS Rewrite Algorithm

5.5.4 Transformation Provenance Rewrite Algorithm
SQL-PLE extends SQL with three keywords for computing transformation provenance: TRANSPROV,
TRANSSQL, and TRANSXML. All these keywords trigger the same provenance computation, but apply a
different result representation.

5.5.4.1 Result Representation

Recall that in section 4.5, we modeled the transformation provenance of a result tuple t as a set of node
identifiers Θw for each annotated algebra tree in the transformation provenance of t (one tree per witness list
w in the PI-CS provenance of t). This representation is valid, because all annotated algebra trees represent

156 CHAPTER 5. IMPLEMENTATION

R
a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa
a
1
2

R S

1

2

3 4

qa = SELECT a FROM R LEFT JOIN S ON (b = c) ; qa = Π
S

a(R ><b=c S)

TRANSPROV
a transprov
1 1111
1 1111
2 1111
2 1110

TRANSSQL
a transprov
1 SELECT a FROM R LEFT JOIN S ON (b = c);
1 SELECT a FROM R LEFT JOIN S ON (b = c);
2 SELECT a FROM R LEFT JOIN S ON (b = c);
2 SELECT a FROM R LEFT JOIN <NOT>S</NOT> ON (b = c);

TRANSXML
a transprov
1 <Query><Select><Attr><Var>R.a</Var></Attr></Select><From><LeftJoin><Relation>R ...
1 <Query><Select><Attr><Var>R.a</Var></Attr></Select><From><LeftJoin><Relation>R ...
2 <Query><Select><Attr><Var>R.a</Var></Attr></Select><From><LeftJoin><Relation>R ...
2 <Query><Select>... <NOT><Relation>S</Relation></NOT><On><Equal><Var>... </Query>

Figure 5.19: Example Transformation Provenance Representations

the same algebra tree with different annotation functions θw. Therefore, we factored out the static part (that
is the tree) and used the provenance attribute T to store only the annotation functions. Each value of T
stores Θw for one witness-list w of t (represented as the set of operators that have a 1-annotation).

A representation of the annotation sets that enables an efficient computation of the rewrite rules is a
bit-vector (compare section 5.2.4.2), because its space requirements are low, and the union operation used
frequently in the rewrite rules is efficient (bit-wise disjunction). Therefore, we use this representation in
the computation of transformation provenance.

The TRANSPROV keyword represents transformation provenance as the raw bit-vectors generated by
the rewrite. To provide a useful transformation provenance representation to the user and enable queries
over the structure of annotated query trees, the bit-vector representation is transformed into either SQL
text with markup or XML (which can be queried using the build-in X-Path support of PostgreSQL) before
it is returned to the user. Which representation is chosen is specified by the user by issuing the keyword
TRANSSQL or TRANSXML to trigger provenance computation. The translation from the bit-vector to the
external representation is implemented as UDFs fSQL and fXML that are applied in the outermost SELECT
clause of the rewritten query. The SQL representation is the original query except for parts that do not
belong to the transformation provenance, which are enclosed by <NOT> and </NOT>.

The XML representation is a hierarchical representation of an SQL statement where each clause is
modeled as an XML element. The XML representation generated by TRANSXML is closely related to
the SQL syntax of a query, but explicitly highlights its underlying structure. For example, the <Query>

element contains an element for each clause of the query and the element for the SELECT clause contains
an <Attr> element for each attribute this clause projects on. The main use case of the XML representation
is to enable a user to ask meaningful queries over the transformation provenance. For instance, the build-
in XSLT functionality of PostgreSQL can be used to answer queries like: To which result tuples did the
join in the query contribute too. In the SQL text representation such structural queries are cumbersome or
not possible at all, because the query support of PostgreSQL for text is much less powerful than its query
support for XML data.

5.5. THE PERM MODULE 157

Example 5.9. Figure 5.19 shows an example for the three types of transformation provenance represen-
tation. The query qa depicted in this Figure is a left join between two base relations R and S projected
on attribute a from relation R. On the top right of the Figure the algebra tree with the generated node
identifiers is shown (Recall that the node identifiers are generated by a pre-order traversal of the algebra
tree. See section 4.5). On the bottom of Figure 5.19 the result representations generated by the three
transformation provenance keywords is presented. Keyword TRANSPROV represents the provenance as
the bit-vectors used in the provenance computation. The transformation provenance of qa contains anno-
tated algebra trees with 1-annotations for all witness lists except w =< (2,5),⊥) > for which S carries
a 0-annotations. The result tuple for w is the last tuple in the presented relation with the bit-vector 1110.
The corresponding representation for keyword TRANSSQL represents the annotations as mark-up on the
SQL text of qa. In the last tuple of this relation (the one corresponding to w) the relation S is enclosed in
<Not> and </Not> to indicate the 0-annotation of this part of the query.

1 Input : QueryNode q
2 Output : QueryNode qT

3
4 rewriteTransQuery (Querynode q) {
5 t r a n s I n f o ← g e n e r a t e T r a n s I n f o (q)
6 t r a n s I n f o ← d e d u c e S t a t i c T r a n s P a r t s (q , t r a n s I n f o)
7 qT ←r e w r i t e T r a n s Q u e r y N o d e (q , t r a n s I n f o)
8 a d d R e p r F u n c I n v o c a t i o n (qT , t r a n s I n f o)
9 r e t u r n qT

10 }
11
12 rewriteTransQueryNode (Querynode q , T r a n s I n f o t I n f o) {
13 i f (I s F i x e d (q , t I n f o)
14 q ←a d d C o n s t a n t I d e n t S e t (q , t I n f o)
15 r e t u r n q
16 qT ←rewr i teModTransQueryNode (q , t I n f o)
17 r e t u r n qT

18 }

Figure 5.20: Transformation Rewrite Algorithm

5.5.4.2 Rewrite Algorithm

Like for C-CS the computation for transformation provenance is build upon the PI-CS rewrite algorithm.
We perform the computation in three steps. In the first step the query tree is analyzed to identify the algebra
tree it represents and the node identifiers for each operator in the algebra tree are generated. During this
traversal of the query tree auxiliary data structures are build that store the association between the algebra
tree nodes and parts of the query tree and information about which parts of the query tree are guaranteed to
have a constant transformation provenance. Recall that we discussed in section 4.6.1 how to simplify the
computation of transformation provenance based on the structure of an algebra expression. In the second
step a modified version of the PI-CS rewrite algorithm is applied to rewrite the query and propagate the
bit-vectors that store the transformation provenance. If the TRANSSQL or TRANSXML keyword is used
then the bit-vectors that represent the provenance of the query are passed to the user defined functions fSQL
or fXML to transform them into the SQL respective XML representations.

Figure 5.20 presents procedure rewritTransQuery that implements this algorithm. In this procedure
generateTransInfo is used to generate the auxiliary data structures (called TransInfo). The TransInfo is
analyzed with deducedStaticTransParts to identify parts of the query that have constant transformation
provenance. Afterwards, q is rewritten using procedure rewriteTransQueryNode. This procedure applies
a modified version of the rewritePIQueryNode procedure to rewrite a query node according to its type or

158 CHAPTER 5. IMPLEMENTATION

qa = SELECT TRANSSQL R . a
FROM R LEFT JOIN S ON (R . b = S . c) ;

0 0 1 0
R S R S R S

0 1 0 0

1 0 0 0

0 0 0 1

1 1 1 0

0 0 0 1

qa
T = SELECT

R . a ,
fSQL (1110 ∨B ε(c,0001)) AS t p r o v

FROM R LEFT JOIN S ON (R . b = S . c) ;

a transprov
1 SELECT a FROM R LEFT JOIN S ON (b = c);
1 SELECT a FROM R LEFT JOIN S ON (b = c);
2 SELECT a FROM R LEFT JOIN S ON (b = c);
2 SELECT a FROM R LEFT JOIN <NOT>S</NOT> ON (b = c);

Figure 5.21: Transformation Provenance Computation Example

adds a constant node identifier set (addConstantIdentSet) to the SELECT clause of the query node if the
transformation provenance of the currently processed sub-tree is constant. Finally, addReprFuncInvocation
adds an invocation of the fSQL or fXML functions to the transformation provenance attribute of the outermost
query block if necessary.

Example 5.10. Figure 5.21 demonstrates the use of the TRANSSQL keyword to trigger transformation
provenance computation for example query qa from Figure 5.19. Procedure generateTransInfo of the
rewrite algorithm generates the algebra tree for qa (the left tree depicted in Figure 5.21), traverses this
tree to generate the node identifiers, and for each operator in the query a bit-vector representing the
singleton set containing the node identifier of this operator is generated (Fig. 5.21 the middle algebra
tree). deduceStaticTransParts analyzes the resulting TransInfo to identify static parts. In this case the
right-hand side of the left-join is static, therefore, a fixed bit-vector for this sub-tree is pre-computed.
The same applies for the combination of projection, left join and the left input of the join. Either all or
none of these operators are in the transformation provenance. Therefore, they can be represented as a
single bit-vector (shown as the right tree in Figure 5.21).

Figure 5.21 also shows the query qT after application of rewriteTransQueryNode. In this example,
the basic structure of the query is preserved and the provenance computation is limited to a projection
expression. Function ε in the example is used to check if attribute b is null (it returns an empty bit-vector
if its first argument is null and its second argument otherwise). The final representation is generated by
function fSQL (addReprFuncInvocation). The result of the rewritten query is presented at the bottom of
Figure 5.21. For the fourth tuple, the right input of the left outer join did not contribute anything to the
result and is therefore not in the transformation provenance. In contrast, all operators contributed to the
first, second, and third result tuple.

5.5.5 Extended Selection Push-down

In many cases, a user is interested in the provenance of just part of a query result. In SQL-PLE a part of a
query’s provenance is computed by using the provenance computation as a sub-query. The WHERE clause
of the outer query can be used to restrict the result to the part the user is interested in.

5.5. THE PERM MODULE 159

Example 5.11. For instance, assume the user is interested in the provenance of result tuples of example
query qa from Figure 5.1 with a sName attribute value of ’Merdies’:

SELECT ∗
FROM

(SELECT PROVENANCE s . sName , i . p r i c e
FROM s a l e s s JOIN i t e m s i ON s . i t e m I d = i . i d) AS p

WHERE sName = ’ Merd ies ’ ;

This kind of computation can be expensive if the selection conditions are not pushed down to lower
levels of the query. PostgreSQL does apply selection push-down during the optimization of a query, but
several important push-down possibilities are not considered. To reduce the cost of partial provenance
computation, we added a specialized selection push-down module that applies more aggressive push-down
of selection conditions and introduces new additional filter conditions derived from selection predicates.
For instance, we derive implied inequalities, which is not done by PostgreSQL. The rationale behind this
approach is that provenance computation for most types of queries is expensive and can produce large
amounts of tuples. Therefore, we should exploit every possibility to reduce the number of intermediate
results.

In addition to filtering out irrelevant tuples, the selection conditions sometimes enable us to transform
outer joins introduced by the rewrite rules into inner joins. This is due to the fact that most of the outer joins
are only necessary to handle special cases like null-values. For instance, the aggregation rewrite rule uses a
left outer join on the group-by expressions. If an equality selection condition on the grouping attributes is
used in the outer query, tuples that fulfill the selection condition cannot have null values in these attributes4

and, thus, the outer join can be transformed into an inner join.
The selection push-down module operates on the rewritten version of a query. The query tree structure

is traversed to identify selection push-down opportunities. We build auxiliary data structures that store,
e.g., which inequalities hold for which parts of a query. This data structures are then used to push original
and deduced selection predicates down the query tree as far as possible.

4In SQL the result of comparing a value with the null-value on equality is defined to return null. If a WHERE clause condition
evaluates to null on a tuple t, then t filtered out.

160 CHAPTER 5. IMPLEMENTATION

5.5.6 Complete Query Processing Example
Having presented the inner workings of the Perm module we now present a complete example query eval-
uation with Perm. The example illustrates the provenance computation of the following query qex:

SELECT PROVENANCE ∗
FROM v1 ;

The view v1 used in this query is defined over the example database from Figure 5.1 and created by the
following SQL statement:

CREATE VIEW v1 AS
SELECT sName , sum (p r i c e) AS r e v e n u e
FROM s a l e s JOIN i t e m s ON (i t e m I d = i d)
GROUP BY sName ;

Figure 5.22 illustrates how Perm processes this query. The user issues query qex to compute the prove-
nance of view v1. The incoming SQL query is parsed by the Parser and transformed into a PQTM query
tree with a single query block that is marked for provenance rewrite (represented by the red dot in the fig-
ure). At this point the view is handled like a base relation. The Analyzer performs the semantic analysis of
the query during which the star expression is replaced with the attributes from view v1 and the provenance
attributes are added to the target list (here we use the prefix p to identify a provenance attribute to not clutter
the presentation with long attribute names). Afterwards, view v1 is expanded by the Postgres Rewriter. The
result is a query tree with two blocks. One for the outer query and one for the view definition. The Perm
module traverses the query tree, recognizes the provenance marker in the top query block and rewrites the
marked sub-tree. The top-level query block is an SPJ query block. Thus, this block is rewritten by rewrit-
ing all its range table entries and adding the provenance attributes generated by this rewrites to the target
list of the query block. The only range table entry of this query block is the query block that represents
the view. This query block is an ASPJ query block. It is rewritten by creating a new top level query block
that joins the original ASPJ query block with the rewritten input of the aggregation. In this case the input
to the aggregation is a simple join between two base relations. It is rewritten by adding the provenance
attributes for the base relations to the target list of this query block. The resulting query tree contains four
query blocks. This query tree is then fed into the Optimizer which generates an execution plan and calls
the Executor to execute the plan. Finally, the results produced the executor are send back to the user.

5.5. THE PERM MODULE 161

Perm
Module

Postgres
Rewriter

Analyzer

Parser

SELECT
PROVENANCE *
FROM v1;

v1

*
RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

P sName revenue pSName pItemId pId pPrice

sales items

sName sum(price)
sName

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

P

v1

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

sName revenue pSName pItemId pId pPrice

Optimizer

Executor

User

sName'

sales itemssales items

sName sum(price)
sName

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

pSName pItemId pId pPrice

sName sum(price)

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

pSName pItemId pId pPrice

sName sum(price)

RT

TARGET LIST

JOIN

Query
GROUP BY

WHERE

pSName pItemId pId pPrice

Figure 5.22: Example Processing of a SQL-PLE Query by Perm

162 CHAPTER 5. IMPLEMENTATION

5.6 The Perm Browser
The Perm Browser is a client application for Perm that visulizes the rewrites applied by the system. The
browser enables a user to send SQL-PLE queries to the system, view query results, activate or deactivate
rewrite strategies, and choose between different contribution semantics. In addition to the query results, the
browser presents the rewritten query as an SQL statement, algebra trees for the original and rewritten query,
and statistics about the run-time and number of result tuples for both the original and rewritten query.

Figure 5.6 shows the graphical user interface of the Perm browser (A screenshot on the top and below
some enlarged parts of the screenshort). On the top left of the screen the user can enter queries into a text
field (marker 1 in the Figure). If the user hits the run button, the browser application executes the query and
presents the results in the text box at the bottom of the user interface (Figure 5.6 marker 7). In the example
use case presented in Figure 5.6 the user has entered a SQL-PLE statement that uses the PROVENANCE
keyword to compute the provenance of an aggregation over relation customer. In addition to the query
results the browser shows the rewritten query produced by Perm as SQL text (see Figure 5.6 marker 2), the
original query as an algebra tree (see Figure 5.6 marker 5) and an algebra tree for the rewritten query (see
Figure 5.6 marker 6). In the example use case the original query is an aggregation over a base relation.
Hence, the algebra tree for the original query contains two nodes; the top level aggregation (the red α) and
the base relation access (the yellow box). Recall that an aggregation query block is rewritten into three
query blocks (The browser places all operators of a query block into a grey box). As shown by the browser
a new top level query block is introduced that joins (the green node) the original aggregation (the left child)
with the rewritten input (the right child). In the example the rewritten input is a simple projection. To enable
a user to understand the cost of a provenance computation the browser presents the run-time and number
of result tuples for both the original and rewritten query (see Figure 5.6 marker 4). The user can activate
and deactivate the sublink rewrite strategies to understand their impact on the run-time and structure of the
rewritten query (see Figure 5.6 marker 3).

The Perm Browser is implemented as a Java application that connects to a Perm server via JDBC (see
[Ree00]). The algebra trees are constructed by executing EXPLAIN GRAPH commands for a query (see
section 5.1) and passing the dot script produced by this command to the dot tool [GN00] that generates a
layout for the tree. The rewritten SQL text is fetched from the server by sending an EXPLAIN SQLTEXT
command. Statistics are collected with the standard EXPLAIN ANALYZE command of PostgreSQL.

5.6. THE PERM BROWSER 163

1

1

4

6

65

7

2

43

Figure 5.23: Perm Browser User Interface

164 CHAPTER 5. IMPLEMENTATION

5.7 Summary
In this chapter we presented the implementation of the Perm system as an extension of PostgreSQL. In
detail, the SQL-PLE language has been discussed that enriches SQL with constructs for provenance com-
putation and management, we presented the translation of the algebraic rewrite rules to SQL that are used
in the SQL-PLE implementation, and have discussed the rewrite algorithms applied by the Perm module.

Adding provenance support as an orthogonal language extension enables the use of SQL to query
provenance information. Because of the implementation of provenance computation as the execution of
rewritten queries, Perm benefits from the advanced query optimization techniques supplied by PostgreSQL.
In contrast to alternative approaches like Trio or DBNotes, our system is capable of computing the prove-
nance for more complex queries (e.g., Perm is the only relational provenance management system that
supports sublinks), supports external provenance, and in addition provides full SQL query functionality for
provenance. The implementation of provenance computation for sublinks required the development and
implementation of sophisticated rewrite strategies to deal with these constructs. In addition to the powerful
PI-CS contribution semantics, Perm also supports transformation provenance and CDC-CS.

