
Technical Report Nr. 771

Systems Group, Department of Computer Science, ETH Zurich

Ariadne: Managing Fine-Grained Provenance on Data Streams

by

Boris Glavic
Kyumars Sheykh Esmaili

Peter M. Fischer
Nesime Tatbul

September 2012

Abstract

Managing fine-grained provenance is a critical requirement for data stream management systems
(DSMS) to be able to address complex applications that require diagnostic capabilities and assurance
as well as serving as a supporting technology for other tasks such as revision processing. In this paper,
based on an example use case, we motivate the need for fine-grained provenance in stream processing
and analyze its requirements. Inspired by these requirements, we investigate different techniques to
generate and retrieve stream provenance, and propose a new technique that is based on operator in-
strumentation. Ariadne, our provenance-aware DSMS implements this technique on top of the Borealis
system. We propose new optimization techniques to reduce the computational overhead of provenance
generation and retrieval. Our experiments confirm that by applying these optimizations, Ariadne can
provide fine-grained provenance with acceptable overhead.

1

Ariadne: Managing Fine-Grained Provenance on Data
Streams

Boris Glavic, Kyumars Sheykh Esmaili, Peter Fischer, Nesime Tatbul

September 24, 2012

1 Introduction

Stream processing has recently been gaining traction in a new class of applications that require di-
agnostic capabilities and assurance [15]. In these applications, there is a common need to provide
“fine-grained provenance” information (as provided by traditional database provenance semantics [11]),
in order to trace an output event back to the input events contributing to its existence. For example, in
sensor-based manufacturing control systems, upon receiving alerts that signal critical situations like over-
heating, human supervisors would like to understand why/how these alerts were triggered as to assess
their relevance and react accordingly.

Tracking provenance to explore the reasons that led to a given query result has proven to be an important
functionality in many domains such as scientific data management, workflow systems [13], and relational
databases [11]. However, providing fine-grained provenance support over data streams introduces a
number of unique challenges that are not well addressed by traditional provenance management tech-
niques. First, data streams involve transient data that is possibly unbounded, which prohibits having a
full view over all data items. Second, streaming data is typically ordered (e.g., by time), requiring a prov-
enance model that incorporates order. Third, continuous queries over streams typically make extensive
use of windowed aggregation which may lead to enormous amount of provenance data that should be
managed efficiently. Fourth, streaming applications are time-critical, requiring a light-weight mechanism
in order to maintain low latency for data as well as its provenance. Last but not least, streaming queries
can behave non-deterministically (e.g., due to approximations or uncertain inputs). In combination, these
challenges restrict the applicability of some well-known provenance management techniques (e.g., query
rewrite [14]) and naive solutions (e.g., taking advantage of cheap, fast storage by dumping all inputs and
inferring provenance from the complete stream data).

In the area of data stream management systems (DSMS), there has been little work beyond coarse-grain-
ed source provenance [27], for reasons of potentially high overhead and lack of application demand. In
this paper, we argue that in fact, many stream processing applications require fine-grained provenance,
and present Ariadne, a provenance-enabled DSMS that can provide this functionality with low overhead.

In this work, we first carefully analyze the application requirements and the main challenges to meet. In
addition, we explore the design space with all its tradeoffs in terms of how fine-grained stream prove-
nance can be generated, represented, and retrieved. We observe that the traditional provenance genera-
tion techniques based on query inversion or rewrite have limited applicability and high expected overhead.

2

We then propose a new, propagation-based approach that is based on operator instrumentation. In this
approach, regular data tuples are annotated with their provenance while they are being processed by a
query network of streaming operators. Propagation of provenance annotations is realized by replacing
the operators of the query network with operators that create and propagate provenance annotations in
addition to producing regular data tuples (we refer to this transformation as instrumentation). We have
implemented our approach in Ariadne, a provenance-aware DSMS that is based on the Borealis pro-
totype [1]. We have proposed a number of optimizations for provenance compression and on-demand
retrieval, which significantly lower the overhead in the system. Our experiments study the fundamen-
tal tradeoffs across different techniques from the design space, show the benefits of our optimizations,
and analyze sensitivity of performance against a number of factors including query complexity, window
properties, and operator selectivity. The results demonstrate that providing fine-grained provenance via
operator instrumentation is not only feasible, but is also optimizable and has tolerable overhead. While
our implementation just picks one specific DSMS and one provenance management architecture, our
overall analysis, provenance model, generation approaches, and optimizations are applicable to a much
wider range of systems and implementations.

This paper thus makes the following contributions:

• It identifies the requirements and challenges of managing fine-grained provenance on data streams.

