
The Perm Provenance Management System in Action

Boris Glavic
Database Technology Research Group

Department of Informatics
University of Zurich

glavic@ifi.uzh.ch

Gustavo Alonso
Systems Group

Department of Computer Science
ETH Zurich

alonso@inf.ethz.ch

ABSTRACT
In this demonstration we present the Perm provenance man-
agement system (PMS). Perm is capable of computing, stor-
ing and querying provenance information for the relational
data model. Provenance is computed by using query rewrit-
ing techniques to annotate tuples with provenance informa-
tion. Thus, provenance data and provenance computations
are represented as relational data and queries and, hence,
can be queried, stored and optimized using standard rela-
tional database techniques. This demo shows the complete
Perm system and lets attendants examine in detail the pro-
cess of query rewriting and provenance retrieval in Perm, the
most complete data provenance system available today. For
example, Perm supports lazy and eager provenance compu-
tation, external provenance and various contribution seman-
tics for an almost complete subset of SQL..

1. INTRODUCTION
Data provenance is information about the origin of a data

item and the transformations used to produce this data
item. Provenance information is used in areas like curated
databases, data warehouses and e-science to trace errors, es-
timate data quality and gain additional insights about data.

In the relational data model, data items are relations, tu-
ples, and attribute values. Transformations are queries and
functions defined over these data items. The provenance of
a tuple t produced by a query q includes all tuples from the
base relations accessed by the query, that contributed to the
existence of t. Different definitions of contribution have been
proposed in the literature (see [5]). Two prominent exam-
ples for contribution definitions are Why-provenance [2] and
Where-provenance [1].

In [3] we introduced the novel Perm provenance manage-
ment system. Perm uses query rewrite techniques to trans-
form a query q into a query q+ that computes the prove-
nance of q. Our system has been implemented as an exten-
sion of a relational DBMS. By representing provenance data
and provenance computation as relational data and queries,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’09 Providence, RI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

messages
mId text uId
1 lorem ipsum . . . 3
4 hi there . . . 2

users
uId name
1 Bert
2 Gert
3 Gertrud

imports
mId text origin
2 hello . . . superForum
3 I don’t . . . HiBoard

approved
uId mId
2 2
1 4
2 4
3 4

q1 : SELECT mId , t ext FROM messages
UNION SELECT mId , t ext FROM imports ;

q2 : CREATE VIEW v1 AS q1 ;

q3 : SELECT count (∗) , t ex t
FROM v1 JOIN approved a ON (v1 . mId = a . mId)
GROUP BY v1 . mId , t ex t ;

Figure 1: Example database and queries

Perm benefits from the query, optimization and storage
techniques developed for relational databases and supports
provenance computation for complex SQL queries. The sys-
tem supports different contribution semantics, lazy and ea-
ger computation of provenance, manually created prove-
nance, and queries that combine provenance and ’normal’
data. Hence, a user can pick the contribution definition that
fits his needs and decide whether he will store the prove-
nance of a query for later reuse or let the system compute
it on the fly.

1.1 Example database
Before we present the Perm system and the underlying

concepts, we introduce a small example database that is used
throughout this demo proposal to illustrate various aspects
of our approach. The example database shown in Figure 1
represents the data of an online forum with users, messages,
messages that were imported from other forums (imports),
and a table that stores the information which user approved
which message (approved). Some example queries are given
in Figure 1. q1 returns all messages entered by users of
the forum or imported from other forums. q2 stores q1 as
a view. q3 outputs the text of each message together with
the number of users that approved this message (messages
without any approval are omitted from the result).

1

original result attributes provenance attributes from messages provenance attributes from imports

mId text p mId p text p uId p mId p text p origin
1 lorem ipsum . . . 1 lorem ipsum . . . 3 null null null
2 hello . . . null null null 2 hello . . . superForum
3 I don’t . . . null null null 3 I don’t . . . HiBoard
4 hi there . . . 4 hi there . . . 2 null null null

Figure 2: Query q1 provenance

2. THE PERM SYSTEM
Perm is a provenance management system (PMS) that

computes the provenance of relational queries on a tuple
level granularity. The provenance of a query is calculated
by using query rewrite techniques to annotate result tuples
of a query q with provenance information.