Chapter 6

Experimental Evaluation

In this chapter we present an extensive performance evaluation of the Perm system using the TPC-H bench-
mark and synthetic data-sets. With this experiments we want to answer the following questions:

• What is the overhead Perm introduces for execution of standard SQL queries?

• What is the cost of provenance computation as implemented in Perm?

• Is the heuristic for choosing the rewrite strategies for sublinks feasible?

• How does Perm compare to the competitive Trio system?

In the following we first discuss the hardware configurations on which the experiments have been
performed. Afterwards, the data-sets and queries used in the experiments are presented. Finally, we discuss
the experiments that were run to answer the questions outlined above. The experimental results we are
going to present demonstrate the feasability of our approach.

165

166 CHAPTER 6. EXPERIMENTAL EVALUATION

Hardware Configuration 1
Characteristic Value
Main Memory 1GB (2 x 512MB 667MHz DDR2)

Processor 1 x Intel Core Duo Processor T2300 1.66 Ghz
Operating System Mac OS X 10.5.5

Hard Disk Seagate Momentus 5400.2 ST96812AS SATA (5400 rpm) - 60GB

Hardware Configuration 2
Characteristic Value
Main Memory 8GB (4 x 2GB 667 MHz DDR2 ECC)

Processor 1 x Intel Quad-Core Xeon 5150 2.66 GHz
Operating System Mac OS X 10.5.5

Hard Disk 5.5TB RAID-5-array: 14 x Hitachi Deskstar 7K500 (7200 rpm) - 500GB

Figure 6.1: Hardware Configurations

6.1 Experimental Setup

6.1.1 Hardware Configuration

We used two types of machines for the experiments. The first is a small desktop machine with limited
resources. The other one is a server machine with an extensive amount of main memory and a RAID
storage. The two systems were chosen to investigate the performance of the system on different hardware.
Figure 6.1 shows the characteristics of these machines. The operating system installed on both types of
machines is Mac OS X 10.5.5.

6.1.2 Test Database and Query Generation

Before presenting the experiments we discuss the generation of test data and queries. Many of the experi-
ments were performed with TPC-H decision support benchmark. The remaining experiments use synthetic
data. For each data-set and set of test queries we give a short overview of their characteristics and how they
were created.

6.1.2.1 TPC-H Benchmark

The TPC-H [Tra09] benchmark provided by the Transaction Processing Council is a standard benchmark
for decision support systems. The benchmark uses a fixed database schema and is supplied with a data
generator that can be used to create randomized instance databases of various sizes. In TPC-H terminology
the database size is called scale factor. A scale factor of 1.0 corresponds to roughly 1GB of data. The
benchmark consists of 22 complex query templates using aggregation and sublinks. Each of these templates
contains one or more substitution parameters. The TPC-H benchmark is provided with a query generator
that randomly sets the parameters of a template and adapts the queries for a certain database size. We
used this generator to generate a set of 1000 queries for each benchmark query template and database size.
The same sets of generated were used in all experiments. Database instances were created in sizes 1MB,
10MB, 100MB, 1GB, 10GB and 100GB. We choose to conduct a huge fraction of the experiments using
this benchmark for the following reasons. Firstly, TPC-H is a widely used and fairly developed benchmark
for ad hoc OLAP queries, a prominent use case for provenance. Secondly, no standard benchmark for
relational provenance management systems exists. Furthermore, TPC-H is a stress test of the system,
because is uses operations like nested sublinks for which the provenance is hard to compute.

6.1. EXPERIMENTAL SETUP 167

6.1.2.2 Additional Queries for the TPC-H Schema

We generated additional queries over the TPC-H schema tailored for investigating the performance of the
provenance computation for specific types of query blocks. We generated queries with solely SPJ, ASPJ,
and SET query blocks. These queries are described in detail in section 6.3.2 where the experiments based
on these queries are presented.

6.1.2.3 Synthetic Data-sets

In addition to the TPC-H data-sets and queries we generated synthetic data-sets for the evaluation of the
rewrite strategy selection heuristic for sublinks. For these experiments data-sets with a controllable distri-
bution of values were needed to be able to directly influence the number of result and intermediate result
tuples of the queries used in these experiments.

168 CHAPTER 6. EXPERIMENTAL EVALUATION

Query Postgres Run-Time (s) Perm Run-Time (s) Relative Overhead (%) Absolute Overhead (s)
1 0.090849 0.091332 0.53 0.00048299
2 0.003766 0.003816 1.32 0.00005000
3 0.003602 0.003610 0.22 0.00000799
4 0.001707 0.001755 2.81 0.00004800
5 0.008751 0.008809 0.66 0.00005800
6 0.004306 0.004409 2.39 0.00010300
7 0.007090 0.007133 0.60 0.00004299
8 0.010141 0.010166 0.24 0.00002499
9 0.022854 0.022991 0.59 0.00013700
10 0.007417 0.007523 1.42 0.00010600
11 0.002384 0.002399 0.62 0.00001500
12 0.008677 0.008690 0.14 0.00001299
13 0.004920 0.004932 0.24 0.00001199
14 0.004941 0.005078 2.77 0.00013700
15 0.009948 0.010234 2.87 0.00028600
16 0.006741 0.006768 0.40 0.00002700
17 0.001001 0.001031 2.99 0.00003000
18 0.012350 0.012550 1.61 0.00020000
19 0.007639 0.007763 1.62 0.00012400
20 0.001863 0.001914 2.73 0.00005099
21 0.002070 0.002137 3.23 0.00006700
22 0.005554 0.005795 4.33 0.00024100

Figure 6.2: Overhead of Perm for Normal Queries of the TPC-H Benchmark

6.2 Overhead for Normal Operations
To demonstrate that the performance overhead of Perm for queries without provenance computation in
comparison with PostgreSQL is negligible, we compared the run-times of the TPC-H queries on Perm
with their run-time on a normal PostgreSQL installation. Note that the overhead is not dependent on the
database size, since a standard SQL query is executed by Perm using the standard PostgreSQL Optimizer
and Executer modules. Therefore, we focus on the 1MB TPC-H database instance where the relative
overhead is more apparent. We also ran these experiments on larger database sizes with the expected result
of the same absolute overhead. One query instance of all 22 TPC-H query templates was executed 10.000
times on Postgres and Perm. The absolute and relative overhead introduced by Perm for normal query
execution is depicted in Figure 6.2 (The median of the run-times is presented). This experiment clearly
shows that the overhead of Perm for normal operations is negligible. The maximal absolute overhead is
about 0.5 milliseconds; the maximal relative overhead is 4.33 percent. As mentioned before we omit the
results for larger database sizes, because the overhead is insignificant small in comparison with the overall
execution time.

6.3. COST OF PROVENANCE COMPUTATION 169

6.3 Cost of Provenance Computation
In this section we investigate the cost of computing the provenance of SQL queries. For most experiments
we could only compare the performance of provenance computation in Perm with the performance of the
same queries without provenance computation, because most of the queries used in the experiments are not
supported by other provenance management systems. For a comparison of Perm to the Trio we had to use
very primitive test queries. Another approach could have been to only run experiments with queries that
are supported by both systems. We refrained from this approach, because it would give an incomplete view
on the cost of provenance computation. For instance, the provenance for queries with sublinks may lead
to an enormous growth in the number of result tuples. We deliberately choose to not omit the complicated
cases and also investigate the performance of language constructs with expensive provenance computation.

6.3.1 TPC-H Queries
In the first set of experiments we ran 100 instances of each TPC-H query template for database sizes
ranging from 1MB to 100GB. For each database size, the whole set of queries was run with and without
provenance computation. Provenance was computed using PI-CS because it is more complex than CDC-
CS and is better suited for queries that use aggregation and sublinks operations. Due to the heavy use of
aggregation in TPC-H, CDC-CS gives non-empty results only for three queries in the benchmark. Each
combination of database size and query template was given a 2 day time-slot. If the execution of the 100
instance queries for this combination did not finish within this time limit we did not execute more query
instances for this configuration. This experiments were run on hardware configuration 2.

The results of the experiments for database sizes 100MB and 1GB are shown in Figure 6.3. The results
for plain queries are shown in Figure 6.3 on the left and for rewritten queries in Figure 6.3 on the right. The
missing bar for query 18 on a 100MB database is due to the fact that the result set of this query is empty.
As far as we are aware, Perm is the first system able to compute the provenance of all 22 queries.

The results show that Perm is able to deal with complex queries. However, the provenance of some
queries is intrinsically very large. This can be seen in the significant differences between the time to
compute queries with (up to a few hours) and without provenance (up to a few minutes). The reason
for this overhead can be seen in the two lower graph of Figure 6.3. The result size for queries without
provenance vary between one and up to 10.000 tuples. Queries with provenance lead to result sizes between
hundred and hundreds of millions of tuples according to the semantics we have used. For instance, the
average number of tuples of the provenance for query type 22 on a 1GB database instance consists of
approximately 230 million tuples. Now that with Perm the provenance of these queries can be computed,
it should be possible to study ways to reduce this complexity. These result sizes also confirm the need
for different contribution semantics within Perm, particularly those that would result in smaller result sizes
than PI-CS. An open problem is to find meaningful contribution semantics that reduce the result sizes but
do not end up with empty results in most cases (like CDC-CS). The same applies to different provenance
representations, which could also contribute to reduce the result size.

In terms of scalability, the problem of large result sizes comes up again. Most queries that do not
contain sublinks (1,3,5,6,7,8,9,12,13,14 and 19) exhibit a run time growth that is linear in the size of the
database. We can confirm this because we have additional experiments for database sizes of 1MB, 10MB,
10GB, and 100GB. For larger databases, only a few queries complete in reasonable time. Queries that
contain sublinks are hard to optimize and not well-supported by PostgreSQL. The rewrite strategies that
use un-nesting and de-correlation are what has enabled us to compute the provenance for these queries
in reasonable time, but nevertheless do result in a super-linear growth in run-time. This opens up several
lines for future work to make provenance computation also feasible for large databases in combination with
complex queries.

To be able to better understand the overhead of provenance computation for different query types,
Figure 6.4 shows the total run-times and run-time per result tuple for queries 1, 2, 21 , and 22 and for
database sizes ranging from 1MB to 1GB. We selected these query types because they represent different
types of query characteristics. Query 1 is an aggregation without sublinks. Query 2 is an SPJ query with
a single correlated sublink. Query 21 and 22 both contain multiple sublinks. As apparent from the graphs,
the total execution time increases rapidly with database size, but the growth is based on the increase in the

170 CHAPTER 6. EXPERIMENTAL EVALUATION

Execution Time
Normal Query

 0.01

 0.1

 1

 10

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 0.01

 0.1

 1

 10

 100

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

s
e

c
)

Query

100MB
1GB

Provenance Computation

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

s
e

c
)

Query

100MB
1GB

Number of Result Tuples
Normal Query

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 1

 10

 100

 1000

 10000

 100000

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
R

e
s
u

lt
 T

u
p

le
s

Query

100MB
1GB

Provenance Computation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
R

e
s
u

lt
 T

u
p

le
s

Query

100MB
1GB

Figure 6.3: TPC-H Comparison of Run-times

6.3. COST OF PROVENANCE COMPUTATION 171

 0.0001

 0.01

 1

 100

 10000

 1e+06

1MB 10MB 100MB 1GB

 0.0001

 0.01

 1

 100

 10000

 1e+06

T
im

e
 (

s
e
c
)

Query

q1 total time
q2 total time

q21 total time
q22 total time
q1 time/tuple
q2 time/tuple

q21 time/tuple
q22 time/tuple

Figure 6.4: TPC-H Average Total and Per-Tuple Execution Times for queries 1, 2, 21, and 22

number of tuples that belong to the provenance of a query as demonstrated by the minimal growth of time
spend to produce a single tuple of the result. For smaller database sizes, the query results contain only a
few tuples. Thus, the total execution time is dominated by the time spent to analyze and optimize the query.
This explains the increase in execution time per tuple of query 22 for small database sizes.

6.3.1.1 Analysis of the Correlation between Normal and Provenance Run-times

To gain a deeper understanding of the correlation of provenance query run-times and normal query run-
times, we present a subset of the previous experiments on TPC-H as scatter-plots. These plots compare
the provenance and normal run-times for a specific query template and database size. Each point p in
these graphs represents the execution of one query with and without provenance computation. The x-axis
value of p is the normal run-time of a query and the y-axis value of p is the run-time of the query with
provenance computation. These plots enable us to understand how these two run-times are correlated for
different types of queries. We only present some typical scatter-plots to highlight the types of correlations
that occur. Figure 6.5 shows scatter-plots for query templates 6 and 14 and database size 1MB, 10MB,
100MB, and 1GB. While for small database sizes the correlation between normal and provenance query
run-time is mostly covered by noise, for large database sizes the two measures are highly correlated. As
expected, queries instances with a higher normal run-time also have a higher run-time for provenance
computation. Query 6 is a good example for how different values of the parameters of a query template
generate clusters of queries with similar run-time behaviour.

172 CHAPTER 6. EXPERIMENTAL EVALUATION

1MBQuery 6

 0.0046

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0.006

 0.0023 0.0024 0.0025 0.0026 0.0027 0.0028 0.0029

 0.0046

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0.006
R

u
n

tim
e

 p
ro

ve
n

a
n

ce
 q

u
e

ry
 (

se
c)

Runtime normal query (sec)

Query 14

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0.006

 0.0062

 0.0064

 0.0024 0.0026 0.0028 0.003 0.0032 0.0034

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0.006

 0.0062

 0.0064

R
u
n
tim

e
 p

ro
ve

n
a
n
ce

 q
u
e
ry

 (
se

c)

Runtime normal query (sec)

10MB
Query 6

 0.044

 0.045

 0.046

 0.047

 0.048

 0.049

 0.05

 0.022 0.0225 0.023 0.0235 0.024 0.0245 0.025

 0.044

 0.045

 0.046

 0.047

 0.048

 0.049

 0.05

 0.051

R
u

n
tim

e
 p

ro
ve

n
a

n
ce

 q
u

e
ry

 (
se

c)

Runtime normal query (sec)

Query 14

 0.045

 0.046

 0.047

 0.048

 0.049

 0.022 0.0225 0.023 0.0235 0.024 0.0245 0.025 0.0255
 0.043

 0.044

 0.045

 0.046

 0.047

 0.048

 0.049

 0.05

R
u

n
tim

e
 p

ro
ve

n
a

n
ce

 q
u

e
ry

 (
se

c)

Runtime normal query (sec)

100MB
Query 6

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.215 0.22 0.225 0.23 0.235 0.24
 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

R
u

n
tim

e
 p

ro
ve

n
a

n
ce

 q
u

e
ry

 (
se

c)

Runtime normal query (sec)

Query 14

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

 0.21 0.215 0.22 0.225 0.23
 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

R
u
n
tim

e
 p

ro
ve

n
a
n
ce

 q
u
e
ry

 (
se

c)

Runtime normal query (sec)

1GB
Query 6

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

 2.65 2.7 2.75 2.8 2.85 2.9

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

R
u

n
tim

e
 p

ro
ve

n
a

n
ce

 q
u

e
ry

 (
se

c)

Runtime normal query (sec)

Query 14

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

R
u
n
tim

e
 p

ro
ve

n
a
n
ce

 q
u
e
ry

 (
se

c)

Runtime normal query (sec)

Figure 6.5: Scatter Plots for Queries 6 and 14

6.3. COST OF PROVENANCE COMPUTATION 173

6.3.2 Analysis of Query Block Types
The TPC-H queries present a well-balanced workload, but to better understand the cost of provenance
computation for specific operators we generated simple queries to investigate the influence of the type of
query block on the run-time of provenance queries. These queries were executed over the TPC-H data-sets
using hardware configuration 1.

6.3.2.1 SPJ Query Blocks

The first set of artificial queries tests the performance of SPJ query blocks. Each query is constructed
using numSub leaf sub-queries. For each query a random query tree is created. A run of this experiment
consists of 100 queries. The results indicate that provenance computation of SPJ queries is a very efficient
operation. As shown in Figure 6.6, the provenance computation results in a maximal average overhead of a
factor of 10. This is expected behavior, because the rewrite algorithm only adds new attributes to the target
list of an SPJ query and does not change its structure.

6.3.2.2 ASPJ Query Blocks

In the next set of experiments, the performance of nested aggregation operations is tested. An aggrega-
tion test query consists of agg ASPJ query blocks. Each query block is an aggregation over the results
of its child query block (No joins are used). The leaf operation accesses the TPC-H table part. Every
aggregation groups the input on a range of primary key attribute values. The ranges are chosen so that
each operation performs approximately the same number of aggregation function computations. This is
achieved by grouping on the primary key attribute divided by numGrp = agg

√
| part |. Figure 6.6 demon-

strates that the execution time grows linear in database size and number of aggregation operations, because
each aggregation operation introduces a new join between the original aggregation and the rewritten input
to the provenance query.1

6.3.2.3 SET Query Blocks

We generated queries consisting only of set operations over simple selections on the TPC-H base table
part restricted to a random range of primary key attribute values. Each set operation query is a random
set operation tree structure with numSetOp leaf nodes (Selections on part). For one value of numSetOp,
we measured the average execution time of 100 of these set operation queries. For this set of experiments
we applied the Witness-List provenance semantics for union (R6.a) and used only union and intersection,
because the rewrite for set difference prunes the provenance computation for the right input of the set
difference (R8.a) which dramatically reduces the complexity of the query if the set difference is used in
one of the top nodes of the set operation tree. If rewrite rule (R8.b) is used for set difference the complexity
of the rewritten query is increased, because in the worst case, the computation of a query rewritten with
this rewrite rule can degrade to a cross product between the left and right input of the set difference. In this
case the number of result tuples grows exponentially in the number of set difference operations. Therefore,
we omitted set difference in the experiment to evaluate the effect of the computational complexity of a
provenance query instead of the effect of potential exponential result growth. The results presented in
Figure 6.6 show that union and intersection operations are handled well by the Perm system.