• It explores the design space for providing this capability in a DSMS.

• It introduces a new provenance generation technique for stream processing systems based on anno-
tating and propagating provenance information through operator instrumentation.

• It proposes a number of optimization techniques for compressing and efficiently retrieving stream
provenance.

• It presents the implementation of Ariadne, the first DSMS prototype providing support for fine-grained
provenance.

• It provides an experimental evaluation of the proposed techniques on Ariadne.

The rest of this paper is organized as follows. First, we motivate the need for and identify the challenges
of fine-grained stream provenance by means of an example use case in Section 2. Taking the identified
challenges into account, Section 3 discusses the design space for integrating provenance generation and
retrieval to a DSMS. We introduce the stream model and provenance semantics underlying our approach
in Section 4. Building upon this model, we present its implementation in the Ariadne prototype in Section
6, and present a number of optimizations over our basic approach in Section 7. We discuss the results
of our experimental study in Section 8, summarize the related work in Section 9, and finally conclude in
Section 10.

2 Motivation and Challenges

Event stream processing has recently been gaining traction in applications that not only need to deal with
large amounts of observed data (a traditional strong point of event processing), but also require control
loops to react on this data. Additional requirements of such applications include human observation,
assurance and recording of the application state, and query debugging [4]. Common to these new use
cases of stream processing is the need to trace an output data item generated by the DSMS back to the

3

Selection
temp < 350 C

Aggregate
min(loc)

avg(temp)
min(time)

Windowing:
count-based

window size = 10
window slide = 1

Union
B-sort
slack = 15

order-on = time
Selection
avg_temp > 90

Aggregate
count_distinct(min_loc)

Windowing:
Value-based

on attribute = min_time
window size = 2
window slide = 1

Selection
count_loc > 3

Selection
temp < 350 C

Aggregate
min(loc)

avg(temp)
min(time)

Windowing:
count-based

window size = 10
window slide = 1

Sensor1(time, loc, temp)

Sensorn(time, loc, temp)

Output

Figure 1: Running Example: Overheating Query

input data that contributed to its existence, i.e., tracking data stream provenance. We motivated this need
for a diverse spectrum of use cases and identified general challenges in a recent position paper [15]. In
this work, we focus on developing an efficient approach to extend a DSMS with provenance functionality.

2.1 Running Example

In monitoring and control of manufacturing systems, sensors are attached to machines and to key points
along a supply chain. Sensor readings are processed by a DSMS in order to detect critical situations
such as machine overheating, fire, standstill, and low inventory. These detected events are then used for
automatic corrections as well as for notifying human supervisors.

Example 1 Figure 1 shows a continuous query that is used to detect overheating for a simplified version
of such a scenario. The input streams of the query are produced by a number of sensors measuring
temperature. Each sensor stream is filtered to remove massive outliers (i.e., temperature above 350◦C).
The filtered stream is aggregated by averaging the temperature over a sliding window of 10 temperature
readings in order to further reduce the impact of sudden spikes. These data cleaning steps are applied
to each sensor stream individually. Afterwards, readings from multiple sensors are combined for cross-
validation (i.e., a union followed by a sort operator to maintain global ordering on time across all sensors).
The final aggregation and selection ensure that a fire alert will only be raised if at least three different
sensors show average temperatures above 90◦C within an interval of 10 time units.

To react on events in such a scenario, a human supervisor needs to understand why/how these events
were triggered to be able to assess their relevance. For example, if the DSMS outputs an overheating
alarm event, the user would want to understand which sensor readings caused the event, i.e., belong to
the fine-grained provenance of the event. For the example use case, provenance is requested in an ad-
hoc manner for events of interest. Provenance should be provided efficiently for all alarms raised by the
system to enable interactive drilldown if this information is requested by the user. Furthermore, the user
should be able to define policies to assert his interest in provenance under certain circumstances, such
as for overheating alarms which are based on unusually high temperature readings. That is the system
should support queries over generated provenance information to, e.g., filter out parts of the provenance
that are irrelevant for the user.

4

2.2 Challenges

In many stream-based use cases including the one above, data is essentially transient, rapid, time-
ordered, and possibly unbounded, while queries can behave non-deterministically due to approximate
processing or uncertain inputs. These characteristics lead not only to stream-oriented data representa-
tions and processing models, but also more strict constraints on performance, both of which greatly affect
how provenance should be managed. A major challenge is to find a solution that balances the amount
of data needed to correctly represent provenance, while guaranteeing efficient generation and scalable
retrieval. More specifically, provenance management on data streams must deal with the following list of
challenges:

Online and Infinite Data Arrival: Data streams can potentially be infinite. This means that we usually
do not have a full view on all items of a stream (i.e., some items may have not appeared yet). More-
over, it may be impractical or even impossible, to preserve all items for later processing. This limits the
applicability of methods that reconstruct provenance from the query and input data on request.

