
Debugging Data Exchange with Vagabond

Boris Glavic, Jiang Du, Renée J. Miller Gustavo Alonso Laura M. Haas
University of Toronto ETH Zurich IBM Almaden Research Center

glavic,jdu,miller@cs.toronto.edu alonso@inf.ethz.ch laura@almaden.ibm.com

1. INTRODUCTION

In this paper, we present Vagabond, a system that uses
a novel holistic approach to help users to understand and
debug data exchange scenarios. Developing such a scenario
is a complex and labor-intensive process where errors are
often only revealed in the target instance produced as the
result of this process. This makes it very hard to debug such
scenarios, especially for non-power users. Vagabond aides
a user in debugging by automatically generating possible
explanations for target instance errors identified by the user.

Schema mappings are declarative constraints that model
the relationship between a source and a target schema. Data
exchange systems, such as Clio [6], ORCHESTRA [5], and
many others, use schema mappings to produce an instance

of the target schema based on an instance of the source
schema. Creating a mapping between two schemata is a
semi-automatic, multi-step process. In a first step, cor-

respondences between atomic elements of the source and
target schema are identified. Based on these correspon-
dences, the constraints of the schemata (e.g., foreign keys
constraints), and user input, the system generates the sche-

ma mappings that are eventually used to create executable
transformations specified in, e.g., SQL or XSLT.

For large schemata, this multi-step process is error-prone.
As mentioned above, often, errors become apparent only in
the generated target instance. For example, a user may rec-
ognize that some attribute values in the target instance are
incorrect. Tracing errors is time-consuming and complex,
because of the many possible sources of errors: data, corre-
spondences, schema mappings, or transformations. Previous
work focused on aiding the user in debugging by (1) provid-
ing additional information, such as provenance, and better
query language support for schema mappings (TRAMP [4],
MXQL [7], Spider[1]) or (2) through programming language
style debugging like breakpoints (Spider [1]). With TRAMP,
we showed how information about data, its provenance, and
mapping scenario information (correspondences, schema map-
pings, transformations) can be efficiently used to debug a
wide range of typical data exchange errors. TRAMP and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

the other approaches mentioned above have in common that
they are more tailored for power users - they require the
user to understand what possible sources of errors are and
rely on her to guide the debugging process accordingly. In
contrast to these approaches, Vagabond automatically gen-
erates and ranks explanations for errors in a data exchange
setting based on user provided input about which parts of a
generated target instance are erroneous. The rationale be-
hind this approach is that (1) even inexperienced users are
able to recognize instance errors, and (2) for both inexpe-
rienced and power users it is much harder to come up with
explanations than to verify if a given explanation is correct.

The explanation generation of Vagabond builds on the fa-
cilities provided by TRAMP [4] to generate and query data,
various kinds of provenance, and mapping information. We
consider data, correspondences, mappings, and transforma-
tions as potential causes of errors. For instance, a possi-
ble explanation for incorrect values in a target relation is
that the source data where this information has been copied
from is erroneous. Data provenance is used to identify this
part of the source data. For each generated explanation we
compute which mapping scenario elements and parts of the
instance would be affected by the explanation (called the
side-effects). The user can mark an explanation as correct.
This will cause the side-effects of this explanation to be con-
sidered as additional errors, thus avoiding the need to mark
all target instance errors to debug a data exchange scenario.
To present more likely explanations first, we rank them on
the number of side-effects they imply. The explanation gen-
eration is complemented with visualization of provenance
and mapping information. Vagabond provides an easy-to-
use GUI for navigating through this information.

In this demo, we show how Vagabond is used to provide
explanations for common data exchange errors. The exam-
ple scenarios we will use in the demonstration allow users
to interact freely with the system: (1) Mark target data
as incorrect and explore the explanations provided by the
system, (2) navigate through data, mapping, and transfor-
mation provenance provided by TRAMP and visualized in
Vagabond, (3) explore the system internals such as prove-
nance and explanation generation. People attending the
demo will learn both about Vagabond as well as about com-
mon pitfalls in schema mappings and the practical problems
associated with debugging such mappings. On the research
side, the demo will demonstrate how to automatically gener-
ate error explanations based on data provenance techniques
for schema mappings, an area that is attracting increasing
attention and exhibits interesting open problems.