6.3.3 Comparison with Trio
To investigate how Perm performs in comparison with other provenance management systems we compared
the execution of queries between Perm and the Trio system. Trio was chosen because its source code is
freely available and the system is based also on PostgreSQL. For these experiments we had to use simple
SPJ queries and one level set operations, because other query types are not supported by Trio. We generated
1000 simple selections on a range of primary key attribute values of relation supplier for the TPC-H

1For some values of agg the expression numGrp yields an integer result. In these cases the group-by expression is of less
computational complexity, leading to faster query execution.

174 CHAPTER 6. EXPERIMENTAL EVALUATION

SPJ Queries

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6
 0.001

 0.01

 0.1

 1

 10

A
ve

ra
g
e
 R

u
n
 T

im
e
 (

se
c)

Query

norm 10MB
prov 10MB

norm 100MB
prov 100MB

norm 1GB
prov 1GB

ASPJ Queries

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10
 0.001

 0.01

 0.1

 1

 10

A
ve

ra
g

e
 R

u
n

 T
im

e
 (

se
c)

Query

norm 10MB
prov 10MB

norm 100MB
prov 100MB

norm 1GB
prov 1GB

SET Queries

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5
 0.001

 0.01

 0.1

 1

 10

A
ve

ra
g
e
 R

u
n
 T

im
e
 (

se
c)

Query

norm 10MB
prov 10MB

norm 100MB
prov 100MB

norm 1GB
prov 1GB

Figure 6.6: SET Query Blocks: Execution Time Comparison

6.3. COST OF PROVENANCE COMPUTATION 175

System 10MB 100MB 1GB
Trio 113s 922s 9309s
Perm 3s 25s 249s

Figure 6.7: Execution Time Comparison with Trio

database schema. Figure 6.7 presents the overall execution times in seconds for the complete set of queries.
We only measured the run-time of the complete set of queries, because for Trio the overhead to start a client
application is much larger than for Perm. Hence, measuring the execution time of single queries would
result in an unfair comparison.

Perm outperforms Trio by a factor of at least 30. Note that Trio does not support lazy provenance
computation, so the provenance was computed beforehand. The measured execution time includes only
the time to retrieve the stored provenance. For Perm the provenance was computed lazily. In spite of the
fact that we did not use the uncertainty management features provided by Trio, this feature may account to
a certain amount of the observed overhead.

176 CHAPTER 6. EXPERIMENTAL EVALUATION

6.4 Evaluation of the Heuristic Rewrite Strategy Selection
The Perm system support several rewrite strategies for sublink queries that implement different ways of
computing the provenance for such queries. In section 5.5.1.1 we presented the heuristic that is used to
decide which strategy will be applied to a query. In this section we investigate the quality of this heuristic.
I.e., does the strategy chosen by the heuristic produce the query with the most efficient query plan if
compared to the queries generated by the other applicable strategies. Recall that in addition to the heuristic
choice of rewrite strategies we implemented a selection of rewrite strategies based on the cost estimation
computed by the optimizer. Rewritten queries are produced for all combinations of applicable rewrite
strategies, the optimizer is used to generate a query plan for each combination, and the combination with
the lowest estimated cost is executed. This approach should not be used in production, because the number
of queries that have to be optimized can be exponential in the number of sublinks in a query. However, it
is very useful to investigate if the heuristic selects a ’good’ rewrite strategy.

We generated execution plans for 1.000 instances of all TPC-H query templates that use sublinks for
database sizes between 1MB and 1GB; once using the heuristic and once using the optimizer to find the
rewrite strategy that generates the query with the lowest expected run-time. The EXPLAIN command of
PostgreSQL was modified to return the rewrite strategies that were used in addition to the query plan. The
result of this experiments confirmed that the heuristic selects the best rewrite strategy. In all cases the two
methods used the same rewrite strategies.

The cost estimation of the optimizer relies on heuristics and statistics about the data stored in the
database. Therefore, the actual run-time of a query can differ from the cost estimated by the optimizer. We
performed a second set of experiments to verify that the query plans which are identified by the optimizer
to have the lowest cost are the ones with the lowest run-times. In these experiments the run-times of the
rewritten versions of a query generated by different rewrite strategies are compared. The experiments were
run on hardware configuration 2. We produced tables with two integer attributes (a and b) in sizes from
100 to 500.000 tuples. The attribute values were drawn from a gaussian distribution with a fixed mean and
a standard derivation of 100 times the table size. For the experiment we used one parametrized query q
containing a sublink that uses an ANY-sublink in the WHERE-clause. The SQL and algebra representations
for this query are presented below.

q = SELECT ∗ FROM R1 WHERE range AND a = ANY (SELECT ∗ FROM R2 WHERE range2) ;

q = σrange∧a = ANY (σrange2(R2))(R1)

The range and range2 conditions restrict the input tables on a random range (with a fixed size) of values
from attribute b. We used the synthetic data-sets (see section 6.1.2.3) to run three sets of experiments. For
the first set of experiments we employed a fixed size of 1000 tuples for the relation R2 used in the sublink
and varied the size of the regular input relation of the selection (R1). In the second set of experiments,
we fixed the size of the input relation R1 and varied the size of the sublink relation R2. For the last set of
experiments the sizes of both relations were varied. All experiments were run for 100 queries of type q.
The 100 queries for each configuration were given a time slot of 12 hours. The queries were executed using
all rewrite strategies that are applicable for q (Unn, Left, Move, and Gen).

The average run times and number of result tuples are given in Figures 6.8. The results demonstrate
that the specialized Unn strategy outperforms the other strategies by several orders of magnitude. The Left
and Move strategies showed a significant improvement over the Gen strategy. The Move strategy did not
result in the expected improvement over the Left strategy - The run-times of both strategies are almost
identical. The heuristic for rewrite strategy selection applied the Unn strategy in all cases. The results
verify the quality of this heuristic. Furthermore, the huge differences in run-times justify the development
of specialized rewrite strategies in addition to the Gen strategy.

6.4. EVALUATION OF THE HEURISTIC REWRITE STRATEGY SELECTION 177

Varying Regular Input Size
Average Run-time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

100 1000 10000 50000 100000 500000
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

s
e

c
)

Size of Relations (number of tuples)

unn
move

left
gen

Average Number of Result Tuples

 1

 10

 100

 1000

 10000

100 1000 10000 50000 100000 500000
 1

 10

 100

 1000

 10000

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
re

s
u

lt
 T

u
p

le
s

Size of Relations (number of tuples)

Varying Sublink Input Size
Average Run-time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100 1000 10000 50000 100000 500000
 0.001

 0.01

 0.1

 1

 10

 100

 1000

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

s
e

c
)

Size of Relations (number of tuples)

unn
move

left
gen

Average Number of Result Tuples

 1

 10

 100

 1000

 10000

100 1000 10000 50000 100000 500000
 1

 10

 100

 1000

 10000

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
re

s
u

lt
 T

u
p

le
s

Size of Relations (number of tuples)

Varying Both Input Sizes
Average Run-time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

100 1000 10000 50000 100000 500000
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

s
e

c
)

Size of Relations (number of tuples)

unn
move

left
gen

Average Number of Result Tuples

 1

 10

 100

 1000

 10000

100 1000 10000 50000 100000 500000
 1

 10

 100

 1000

 10000

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
re

s
u

lt
 T

u
p

le
s

Size of Relations (number of tuples)

Figure 6.8: Comparison of the Run-times for Different Rewrite Strategies

178 CHAPTER 6. EXPERIMENTAL EVALUATION

6.5 Discussion
In this chapter we have demonstrated the feasibility of the Perm approach with extensive experiments.
The questions we presented at the beginning of this chapter could all be answered in favor of Perm. The
overhead the system introduces for the execution of standard SQL queries is negligible. We could confirm
the quality of the heuristic used to select rewrite strategies for sublinks. Provenance computation can
be expensive, but the experiments indicate that the cost is intrinsic to this operation and not due to a
disadvantageous approach for provenance computation. To the best of our knowledge Perm is the first
provenance management system that is capable to compute the provenance of all TPC-H queries. Our
system outperforms Trio significantly on the queries supported by this system.

Chapter 7

Using Perm to Debug and Understand
Schema Mappings

The Perm system integrates powerful provenance functionality into a standard DBMS. In the last chapters
we have developed the formal background, discussed the implementation, and evaluated the performance
of Perm. In this chapter we study the applicability of Perm to a common provenance application domain
- schema mapping debugging for data integration and data exchange. We choose this application domain,
because the usefulness of provenance for it is widely established. Several data exchange systems support
provenance computation (e.g., see [GKT+07b, CT06, VMM05]). Therefore, it will be interesting to see
how Perm compares to these systems on this application domain. Perm was originally designed as a generic
relational provenance management system not tied to a specific application domain. Hence, the system had
to be extended to deal with non-SQL transformations applied in data integration and data exchange. We
would like to clarify that only small extensions were necessary to adapt the system to the new use case.
With these extensions Perm provides novel schema debugging functionality not supported by alternative
approaches. We refer to the extended version of Perm as TRAMP (TRAnsformation Mapping Provenance).
In the following we motivate the use case, introduce necessary background information about schema
mappings, present a running example, and discuss how provenance information can be used to debug
schema mappings (section 7.1). In section 7.2 we discuss the implementation of the schema mapping
debugging extensions. Afterwards, we evaluate the practicability of the approach by means of an example
debugging process (section 7.3).

179

180 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

7.1 Motivation
Schema mappings, declarative constraints that model relationships between schemas, are the main enabler
of data integration and data exchange. Schema mappings are used to translate queries over a target schema
into queries over a source schema (data integration) or to generate transformations that produce a target
instance from a source instance (data exchange). The executable transformations are generated from the
declarative, logical specification of the mappings. A single transformation may implement a single map-
ping, several mappings, and a mapping may be implemented by a set of transformations.

Nowadays, mappings are often generated semi-automatically using tools like Clio [MHH00, MHH+09],
BEA AquaLogic [BBC+09], and many others [ATV08]. The generation of executable transformations
from mappings is also largely automated. The complexity of large schemas, lack of schema documen-
tation, and the iterative, semi-automatic process of mapping and transformation generation are common
sources of errors. These issues are compounded by limitations and idiosyncrasies of mapping tools (which
can produce wildly different transformations for the same input schemas [ATV08]). Understanding and
debugging an integration, its mappings and transformations is far from trivial and is often a time consum-
ing, expensive procedure. In addition, schema mapping is often done over data sources that are themselves
dirty or inconsistent. Errors caused by the data cannot be neatly and cleanly separated from errors caused
by an incorrect mapping or transformation.

As a result, a number of research efforts have emerged to support users in debugging and understanding
schema mappings and mapping alternatives (these include SPIDER [CT06] and MXL [VMM05], along
with mapping understanding-by-example systems such as the Clio data-viewer [YMHF01] and MUSE
[ACMT08]). Such systems focus on fixing or refining the mapping specification.

In contrast, by extending Perm for this application domain we developed a more holistic approach that
aims at providing a robust data integration debugging tool for tracing errors, no matter what their source
(the data, inconsistencies between data sources, the schemas, schema constraints, the mappings, or the
transformations). We argue that a robust tool for understanding the behavior of complex schema mappings
can be provided only by making all elements of a mapping scenario (schemas, schema constraints, map-
pings, transformations, and data) and their inter-relationships query-able. We show that query support can
be provided by using provenance information on all elements of a mapping scenario.

Perm is an ideal candidate to achieve this goal, because it provides full SQL query support for an
extended version of the traditional concept of data provenance and the novel concept of transformation
provenance. As we will demonstrate in the remainder of this chapter, both types of provenance are needed
in schema mapping debugging. We show that many queries important to debugging data integrations can
only be answered using such a comprehensive approach where all inputs to the integration and all forms
of provenance can be used collectively in query answering. TRAMP extends Perm with the following new
functionality for schema mapping debugging:

• Support for mapping-provenance, a novel type of provenance information suited for schema map-
pings.

• A meta-query facility that can be used to query mapping and transformation provenance. This facility
is fully integrated in SQL, thus, access to all types of data, provenance, and the transformations
themselves can be combined in a single query.

7.1.1 Background and Notations
In this section, we introduce schema mappings and the types of transformation queries used to imple-
ment data integration or data exchange. Commonly, a schema mapping is modeled as a tuple M =
(S,T,Σst ,Σs,Σt) where S is a source schema, T is a target schema, and Σs (and Σt) are sets of constraints
over S (resp. T) [Len02, FKMP05]. The constraints Σst are the mapping(s) representing the relationship
between S and T. In data exchange applications [FKMP05], Σs may be omitted since the source instance is
given but we include it for generality. In our implementation, the source and target constraints (Σs and Σt)
may be any SQL constraint, including primary keys, unique constraints and foreign keys. Our framework
and definitions are general enough to include any constraint, including the commonly studied tuple- and
equality-generating dependencies [AHV95].

7.1. MOTIVATION 181

The source and target constraints (Σs and Σt) may be sets of tuple-generating-dependencies (tgd’s)
and equality-generating dependencies (egd’s). A tgd is of the form ∀xφ(x)⇒ ∃yψ(x,y) where φ(x) and
ψ(x,y) are conjunctions of atomic formulas over S for source constraints and over T for target constraints.
For example, relational foreign key constraints are modeled as tgd’s. An egd is of the form ∀xφ(x)⇒
x1 = x2 where φ(x) is a conjunction of atomic formulas and x1 and x2 are variables occurring in x. For
example, relational primary key constraints are modeled as egd’s. Σst describes the actual mapping. Our
implementation assumes Σst is a set of source-to-target tuple-generating dependencies (s-t tgds): ∀xφ(x)⇒
∃yψ(x,y) where φ(x) is an SPJ query over S and ψ(x,y) is an SPJ query over T.

Schema mappings of this form are quite general and are the basis for most work in data exchange,
data integration, peer data sharing, pay-as-you go integration, and other integration tasks. For schema
mapping debugging, however, we need to consider a wider range of aspects. In addition to the many
possible sources of errors, the tools used in data exchange or data integration that are based on schema
mappings often operate in a way that leads to unexpected results. Such unexpected results arise from ad hoc
choices made by the tools when several solutions are possible (in data exchange systems), from different
strategies in query rewriting (in data integration systems), and from optimizations as well as limitations of
the languages used to implement the operations.

Schema mappings can be generated (semi)-automatically from schema constraints and correspon-
dences (or matches) between the source and target schema. A correspondence is of the form ∀s1, . . . ,sn :
R(s1, . . . ,sn)⇒ ∃t1, . . . , tn : S(t1, . . . , tn)∧ si = t j where R is a source relation, S is a target relation. Infor-
mally, a correspondence means that attributes si and t j are related in a sense that data from si should appear
in t j. Errors can arise if the schema is missing constraints, if a matching is incorrect, or, in general, if the
semantics of a concept that appears in the target has not been modeled explicitly in the source. Neverthe-
less, understanding the results of schema mappings is difficult even when no errors have been made. We
analyze this aspect here in more detail.

More formally, for a given instance I of the source schema, an instance J of the target schema is
called a solution of a schema mapping M if J satisfies all the constraints in Σt and I ,J satisfy all the
constraints in Σst . In general, there can be many such solutions for a given schema mapping. One of these
solutions will be produced through transformations that implement the schema mapping.

While data exchange systems such as Clio support a universal solution [MHH+09, FKMP05], mapping
tools often select a solution from all possible solutions in an ad hoc manner, leading to unexpected results.
This leads to the definition of ”certain” answers. A ”certain” answer of a query q is an answer that is
included in the result of evaluating q over each possible solution. To compute certain answers for common
queries, it is know that some solutions, called universal solutions (which can be thought of as a “most
general” solution) , can be used directly (see [FKMP05] for a more detailed discussion).

Similarly, in data integration systems (such as a federated DBMS), transformations are actually query
rewrites: a transformation of a query over the target into a query (or a set of queries) over the source.
Such query rewriting plays the same role as a transformation, but instead of producing a full target instance
it produces a view over the target (a view whose definition is the target query). Ad hoc decisions when
rewriting the queries lead to several possible outcomes and, hence, to queries that do not produce the
expected data. Research data integration systems produce rewritings that compute certain answers, but
industrial systems may (as with data exchange) make ad hoc decisions in the rewriting. To support the
debugging of schema mappings in both scenarios, we will use the term transformation to refer to either the
queries used to implement data exchange or to the rewritten queries used in data integration. We focus on
transformations implemented in SQL, the language for which Perm provides provenance support, but the
ideas should be generalizable to other implementation languages such as XSLT or Java.

In the general case, there is no one-to-one relation between transformations and mappings. A single
transformation may implement several mappings, or a single mapping may be implemented by several
transformations. The actual nature of the transformation(s) depends on the application (e.g., the queries
used to implement data exchange or query rewrites in data integration) and the actual language used (e.g.,
SQL, XSLT, or Java). The many-to-many relationship between transformation and mappings is due to
restrictions in the implementation language (e.g., an SQL query can produce only one target relation while
a mapping may define several target relations) and/or because the splitting or merging of transformations
might improve their run-time performance. Such restrictions and optimizations add to the complexity
of debugging a schema mapping even when no errors have been made. This is especially true in cases

182 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

Authorname
inst

TechPub
Author
techId

ArticlePub
Author
artId

TechReport
techId
title
instyear
month
pages
vol
loc
class
annot
note

Article
artId
title
jrnlyear
monthpages
vol
loc
class
annot
note

Author
authId
firstName
lastName
affilation

Publication
title
authorId
dateIdpages
classId
issueId

Journalname
publisher

Classification
classIdname

Date
dateId
year
month

Issue
journal
volnum

issueId

Institute
instId
name
location

Notes
pub
author
text

M1 :Author(a,b)⇒∃c,d : Author(c, f irst(a), last(a),d)

M2 :Author(a,b)∧ Institute(b,c,d)⇒
∃e : Author(e, f irst(a), last(a),c)

M3 :TechReport(a,b,c,d,e, f ,g,h, i, j,k)∧TechPub(l,a)

∧Author(l,m)∧ Institute(c,n,o)∧ Institute(m, p,q)⇒
∃r,s, t,u : Publication(b,r,s, f , t,u)∧Date(s,d,e)

∧Classi f ication(t, i)∧Notes(b,r, j)

∧Notes(b,r,k)∧Author(r, f irst(l), last(l), p)

M4 :Article(a,b,c,d,e, f ,g,h, i, j,k)∧ArtPub(l,a)

∧Author(l,m)∧ Institute(m,n,o)⇒
∃p,q,r,s, t,u : Publication(b, p,q, f ,r,s)∧Date(q,d,e)

∧Classi f ication(r, i)∧Notes(b, p, j)∧Notes(b, p,k)

∧ Journal(c, t)∧ Issue(s,c,g,u)

∧Author(p, f irst(l), last(l),n)

Figure 7.1: Example Schemas and Mappings

where a transformation implements multiple mappings or a mapping is implemented by more than one
transformation.