Ordered Data Model: In contrast to the set or bag model of relational databases, data streams are
typically modeled as ordered sequences, requiring a provenance model that incorporates order. This
ordering, however, can be exploited in providing optimized representations of provenance.

Window-based Processing: Operators like aggregation and join are typically processed in DSMSs by
grouping tuples from a stream into windows and computing the result over the content of each window.
Windowing is usually implemented using stateful operators. Stream provenance must deal with window-
ing behavior in order to trace the outputs of such stateful operators back to their sources correctly and
efficiently. The statefulness of operators restricts the applicability of certain provenance techniques (as
will be explained in Section 3) and the prevalence of aggregations in queries leads to enormous amounts
of provenance. However, windowing also enables new types of optimizations for provenance genera-
tion (such optimizations are presented in Section 7 and their behavior is analyzed in the experimental
evaluation in Section 8).

Low-latency Results: Streaming applications have strict performance requirements where low latency
should be maintained, even under very high data arrival rates. For example, in ad-hoc human inspection
queries, the events of interest are relevant only for short periods of time and, thus, need to be available
in a timely fashion. Provenance generation has to be light-weight enough not to violate the application’s
latency constraints for data and provenance.

Non-determinism: Mechanisms applied by DSMSs to cope with issues like high input rates (e.g., load
shedding or approximations [23, 26]), unpredictable input source behavior (e.g., delays or disorder [25]),
and certain operator definitions (e.g., windowing on system time, merging input streams based on ar-
rival order, or operators with timeout parameters [2]), can lead to non-deterministic behavior. We call
a query network deterministic if the output produced by the network solely depends on its input, i.e.,
the results are reproducible. For instance, a network that uses windowing based on system time is not
deterministic, because two executions of the network over the same input may produce different results.
Non-determinism restricts the applicability of some approaches developed for database provenance. For
instance, query rewrite approaches used for database provenance are often not applicable to streaming
queries, since most of these techniques require reproducibility of query results to deal with operations
such as aggregation [12, 14] (this will discussed further in Section 3.1.2).

In this paper, we address these challenges, by providing a novel, fine-grained, propagation-based prove-

5

Method Applicable
to

Storage Overhead Runtime Overhead Retrieval Overhead

How to generate?
Inverse Invertible - None High

Query Rewrite Deterministic - High -
Operator Instrumentation All - Low -

When to generate?
Eager All - Generation (high) -

Reduced-Eager All Temp. Input Storage (low) Generation (low) + Input Storage (low) Reconstruct (low)
Replay-Lazy Deterministic Temp. Input Storage (high) Input Storage (high) Replay (high)

Figure 2: Comparison between Methods for Provenance Generation

nance management approach which exerts small overhead in the system through a number of optimiza-
tions.

3 Provenance Design Space

We now discuss alternative ways of how to design or extend a DSMS to support the requirements of
use cases like the one presented in Section 2.1. We present approaches for generating and repre-
senting provenance, discuss when to generate provenance (eagerly during query execution or lazily on
request), and discuss the tradeoffs of these methods with respect to query non-determinism, latency,
and provenance retrieval frequency (the fraction of the output for which provenance is required). All
options and relevant evaluation criteria are outlined in Figure 2.

3.1 Provenance Generation

We consider three approaches for provenance generation: (1) computing inverses, (2) rewriting the
query network to propagate provenance annotations using the existing operators of the DSMS, and (3)
instrumenting the operators of the query network to propagate provenance information. Inverse (e.g.,
Woodruff et al. [30]) and propagation through Query Rewrite (e.g., Glavic et al. [14]) are well-known
techniques studied in the database and workflow provenance literature. Operator Instrumentation also
applies propagation of provenance information, but in contrast to query rewrite, modifies the operators
of the system to enable propagation. So far, we are not aware of any system that actually implements
Operator Instrumentation.

3.1.1 Inversion

Inversion generates provenance by applying the inverse (in the mathematical sense) of an operator to
an output to generate its provenance. Examples of invertible operators are join (without projection)
and selection, because for these operators the inputs can be constructed from an output tuple. We
call a network invertible if it only consists of invertible operators. In general, every invertible network is
deterministic, but the opposite does not necessarily hold.