Patron
Name
Nickname
FirstSeen
CaredForBy

SocialWorker
SSN
Name
WorksAt

SoupKitchen
Location
City
Budget

Person
Name
LivesIn

FeedThePoor Government
Survey

Age

C1

C2

C3

Mappings

M1 :Patron(a, b, c, d) ∧ SoupKitchen(c, e, f) ⇒ ∃g : Person(b, e, g)

M2 :SocialWorker(a, b, c) ∧ SoupKitchen(c, d, e) ⇒ ∃f : Person(b, d, f)

Transformations

T1 :SELECT PA.Nickname AS Name , K1.City AS LivesIn , NULL AS Age
FROM Patron PA, SoupKitchen K
WHERE PA. FirstSeen = K.Location
UNION
SELECT S.Name , K.City AS LivesIn , NULL AS Age
FROM SocialWorker S, SoupKitchen K
WHERE S.WorksAt = K.Location

Patron
Name NickName FirstSeen CaredForBy

pa1 Peter Fullbright Pete GreenPark 777

pa2 Harriot Welth Welthy Manhattan 123

SoupKitchen
Location City Budget

k1 GreenPark Toronto 10.000

k2 Manhattan New York 5.000

SocialWorker
SSN Name WorksAt

s1 123 Jessica Good GreenPark

s2 666 Laurence Knopfler GreenPark

s3 777 Jule Hip Manhattan

Person
Name LivesIn Age

p1 Jessica Good Toronto NULL

p2 Laurence Knopfler Toronto NULL

p3 Jule Hip New York NULL

p4 Pete Toronto NULL

p5 Welthy New York NULL

Figure 1: Example Data Exchange Scenario.

2. EXAMPLE SCENARIO

One of our demo scenarios models the mapping of data
about homeless people provided by several help organiza-
tions into a global schema. This schema is used by the
government to assess the situation of people without a per-
manent residence. Fig. 1 shows part of the schema for the
“feed the poor” (FP) organization and an excerpt of the
government schema. The FP schema models information
about patrons of soup kitchens (name, nickname, the soup
kitchen where they were first sighted, and the social worker
that they are assigned to), social workers (SSN, name, and
the soup kitchen they work for), and the soup kitchens of the
organization (location, city, and yearly budget). The gov-
ernment schema models persons with name, the city they
live in, and age. The arrows between the source schema
elements represent foreign key constraints.
Schema Mappings: Assume the user has defined the cor-
respondences shown in Fig. 1: The nickname of a patron
(C1) and the name of a social worker (C2) both correspond
to the name of a person. The city of a soup kitchen corre-
sponds to the LivesIn attribute of a person (C3). Mappings
M1 and M2 exemplify an initial set of mappings that might
be suggested by a mapping system. Mapping M1 relates
the nickname of a patron and the city of the soup kitchen
where the patron was first seen to the Name and LivesIn
attributes in the target schema. Mapping M2 relates the
names of social workers and the city of their soup kitchen
to the target person relation. A typical SQL transforma-
tion (T1) that generates the person relation based on these
mappings is shown in Fig. 1. This query unions the SQL im-
plementations for M1 and M2. Note that the Age attribute
is not related to any source element by the mappings. For
simplicity, we let T1 set this attribute to NULL. (Many data
exchange systems would use skolem functions to generate
values for this attribute [2]). Executing T1 over the source
instance generates the target instance (Person relation) as
shown in Fig. 1. For convenience, we show tuple identifiers
for all tuples in the source and target instance (e.g., p1).
Errors in the Scenario: The target instance generated
by T1 contains several errors (highlighted attribute values).
It is likely that the user will recognize these errors, but un-
derstanding their causes is much more involved, even for

a “toy” example like this one. Assume the name of social
worker “Jule Hip” was recorded incorrectly and should read
“Jule Tip”. This means, the incorrect name for tuple p3 in
the target (Error E1) is caused by erroneous source data (the
highlighted Name attribute value of tuple s3) and copying
of this data to the target. We call this type of error a source