To capture all the aspects that influence the result of a schema mapping, we model a mapping scenario
by explicitly including the transformations T that implement the schema mappings M along with the
relationship between them, as well as their relationship to the data and its provenance.

Definition 7.1 (Mapping Scenario). A mapping scenario MS is a tuple (S,T,Σst ,Σs,Σt ,I ,J ,T ,A ,C)
where I is a source instance, J is a target instance. C is the set of correspondences from which
Σst is derived from. T is the set of transformations that implement the mappings from Σst (Formally
represented as algebra expressions). The binary relation A models the relationship between mappings
and transformations. Each element of A associates a mapping M from Σst with a sub-expression qsub of
an element from T .

This additional information is needed to be able to properly debug schema mapping scenarios regardless
of whether the source of the problem are actual errors or limitations and idiosyncrasies of mapping tools.

7.1.2 Running Example
We illustrate the complexity associated with the debugging of schema mappings and associated trans-
formations using an example based on the Amalgam [MFH+01] Integration benchmark. Amalgam uses
real-world data (containing errors) and several schemas which are not perfect in the sense that they may
contain modeling errors or may have missing constraints or semantics. Such imperfections may lead a map-
ping tool to produce imperfect mappings or to miss potential mappings. The Amalgam schemas represent
bibliographic data from various sources. As a running example we use a modified version of schema S1
from Amalgam as the source schema and our own new schema as the target schema. Figure 7.1 shows parts
of the source (left) and target schema (right) as well as some of the correspondences between the schemas.
The source schema models authors, technical reports, articles, and the relationships between authors and
their publications. The target schema represents the same information organized in a different way. Several
properties of a publication are outsourced into separate relations and there is only a single relation that
represents publications (regardless of their type). In addition, the affiliation of an author is recorded in the

7.1. MOTIVATION 183

M2a :Author(a,b)∧ Institute(b,c,d)⇒∃e : Author(e,a,a,c)
M3a :TechReport(a,b,c,d,e, f ,g,h, i, j,k)∧TechPub(a, l)∧Author(l,m)

∧ Institute(c,n,o)∧ Institute(m, p,q)⇒
∃r,s, t,u : Publication(b,r,s, f , t,u)∧Date(s,d,e)∧Classi f ication(t, i)
∧Notes(b,r, j)∧Notes(b,r,k)∧Author(r, l, l,n)

Figure 7.2: Incorrect Mappings For the Example

Author relation directly, rather than in a separate Institute relation. The example includes the following
basic scenarios defined in the STbenchmark [ATV08]: copying, vertical partitioning, manipulating atomic
values, and Object Fusion.

A possible mapping between the two schemas is presented on the right of Figure 7.1. Mappings M1 and
M2 map authors from the source to the target schema, splitting the name attribute into first and last name.1

M1 handles authors independent of their affiliations and M2 maps authors with an affiliation (stored in the
relation Institute). The Techreport and Article relations are vertically partitioned into relations Publications,
Journal, Issue, Notes, Classification, and Date (using M3 and M4). In addition, the authors for each
publication are also mapped by these two mappings. In mapping M3 the Institute relation is referenced
twice. The first reference represents the institute of an author and the second one the institute field of the
TechReport relation. Note that these mappings might lead to missing data if, for example, a technical report
is not associated to an institute (i.e., its inst attribute is null). For simplicity, however, we assume mappings
M1-M4 are the correct mappings.

7.1.3 Types of Errors
To illustrate common types of errors, we consider two incorrect mappings (M2a, M3a), shown in Figure 7.2
in addition to the correct mappings (M1, M2, M3, M4). Errors in an mapping scenario can be categorized
according to whether they are caused by incorrect mappings, erroneous transformations, or other causes.

7.1.3.1 Mapping Errors

Missing Mappings. A mapping missing from a mapping scenario may lead to empty target relations or
incomplete target relations. In our example from Figure 7.2 we are missing mappings M1 and M4. Missing
mappings may be caused by missing correspondences, missing schema constraints, misinterpreting the
semantics of a relation, or problems understanding mappings and schemas. Correspondences can be missed
through errors by a matching tool [RB01]. A missing schema constraint, such as the foreign key constraint
from Author to Institution leads to missing M2 or M2a as it is not obvious how to associate an author with
an affiliation. Misinterpreting the meaning of the relation Publication (not realizing that an article is also a
publication) leads to missing mapping M4. Finally, not realizing that some authors might not be associated
to an Institute leads to missing mapping M1.

Incomplete Mappings: Incomplete mappings (i.e., mappings that are missing relations or missing
conditions) may also arise due to missing correspondences or missing schema constraints. For instance, if
the source includes publications from authors around the world, and in the target we desire publications for
authors from a specific region, then mapping M2 would be missing a condition on location (or missing a
join with a relation Region on which we could specify this condition).

Oversized mappings: Oversized mappings (that is, mappings with too many relations) may be caused
by using an association in the source with different semantics than the corresponding association in the
target. In our example, if the inst of an Author in the source represents a works-in relationship, but the
affiliation of an Author in the target represents the PhD granting institution, then mapping M2 would be
oversized. Thus, an oversized mapping associates relations that should not be associated according to the
desired mapping semantics.

1We assume the existence of functions first and last that return the first (respectively, last) name from a name string.

184 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

Incorrect Association Paths: Schema constraints, query logs, or even connections in the data may be
used by mapping systems to figure out how to join source or target relations in a mapping. In a schema
there might be several ways to reach one relation from another via connecting constraints, but not all of
them represent a semantically correct way of associating source relations. In the example scenario, there
are two ways of associating the relations Author and Institute. Mapping M3a incorrectly maps the institute
of a technical report to the affiliation attribute of an author in the target schema.

7.1.3.2 Transformation Errors

The most commonly used mapping languages today (including the s-t tgds we consider) are constraints
that specify properties that must be true of the transformation. However, they do not determine a unique
target instance, and hence do not determine a unique transformation. This is necessary in practice for many
reasons including incompleteness (the source may not populate all target data). As a result, new types of
errors arise due to the fact that a mapping can be handled in different ways by the transformations that
implement the mapping.

Incorrect Handling of Atomic Values: This type of error arises if either a non-atomic attribute is
handled as an atomic one or if incorrect functions are applied to split a non-atomic attribute value. In the
example scenario, mappings M2a and M3a generate the target Author relation by copying the name attribute
unmodified to the firstName and lastName attributes instead of applying functions first and last to extract
the relevant part of the attribute value.

Redundant Data: Consider mappings M1 and M2 in the example. If the transformation generating
target relation Author is implemented as a set-union between the transformations implementing M1 and
M2, then authors with an affiliation will be recorded twice in the Author relation: once with the affiliation
and once without an affiliation. A user may not want the redundant, incomplete tuples.

7.1.3.3 Other Errors

Our motivation is to provide a tool to help find and repair errors in mappings and transformations. To do
this well, we need to consider errors in elements that may be used as input for mapping creation tools -
specifically, the data, schemas, schema constraints, and correspondences. In talking about mapping and
transformation errors, we have already motivated how errors in these inputs can lead to errors in the map-
ping. Another common source of error is dirty source data:

Instance Data Errors: Incorrect source instance data can cause errors in the target instance. Instance
data errors may confuse a user and lead her to conclude a correct mapping is incorrect. Consider a source
instance with dirty data. If the mapped target data lists Alonso’s affiliation as UCSB, a user who knows
this is incorrect may mistakenly think the mapping is incorrect because it is using a source association that
represents authors’ PhD institutions rather than a works-in relationship. However, if the data is dirty, it may
just be that this one value is out-of-date. Hence, to really help a user understand when a mapping/transfor-
mation is correct, we need to recognize that errors can arise from many different sources.

7.1.4 Tracing Mapping Errors
We now present which types of provenance (and other information) support a user in debugging which
types of errors in a mapping scenario.

7.1.4.1 Data Provenance

Data provenance helps in tracing erroneous target data back to erroneous source data and in understanding
mapping errors that are caused by mapping data from the wrong sources. It can also be used to trace
incorrect handling of atomic values-type errors. For instance, the data provenance of the transformation
implementing mapping M2a will reveal that the firstName and lastName attributes are copied from the
name attribute of the source Author relation. The user can then introduce the first and last functions into
the mappings to extract the relevant part of the name attribute. As another example, data provenance can
also be used to trace Incomplete mappings by examining to which source relations the provenance of a

7.1. MOTIVATION 185

result belongs. For Oversized Mappings and Incorrect Association Paths data provenance can be used
to understand where the incorrect data is coming from. For instance, in the example scenario the data
provenance of the transformation implementing mapping M3a reveals that the affiliation data in the author
relation is copied from the institute associated with a technical report instead of the institute associated
with an author.

7.1.4.2 Transformation Provenance

Data provenance relates output and input data, but does not provide any information about how data was
processed by a transformation. More specifically, it does not contain information about which parts of a
transformation were used to derive an output tuple. As an example, consider a transformation that uses
the SQL union all operator. Each output tuple of the union is produced by exactly one of the queries that
are input to the union. Recall that we refer to this type of provenance as transformation provenance (see
sections 3.3.2 and 4.6).

Transformation provenance is extremely useful in understanding how data is integrated through a map-
ping, because it allows us to understand which parts of a transformation (that is, which operators in the
transformation) produced a data item. Naturally, transformation provenance is very useful to debug trans-
formation errors (Incorrect Handling of Atomic Values and Redundant Data). Also Oversized mappings
and Incorrect Association Paths errors can be seen in the transformation that implements these mappings
and can therefore be debugged using transformation provenance. E.g., if all erroneous data is produced by
a certain part of a transformation this part of the transformation should be investigated more closely.

7.1.4.3 Mapping Provenance

In a mapping scenario each transformation implements one or more mappings and each mapping is im-
plemented by one or more transformations. To be able to understand such a mapping scenario it is crucial
to know which parts of a transformation correspond to which mapping. Mapping provenance enriches
transformation provenance with a representation of this relationship. Mapping provenance can be used to
understand which of the mappings implemented by a transformation produced erroneous data, thus, limit-
ing the scope of the error tracing process and can be used to trace the same types of errors as transformation
provenance.

7.1.4.4 Meta-Querying

Meta-querying [VdBVV05] is the ability to ask queries over the structure and/or run-time properties of
queries. This type of functionality is useful to investigate static properties of a transformation in a map-
ping scenario, for instance, to investigate which relations are accessed by a transformation. In the example
scenario we can use meta-querying to investigate which relations are accessed by any transformation (of
which there may be many) generating Publication tuples. In our example of Figure 7.1(b), such a query
reveals that the article relation is not accessed by any transformation, and therefore a new mapping should
be added to map the data from this relation. In general meta-querying can be used to trace all types of map-
ping errors if they are understandable without data and run-time information. Therefore, transformation
errors are normally not trace-able by using solely meta-querying.

Powerful new query functionality is gained by combining meta-querying with provenance and map-
ping meta-data. This combination is needed, e.g., to answer queries like “Is a certain tuple in the result
created by a part of a transformation that accesses the relation Author?” and to isolate the parts of a trans-
formation or mapping that caused a given error. Recall that in SQL-PLE the keyword TRANSXML is used
to return transformation provenance as XML data. This keyword was added to enable meta-querying of
transformation provenance information.

7.1.4.5 Discussion

In summary, to understand the reasons for errors in a mapping scenario it is crucial to know where gen-
erated data is coming from (data provenance) and how it was processed (transformation and mapping

186 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

provenance). In addition to exposing this information, a system that aides a user in understanding a map-
ping scenario should provide appropriate query facilities like meta-querying to process this information in
useful ways.

• Data provenance: Aides in tracing erroneous target data back to erroneous source data and in un-
derstanding mapping errors that are caused by mapping data from wrong sources.

• Transformation and mapping provenance: Exhibits errors in transformations and underlying map-
ping by explaining which parts of a transformation and which mappings are responsible for a certain
transformation result.

• Meta-querying: Can be used to investigate transformation provenance, to understand instance inde-
pendent problems in a transformation, and to relate mappings and transformations.

7.2. TRAMP: SCHEMA DEBUGGING EXTENSIONS FOR PERM 187

(a)
qa = Π

2
SK1(name), f irst(name),last(name),SK2(name)(A

3)

∪1
Π

4
SK3(A.name,I.name), f irst(A.name),last(A.name),I.name(A

6 ><5
inst=instIdI7)

qb = Π
1

SK1(A.name,I.name), f irst(A.name),last(A.name),I.name(A
3 ><2

inst=instIdI4)

(b)
M (qb, t1) = {{M2}}
M (qb, t2) = {{M1}}
M (qb, t3) = {{M2}}

(c)
qa

µM1(op) =

{
1 ∀op ∈ {1,2,3}
0 ∀op ∈ {4,5,6,7}

µM2(op) =

{
1 ∀op ∈ {1,4,5,6,7}
0 ∀op ∈ {2,3}

qb

µM1(op) =

{
1 ∀op ∈ {1,2,3}
0 ∀op ∈ {4}

µM2(op) = 1

(d)
Author

name inst
Peter Smith 1

Helga Hauser ε

Hilde Schneider 2

Institute
instId name location

1 A Denver
2 B Dallas

Qb
authId firstName lastName affiliation

SK1(PeterSchmith,A) Peter Smith A
SK1(HelgaHauser,ε) Helga Hauser ε

SK1(HildeSchneider,B) Hilde Schneider B

Figure 7.3: Mapping Provenance Example

7.2 TRAMP: Schema Debugging Extensions For Perm

We now define mapping provenance and discuss the implementation of the TRAMP extensions to Perm. In
addition to mapping provenance, TRAMP also adds several new language constructs for meta-querying to
SQL-PLE.

7.2.1 Mapping Provenance Definition

In a mapping scenario, transformations may be derived from a set of declarative schema mappings. For
example, consider the mappings M1 and M2 from the motivation. Two possible implementations of these
mappings are presented in Figure 7.3(a) (we use A and I as a shortcut for the Author and Institute relations).
In our example, SK1, SK2, and SK3 are skolem functions which may be generated by a mapping system or
user-defined functions that are used to fill in values for un-mapped attributes. Notice that both qa and qb
implement M1 and M2, but they are not equivalent.

They may produce different target data for the same source instance. Both actually produce universal
solutions [FKMP05], and so may be generated by mapping tools that are based on data exchange theory
[MHH+09, RBC+08, and others]. M2 may produce a less redundant target, but both these and other trans-
formations may be generated by a mapping tool. Hence, in debugging mappings and transformations, we
would like to know not only what parts of a transformation produced a target tuple t (the transformation
provenance of t), but also from what mappings these transformations (or operators withing a transforma-
tion) were derived. Hence, we define mapping provenance based on transformation provenance and the
correspondences between transformations and mappings (the A relation of a mapping scenario MS).

188 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

Example 7.1. For the first transformation qa, the correspondence between mappings and transforma-
tions is quite clear. The union and the left input of the union corresponds to mapping M1 in the sense that
they process tuples to create target data as specified by M1. The union and its right input corresponds
to mapping M2. For the second transformation qb, the entire transformation implements mapping M2,
while M1 is implemented by the join with only its left input (A) and the final projection which provides
values for unmapped target elements and implements functions specified in both mappings.

The mapping provenance of an tuple t that was generated by some transformation q should contain all
the mappings that contributed to t indirectly by corresponding to a part of the transformation that is in the
transformation provenance of t. Therefore, mapping provenance can be defined on-top of transformation
provenance.

A correspondence between a mapping and a part of a transformation is modeled by adding additional
annotations (specifically, mapping identifiers) to the algebra tree for a transformation. For an algebra tree,
Treeq = (V,E), we introduce one new annotation function, µM , per mapping M ∈ Σst . The function µM is
1 for each operator that implements this mapping, 0 otherwise.

Example 7.2. For example, consider transformation qa in Figure 7.3(a) and the annotation functions
for this transformation (Figure 7.3(c)). We use the superscript (red) preordering to refer to the individual
operators of a query (these are actually the node identifiers for algebra tree nodes used for transforma-
tion provenance). The operator 3 (representing the relation A), implements M1 and tuples from A may
flow through every operator above 3 in the tree so µM1 annotates every operator on the path from 3 (A)
to the root with a 1, and all other operators with a 0. Similarly, the operators 6 (A) and 7 (I) implement
M2, as does every operator above these two in the tree. So µM2 annotates each of the nodes 1,4,5,6,7
with a 1 and all other nodes with a 0.

Figure 7.3(c) also presents the two mapping annotation functions for transformation qb. Here, there
is a single node for A (Node 3) which implements both M1 and M2. The node for I (Node 4) implements
only M2. Hence, µM1 assigns a 1 to operator 3 and all nodes above 3 in the tree, and µM2 assigns a 1 to
operator 4 and all nodes above 4 in the tree.