For most non-trivial operators, no inverse in the strict mathematical sense exists and, thus, additional in-
formation is required to compute the inverse. Even if the complete input data of the operator is present, it
might still not be possible to invert it and we may have to resort to re-execution to generate its provenance.

6

For example, determining which input tuples have contributed to an output tuple from a value-based win-
dow is not possible if we do not expose the boundary conditions of a window instance in the output tuple.
For such operations, inversion degenerates to propagation (by either rewrite or operator instrumentation).

3.1.2 Propagation by Query Rewrite

Similar to relational provenance systems such as Perm [14], DBNotes [9], or Orchestra [19], we can
generate provenance for DSMS by rewriting a query network q into a network that generates the prove-
nance of q in addition to the original network outputs. However, for this approach to be applicable, the
query language of the DSMS has to be powerful enough to express the provenance computation for an
arbitrary network expressed in this language.

Many query rewrite techniques require changes to the structure of the query network. For instance, we
cannot propagate provenance information though operators like aggregation directly without changing
the results of this operator (see [14] for a discussion on the topic). To generate the provenance for
such operators, a provenance-generating copy of the sub-network that generates the operator’s input
has to be added to the network and joined with the original sub-network, leading to a tight coupling
of query execution and provenance computation. This results in query networks with large number of
joins between streams with imbalanced arrival rates. For instance, the provenance of an aggregation
operator is usually much larger than the operators output. Unless the DSMS is applying sophisticated
load balancing and scheduling techniques, the imbalance in the arrival rates of join inputs will lead to
unbounded growth of join buffers and, thus, poor throughput and latency. Furthermore, two copies of a
sub-network may produce different results if the sub-network is non-deterministic (e.g., using a random
number generator function or windows based on system time). In this case, the rewritten network will fail
to attach the correct provenance to an original result.

3.1.3 Propagation by Operator Instrumentation

The key idea behind the operator instrumentation approach is to extend each operator implementation
so that the operator is able to annotate its output with provenance information based on provenance
annotations on its inputs. We refer to this modification of an operator’s behavior as Operator Instrumen-
tation. Since these annotations can be processed in line with the regular data, the original query plan
can be kept as is. Thus, most issues caused by non-determinism are dealt with in a natural way, since
the execution of the original query network is traced. The only exception is that the overhead introduced
by provenance generation may affect temporal conditions, e.g., the content of a window based on system
time may change. A drawback of Operator Instrumentation is the need to extend all operators. Since
operator instrumentation generates provenance without additional operators to the query network, its
runtime and latency overhead is usually lower than for rewrite. Choosing the right provenance represen-
tation and compression can further mitigate this overhead.

3.2 Eager and Lazy Provenance Generation

Provenance can either be generated eagerly by producing complete provenance while the query network
is running, or lazily by postponing the provenance generation (or parts thereof) to when it is requested.

7

We now discuss the advantages and disadvantages implied by eager and lazy approaches for prove-
nance generation. In its extreme form, lazy generation would not produce any provenance during the
execution of the query network, i.e., the query network is executed with no runtime or latency overhead.
However, this is only possible for networks that are completely invertible, and as the previous section
shows, such networks are rare in practice. For non-invertible deterministic networks, we can realize lazy
generation by temporarily storing input tuples and replaying these inputs though a copy of the network
modified for provenance generation (e.g., using query rewrite techniques). We call this approach Replay-
Lazy. The naive implementation of Replay-Lazy requires the storage and replay of the entire input that
was processed before the generation of the output for which provenance is computed, which can be pro-
hibitively expensive due to the long-running nature of streaming queries. Thus, for this approach to be
practical we would need to record additional information to be able to reduce the amount of data that is
stored and replayed. For example, we could store for each output which parts of the input are needed for
the replay to be executed correctly (e.g., store a superset of the provenance). This idea leads into the di-
rection of eagerly generating a limited type of provenance information (e.g., representing provenance as
tuple identifiers) to reduce the runtime overhead at the cost of spending additional time to reconstruct the
full provenance from the limited representation for retrieval. We refer to this approach as Reduced-Eager.

3.3 Provenance Representation and Retrieval

We now discuss how to query provenance and represent this information externally to a user and in-
ternally for efficient operations. External representations should be informative enough to be easily
interpretable and queryable. Complete input tuples seem to be a better fit for external provenance rep-
resentation than, e.g., sets of tuple identifiers, because the latter are quite meaningless to a human.
Internally, we may prefer to use a more compact representation of provenance to increase performance
and save storage space, and only expand it to the external representation if needed (this corresponds to
the Reduced-Eager approach described above).