copy error. In the target “Laurence Knopfler” is recorded
to live in “Toronto”. For sake of the example, assume that
the correct value is “New York” (Error E2). This error is
caused by an incorrect foreign key attribute value (WorksAt)
which in turn causes s2 to join with a wrong tuple from the
SoupKitchen relation. In our terminology, this is a source

join value error. The target schema is used to store names.
Therefore, correspondence C1 should relate the names in-
stead of the nicknames of patrons to person names (Error
E3, a correspondence error). Patrons should be considered
to live in the city where they are provided with food and not
the city where they have first been sighted (Error E4). Thus,
mapping M1 uses an incorrect join path to relate source re-
lations (source skeleton error).

3. GENERATING EXPLANATIONS

We now present how Vagabond produces and rankes ex-
planations for errors in a target instance. The input to the
explanation generation framework is a set E (called error
set) of target attribute values that are suspected to be in-
correct. We use a triple (R, t,A), called an error marker, to
denote the value of attribute A for tuple t from relation R.
In the graphical interface the user can browse the instance
data and add an error marker by clicking on a checkbox for
the corresponding attribute value. The explanation gener-
ation for the current set E is triggered by the user. Under
the hood the system (1) systematically explores the search
space of possible explanations for each error marker in E

and (2) returns a ranked list of all possible sets of expla-
nations Σ that cover E. A set Σ of explanations covers an
error set E, if for each error marker e from E there ex-
ists an explanation σ from Σ that explains e. Note that
one explanation may explain several error markers. For
instance, in the example, the explanation that correspon-
dence C3 is wrong will explain all incorrect target attribute
values that were generated because of this correspondence.

In the example instance these are the attribute values at
({(Person,X,LivesIn) | X ∈ (p2, p4, p5)}). The covering
explanation sets generated by this process are then ranked
according to the number of side-effects (explained below)
caused by the explanations and presented to the user.
Basic Explanations: For a single error marker we generate
a set of basic explanations each considering a different source
of error: the source instance data, the correspondences, the
mappings, or the transformations that were used to gener-
ate the target instance. In addition to the types of errors
presented in Sec. 2, we consider the following types: Super-
fluous Mapping Error : A mapping is superfluous and should
be removed, Target Skeleton Error : A mapping should use
a different join path to relate target relations. Transforma-
tions are potential sources of errors too, but for reasons of
space we do not discuss this type of errors in this paper.
Note that we consider explanations of all types for an error
marker e, unless we can rule out certain types. E.g., if the
value at e is not copied from the source then we can rule out
that a source copy error caused e.
Side-effects: We refer to the part of the target instance
affected by an explanation σ as the coverage of σ. The sub-
set of the coverage that is not in the error set E is called
the side-effect of the explanation. The size of a side-effect
is the number of target attribute values it covers. It seems
tempting to only consider explanations without side-effects,
because in principle an explanation with side-effects invali-
dates correct target data. However, we must account for the
fact that the user may not recognize all errors in the target
on first sight or wants to retrieve explanations without hav-
ing to mark all errors (especially for large instances). Hence,
we cannot assume that the set E is complete and, thus, that
all side-effects of an explanation are actual side-effects.
Ranking: Our solution to this problem is to not rule out
explanations with side-effects, but to rank the explanations
on their side-effect size to present more likely explanations
first. The system allows a user to indicate the correctness of
an explanation σ. This will trigger Vagabond to consider all
side-effects of this explanation as additional error markers.
We add σ to all generated explanation sets, update their
side-effects (remove the side-effects of σ), and then adapted
the ranking accordingly. Thus, the user can iteratively de-
bug a mapping scenario without having to manually mark
every target instance error.
Source Copy Error: We now discuss the generation of
source copy error explanations as an example of how Vaga-
bond works. This type of error occurs if the source instance
data where the value at an error marker e has been copied
from is incorrect. For instance, assume a user marked a
single target attribute value e = (Person, p3, Name) (Error
E1 explained in Sec. 2). This value has been copied from
the Name attribute value of the tuple s3 of relation Social-
Worker (s = (SocialWorker, s3, Name)). One explanation
for e is that a source copy error σ occurred and the value
at s is incorrect. The assumption that s is erroneous could
have the implication that other parts of the target instance
are incorrect. However, in the example, the coverage of σ
contains only e, because the incorrect value “Jule Hip” at s
has not been copied to other tuples in the target (and was
not used in a join or selection condition).