Notice that the mapping annotation function will depend on the language used for mappings. We have
implemented mapping annotation functions for source-to-target tgds, but of course this could be extended
to other languages, including the visual mapping languages of some commercial tools. Below we formalize
the notation of mapping provenance using the annotation functions µM (Recall that θw is the transformation
provenance annotation function for witness list w).

Definition 7.2 (Mapping Provenance). The mapping provenance M (q, t) for a tuple t from the result
of query q is defined using the mapping annotation functions µM over the transformation provenance
T (q, t) as follows:

M (q, t) = {Mw | w ∈DD(q, t)}
Mw = {M | ∀op ∈V : µM(op) = θw(op)}

Example 7.3. As an example of mapping provenance consider Figure 7.3(d), which presents an in-
stance of the Author and Institute relation, the result of applying qb on this instance, and the mapping
provenance (b) for each result tuple of qb.

7.2.2 Implementation of TRAMP
TRAMP extends Perm with the following functionality: Computation of mapping provenance, relational
representation of mapping scenario information, and meta-querying. In the following we first present the
relational representation of mapping scenario information. This is the information that is not already stored
as relations; e.g., the source and target instances. The relational representation of correspondences between

7.2. TRAMP: SCHEMA DEBUGGING EXTENSIONS FOR PERM 189

SELECT
SK1 (A. name , I . name) , f i r s t (A. name) , l a s t (A. name) , I . name

FROM
Author A ANNOT(’M1’ , ’M2’)

LEFT JOIN
I n s t i t u t e I ANNOT(’M2’)

ON (A. i n s t = I . i n s t I d) ;

Figure 7.4: Example Use of ANNOT

mappings and the transformations that implement them is used in the computation of mapping provenance
presented afterwards. Finally, we discuss the implementation of meta-querying constructs and present an
overview of the new SQL-PLE language features added by TRAMP.

7.2.2.1 Relational Representation of Mapping Scenario Data

A mapping scenario MS after definition 7.1 is a tuple (S,T,Σst ,Σs,Σt ,I ,J ,T ,A ,C). The source and
target instances are already represented in the relational model. The source and target schemas are stored
in the database catalog of the source and target databases. Also the constraints defined on both schemas (Σs
and Σt) can be accessed over the database catalog. The transformations T that implements the mappings
from the scenario can be stored as views. PostgreSQL provides functionality to access the definition of
views. Using fSQL→XML, a function we will introduce in the discussion of meta-querying, the textual
representation of a transformation’s view definition can be transformed into an XML representation.

Example 7.4.
The XML representation of the SQL query SELECT a.name FROM Author a WHERE a.inst = ’MIT’; is pre-
sented at the top of Figure 7.5. The mappings Σst and correspondences C are stored as XML data.
Figure 7.5 shows an part of the XML representation for the example mapping scenario.

To represent A , the correspondences between mappings and transformations, SQL is extended with
the ability to annotate parts of a query using the new keyword ANNOT. These annotations are used to rep-
resent the correspondences between mappings and transformations as defined by the annotation functions
µM presented in section 7.2.1. If the transformations are generated from a set of s-t tgds mappings, we
can automatically annotate the base relations of a transformation according to the mappings.2 For other
mapping languages, a user can specify the appropriate mapping annotations of a transformation or the
mapping system can be changed to create these annotations. These annotations are only used for mapping
provenance computation and meta-querying. During normal query processing the annotations are ignored.

Example 7.5. Figure 7.4 demonstrates how the new keyword ANNOT annotates parts of query qb from
Figure 7.3.

7.2.2.2 Mapping Provenance

To implement mapping provenance, a new keyword MAPPROV is added to SQL-PLE. If a query uses this
keyword, the provenance of the result is represented as the list of contributing mappings (textual repre-
sentation). This is similar to the relational representation of transformation provenance where provenance
information is stored in a single attribute. If the query uses the keyword TRANSSQL or TRANSXML then
the mapping provenance is computed as part of the transformation provenance as follows.

To support mapping provenance the transformation provenance computation is modified to use the
annotations added with the ANNOT keyword in the final representation construction. We represent the

2As described in section 7.2.1 the annotations for the other operators in the query can be derived by propagating an annotation on
a child to its parent.

190 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

(a)

<que ry>
< s e l e c t>

< a t t r>a . name< / a t t r>
< / s e l e c t>
<from>

< t a b l e a l i a s =” a ”>Author< / t a b l e>
< / from>
<where>

<op name=”=”>
< a t t r>a . i n s t< / a t t r>
<c o n s t>MIT< / c o n s t>

< / op>
< / where>

< / que ry>

(b)

<MappingScenar io>
<C o r r e s p o n d e n c e>

<from>
<Tab le name=” Author ”>

<Column>name< / Column>
< / Tab le>

< / from>
<t o>

<Tab le name=” Author ”>
<Column>f i r s t N a m e< / Column>

< / Tab le>
< / t o>

< / C o r r e s p o n d e n c e>
. . .

<Mapping i d =”M1”>
<f o r e a c h>

<Tab le name=” Author ”>
<Var>a< / Var>
<Var>b< / Var>

< / Tab le>
< / f o r e a c h>
<e x i s t s>

<Tab le name=” Author ”>
<Var>c< / Var>
<Var> f i r s t (a)< / Var>
<Var> l a s t (a)< / Var>
<Var>d< / Var>

< / Tab le>
< / e x i s t s>

< / Mapping>
. . .
< / Mapp ingScenar io>

Figure 7.5: XML Representation Examples

7.2. TRAMP: SCHEMA DEBUGGING EXTENSIONS FOR PERM 191

(a)

0 0 1 0
R S

0 0 0 1

0 1 0 0

1 0 0 0
1 1 1 0M1

1 1 1 1M2

(b)
authId firstName lastName affiliation tprov

SK1(PeterSchmith,A) Peter Smith A
<M2>SELECT SK1(A.name, I.name), ...

FROM ... </M2>

SK1(HelgaHauser,ε) Helga Hauser ε

<M1>SELECT SK1(A.name, I.name), ...
LEFT JOIN <Not>Institute I</Not>
ON ... </M1>

SK1(HildeSchneider,B) Hilde Schneider B
<M2>SELECT SK1(A.name, I.name), ...

FROM Author A LEFT JOIN Institute I
ON ... </M2>

Figure 7.6: Example of the Computation of Mapping Provenance

mapping annotation function µM for each mapping M as a bit-vector (compare sections 5.2.3.3, 5.2.3.2,
and 5.5.4) that contains a zero at a position, if µM(op) = 0 for the operator op with this identifier/position,
and a one otherwise. Recall that a mapping belongs to the transformation provenance iff its mapping
function µM agrees with θw on every input (µM(op) = θw(op)). Translated to the bit-vector representations
of µM and θw this is an equality-check on these bit-vectors. In the final result representation, mappings are
represented as additional annotations in the representation. E.g., SELECT ... FROM <M1>R</M1> ...

Example 7.6. Figure 7.6(a) presents the bit-vectors for the support functions µM1 and µM2 for query
qb from Figure 7.3. Recall that M2 corresponds to the complete query and M1 does not correspond to
the right input of the outer join. Figure 7.6(b) presents the result of computing the transformation and
mapping provenance for qb using the TRANSSQL keyword.

7.2.2.3 Meta-Querying

In principle we follow the approach for meta-querying presented by Van den Bussche et al. [VdBVV05].
In this work queries are represented as XML data. The built-in XPath and XSLT support of PostgreSQL is
the basis for our implementation of meta-querying. This approach has the advantage that the hierarchical
structure of a query is reflected well in the XML representation. In addition, with XPath and XSLT powerful
meta-querying functionality is provided. The XML query representation used in TRAMP is similar to the
one from [VdBVV05].

XML Query Representation Generation We provide a function fSQL→XML that transforms an SQL
query into its XML representation as presented in Figure 7.5. fSQL→XML is implemented as a UDF that
uses the PostgreSQL parser and analyzer to parse its input and generates the XML output by traversing the
internal query representation produced by the parser.

THIS Construct With the new construct T HIS a query can inspect its own XML representation. This is
implemented as a query rewrite that replaces the T HIS construct with an XML constant that is generated
using the same XML generation as fSQL→XML for the query the construct is used in (or of a part of this
query). THIS simplifies meta-queries that need introspection. The THIS construct contains an optional
path expression of the form child < sequence > that is used to reference a part of the query. For example,
THIS.child1 references the first sub-query in the FROM-clause of the current query.

192 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

(a)
SELECT g e t A n n o t s (fSQL→XML (g e t v i e w (v1))) ;

(b)
SELECT ∗
FROM (SELECT TRANSXML ∗ FROM v1) AS sub
WHERE hasAnnot (t p r o v , ’M1’) ;

(c)
SELECT ∗
FROM (SELECT ∗ FROM v1) AS sub
WHERE hasAnnot (THIS . c h i l d 1 , ’M1’) ;

Figure 7.7: Meta-Querying Example

Example 7.7. In the query presented below T HIS is expanded to the XML representation of the sub-
query sub:

SELECT THIS . c h i l d 1 , ∗
FROM (SELECT ∗ FROM R) AS sub ;

XML Aggregation Function PostgreSQL already provides an aggregation function for XML data that
combines XML documents into a single document. For example, the query ”Which relations are created
by mapping M1?” can be expressed as an XPath expression over an XML document that contains all
transformation definitions, which in turn can be produced by aggregating the XML documents for each
transformation.

Pre-defined XSLT- and XPath-Functions XSLT functions combined with the support functions pre-
sented above provide all the needed meta-querying functionality, but for convenience we provide several
additional meta-querying UDF functions build upon this functionality. Here we present just two examples:
hasAnnot and getAnnots. hasAnnot(XML,annot) checks if the query represented as parameter XML has the
annotation annot. This function can be realized as a XPath expression over the XML query representation.
getAnnots(XML) returns all annotations used in a query tree given as parameter XML.

Example 7.8. Figure 7.7 shows some example queries that use the meta-querying functionality devel-
oped in this section. The query in 7.7(a) demonstrates a query that extracts the annotations from a
view definition.a. Figure 7.7(b) demonstrates how to use meta-querying on the result of a transforma-
tion provenance computation. This query returns tuples with their transformation provenance, if the
provenance contains annotation M1. Finally, 7.7(c) shows an application of the THIS construct.

aget view returns the SQL text of a view

7.2.2.4 Overview of the SQL-PLE Extensions

Figure 7.8 gives an overview of the new SQL-PLE language constructs added by TRAMP. The MAPPROV,
THIS, and ANNOT constructs have been discussed above. query sql to xml is the implementation of the
fSQL→XML function. The XSLT. f construct is added for convenience. In PostgreSQL XSLT functions are
applied by passing the function definition and its argument as XML to a generic XSLT processing function.
The XSLT. f construct simplifies this process by allowing to directly call XSLT functions (the function
definitions and names have to be stored in relation xslt funcs). cxpath allows XPath expressions to be used

7.2. TRAMP: SCHEMA DEBUGGING EXTENSIONS FOR PERM 193

Construct Description
MAPPROV Compute the mapping provenance and represent it as sets of mappings.
THIS.childpath A shortcut for generating the XML representation of the sub-query ac-

cessed by path.
XSLT. f (xml param) Apply XSLT function f to XML document xml_param.
cxpath (path expr , input) Evaluate XPath expression path_expr over input. Returns true if the

evaluation of the XPath expression returns at least one result.
ANNOT(annotation) Annotates the FROM clause item it is appended to with annotation.

Figure 7.8: New SQL-PLE Language Constructs

as conditions. It returns true if the XPath expressions given as parameter path expr returns more than zero
elements if evaluated over parameter input.

194 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

T1

SELECT
SK1 (a . name , i . name) AS a u t h I d ,
a . name AS f i r s t N a m e ,
a . name AS lastName ,
i . name AS a f f i l i a t i o n

FROM
s o u r c e . a u t h o r ANNOT(’M2a ’) a ,
s o u r c e . i n s t i t u t e ANNOT(’M2a ’) i

WHERE a . i n s t = i . i n s t i d

T2

SELECT
SK1 (a . name , i . name) AS a u t h I d ,
f i r s t (a . name) AS f i r s t N a m e ,
l a s t (a . name) AS lastName ,
i . name AS a f f i l i a t i o n

FROM
s o u r c e . a u t h o r ANNOT(’M2’) a ,
s o u r c e . i n s t i t u t e ANNOT(’M2’) i

WHERE a . i n s t = i . i n s t i d
UNION
SELECT

SK2 (a . name) AS a u t h I d ,
f i r s t (a . name) AS f i r s t N a m e ,
l a s t (a . name) AS lastName ,
SK3 (a . name) AS a f f i l i a t i o n

FROM
s o u r c e . a u t h o r a ANNOT(’M1’)

Figure 7.9: Implementing Transformations

7.3 Evaluation

We demonstrate the usefulness of TRAMP by means of an example debugging process based on the er-
roneous mappings presented in the motivation (M2a, M3a shown in Figure 7.2). Recall that instead of
the correct mappings M1 and M2 the user has chosen mapping M2a, which incorrectly copies the name
attribute from the source to the first and last name attributes in the target. We assume that the mapping
system generated the implementing transformation T1 (Figure 7.9) for this mapping.

The user might recognize that the first and last name attribute both contain the same complete name and
that several authors he expected to be present in the target are missing. (S)he then decides to investigate the
source of this error. First, it would make sense to check why the name attribute value is duplicated. So the
user issues the following query to understand which source data was used to produce the Author relation
tuples.

SELECT PROVENANCE ∗ FROM t a r g e t . a u t h o r ;

If the target instance is large the result size of the query can be reduced by using a WHERE clause
condition to search, e.g., for an author known to the user like:

. . . WHERE f i r s t N a m e = ’ Jim Gray ’

This query reveals that a target author is derived from a source author and the name attributes seem to
be copied. Therefore, the error in the target instance is not caused by erroneous source data. This means
that the mapping (or its implementation) have to be changed to extract the first and last name parts. The
query presented below identifies the mappings that have to be changed.

SELECT ge tAnno t (fSQL→XML (’SELECT ∗ FROM t a r g e t . a u t h o r ’)) ;

This query retrieves the mapping annotations from the transformation that generates the target Author
relation by first generating the XML representation of this query using fSQL→XML and second extracting the
mapping annotations using the XSLT function getAnnot. This query reveals that mapping M2a generates
the Author relation. Correcting mapping M2a means replacing it with M2 which changes the implementing
transformation by adding the first and last functions to extract the name parts.

Afterwards the user can focus on the missing authors. A query over the provenance of the Author
relation can be asked that returns all source authors that are not in the data provenance of any target author
tuple:

7.3. EVALUATION 195

SELECT ∗
FROM s o u r c e . a u t h o r
WHERE name NOT IN

(SELECT p r o v s o u r c e a u t h o r n a m e
FROM

(SELECT PROVENANCE ∗ FROM t a r g e t . a u t h o r) p) ;

Note that this kind of query over provenance is only possible because Perm represents provenance as
complete tuples in a relational format. The authors returned by this query all have no affiliation.3 Therefore,
it is obvious that a new mapping is needed to map authors without an affiliation. This leads to the generation
of mapping M1.

For sake of the example assume that the mapping system uses transformation T2 to implement map-
pings M1 and M2. This transformation generates two versions of an author who has an affiliation, one with
the affiliation and one without an affiliation. The user might recognize this problem and want to resolve
it. To understand why author duplicates are produced (s)he can query the transformation and mapping
provenance of one author and its duplicate. For instance:

SELECT ∗
FROM

(SELECT TRANSSQL ∗ FROM t a r g e t . a u t h o r) AS prov
WHERE

f i r s t N a m e = ’ Jim ’ and las tName = ’ Grey ’

This query reveals that the duplicate with affiliation was created by the left input of the union in T1
and the one without an affiliation was produced by the right input of the union. The computation of
transformation provenance in TRAMP also propagates mapping annotations and, therefore, the user is
aware that the left input corresponds to mapping M1 and the right one to M2. Checking the definitions of
these mappings the user will realize that M1 and M2 are correct, and, thus, the error must have been caused
by the transformation. If the mapping system supports it the user can request a different implementing
transformation or he may have to correct the error by manually changing the implementing transformation.
At this point the target Author relation contains the desired data. We do not follow the debugging process
from here on.

3If the target instance is large, the user can check that this assumption is true by adding a WHERE clause condition to the query.

196 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

7.4 Discussion
We now compare the functionality TRAMP provides for schema mapping debugging with the functionality
of approaches proposed in the literature and afterwards summarize the findings of this chapter.

7.4.1 Comparison with Schema Mapping Debugging Systems
The need to support users in understanding the results of schema mapping has been addressed before,
although not in as comprehensive and inclusive manner as in TRAMP. The Clio data-viewer [YMHF01]
system helps a user in understanding a schema mapping by presenting the result of applying a transfor-
mation for a schema mapping on small example source instances (examples chosen by the tool). This
approach was later extended for XML data and mappings in Muse [ACMT08].

The rationale is that by examining the result data produced by a mapping, a user can gain an understand-
ing of the inner workings of a mapping and alternative mappings that may be considered by a design tool.
This rationale is true to some degree, but for complex mappings having just the source and target instance
is not enough to understand the mapping. More precise information about the relationships between input
and output data is needed (data provenance). Also, if the mapping is correct, but the transformation used
to generate examples is incorrect (or the data is dirty), these approaches do not help users in understanding
the source of these errors.

Recent approaches to schema debugging facilitate provenance information in the debugging process.
SPIDER [CT06] uses provenance in defining routes computed for a subset of a target instance. Each route is
a possible way of producing the tuples of interest by sequentially applying mappings to tuples (route-steps)
in the source instance (and the tuples generated by previous mapping applications in the route). A route
combines data with mapping provenance. SPIDER does not provide any querying facilities over the routes
and lacks support for debugging incorrect transformations. Routes consider only the logical specification
of a mapping. Thus, they have the advantage of being independent of the concrete implementation of a
mapping in the form of a transformation query or program. On the other hand this independence can also be
problematic if an error is caused by an incorrect transformation. Furthermore, no query facilities for routes
are provided, they can only be explored using the visual interface of SPIDER. A sequential representation
of routes is used that is not fully determined by the mappings. This representation may mislead a user into
expecting a meaning from the chosen ordering.