Two options for querying provenance have been established in related work: Develop a new data model
and query language for provenance [9, 20], or represent provenance using the original data model and
query it using the original query language [14]. When developing a new query language for provenance
it can be custom fitted for provenance querying. However, the development effort will be larger than for
adding new features to an existing query language and the support for query non-provenance data will
probably very limited.

3.4 Summary of Tradeoffs

Figure 2 shows the tradeoffs implied by when and how to compute provenance in a DSMS. Pure Inverse
is only applicable for a restricted set of operators and queries, thus restricting its use to a small set of
special cases or as an additional optimization. Query Rewrite is restricted to deterministic networks
and carries a high runtime and latency overhead, since it needs to introduce additional sub-networks
which need be tightly coordinated with the regular query execution. As a result Query Rewrite should
typically only be used if the price of extending operators and possibly also their cost models for Operator
Instrumentation cannot be paid. The advantage of Operator Instrumentation over Query Rewrite will be
confirmed in Section 8.

8

Eager computation is applicable to all query network types and does not require storing any input tuples,
but propagating full tuples through all operators is very costly and prohibits any further optimizations,
making it only suitable when storage is limited and computational cost is secondary. Reduced-Eager
needs to store input tuples and therefore pays a price in terms of storage and computational cost for stor-
ing and reconstructing these tuples. This cost is however offset by a significant reduction in provenance
generation cost (witnessed by both decreased runtime and latency), since compressed representations
can be used. Replay-Lazy further reduces the runtime overhead by just computing some minimal prove-
nance, but incurs higher retrieval cost due to the replay and is only applicable to deterministic networks.
Reduced-Eager is beneficial if provenance is requested often (high retrieval frequency). Replay-Lazy is
preferable for low retrieval frequency. We study this tradeoff in Section 8.6.

Various architectures to support DSMS provenance can be designed within this design space, rang-
ing from storage-centric approaches which compute provenance on demand to computation-centric ap-
proaches which output provenance continuously. The basis for a provenance-enabled streaming system
can be a conventional DSMS, fast DBMS, or a hybrid system, coupled with a scalable storage system.
Yet, as this design space analysis shows, no solution can exist without substantial extensions on the
underlying system in order to deal with the specifics of data stream systems outlined in Section 2.

For Ariadne, the system presented in this paper, we settled on an existing DSMS, as it provides the
highest fidelity in terms of typical DSMS semantics. We chose Reduced-Eager Operator Instrumentation
as our “workhorse”, given its general applicability and moderate overall cost. Replay-Lazy is used as an
optimization for workloads with low retrieval frequency. In spite of its limitations, we still chose to also
develop a Rewrite approach to be able to verify our claim about its inferior performance characteristics
experimentally (see Section 5).

4 Provenance Annotation Propagation by Operator Instrumenta-
tion

In this section, we introduce a provenance model for streams and then discuss how to extend queries
to annotate their outputs with provenance information according to this model. We first define a stream
data and query model. The choice of operators included in the query model is based on the operators
implemented in Ariadne, which correspond to the operators in Borealis [1]. Since these operators include
the most commonly used streaming operators such as windowed aggregation and joins, we can easily
adapt our model for other DSMS.

A formal provenance model requires a formal underpinning in terms of a data model and query language,
e.g., like the relational algebra in databases. Since there is no generally accepted formal model for
data streams, we first establish the necessary definitions for the data model (Section 4.1) and operator
semantics (Section 4.2), using a recursive prefix-based model. We have tried to keep this model as
generic and minimal as possible, so that it will apply to many existing DSMS. Even if not all operations of
a DSMS map directly to the formalism, the provenance model itself can be easily adapted

9

4.1 Data Model

We model streams as (possible infinite) sequences of so-called stream items. Each stream stores items
of a specific type. In our model we use three item types: tuples, windows, and join-windows. Tuples
are lists of attribute values that conform to a given schema (attribute name and domain pairs). Windows
are ordered sequences of tuples and are used to define stream operators that compute output items
based on subsequences of their input stream. Similar, join-windows, storing two windows from different
streams, are used in the definition of the join operator.