Vagabond builds on the provenance and query facilities
of TRAMP [4, 3] to trace where values have been copied
from and to compute side-effects of explanations. TRAMP

is an extended DBMS that supports retrieval and query-
ing of different types of provenance information through an
SQL language extension. We briefly illustrate the process
for the generation of a source copy error for error marker e.
Vagabond first determines all source tuples from where the
value at e has been copied from by running the following
query with TRAMP:

SELECT PROVENANCE ON CONTRIBUTION (COPY) Name
FROM Person
WHERE tid = p3

This query instructs TRAMP to compute the so-called
Copy-CS provenance for the projection on Name of the Per-
son tuple with identifier p3. Copy-CS provenance traces
from where in the input (which tuples) the values of tuples
in the output of the query have been copied from. The re-
sult of this query is {(SocialWorker, s3)}, the source tuple
from which the value at e originated1. Vagabond creates
a single explanation σ for this set using mapping informa-
tion to determine from which attribute values of each re-
turned input tuple the value at e is derived. To compute
the side-effect of σ, we need to know which other tuples
and/or attribute values are potentially affected by tuples in
the explanation. Provenance and mapping information is
used to identify these tuples.

4. EXAMPLE SCENARIO EXPLANATIONS

We now discuss which explanations would be produced for
Error E2 from the example scenario. Assume that the user
realizes that the city assigned to social worker “Laurence
Knopfler” in the target is incorrect and creates the error
marker e = (Person, p2, LivesIn). The attribute value at
this position in the target instance is Toronto. Recall that
the correct explanation for this error is that the value at
(SocialWorker, s2,WorksAt) is erroneous. Vagabond will
come up with the following explanations for this error:
σ1 (source copy error): This explanation assumes that
the attribute values in the source where the value at e has
been copied from are incorrect. In the example this is the
value “Toronto” at (SoupKitchen, k1, City). The side-effect
of this explanation is that other attribute values where this
value is copied to are incorrect too (or tuples may disap-
pear from the target if the value is used in a join or selec-
tion condition and the source tuple is in the provenance of
these tuples). In our example, the target attribute values at
{(Person,X,LivesIn) | X ∈ (p1, p4)} are side-effects of σ1.
σ2 (source join value error): The second explanation
considers an incorrect value at (SocialWorker, s1,WorksAt)
to cause tuple s1 to be joined with a wrong tuple from rela-
tion SoupKitchen. This explanation would cause all tuples
generated by joining s1 with another tuple on the WorksAt
attribute to be incorrect. No such tuples and, therefore, also
no side-effects exist in the example.
σ3 (correspondence error): Another explanation is that
correspondence C3 mapping attribute City from relation
SoupKitchen to attribute City of relation Person is wrong.
Explanation σ3 has the side-effect that all City attribute val-
ues of Person tuples that are generated by mappings that
use C3 are incorrect (all LivesIn attribute values).
σ4 (superfluous mapping error): Explanation σ4 states
that mapping M2 is superfluous. The removal of M2 would

1We omit describing how this set would be actually repre-
sented by TRAMP (see Glavic [3]).

Figure 2: Vagabond Interface.

cause the side-effect that all tuples generated by this map-
ping would disappear from the target instance (p1, p2, p3).
σ5 (source skeleton error): This explanation assumes
that mapping M2 should use a different join path (or no join
path at all) to connect tuples from relation SocialWorker
with tuples from relation SoupKitchen. This explanation
has the potential side-effect that all LivesIn attribute values
generated byM2 are incorrect ({(Person,X,LivesIn) | X ∈
(p1, p3)}) and that tuples that do not have join partners
anymore would disappear from the person relation.