MXQL [VMM05] generates provenance information eagerly during the execution of a transformation.
The generated target instance is enriched with transformations that store mapping provenance information
and provenance that relates source to target schema elements (schema-schema provenance). MXQL is,
together with TRAMP, the only approach that provides full query language support for provenance and
mapping information (SQL is used by both systems). In contrast to TRAMP, MXQL supports neither meta-
querying nor transformation provenance.

Transformation provenance has some similarities with How provenance [GKT07a] and Why-not prove-
nance [CJ09]. How provenance has the disadvantage that, unlike transformation provenance, it does not
record any information about which operators of a query contributed to a result. The major differences
of Why-not provenance to our approach is that we compute and present transformation provenance for
each witness list, whereas Why-not provenance is computed for an input pattern and there is only one
output for a certain input pattern. Furthermore, no method to query provenance is provided. Finally, to
compute Why-not provenance, the data provenance of several parts of the query have to be computed.
Our implementation has the advantage that, though we also define transformation provenance based on
data provenance, we never have to pay the price of instantiating this information in the computation of
transformation provenance.

Different forms of Mapping provenance have been implemented in Orchestra [GKT07a] and MXQL
[VMM05]. In Orchestra, a so-called collaborative data sharing system, schema mappings are used to
propagate updates between peers with different schemas. How provenance is used to store the origin of
data in a peer instance and to determine if data should be rejected because it came from an untrusted
peer. Mapping provenance is modeled by adding functions to the how-provenance semi-ring model. Each
function represents a mapping and is applied to a sub-expression in the provenance. For instance, m1(t1t2)+
m2(t3) means that the result tuple t was produced by mappings m1 and m2 where m1 used input tuples

7.4. DISCUSSION 197

t1 and t2 in conjunction and m2 used only tuple t3 to produce t. The mapping provenance provided by
MXQL represents static (meaning instance independent) information [VMM05]. MXQL uses annotations
to associate information about both mappings and source schemas with target data. However, using static
information has the disadvantage that it is not possible to determine exactly which mappings produce a
tuple. In contrast to MXQL, TRAMP uses run-time information and, thus, can identify the mapping that
generated an output tuple.

7.4.2 Summary
In this chapter we demonstrated that the Perm system (with the TRAMP extensions to cope with schema
mappings) can be used to realize a holistic approach for schema mapping debugging. TRAMP extends
Perm with mapping provenance and provides efficient and powerful query and meta-query support for this
information. It is known that provenance can be important in understanding and debugging integrated
information, but we show how only the full combination of different kinds of provenance and query func-
tionality can answer many questions that are important in understanding and disambiguating the sources
of the myriad of errors than can occur when integrating data. Furthermore, the new functionality can be
implemented efficiently as extensions of the existing rewrite algorithms in Perm. For instance, the imple-
mentation of mapping provenance required only small extensions to the transformation provenance com-
putation of Perm. We evaluated the viability of our holistic approach by means of an example debugging
process.

In summary, we demonstrated that only minor extensions to the generic Perm system are necessary to
adapt the system to a specific application domain with its own, unique requirements. Furthermore, the novel
features of Perm, especially the relational representation and computation of different types of provenance,
enabled a more holistic approach towards schema mapping debugging than provided by existing approaches
like SPIDER [CT06], MXQL [VMM05], Muse [ACMT08], and Clio data-viewer [YMHF01].

198 CHAPTER 7. USING PERM TO DEBUG AND UNDERSTAND SCHEMA MAPPINGS

Chapter 8

Conclusions and Outlook

8.1 Thesis Summary
In this thesis, we have presented the Perm approach for integrating provenance support into relational
database systems. In contrast to other PMS our system is ”purely relational” in the sense that provenance
information is represented alongside with normal data as standard relations and is computed by executing
a rewritten version of the SQL query for which provenance should be computed.

With PI-CS we defined a new contribution semantics type that adapts Lineage-CS to a purely relational
representation and solves the problems of this CS type regarding queries that use negation or sublinks. We
presented algebraic rewrite rules that transform a query q into a query q+ computing the original result
and the provenance of q and have proven their correctness. Furthermore, based on PI-CS, we developed
several C-CS types that can be computed by applying filtering steps to the PI-CS provenance of a query
and presented a contribution semantics for transformation provenance that is also based on PI-CS.

To integrate the presented provenance functionality into SQL, we developed the SQL-PLE language
extension that enriches SQL with constructs for triggering and controlling provenance computation. With
the implementation of SQL-PLE as an extension to PostgreSQL we have presented a full-fledged relational
PMS that supports provenance computation and querying for almost all SQL query constructs supported by
PostgreSQL (except for non-deterministic functions and recursion). Optimizations such as de-correlation
and un-nesting for sublinks and avoidance of rewrites for sub-queries with constant provenance are inte-
grated in the system to improve the performance of provenance computations. Perm generates provenance
lazily on demand, supports external provenance and partial provenance computation.

The performance measurements conducted with Perm indicate that our approach is feasible. The inher-
ent cost of computing the provenance for sublink queries on large databases is evident in our results. Large
run-time differences between the rewrite strategies for sublinks demonstrate the benefits of integrating
un-nesting and de-correlation techniques into the rewrites.

The application of Perm to a specific use case - schema mapping debugging - illustrated the general
applicability of the system. By implementing marginal extensions to Perm a novel holistic approach to
mapping debugging was realized which supports debugging functionality not found in other provenance
enabled mapping systems.

In summary, to the best of our knowledge we are the first to provide a fully implemented relational
PMS build upon a sound theoretical foundation that is capable of computing the provenance of complex
SQL queries.

8.2 Future Work
Based on the results presented in this thesis, we propose several avenues of future work. Being fully
implemented, Perm provides a platform for exploring topics such as provenance-aware physical operators,
compressed provenance storage, provenance of data manipulations, and support for specialized provenance
needs like in uncertain databases.

199

200 CHAPTER 8. CONCLUSIONS AND OUTLOOK

8.2.1 Provenance Aware Physical Operators
While implementing and developing the query rewrites for Perm, patterns of typical computations per-
formed in rewritten queries were identified. The efficiency of provenance computation could be increased
by developing new physical operators that directly propagate provenance information. This could lead to
significant improvements, because the algebraic rewrites often require the recreation of intermediate re-
sults, leading to expensive join or sublink operations. For example, a modified aggregation operator, that
in addition to computing aggregation functions, also passes on all tuples from a group could be used in
provenance computation to propagate provenance information directly through an aggregation without the
need for joins between provenance information and original aggregation.

In a typical query execution engine, attribute values are copied a lot during the processing of a query.
This is a feasible approach for normal operations. For provenance computation this approach is suboptimal,
because during execution provenance information is either passed on unmodified by an operator or dropped;
only the association between provenance and original intermediate results changes. This fact could be
utilized by modifying the physical operators of a DBMS to allow the reuse of provenance information by
different operators in a query plan.

8.2.2 Data Models and Transformation Types
It would be interesting to generalize the results of this thesis to other data models and transformation
languages. For example, is it possible to represent the provenance of XML data in XML and compute
such representation using XQuery or XSLT? If applied to transformations that are executable programs
written in a procedural language like Java, rewriting a transformation is program instrumentation. This
would be along the lines of [ZZZP07b] where Valgrind [htt09a] is used to instrument a binary to propagate
provenance information.

8.2.3 Index Structures and Compressed Representations
Index structures for provenance have been proposed (e.g., [KW09, HA08]), but their performance has not
been evaluated inside a PMS. Perm could serve as a platform for such evaluations. The same applies for
compression of provenance information. Compression schemes for provenance data have been studied
without integrating them into a PMS, which would enable the estimation of their impact on query perfor-
mance in such a system. Furthermore, compression could be integrated with provenance aware physical
operators with similar benefits as, e.g., the integration of string compression in a query engine. Meaning-
ful contribution semantics like PI-CS, Lineage-CS and Why-CS may produce huge amounts of provenance
information. One approach to reduce the size of the generated provenance could be to replace parts of the
provenance with a symbolic representation. For instance, instead of representing parts of the provenance as
a collection of tuples it could be represented as a query that returns the tuples that belong to the provenance
(this is similar to how [SV07a] represents annotations). In addition to making provenance more intelligible
for the user, such representations open up new opportunities for optimizing provenance computation.

Appendix A

SQL-PLE Grammar

This appendix presents a grammar for SQL-PLE. We use the grammatical representation that is used in the
PostgreSQL manual. SQL-PLE extensions are highlighted in red. The new language constructs added by
SQL-PLE are presented below.

Construct Description
PROVENANCE Marks a query for provenance computation
ON CONTRIBUTION (cs type) Instructs Perm to use a certain CS type
BASERELATION Handle a from-clause item as if it were a base relation
PROVENANCE (attr list) Handle attributes from attr list as provenance attributes
TRANSPROV/TRANSSQL/TRANSXML Mark a query for transformation provenance computation
EXPLAIN SQLTEXT Return the (rewritten) SQL text of an query
EXPLAIN GRAPH Return an algebra tree for an query (as a dot-language script)
MAPPROV Compute the mapping provenance and represent it as sets of

mappings.
THIS.childpath A shortcut for generating the XML representation of the sub-

query accessed by path.
XSLT. f (xml param) Apply XSLT function f to XML document xml_param.
cxpath (path expr , input) Evaluate X-Path expression path_expr over input. Returns

true if the evaluation of the XPath expression returns at least
one result.

ANNOT(annotation) Annotates the FROM clause item it is appended to with
annotation.

201

202 APPENDIX A. SQL-PLE GRAMMAR

A.1 SELECT

Synopsis

s e l e c t s t a t e m e n t :=
SELECT [p r o v e n a n c e c l a u s e] d i s t i n c t c l a u s e s e l e c t i t e m [, . . .]
[FROM f r o m i t e m [f r o m p r o v e n a n c e] [, . . .]]
[WHERE c o n d i t i o n]
[GROUP BY e x p r e s s i o n [, . . .]]
[HAVING c o n d i t i o n [, . . .]]
[{ UNION | INTERSECT | EXCEPT } [ALL] s e l e c t]
[ORDER BY e x p r e s s i o n [ASC | DESC | USING o p e r a t o r] [, . . .]
[LIMIT { c o u n t | ALL }]
[OFFSET s t a r t]
[FOR { UPDATE | SHARE } [OF t a b l e n a m e [, . . .]] [NOWAIT] [. . .]]

where from item can be one of:

f r o m i t e m :=
[ONLY] t a b l e n a m e [∗] o p t p l e [a l i a s] [c o l a l i a s]
| (s e l e c t) o p t p l e [a l i a s] [c o l d e f]
| f u n c t i o n n a m e ([a rgument [, . . .]]) [a l i a s] [c o l a l i a s]
| f u n c t i o n n a m e ([a rgument [, . . .]]) AS (c o l u m n d e f i n i t i o n [, . . .])
| f r o m i t e m [NATURAL] j o i n t y p e f r o m i t e m [ON j o i n c o n d i t i o n | u s i n g e x p r]

a l i a s :=
[AS] a l i a s n a m e

c o l d e f :=
[(c o l u m n a l i a s [, . . .])]]

o p t p l e :=
[a n n o t e x p r] [f r o m p r o v e n a n c e]

Description
SQL-PLE extends the PostgreSQL select statement with triggers for provenance computation, clauses for
controlling the rewrite process for FROM clause items, and annotation functionality.

Provenance Clause
Triggers different types of provenance computation.

p r o v e n a n c e c l a u s e :=
PROVENANCE [ON CONTRIBUTION (c s t y p e)]
| MAPPROV
| TRANSPROV
| TRANSXML
| TRANSSQL

ANNOT Expression
Used to annotate a FROM clause item.

a n n o t e x p r :=
ANNOT (a n n o t a t i o n [, . . .])

A.1. SELECT 203

From Clause Provenance Expression
Controls the rewrite process for FROM clause items.

f r o m p r o v e n a n c e :=
BASERELATION
| PROVENANCE (column [, . . .])

204 APPENDIX A. SQL-PLE GRAMMAR

A.2 EXPLAIN

Synopsis

EXPLAIN [SQLTEXT | GRAPH] [ANALYZE] [VERBOSE] s t a t e m e n t

Description
Perm adds two extensions to the EXPLAIN command of PostgreSQL: SQLTEXT and GRAPH.

Parameters
SQLTEXT
Return the SQL text of the input query, but apply SQL-PLE rewrites beforehand.
GRAPH
Return an algebra tree for the input query.

Bibliography

[AB03] Michael O. Akinde and Michael H. Böhlen. Efficient Computation of Subqueries in Complex
OLAP. ICDE ’03: Proceedings of the 19th International Conference on Data Engineering,
pages 163–174, 2003.

[ABJF06] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance Collection Support in the
Kepler Scientific Workflow System. In IPAW ’06: International Provenance and Annotation
Workshop, pages 118–132, 2006.

[ABML09a] Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. Effi-
cient Provenance Storage over Nested Data Collections. In EDBT ’09: Proceedings of the
12th International Conference on Extending Database Technology, pages 958–969, 2009.

[ABML09b] Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. Ex-
ploring Scientific Workflow Provenance Using Hybrid Queries over Nested Data and Lineage
Graphs. In SSDBM ’09: Proceedings of the 21th International Conference on Scientific and
Statistical Database Management, pages 237–254, 2009.

[ABS+06a] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar, Tomoe
Sugihara, and Jennifer Widom. An Introduction to ULDBs and the Trio System. IEEE Data
Engineering Bulletin, 29(1):5–16, 2006.

[ABS+06b] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U. Nabar,
Tomoe Sugihara, and Jennifer Widom. Trio: A System for Data, Uncertainty, and Lineage.
In VLDB ’06: Proceedings of the 32nd International Conference on Very Large Data Bases,
pages 1151–1154, 2006.

[ACMT08] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and Wang-Chiew Tan. Muse: Mapping
Understanding and Design by Example. In ICDE ’08: Proceedings of the 24th International
Conference on Data Engineering, pages 10–19, 2008.

[AF00] Paul Avery and Ian T. Foster. The GriPhyN Project: Towards Petascale Virtual Data Grids.
The 2000 NSF Information and Technology Research Program, 2000.

[AHV95] Serge Abiteboul, Rick Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Ale05] Bogdan Alexe. An Alternative Storage Scheme for the DBNotes Annotation Management
System for Relational Databases. Technical report, University of California, Santa Cruz,
2005.

[ATV08] Bogdan Alexe, Wang-Chiew Tan, and Yannis Velegrakis. STBenchmark: Towards a Bench-
mark for Mapping Systems. PVLDB: Proceedings of the VLDB Endowment archive,
1(1):230–244, 2008.

[AW07] Parag Agrawal and Jennifer Widom. Confidence-Aware Joins in Large Uncertain Databases.
Technical report, Stanford University, 2007.

205

206 BIBLIOGRAPHY

[AW09] Parag Agrawal and Jennifer Widom. Confidence-Aware Joins in Large Uncertain Databases.
In ICDE ’09: Proceedings of the 25th International Conference on Data Engineering, 2009.

[AZV+02] James Annis, Yong Zhao, Jens Voeckler, Michael Wilde, Steve Kent, and Ian T. Foster.
Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey. In
Supercomputing ’02: Proceedings of the Conference on Supercomputing, pages 1–14, 2002.

[BA97] Amos Bairoch and Rolf Apweiler. The SWISS-PROT Protein Sequence Data Bank and its
Supplement TrEMBL. Nucleic Acids Research, 25(1):31, 1997.

[BB88] Howard S. Bilofsky and Christian Burks. The GenBank Genetic Sequence Data Bank. Nu-
cleic Acids Research, 16(5):1861, 1988.

[BBC+09] Michael Blow, Vinayak Borkar, Michael Carey, Christopher Hillery, Alexander Kotopoulis,
Dimitry Lychagin, Radu Preotiuc-Pietro, Panagiotis Reveliotis, Joshua Spiegel, and Till
Westmann. Updates in the AquaLogic Data Services Platform. In ICDE ’09: Proceedings
of the 25th International Conference on Data Engineering, pages 1431–1442, 2009.

[BCC06] Peter Buneman, Adriane Chapman, and James Cheney. Provenance Management in Curated
Databases. Technical report, The University of Edinburgh, 2006.

[BCCV06] Peter Buneman, Adriane Chapman, James Cheney, and Stijn Vansummeren. A Provenance
Model for Manually Curated Data. In IPAW ’06: International Provenance and Annotation
Workshop, pages 162–170, 2006.

[BCTV04] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An An-
notation Management System for Relational Databases. In VLDB ’04: Proceedings of the
30th International Conference on Very Large Data Bases, pages 900–911, 2004.

[BCTV05] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An An-
notation Management System for Relational Databases. The VLDB Journal, 14(4):373–396,
2005.

[BCV08] Peter Buneman, James Cheney, and Stijn Vansummeren. On the Expressiveness of Im-
plicit Provenance in Query and Update Languages. ACM Transactions on Database Systems
(TODS), 33(4):1–47, 2008.

[BGH+06] Uri Braun, S. Garfinkel, David A. Holland, Kiran-Kumar Muniswamy-Reddy, and Margo
Seltzer. Issues in Automatic Provenance Collection. Lecture Notes in Computer Science,
4145:171, 2006.

[Bin08] Carsten Binnig. Generating Meaningful Test Databases. PhD thesis, University of Heidel-
berg, 2008.

[BKL06] Carsten Binnig, Donald Kossmann, and Eric Lo. Reverse Query Processing. Technical
report, ETH Zürich, 2006.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A Characteriza-
tion of Data Provenance. In ICDT ’01: Proceedings of the 8th International Conference on
Database Theory, pages 316–330, 2001.