Definition 1 (Stream Item and Stream) A stream item i is of a type Type ∈ {T,W,JW} that defines its
structure: A stream item of type T (a tuple) is an element t = [tid,a1, . . . ,an] from T ×D1× . . .×Dn for a
list of domains D1, . . . ,Dn and a set T of tuple identifiers. Let T (t) denote the identifier of tuple t which
is required to be unique. We reserve the attribute name T ID for the attribute that stores the T (t) value
of t. A stream item of type W (a window) is a finite sequence of tuples denoted as w =� t1, . . . , tn�. A
stream item of type JW (a join-window) is a tuple jw = [w1,w2] where w1 and w2 are windows. A stream
S of type Type is a, (possibly infinite) sequence of stream items of type Type denoted by � i1, . . .�Type

(Type is omitted if clear from the context). We use S[i] to denote the ith element of stream S, and SType to
denote that stream S is of type Type.

For example, S =�� t1, t2 �,� t2, t3 ��W with t1 = [T1,5], t2 = [T2,7], and t3 = [T3,12] is a stream of
type W containing two windows; each of them containing two tuples. Fig. 3 summarizes the notations we
use in the stream algebra and provenance definitions (some will be introduced later).

4.2 Stream Algebra

We now present an algebraic formalization of stream operators. A stream operator produces one or
more tuple output streams from one or more tuple input streams. In the definitions we use some auxiliary
functions presented in the following. Applying the head function H to a stream S returns the first item
in the stream (H(S) = S[1]). The result of applying the tail function T to a stream SType is the original
stream with the first element removed (T (S) =� S[2],S[3], . . .�Type). Both head and tail are also defined
to return resp. remove m stream items (e.g., H(S,m) =� S[1], . . . ,S[m]�Type). The concatenation of a
stream item i and a sequence S or of two sequences S1 and S2 is defined as: i || S =� i,S[1], . . .�Type

and S1 |→ S2 =� S1[1], . . . ,S1[l(S1)],S2[1], . . .�Type where l(S) denotes the number of items in sequence
S. For a tuple t, t.N is the tuple without its identifier.

We first present the definitions for selection and projection that directly operate on input tuples without
grouping them into windows. Afterwards, we present two auxiliary classes of operators, called windowing
and join windowing, that are used in the definition of aggregation and join presented in the following. In
the operator definitions we use new to denote a function that generates new T ID values for the output
of an operator. To not loose generality we only require that new is deterministic (it generates the same
values for the same input).

Selection: A selection σc(I) on condition c filters out tuples from a stream that do not fulfill the condition
c.

σc(I) =

{
[new,H(I).N] || σc(T (I)) if H(I) |= c

σc(T (I)) else

10

SType Stream S is of type Type ∈ {T,W,JW}
[tid,a1, . . . ,an] Item of type T (tuple)
� t1, . . . , tn� Item of type W (window) with ti ∈ T
[w1,w2] Item of type JW with w1,w2 ∈W
H(S) First stream item of sequence S
H(S,n) Sequence containing the first n items of sequence S
T (S) Sequence S with first element removed
T (S,n) Sequence S with first n elements removed
i || S Sequence S with item i added at the beginning
S1 |→ S2 Concatenation of sequences S1 and S2

T ID Name of the attribute for tuple identifiers
new Function that generates new tuple identifiers for the out-

put of an operator
t.A Project tuple t on expressions A
t.N Project tuple t on its data (remove T ID and/or prove-

nance attribute)
t.P Project tuple t on the provenance set
q[O] Output stream O from query network q
S∩M Remove elements from stream S that are not in M
S ↑M Remove elements from stream S that follow the last el-

ement from M
qO Sub-network of network q that contains only nodes that

influence output stream O

Figure 3: Notations

Projection: A projection πA(I) on a list of projection expressions A (attributes and application of functions)
projects each input tuple on the expressions from A. In the definition t.A denotes the projection of a tuple
t on A.

πA(I) = [new,H(I).A] || πA(T (I))

Windowing: A window operator is a function ω : IT → OW . I.e., groups tuples from a tuple stream into
windows. As examples for a window operators we present count-based windowing and value-based
windowing. The count-based window operator C (c,s) groups c (called count) tuples from the input into a
window and skips s (called the slide) tuples before opening a new window:

C (c,s)(I) =� H(I,c)�|| C (c,s)(T (I,s))

The value-based window operator V (x,r,s) groups all tuples into a window that have an x attribute value
that is smaller than the x attribute value of the first item in the window plus the parameter r (called range).
Windows are advanced by s:

V (x,r,s)(I) = σx≤H(I).x+r(I) || V (x,r,s)(σx≥H(I).x+s(I))

Join Windowing: A join-windowing operator is a function jω : IT × I′T → O jw that groups inputs from two
tuple streams into join-windows. For a join-window jw = [w1,w2] we denote the access to window wi by
jw.wi. For example, value-based join-windowing (jv(x1,x2,r)) groups each tuple t from the left stream
with all tuples from the right stream that have an x2 attribute value between t.x1 and t.x1 + r.