2.1 Datamodel
Unlike other approaches Perm has a ’pure’ relational rep-

resentation of provenance data and provenance queries. The
provenance of query is represented as a single relation that
contains the original query results augmented with prove-
nance information. Provenance information is attached to a
query result by extending the original result tuples with the
contributing tuples from the base relations accessed by the
original query. Thus, all attributes from the relevant base
relations are appended to the result schema of the original
query. To distinguish between original attributes and prove-
nance attributes, provenance attributes are identified by a
prefix and the name of the relation they are derived from.
To keep the examples compact we do not use this naming
scheme for all examples, but instead identify provenance at-
tributes with the prefix p . For example, the schema of the
provenance of query q1 in Figure 1 is:

(count, text, prov messages mId, prov messages text,

prov messages uId, prov imports mId,

prov imports text, prov imports origin)

A tuple t+ of a provenance query result is built by at-
taching all contributing tuples to the original result tuple t.
If there is more than one contributing tuple from one base
relation, the orginal result tuple t has to be replicated. For
instance, the provenance of query q1 in the running example
is depicted in Figure 1.1.

2.2 Provenance computation though query re-
writing

Perm computes the provenance of a query q by apply-
ing a set of algebraic rewrite rules that transform q into a
provenance query q+. The provenance query q+ generates
the provenance representation introduced in the previous
section. The rewrite rules are defined over an algebraic rep-
resentation of a query and operate on a single algebraic op-
erator. Each rule is defined over an input algebra expression
and the list of provenance attributes of its input (P). The
result of a rewrite rule is a transformed algebra expression
and provenance attribute list. As an example consider the
rewrite rule for the projection operator:

(ΠA(T))+ = ΠA,P(T+)(T
+) with P((ΠA(T))+) = P(T+)

For an in depth explanation of the rewrite rules the inter-
ested reader is referred to [3] and [4]. In principle the rewrite
rules are unaware of how the provenance attributes of their
input were produced. This is a huge advantage, because it
enable us to use the rewrite rules to propagate provenance
information that was not produced by Perm. For example
Perm can compute the provenance of queries that include
data that was annotated with provenance information man-
ually or by another provenance management system.

For some operators there is more than one rewrite rule
that produces the provenance of the operator. For this type
of operator the choice of rewrite rule influences the perfor-
mance of the provenance computation. We use cost-based
optimization to choose the best rewrite strategy for each
situation.

Parser &
Analyzer

Rewriter

Planer

Executor

Provenance
Rewriter

Syntactic and
semantic analysis

view unfolding

provenance
rewrite

optimize and
transform into plan

execute plan
and return results

Figure 3: Perm architecture overview

2.3 Architecture
We have implemented Perm as an extension of the Post-

greSQL DBMS (see Figure 3). Perm operates on the internal
query tree representation of a query. The output of the Post-
gres query analyzer is passed to the Perm rewrite module.
The rewrite module tranverses the query tree and applies the
provenance query rewrite rules to transform the query (or
part of the query) into a provenance query. The rewritten
query tree produced by the Perm module is handed over
to the Postgres query optimizer and, thus, Perm benefits
from the query optimization techniques incorporated into
PostgreSQL.

2.4 SQL-PLE: Perm’s provenance SQL exten-
sion

Perm uses an SQL language extension called SQL-PLE
to enable a user to issue provenance queries. The keyword
PROVENANCE is employed to instruct Perm to compute the
provenance of a query. An optional ON CONTRIBUTION

modifier is used to specify the contribution definition for the
provenance computation (at the current time Perm supports
Why-provenance as keyword INFLUENCE and several types

2

of Where-provenance as keyword COPY). For example:

SELECT PROVENANCE INFLUENCE count (∗) , t ex t
FROM v1 JOIN approved a ON v1 . mId = a . mId
GROUP BY v1 . mId ;