[BKT02] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On Propagation of Deletions and
Annotations through Views. In PODS ’02: Proceedings of the 21th Symposium on Principles
of Database Systems, pages 150–158, 2002.

[BKTT04] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan. Archiving Scientific
Data. ACM Transactions on Database Systems (TODS), 29(1):2–42, 2004.

[BM95] Lars Baekgaard and Leo Mark. Incremental Computation of Nested Relational Query Ex-
pressions. ACM Transactions on Database Systems (TODS), 20(2):111–148, 1995.

BIBLIOGRAPHY 207

[BML+06] Shawn Bowers, Timothy McPhillips, Bertram Ludäscher, Sarah Cohen, and Susan Davidson.
A Model for User-Oriented Data Provenance in Pipelined Scientific Workflows. In IPAW ’06:
International Provenance and Annotation Workshop, pages 133–147, 2006.

[BML08] Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. Provenance in Collection-
oriented Scientific Workflows. Concurrency and Computation: Practice and Experience,
20(5):519–529, 2008.

[Bos02] Rajendra Kumar Bose. A Conceptual Framework for Composing and Managing Scientific
Data Lineage. In SSDBM ’02: Proceedings of the 14th International Conference on Scientific
and Statistical Database Management, pages 15–19, 2002.

[Bos04] Rajendra Kumar Bose. Composing and Conveying Lineage Metadata for Environmental
Science Research Computing. PhD thesis, University of California, Santa Barbara, 2004.

[BSHW06] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. ULDBs:
Databases with Uncertainty and Lineage. In VLDB ’06: Proceedings of the 32th Inter-
national Conference on Very Large Data Bases, 2006.

[CAA07] James Cheney, Amal Ahmed, and Umut Acar. Provenance as Dependency Analysis. In
DBPL ’07: Proceedings of the 11th International Symposium on Database Programming
Languages, pages 138–152, 2007.

[CAA08] James Cheney, Umut Acar, and Amal Ahmed. Provenance Traces. Technical report, Univer-
sity of Edinburgh, 2008.

[CB07] Bin Cao and Antonio Badia. SQL Query Optimization through Nested Relational Algebra.
ACM Transactions on Database Systems (TODS), 32(3):18, 2007.

[CCT09] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases: Why,
How, and Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[CFS+06] Steven Callahan, Juliana Freire, Emanuele Santos, Carlos Eduardo Scheidegger, Claudio T.
Silva, and Huy Vo. VisTrails: Visualization meets Data Management. In SIGMOD ’06: Pro-
ceedings of the 32th SIGMOD International Conference on Management of Data (demon-
stration), pages 745–747, 2006.

[CFV+08] Ben Clifford, Ian T. Foster, Jens S. Voeckler, Michael Wilde, and Yong Zhao. Tracking
Provenance in a Virtual Data Grid. Concurrency and Computation: Practice and Experience,
20(5):565–575, 2008.

[Cha98] Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems. In PODS
’98: Proceedings of the 17th Symposium on Principles of Database Systems, pages 34–43,
1998.

[Che00] James Cheney. A Metaprogramming Approach to Data Provenance. Technical report, Uni-
versity of Edinburgh, 2000.

[Che07] James Cheney. Program Slicing and Data Provenance. IEEE Data Engineering Bulletin,
30(4):22–28, 2007.

[CJ08] Adriane Chapman and H. V. Jagadish. Provenance and the Price of Identity. In IPAW ’08:
International Provenance and Annotation Workshop, pages 106–119, 2008.

[CJ09] Adriane Chapman and H. V. Jagadish. Why Not? In SIGMOD ’09: Proceedings of the 35th
SIGMOD International Conference on Management of Data, pages 523–534, 2009.

[CJR08] Adriane Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient Provenance Storage. In
SIGMOD ’08: Proceedings of the 35th SIGMOD International Conference on Management
of Data, pages 993–1006, 2008.

208 BIBLIOGRAPHY

[CPS+09] Bin Cao, Beth Plale, Girish H. Subramanian, Ed Robertson, and Yogesh L. Simmhan. Prove-
nance Information Model of Karma Version 3. In SERVICES I ’09: Proceedings of the
Congress on Services, pages 348–351, 2009.

[CT06] Laura Chiticariu and Wang-Chiew Tan. Debugging Schema Mappings with Routes. In VLDB
’06: Proceedings of the 32th International Conference on Very Large Data Bases, pages 79–
90, 2006.

[CTV05] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. DBNotes: a Post-it System
for Relational Databases based on Provenance. In SIGMOD ’05: Proceedings of the 31th
SIGMOD International Conference on Management of Data, pages 942–944, 2005.

[CTX+05] Liming Chen, Victor Tan, Fenglian Xu, Alexis Biller, Paul Groth, Simon Miles, John Ibbot-
son, Michael Luck, and Luc Moreau. A Proof of Concept: Provenance in a Service Oriented
Architecture. In AHM ’05: Proceedings of the UK OST e-Science All Hands Meeting, pages
274–281, 2005.

[Cui02] Yingwei Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford University, 2002.

[CW00a] Yingwei Cui and Jennifer Widom. Lineage Tracing in a Data Warehousing System. In ICDE
’00: Proceedings of the 16th International Conference on Data Engineering (demonstra-
tion), pages 683–684, 2000.

[CW00b] Yingwei Cui and Jennifer Widom. Practical Lineage Tracing in Data Warehouses. In ICDE
’00: Proceedings of the 16th International Conference on Data Engineering, pages 367–378,
2000.

[CW00c] Yingwei Cui and Jennifer Widom. Storing Auxiliary Data for Efficient Maintenance and
Lineage Tracing of Complex Views. In DMDW ’00: Proceedings of the 2th International
Workshop on Design and Management of Data Warehouses, 2000.

[CW01a] Yingwei Cui and Jennifer Widom. Lineage Tracing for General Data Warehouse Transfor-
mations. In VLDB ’07: Proceedings of the 33th International Conference on Very Large
Data Bases, pages 471–480, 2001.

[CW01b] Yingwei Cui and Jennifer Widom. Run-time Translation of View Tuple Deletions using Data
Lineage. Technical report, Stanford University, 2001.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage of View Data in
a Warehousing Environment. ACM Transactions on Database Systems (TODS), 25(2):179–
227, 2000.

[Day83] Umeshwar Dayal. Processing Queries with Quantifiers a Horticultural Approach. In PODS
’83: Proceedings of the 2th Symposium on Principles of Database Systems, pages 125–136,
1983.

[DCBE+07] Susan B. Davidson, Sarah Cohen-Boulakia, Anat Eyal, Bertram Ludäscher, Timothy
McPhillips, Shawn Bowers, and Juliana Freire. Provenance in Scientific Workflow Systems.
IEEE Data Engineering Bulletin, 32(4):44–50, 2007.

[DSANW08] Anish Das Sarma, Parag Agrawal, Shubha Nabar, and Jennifer Widom. Towards Special-
Purpose Indexes and Statistics for Uncertain Data. Technical report, Stanford University,
2008.

[DSTW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Data Modifications and Versioning
in Trio. Technical report, Stanford University, 2008.

[EAE+09] Mohamed Y. Eltabakh, Walid G. Aref, Ahmed K. Elmagarmid, Mourad Ouzzani, and
Yasin N. Silva. Supporting Annotations on Relations. In EDBT ’09: Proceedings of the
12th International Conference on Extending Database Technology, pages 379–390, 2009.

BIBLIOGRAPHY 209

[EGLGJ07] Mostafa Elhemali, César A. Galindo-Legaria, Torsten Grabs, and Milind Joshi. Execution
Strategies for SQL Subqueries. In SIGMOD ’07: Proceedings of the 33th SIGMOD Interna-
tional Conference on Management of Data, pages 993–1004, 2007.

[EKA+08] Tommy Ellkvist, David Koop, Erik W. Anderson, Juliana Freire, and Claudio T. Silva. Us-
ing Provenance to Support Real-Time Collaborative Design of Workflows. In IPAW ’08:
International Provenance and Annotation Workshop, pages 266–279, 2008.

[EOA07] Mohamed Y. Eltabakh, Mourad Ouzzani, and Walid G. Aref. BDBMS - A Database Man-
agement System for Biological Data. In CIDR ’07: Proceedings of the 3th Conference on
Innovative Data Systems Research, 2007.

[EOA+08] Mohamed Y. Eltabakh, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Yasin
Laura-Silva, Muhammad U. Arshad, David Salt, and Ivan Baxter. Managing Biological
Data using BDBMS. In ICDE ’08: Proceedings of the 24th International Conference on
Data Engineering (demonstration), pages 1600–1603, 2008.

[FB01] James Frew and Rajendra Kumar Bose. Earth System Science Workbench: A Data Man-
agement Infrastructure for Earth Science Products. In SSDBM ’01: Proceedings of the 13th
International Conference on Scientific and Statistical Database Management, pages 180–
189, 2001.

[FGT08] J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated XML: Queries and Provenance.
In PODS ’08: Proceedings of the 27th Symposium on Principles of Database Systems, 2008.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data Exchange:
Semantics and Query Answering. Theoretical Computer Science, 336(1):89–124, 2005.

[FKSS08] Juliana Freire, David Koop, Emanuele Santos, and Claudio T. Silva. Provenance for Com-
putational Tasks: A Survey. Computing in Science and Engineering, 10(3):11–21, 2008.

[FMS08] James Frew, Dominic Metzger, and Peter Slaughter. Automatic Capture and Reconstruction
of Computational Provenance. Concurrency and Computation: Practice and Experience,
20(5):485, 2008.

[Fos03] Ian T. Foster. The Virtual Data Grid: A new Model and Architecture for Data-Intensive Col-
laboration. In SSDBM ’03: Proceedings of the 15th International Conference on Scientific
and Statistical Database Management, pages 11–11, 2003.

[FS08a] James Frew and Peter Slaughter. Automatic Run-Time Provenance Capture for Scientific
Dataset Generation. In AGU Fall Meeting Abstracts, page 1039, 2008.

[FS08b] James Frew and Peter Slaughter. ES3: A Demonstration of Transparent Provenance for
Scientific Computation. In IPAW ’08: International Provenance and Annotation Workshop,
pages 200–207, 2008.

[FSP07] James Frew, Peter Slaughter, and Thomas H. Painter. ES3: Automatic Capture and Recon-
struction of Science Product Lineage and Metadata. In AGU Fall Meeting Abstracts, page 4,
2007.

[FVWZ02] Ian T. Foster, Jens-S. Vöckler, Michael Wilde, and Yong Zhao. Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation. In SSDBM ’02: Pro-
ceedings of the 14th International Conference on Scientific and Statistical Database Man-
agement, pages 37–46, 2002.

[GA09a] Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In ICDE ’09: Proceedings of the 25th International
Conference on Data Engineering, pages 174–185, 2009.

210 BIBLIOGRAPHY

[GA09b] Boris Glavic and Gustavo Alonso. Provenance for Nested Subqueries. In EDBT ’09: Pro-
ceedings of the 12th International Conference on Extending Database Technology, pages
982–993, 2009.

[GA09c] Boris Glavic and Gustavo Alonso. The Perm Provenance Management System in Action. In
SIGMOD ’09: Proceedings of the 35th SIGMOD International Conference on Management
of Data (demonstration), pages 1055–1058, 2009.

[GD07] Boris Glavic and Klaus R. Dittrich. Data Provenance: A Categorization of Existing Ap-
proaches. In BTW ’07: Proceedings of Datenbanksysteme in Buisness, Technologie und
Web, pages 227–241, 2007.

[GGS+03] Mark Greenwood, Carole Goble, Robert D. Stevens, Jun Zhao, Matthew Addis, Darren Mar-
vin, Luc Moreau, and Tom Oinn. Provenance of e-Science Experiments - Experience from
Bioinformatics. In AHM ’03: Proceedings of the UK OST e-Science All Hands Meeting,
pages 223–226, 2003.

[GJM+06a] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, and
Luc Moreau. An Architecture for Provenance Systems. Technical report, University of
Southampton, 2006.

[GJM+06b] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, and Luc
Moreau. An Architecture for Provenance Systems - Executive Summary. Technical report,
University of Southampton, 2006.

[GKIT07] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update Exchange
with Mappings and Provenance. In VLDB ’07: Proceedings of the 33th International Con-
ference on Very Large Data Bases, pages 675–686, 2007.

[GKM05] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano. MONDRIAN: Annotating and
Querying Databases through Colors and Blocks. Technical report, University of Edinburgh,
2005.

[GKM06] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano. iMONDRIAN: A Visual Tool
To Annotate and Query Scientific Databases. In EDBT ’06: Proceedings of the 9th Interna-
tional Conference on Extending Database Technology (demonstration), pages 1168–1171,
2006.

[GKT07a] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance Semirings. In PODS
’07: Proceedings of the 26th Symposium on Principles of Database Systems, pages 31–40,
2007.

[GKT+07b] Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Olivier Biton, Zachary G. Ives,
and Val Tannen. ORCHESTRA: Facilitating Collaborative Data Sharing. In SIGMOD ’07:
Proceedings of the 33th SIGMOD International Conference on Management of Data, 2007.

[GLM04a] Paul Groth, Michael Luck, and Luc Moreau. A Protocol for Recording Provenance in
Service-Oriented Grids. In OPODIS ’04: Proceedings of the 8th International Conference
on Principles of Distributed Systems, pages 124–139, 2004.

[GLM04b] Paul Groth, Michael Luck, and Luc Moreau. Formalising a Protocol for Recording Prove-
nance in Grids. In AHM ’04: Proceedings of the UK OST e-Science All Hands Meeting,
pages 147–154, 2004.

[GMF+05] Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter Zauner, and Luc
Moreau. Recording and Using Provenance in a Protein Compressibility Experiment. In
HPDC ’05: Proceedings of the 14th IEEE International Symposium on High Performance
Distributed Computing, 2005.

BIBLIOGRAPHY 211

[GMM05] Paul Groth, Simon Miles, and Luc Moreau. PReServ: Provenance Recording for Services. In
AHM ’05: Proceedings of the UK OST e-Science All Hands Meeting, pages 282–289, 2005.

[GMTM05] Paul Groth, Simon Miles, Victor Tan, and Luc Moreau. Architecture for Provenance Sys-
tems. Technical report, University of Southampton, 2005.

[GN00] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System and its
Applications to Software Engineering. Software Practice and Experience, 30(11):1203–
1233, 2000.

[Gre09] Todd J. Green. Containment of Conjunctive Queries on Annotated Relations. In ICDT ’09:
Proceedings of the 16th International Conference on Database Theory, 2009.

[Gro04] Dennis P. Groth. Information Provenance and the Knowledge Rediscovery Problem. In IV
’04: Proceedings of the 8th International Conference on Information Visualisation, pages
345–351, 2004.

[GVdB07] Floris Geerts and Jan Van den Bussche. Relational Completeness of Query Languages for
Annotated Databases. Lecture Notes in Computer Science, 4797:127, 2007.

[HA08] Thomas Heinis and Gustavo Alonso. Efficient Lineage Tracking for Scientific Workflows. In
SIGMOD ’08: Proceedings of the 34th SIGMOD International Conference on Management
of Data, pages 1007–1018, 2008.

[HCDN08] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the Provenance of
Non-answers to Queries over Extracted Data. PVLDB: Proceedings of the VLDB Endowment
archive, 1(1):736–747, 2008.

[HE97] Kathleen Hornsby and Max J. Egenhofer. Qualitative Representation of Change. In COSIT
’97: Proceedings of the International Conference on Spatial Information Theory: A Theo-
retical Basis for GIS, pages 15–33, 1997.

[HHT09] Melanie Herschel, Mauricio A. Hernández, and Wang-Chiew Tan. Artemis: A System for
Analyzing Missing Answers. In VLDB ’09: Proceedings of the 35th International Confer-
ence on Very Large Data Bases (demonstration), pages 1550–1553, 2009.

[HLB+08] Bill Howe, Peter Lawson, Renee Bellinger, Erik W. Anderson, Emanuele Santos, Juliana
Freire, Carlos Eduardo Scheidegger, Antonio Baptista, and Claudio T. Silva. End-to-End
eScience: Integrating Workflow, Query, Visualization, and Provenance at an Ocean Obser-
vatory. In eScience ’08: Proceedings of the 4th IEEE International Conference on eScience,
pages 127–134, 2008.

[HQGW93] Nabil I. Hachem, Ke Qiu, Michael A. Gennert, and Matthew O. Ward. Managing Derived
Data in the Gaea Scientific DBMS. In VLDB ’93: Proceedings of the 19th International
Conference on Very Large Data Bases, pages 1–12, 1993.

[htt09a] http://valgrind.org. Valgrind, 2009.

[htt09b] http://www.ittvis.com/. IDL, 2009.

[IGK+08] Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Val Tannen,
Partha Pratim Talukdar, Marie Jacob, and Fernando Pereira. The ORCHESTRA Collabora-
tive Data Sharing System. SIGMOD Record, 37(2), 2008.

[IKKC05] Zachary G. Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. ORCHESTRA: Rapid,
Collaborative Sharing of Dynamic Data. In CIDR ’05: Proceedings of the 2th Conference
on Innovative Data Systems Research, 2005.

[ILJ84] Tomasz Imieliński and Witold Lipski Jr. Incomplete Information in Relational Databases.
Journal of the ACM (JACM), 31(4):761–791, 1984.

212 BIBLIOGRAPHY

[IW09] Robert Ikeda and Jennifer Widom. Data Lineage: A Survey. Technical report, Stanford
University, 2009.

[KDG+08] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar. Provenance
Trails in the Wings/Pegasus System. Concurrency and Computation: Practice and Experi-
ence, 20(5):587–597, 2008.

[Kim82] Won Kim. On Optimizing an SQL-like Nested Query. ACM Transactions on Database
Systems (TODS), 7(3):443–469, 1982.