As explained before, Vagabond ranks explanation sets be-
fore returning them to the user. Currently, the ranking is
based primarily on side-effect size and secondarily on the
type of explanation (for instance, correspondence errors are
considered more disruptive than instance data errors). In
the future we plan to add more sophisticated ranking meth-
ods. Without presenting the details, the order for the five ex-
planations presented above would be σ2, σ1, σ5, σ3, σ4. Note
that in this case the correct explanation for the example (σ2)
is also the one to be ranked first. However, in general this
may not be the case and we cannot rule out the other ex-
planations without more information being provided by the
user. This is the main reason why convenient explanation
browsing (as will be explained in the next section) plays an
important role for the usability of the system.

5. USER INTERFACE

Fig. 2 shows a screenshot of Vagabond. The main inter-
face consists of a diagram of the target and source schema
(A). Selecting a relation switches between the schema and
instance of this relation. In Fig. 2, the instances of rela-
tions SocialWorker and Person are shown. The left side of
the screen shows a panel for correspondences, mappings, and
transformations (B) and below a panel for explanations (C).
Browsing ExplanationsThe explanation panel (C) is used
to present explanations for an error set as a list to the user.
The user can inspect these explanations to understand their
implications and check them for correctness. Clicking on
an explanation highlights its side-effects in the target in-
stance and the mapping scenario elements affected by it
and shows statistics about this error (target side-effect size,
number of affected mappings, . . .). For instance, for ex-
planation σ3 from the example, Vagabond will highlight the
correspondence C3, the mappings M1 and M2 (because they
use this correspondence), the transformation T1 that imple-

ments these mappings, and the LivesIn attribute values of
all target tuples (because these form the side-effect of this
explanation). If the user realizes that an explanation is cor-
rect, she can indicate that to the system and Vagabond will
adapt the explanations accordingly (as described in Sec. 3).
Statistics and Anomaly Detection To simplify the de-
bugging process, Vagabond checks for unusual patterns in
the mapping scenario and provenance information. The sys-
tem reports irregularities and various statistics to the user
without the need for marking errors in the target instance.
One example is mappings that do not create any tuples in
the target instance. Such mappings are highly likely to be
incorrect. Another example is usage patterns for source re-
lations. For each relation we identify tuples that have been
accessed unusually frequent (or infrequent) by the mappings.
Provenance Browsing: In addition to the explanation
generation, Vagabond acts as a graphical front-end to the
provenance and query facilities of TRAMP. Thus, enabling
a user to debug scenarios manually and to determine the
implications of explanations. For instance, if a user selects
a target instance tuple t, Vagabond highlights the source tu-
ples from which tuple t is derived from, i.e., the data prove-
nance of t. Selecting a mapping M highlights the target and
source relations used by M and the tuples produced by M .

6. DEMO ANATOMY AND CONCLUSIONS

In the demonstration, we will showcase Vagabonds ca-
pabilities by means of an extended set of mapping scenar-
ios each highlighting typical mapping errors. The audience
will also have access to the system internals to see how,
for instance, provenance queries are triggered by the ex-
planation generation and user interaction. With Vagabond
we have developed a practical system for debugging schema
mappings that makes automatically generated explanations
available through a convenient GUI. Error explanations en-
able non-power users to debug data exchange settings and
simplify the debugging process for more experienced users.

7. REFERENCES

[1] L. Chiticariu and W.-C. Tan. Debugging Schema
Mappings with Routes. In VLDB, pages 79–90, 2006.

[2] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[3] B. Glavic. Perm: Efficient Provenance Support for

Relational Databases. PhD thesis, University of Zurich,
2010.

[4] B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas.
TRAMP: Understanding the Behavior of Schema
Mappings through Provenance. PVLDB,
3(1):1314–1325, 2010.

[5] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E.
Taylor, V. Tannen, P. P. Talukdar, M. Jacob, and
F. Pereira. The ORCHESTRA Collaborative Data
Sharing System. SIGMOD Record, 37(2):26–32, 2008.

[6] R. J. Miller, L. M. Haas, M. A. Hernández, R. Fagin,
L. Popa, and Y. Velegrakis. Clio: Schema Mapping
Creation and Data Exange. Conceptual Modeling:

Foundations and Applications, page 236, 2009.

[7] Y. Velegrakis, R. J. Miller, and J. Mylopoulos.
Representing and Querying Data Transformations. In
ICDE, pages 81–92, 2005.