jv(x1,x2,r)(I, I′) =[� H(I)�,σC(I′)]

|| jv(x1,x2,r)(T (I), I′)

C =x2 ≥ H(I).x1∧ x2 ≤ H(I).x1 + r

11

(a) Algebra Expression

Soutσcount l>1
αcount distinct(min l),

val(2,1,min ti)
σavg t>90ρ15,min ti∪

αmin(l),min(ti),

avg(t),#(3,1)
σt<350S1 1

3

αmin(l),min(ti),

avg(t),#(3,1)
σt<350S2 2

4

5 6 7 8

(b) Example Evaluation

TID ti l t
2 : 1 1 2 89
2 : 2 2 2 102
2 : 3 3 2 105
2 : 4 4 2 106
2 : 5 5 2 105
2 : 6 6 2 108

TID ti l t
3 : 1 2 1 83
3 : 2 3 1 79
3 : 3 4 1 92
3 : 4 5 1 95
3 : 5 6 1 94

TID min ti min l avg t
5 : 1 2 1 84.6
5 : 2 3 1 85.3
5 : 3 4 1 93.6

TID min ti min l avg t
6 : 1 1 2 98.6
6 : 2 2 2 104.3
6 : 3 3 2 105.3
6 : 4 4 2 106.3

TID min ti min l avg t
7 : 1 2 1 84.6
7 : 2 3 1 85.3
7 : 3 4 1 93.6
7 : 4 1 2 98.6
7 : 5 2 2 104.3
7 : 6 3 2 105.3
7 : 7 4 2 106.3

TID min ti min l avg t
8 : 1 1 2 98.6 {7 : 4}
8 : 2 2 2 104.3 {7 : 5}
8 : 3 2 1 84.6 {7 : 1}
8 : 4 3 1 85.3 {7 : 2}
8 : 5 3 2 105.3 {7 : 6}
8 : 6 4 1 93.6 {7 : 3}
8 : 7 4 2 106.3 {7 : 7}

TID min ti min l min t
9 : 1 1 2 98.6 {7 : 4}
9 : 2 2 2 104.3 {7 : 5}
9 : 3 3 2 105.3 {7 : 6}
9 : 4 1 4 93.6 {7 : 3}
9 : 5 2 4 106.3 {7 : 7}

TID count l
10 : 1 1 {7 : 4, 7 : 5}
10 : 2 1 {7 : 5, 7 : 6}
10 : 3 2 {7 : 6, 7 : 3}
10 : 4 2 {7 : 3, 7 : 7}

TID count l
11 : 1 2
11 : 2 2

σ

α

ρ
∪

σ

α

σ

α

σ

TID ti l t
1 : 1 1 1 399
1 : 2 2 1 83
1 : 3 3 1 79
1 : 4 4 1 92
1 : 5 5 1 95
1 : 6 6 1 94

TID ti l t
4 : 1 1 2 89
4 : 2 2 2 102
4 : 3 3 2 105
4 : 4 4 2 106
4 : 5 5 2 105
4 : 6 6 2 108

1

2S2

S1
Sout3

4 5

6

7

8

PG

PP

PP

Figure 4: Example Query Network with Data

Aggregation: An aggregation αagg,ω(I) partitions its input into windows using the window function ω and
computes the aggregation functions from agg = (agg1(a1), . . . ,aggn(an)) over each window generated by
ω. Each aggregation function aggi(ai) computes a single attribute value from all values of attribute ai in a
window w. We denote the application of an aggreation function agg(ai) to a window w as agg(ai,w).

αagg,ω(I) = a(ω(I))

a(I) = agg(H(I)) || a(T (I))
agg(w) = [new,agg1(a1,w), . . . ,aggn(an,w)]

Join: The join operator ./c, jω (IT , I′T) joins two input tuple streams I and I′ by applying the join windowing
operator jω to I and I′, and for each generated join-window jw outputs each combination of a single
tuple from jw.w1 with a tuple from jw.w2 that fulfills the join condition C.

./C, jω (I, I′) = join(H(jω(I, I′))) |→ join(T (jω(I, I′)))

join(jw) = joinl([� H(jw.w1)�, jw.w2])

|→ joinl([T (jw.w1), jw.w2])

joinl(jw) =

{
X || Y if [H(jw.w1),H(jw.w2)] |=C

Y else

X =[new,H(jw.w1).N ,H(jw.w2).N]

Y = joinl([jw.w1,T (jw.w2)])

Union: A union operator ∪(S1,S2) merges tuples from two input streams S1 and S2 with the same schema
into a single stream based on their arrival order.