[KP07] Daisuke Kihara and Sunil Prabhakar. Tracing Lineage in Multi-Version Scientific Databases.
Technical report, Purdue University, 2007.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice Hall,
Inc., 1988.

[KR98] Bogdan Korel and Jurgen Rilling. Dynamic Program Slicing Methods. Information and
Software Technology, 40(11-12):647–659, 1998.

[KTL+03] Ananth Krishna, Victor Tan, Richard Lawley, Simon Miles, and Luc Moreau. The myGrid
Notification Service. In AHM ’03: Proceedings of the UK OST e-Science All Hands Meeting,
pages 475–482, 2003.

[KVVS+06] Tamás Kifor, László Zsolt Varga, Javier Vázquez-Salceda, Sergio Álvarez, Steven Willmott,
Simon Miles, and Luc Moreau. Provenance in Agent-Mediated Healthcare Systems. IEEE
Intelligent Systems, 21(6):38–46, 2006.

[KW09] Anastasios Kementsietsidis and Min Wang. Provenance Query Evaluation: What’s so Spe-
cial about it? In CIKM ’09: Proceeding of the 18th Conference on Information and Knowl-
edge Management, pages 681–690, 2009.

[KY94] Bogdan Korel and Satish Yalamanchili. Forward Computation of Dynamic Program Slices.
In ISSTA ’94: Proceedings of the International Symposium on Software Testing and Analysis,
pages 66–79, 1994.

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew B.
Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Workflow Management and
the Kepler System. Concurrency and Computation: Practice and Experience, 18(10):1039–
1065, 2006.

[Lan89] David P. Lanter. Techniques and Method of Spatial Database Lineage Tracing. PhD thesis,
University of South Carolina, 1989.

[Lan93] David P. Lanter. Method and Means for Lineage Tracing of a Spatial Information Processing
and Database System, March 9 1993. US Patent 5,193,185.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In PODS ’02: Proceedings
of the 21th Symposium on Principles of Database Systems, pages 233–246, 2002.

[LNH+05] Jonathan Ledlie, Chaki Ng, David A. Holland, Kiran-Kumar Muniswamy-Reddy, Uri Braun,
and Margo Seltzer. Provenance-Aware Sensor Data Storage. In ICDE ’03: Workshop Pro-
ceedings of the 21th International Conference on Data Engineering, page 1189, 2005.

[LPA+08] Bertram Ludäscher, Norbert Podhorszki, Ilkay Altintas, Shawn Bowers, and Timothy
McPhillips. From Computation Models to Models of Provenance: the RWS Approach. Con-
currency and Computation: Practice and Experience, 20(5):507–518, 2008.

[LSV02] Jens Lechtenbörger, Hua Shu, and Gottfried Vossen. Aggregate Queries over Conditional
Tables. Journal of Intelligent Information Systems, 19(3):343–362, 2002.

BIBLIOGRAPHY 213

[LZW+97] Wilburt J. Labio, Yue Zhuge, Janet L. Wiener, Himanshu Gupta, Hector Garcı́a-Molina, and
Jennifer Widom. The WHIPS Prototype for Data Warehouse Creation and Maintenance. In
SIGMOD ’97: Proceedings of the 21th SIGMOD International Conference on Management
of Data, pages 557–559, 1997.

[Mar01] Arunprasad P. Marathe. Tracing Lineage of Array Data. Journal of Intelligent Information
Systems, 17(2-3):193–214, 2001.

[MBZL08] Timothy McPhillips, Shawn Bowers, Daniel Zinn, and Bertram Ludäscher. Scientific Work-
flow Design for Mere Mortals. Future Generation Computer Systems, 25(5):541–551, 2008.

[MCG+05] Luc Moreau, Liming Chen, Paul Groth, John Ibbotson, Michael Luck, Simon Miles, Omer
Rana, Victor Tan, Willmott, and Fenglian Xu. Logical Architecture Strawman for Prove-
nance Systems. Technical report, University of Southampton, 2005.

[MFH+01] Renée J. Miller, Daniel Fisla, Mary Huang, David Kymlicka, Fei Ku, and Vivian Lee. The
Amalgam Schema and Data Integration Test Suite, 2001. www.cs.toronto.edu/ miller/amal-
gam.

[MFM+07] Luc Moreau, Juliana Freire, Jim Myers, Joe Futrelle, and Patrick Paulson. The Open Prove-
nance Model, 2007.

[MGBM07] Simon Miles, Paul T. Groth, Miguel Branco, and Luc Moreau. The Requirements of Using
Provenance in e-Science Experiments. Journal of Grid Computing, 5(1):1–25, 2007.

[MGM+08] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-Salceda, John Ibbotson, Sheng Jiang,
Steve Munroe, Omer Rana, Andreas Schreiber, Victor Tan, and Laszlo Varga. The Prove-
nance of Electronic Data. Communications of the ACM, 51(4):52–58, 2008.

[MHH00] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. Schema Mapping as Query
Discovery. In VLDB ’00: Proceedings of the 26th International Conference on Very Large
Data Bases, pages 77–88, 2000.

[MHH+09] Renée J. Miller, Laura M. Haas, Mauricio A. Hernández, Ronald Fagin, Lucian Popa, and
Yannis Velegrakis. Clio: Schema Mapping Creation and Data Exange. Conceptual Model-
ing: Foundations and Applications, page 236, 2009.

[MI06] Luc Moreau and John Ibbotson. Standardisation of Provenance Systems in Service Oriented
Architectures. Technical report, University of Southampton, 2006.

[Mom01] Bruce Momjian. PostgreSQL: Introduction and Concepts. Boston, MA: Addison-Wesley,
2001.

[MPL+06] James D. Myers, Carmen M. Pancerella, Carina S. Lansing, Karen L. Schuchardt, Brett T.
Didier, Naveen Ashish, and Carole A. Goble. Multi-scale Science: Supporting Emerging
Practice with Semantically Derived Provenance. In ISWC Workshop ’03: Semantic Web
Technologies for Searching and Retrieving Scientific Data, 2006.

[MS97] Arunprasad P. Marathe and Kenneth Salem. A Language for Manipulating Arrays. In VLDB
’97: Proceedings of the 23th International Conference on Very Large Data Bases, pages
46–55, 1997.

[MTdK+07] Michi Mutsuzaki, Martin Theobald, Ander de Keijzer, J. Widom, Parag Agrawal, Omar Ben-
jelloun, Anish Das Sarma, Raghotham Murthy, and Tomoe Sugihara. Trio-One: Layering
Uncertainty and Lineage on a Conventional DBMS. In CIDR ’07: Proceedings of the 3th
Conference on Innovative Data Systems Research, pages 269–274, 2007.

[Mur92] M. Muralikrishna. Improved Unnesting Algorithms for Join Aggregate SQL Queries. In
VLDB ’92: Proceedings of the 18th International Conference on Very Large Data Bases,
pages 91–102, 1992.

214 BIBLIOGRAPHY

[Net09] Nicholas Nethercote. Valgrind. http://valgrind.org, 2009.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic Schema Match-
ing. VLDB Journal, 10(4):334–350, 2001.

[RBC+08] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A. Hernández.
Clip: a Visual Language for Explicit Schema Mappings. In ICDE ’08: Proceedings of the
24th International Conference on Data Engineering, pages 30–39, 2008.

[Ree00] George Reese. Database Programming with JDBC and Java. O’Reilly & Associates, Inc.
Sebastopol, CA, USA, 2000.

[SBHW06] Anish Das Sarma, Omar Benjelloun, Alon Y. Halevy, and Jennifer Widom. Working Models
for Uncertain Data. In ICDE ’06: Proceedings of the 22th International Conference on Data
Engineering, page 7, 2006.

[SC05] Can Sar and Pei Cao. Lineage file system. Technical report, Stanford University, 2005.

[SCL99] Laurent Spéry, Christophe Claramunt, and Thérèse Libourel. A Lineage MetaData Model
for the Temporal Management of a Cadastre Application. In DEXA ’99: Proceedings of the
10th International Workshop on Database & Expert Systems Applications, page 466, 1999.

[SCL01] Laurent Spéry, Christophe Claramunt, and Thérèse Libourel. A Spatio-Temporal Model for
the Manipulation of Lineage Metadata. Geoinformatica, 5(1):51–70, 2001.

[SCN+93] Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, and Jiang Wu. Tioga:
Providing Data Management Support for Scientific Visualization Applications. In VLDB
’93: Proceedings of the 19th International Conference on Very Large Data Bases, pages
25–38, 1993.

[SFC07] Claudio T. Silva, Juliana Freire, and Steven Callahan. Provenance for Visualizations: Repro-
ducibility and Beyond. Computing in Science and Engineering, 9(5):82–89, 2007.

[SKS+07] Carlos Eduardo Scheidegger, David Koop, Emanuele Santos, Huy Vo, Steven Callahan, Ju-
liana Freire, and Claudio T. Silva. Tackling the Provenance Challenge one Layer at a Time.
Concurrency and Computation: Practice and Experience, 2007.

[SM03] Martin Szomszor and Luc Moreau. Recording and Reasoning over Data Provenance in Web
and Grid Services. In ODBASE’03: International Conference on Ontologies, Databases
and Applications of SEmantics, volume 2888 of Lecture Notes in Computer Science, pages
603–620, Catania, Sicily, Italy, November 2003.

[SMRH+05] Margo Seltzer, Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and
Jonathan Ledlie. Provenance-Aware Storage Systems. Technical report, Harvard Univer-
sity, 2005.

[SPG05a] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance in
e-science. SIGMOD Record, 34(3):31–36, 2005.

[SPG05b] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance Tech-
niques. Technical report, Indiana University, Bloomington IN 47405, 2005.

[SPG08a] YL Simmhan, B. Plale, and D. Gannon. Karma2: Provenance Management for Data-Driven
Workflows. International Journal of Web Services Research, 5(2):1–22, 2008.

[SPG08b] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. Query Capabilities of the Karma
Provenance Framework. Concurrency and Computation: Practice and Experience,
20(5):441–451, 2008.

BIBLIOGRAPHY 215

[SRG03] Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. myGrid: Personalised Bioinfor-
matics on the Information Grid. Bioinformatics, 19(90001):302–304, 2003.

[SUW07] Anish Das Sarma, Jeffrey Ullman, and Jennifer Widom. Schema Design for Uncertain
Databases. Technical report, Stanford University, 2007.

[SV07a] Divesh Srivastava and Yannis Velegrakis. Intensional Associations between Data and Meta-
data. In SIGMOD ’07: Proceedings of the 33th SIGMOD International Conference on Man-
agement of Data, pages 401–412. ACM Press New York, NY, USA, 2007.

[SV07b] Divesh Srivastava and Yannis Velegrakis. MMS: Using Queries As Data Values for Metadata
Management. In ICDE ’07: Proceedings of the 23th International Conference on Data
Engineering, pages 1481–1482, 2007.

[SV07c] Divesh Srivastava and Yannis Velegrakis. Using queries to associate metadata with data. In
ICDE ’07: Proceedings of the 23th International Conference on Data Engineering, pages
1451–1453, 2007.

[SVK+08] Carlos Eduardo Scheidegger, Huy Vo, David Koop, Juliana Freire, and Claudio T. Silva.
Querying and Re-using Workflows with VisTrails. In SIGMOD ’08: Proceedings of the 34th
SIGMOD International Conference on Management of Data, pages 1251–1254. ACM, 2008.

[Tan03] Wang-Chiew Tan. Containment of Relational Queries with Annotation Propagation. DBPL
’03: Proceedings of the International Workshop on Database and Programming Languages,
2003.

[Tan04] Wang-Chiew Tan. Research Problems in Data Provenance. IEEE Data Engineering Bulletin,
27(4):42–52, 2004.

[Tan07] Wang-Chiew Tan. Provenance in Databases: Past, Current, and Future. IEEE Data Engi-
neering Bulletin, 30(4):3–12, 2007.

[TGM+06] Victor Tan, Paul Groth, Simon Miles, Sheng Jiang, Steve Munroe, Sofia Tsasakou, and Luc
Moreau. Security Issues in a SOA-based Provenance System. In IPAW ’06: International
Provenance and Annotation Workshop, pages 203–211, 2006.

[Tra09] Transaction Processing Council. TPC-H Benchmark Specification, 2009.

[Tro05] Vadim Tropashko. Nested Intervals Tree Encoding in SQL. ACM SIGMOD Record,
34(2):52, 2005.

[VC07] Stijn Vansummeren and James Cheney. Recording Provenance for SQL Queries and Up-
dates. IEEE Data Engineering Bulletin, 30(4):29–37, 2007.

[VdBVV05] Jan Van den Bussche, Stijn Vansummeren, and Gottfried Vossen. Towards Practical Meta-
Querying. Information Systems, 30(4):317–332, 2005.

[VMM05] Yannis Velegrakis, Renée J. Miller, and John Mylopoulos. Representing and Querying Data
Transformations. In ICDE ’05: Proceedings of the 21th International Conference on Data
Engineering, pages 81–92, 2005.

[Wid05] Jennifer Widom. Trio: A System for Integrated Management of Data, Accuracy, and Lin-
eage. In CIDR ’05: Proceedings of the 2th Conference on Innovative Data Systems Research,
pages 262–276, 2005.

[Wid08] Jennifer Widom. Trio: A System for Managing Data, Uncertainty, and Lineage. Managing
and Mining Uncertain Data, 2008.

216 BIBLIOGRAPHY

[WM07] Jennifer Widom and R. Murthy. Making aggregation work in uncertain and probabilistic
databases. In Proceedings of the Workshop on Management of Uncertain Data, pages 76–
90, September 2007.

[WMF+05a] Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc Moreau. Provenance-
based Validation of E-Science Experiments. In ISWC ’05: Proceedings of 4th Internation
Semantic Web Conference, pages 801–815, 2005.

[WMF+05b] Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc Moreau. Validation of
E-Science Experiments using a Provenance-based Approach. In AHM ’05: Proceedings of
the UK OST e-Science All Hands Meeting, pages 290–296, 2005.

[WS97] Allison Woodruff and Michael Stonebraker. Supporting Fine-grained Data Lineage in a
Database Visualization Environment. In ICDE ’97: Proceedings of the 30th International
Conference on Data Engineering, pages 91–102, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[WSU07] Jennifer Widom, Anish Das Sarma, and Jeffrey D. Ullman. Functional Dependencies for
Uncertain Relations. Technical report, Stanford University, 2007.

[WTS08] Jennifer Widom, Martin Theobald, and Anish Das Sarma. Exploiting Lineage for Confidence
Computation in Uncertain and Probabilistic Databases. In ICDE ’08: Proceedings of the 24th
International Conference on Data Engineering, April 2008.

[YMHF01] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fagin. Data-driven Under-
standing and Refinement of Schema Mappings. In SIGMOD ’01: Proceedings of the 27th
SIGMOD International Conference on Management of Data, pages 485–496. ACM New
York, NY, USA, 2001.

[ZDF+05] Yong Zhao, James E. Dobson, Ian T. Foster, Luc Moreau, and Michael Wilde. A Notation
and System for Expressing and Executing Cleanly Typed Workflows on Messy Scientific
Data. ACM Sigmod Record, 34(3):37–43, 2005.

[ZGG+03a] J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, linking and brows-
ing provenance logs for e-science. Proceedings of the Workshop on Semantic Web Technolo-
gies for Searching and Retrieving Scientific Data, pages 92–106, 2003.

[ZGG+03b] Jun Zhao, Carole Goble, Mark Greenwood, Chris Wroe, and Robert Stevens. Annotating,
Linking and Browsing Provenance Logs for e-science, October 2003.

[ZGSB04] Jun Zhao, Carole A. Goble, Robert D. Stevens, and Sean Bechhofer. Semantically Linking
and Browsing Provenance Logs for E-science. First International Conference on Semantics
of a Networked World, pages 157–174, 2004.

[ZHC+07] Yong Zhao, Mihael Hategan, Ben Clifford, Ian T. Foster, Gregor Von Laszewski, Ioan Raicu,
Tiberiu Stef-Praun, and Michael Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In IEEE Workshop on Scientific Workflows. Citeseer, 2007.

[ZWF+04] Yong Zhao, Michael Wilde, Ian T. Foster, Jens Vöckler, Thomas Jordan, Elizabeth Quigg,
and James Dobson. Grid Middleware Services for Virtual Data Discovery, Composition, and
Integration. In Middleware ’04: Proceedings of the 2nd Workshop on Middleware for Grid
Computing, pages 57–62, New York, NY, USA, 2004. ACM Press.

[ZWF06] Yong Zhao, Michael Wilde, and Ian T. Foster. Applying the Virtual Data Provenance Model.
In IPAW ’06: International Provenance and Annotation Workshop, pages 148–161, 2006.

BIBLIOGRAPHY 217

[ZWG+04] Jun Zhao, Chris Wroe, Carole A. Goble, Robert Stevens, Dennis Quan, and R. Mark Green-
wood. Using Semantic Web Technologies for Representing e-science Provenance. In
Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, ISWC ’04: Pro-
ceedings of the 3th International Semantic Web Conference, volume 3298 of Lecture Notes
in Computer Science, pages 92–106, Hiroshima, Japan, 2004. Springer.

[ZZZP07a] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, and Sunil Prabhakar. Cost Effective Forward
Tracing Data Lineage. Technical report, Purdue University, 2007.

[ZZZP07b] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, and Sunil Prabhakar. Tracing Lineage be-
yond Relational Operators. In VLDB ’07: Proceedings of the 33th International Conference
on Very Large Data Bases, pages 1116–1127. VLDB Endowment, 2007.

218 BIBLIOGRAPHY

Curriculum Vitae Boris Glavic

2005-2010 Doctoral student at the Database Technology Research Group (DBTG) University of
Zurich

2005 Diploma in Computer Science from RWTH Aachen (Germany)
1999-2005 Diploma student in Computer Science at RWTH Aachen (Germany)

219