Note that all original SQL features provided by Post-
greSQL are not affected by the language extension, and
even more important, they can be used in combination with
provenance computation. Therefore a user cannot just re-
ceive provenance information, but also query provenance in-
formation, store it as a view, etc. For example, the follow-
ing query can be used to output messages imported from
the ’superForum’ board that were approved by at least five
users:

SELECT text , p o r i g i n
FROM

(SELECT PROVENANCE count (∗) , t ex t
FROM v1 JOIN approved a ON v1 . mId = a . mId
GROUP BY v1 . mId) AS prov

WHERE count > 5 AND p o r i g i n = ’ superForum ’ ;

Perm supports incremental provenance computation by
allowing the manual specification of provenance attributes
of a relation or subquery, and providing language constructs
to stop the rewrite process at a certain point. E.g., consider
a query over a view where the user is interested in the tu-
ples from the view that contributed to the query result (in
contrast to the base relation tuples that contributed to the
query result). The keyword BASERELATION is appended
to a subquery or view to instructed Perm to handle it like
a base relation. To manually specify the provenance at-
tributes of a view, base relation or subquery, the keyword
PROVENANCE followed by a list of attribute names has to
be appended to a FROM-clause item. For example consider
the following query defined over view v1 in our running ex-
ample:

SELECT PROVENANCE text
FROM

v1 BASERELATION
WHERE count > 3 ;

In this example view v1 will be handled like base relation.
Therefore, the rewrite rules are not applied to the view def-
inition of v1, but the attributes of the view query result are
renamed and attached to the query result.

3. DEMONSTRATION
In the demonstration we will illustrate the functionality

of Perm by executing a few example queries. The Perm-
browser client application used in the demonstration enables
a user to send queries to the system (see Figure 4 marker
1), view query results (see Figure 4 marker 5), activate or
deactivate rewrite strategies, and choose between different
contribution semantics. In addition to the query results, the
browser presents the rewritten query as an SQL statement
(see Figure 4 marker 2) together with algebra trees for the
original (see Figure 4 marker 3) and rewritten query (see
Figure 4 marker 4).

The demonstration will be divided into the following parts:

• Query execution: At first we will run queries on the
example database introduced in this paper and analyze
the produced results.

!"

!#

$

%

&

$

'

!"

#$%#&''$()*+,&(-

.

/

0

.

#1

1

2

3 4

 i | prov_public_s_i | prov_public_r_i
---+-----------------+-----------------
 1 | 1 | 1
 2 | 2 | 2

5

Figure 4: Perm browser

• Rewrite analysis: In this part of the demonstration
we will illustrate the rewrite process for some exam-
ple queries using the algebra trees and rewritten SQL-
statements generated by the Perm-browser.

• Implementation details: Depending on demands by
the participants we will reveal implementation details.

• Complex queries: At the end of the demonstrationt
we will let participants run queries with the Perm-
browser and discuss the results and applied rewrite
rules.

4. CONCLUSION
In this demonstration proposal we presented the Perm

PMS that provides efficient provenance computation and
query facilities for the relational data model. Our system
is able to handle both manually created provenance and
provenance produced by other PMS. A user can choose be-
tween different contribution semantics for provenance com-
putation, store provenance for later investigation or incre-
mental provenance computation, and query provenance with
the full expressive power of SQL.

5. REFERENCES
[1] P. Buneman, S. Khanna, and W. C. Tan. Why and

where: A characterization of data provenance. In ICDT
’01, pages 316–330, 2001.

[2] Y. Cui, J. Widom, and J. L. Wiener. Tracing the
lineage of view data in a warehousing environment.
ACM Transactions on Database Systems,
25(2):179–227, 2000.

[3] B. Glavic and G. Alonso. Perm: Processing provenance
and data on the same data model through query
rewriting. In ICDE ’09 (to appear), 2009.

[4] B. Glavic and G. Alonso. Provenance for nested
subqueries. In EDBT ’09 (to appear), 2009.

[5] B. Glavic and K. R. Dittrich. Data provenance: A
categorization of existing approaches. In BTW ’07,
pages 227–241, 2007.

3