12

B-Sort: A b-sort operator ρs,a(S) with slack s and an order-on attribute a applies bounded-pass bubble
sort with buffer size s+1 on its input, and thereby, produces an output that is approximately sorted on a.

Example 2 An algebraic query network for the overheating query with two sensors (Figure 1) is shown
in Figure 4(a), with streams inside the graph labeled 1 to 8 for easier referencing. Figure 4(b) shows
an execution of this network for a given input. Note that we choose smaller window sizes than in the
original network to simplify the example. Both input streams (S1 and S2) have the same schema with
attributes time (ti), location (l), and temperature (t). The query network uses selection (σt<350) to filter
out temperature outliers and groups each filtered input stream into windows of three tuples advancing
the window by one tuple (#(3,1)). For each window we compute the minimum of time (to assign each
aggregated tuple a new time value) and location (the location is fixed for one stream, thus, the minimum
of the location is the same as the input location), and average temperature (αmin(l),min(ti),avg(t)). The
aggregated streams are merged into one stream (∪) and sorted on time (ρ15,min ti). We then filter out
tuples with temperature values below the overheating threshold (σavg t>90). The result is grouped into
windows with a maximal time difference of two time units (val(2,1,min ti)) and the number of distinct
location values is computed for each window (count distinct(min l)). Tuples with less than two distinct
locations are filtered out in the last step (σcount l>1). For instance, in the example execution shown in
Figure 4b, the upper left selection filters out the outlier tuple 1:1(1,1,399). The following aggregation
groups the first three result tuples into a window and outputs the average temperature (84.6), minimum
time (2), and location (1).

4.3 Declarative Provenance Semantics

We now present the contribution semantics (definition of provenance) applied by Ariadne that models
the provenance of an output tuple t of a query q as a provenance set, the set of tuples from the input
stream(s) of q that were used to derive t. The declarative definition of our contribution semantics cap-
tures assumptions about provenance that one would intuitively expect to hold. (i) The provenance of a
tuple should produce this tuple and nothing else. (ii) Provenance should not include tuples that did not
contribute to the output. These intuitions are captured by stating conditions over the result of evaluating
a query network over subsets of its input streams. E.g., by removing all tuples from the input that do not
belong to the provenance set of an output tuple.

To be able to state such conditions we define two types of reduced input streams: Intersection of a stream
I with a set M is denoted by I∩M and defined as:

I∩M =

{
H(I) || T (I)∩M if H(I) ∈M

T (I)∩M else

The prefix I ↑M of a stream I according to a set M contains all tuples from the stream until the last (in
order of the stream) tuple from M :

I ↑M =

{
H(I) || T (I) ↑M if ∃t ∈M : pI(H(I))≤ pI(t)

T (I) ↑M else

Prefix and intersection of a list of streams I = (I1, . . . , In) with a set are defined as the list generated by

13

applying prefix respective intersection to each stream in the list:

I∩M = (I1∩M , . . . , In∩M)

I ↑M = (I1 ↑M , . . . , In ↑M)

For an output stream O of a query network q we define qO as the query network that contains all nodes
that are reachable from O if we reverse the edges in q. I.e. the sub-network that contains only streams
and operators that may influence the evaluation of O. Furthermore, I ⊆ I′ denotes that all items from I are
contained in I′. Having defined prefix, intersection, and qO we now present our declarative provenance
definition.

Definition 2 (Provenance Sets) The Provenance set P(q,I, t) of a result tuple t from an output stream
O of a stream algebra expression q over a list of input streams I= (I1, . . . , In) is the minimal subset of all
tuples from I (Set(I)) that fulfills the following conditions:

q(I∩P(q,I, t))[O] =� x� with t.N = x.N (1)

q(I ↑ P(q,I, t))[O] =� . . . , t� (2)

∀ω ∈ qO : ω(I∩P(q,I, t))⊆ ω(I) (3)

The conditions of Def. 2 capture the intuitive assumptions presented beforehand. Condition 1 guarantees
that the provenance of t is sufficient for producing t and only produces t. This is done by evaluating q over
the provenance, checking that only a single tuple x with the same attribute values as t is returned (the T ID
of x may be different from the one of t, because the operators use new). The second assumption of P

to be minimal is expressed by Conditions 2 and 3. Conditions 2 checks that P(q,I, t) is the provenance
of tuple t and not of some other output tuple with the same attribute values at a different position in
the stream. This is achieved by applying the query to input streams prefixes up to the last tuple in the
provenance, and checking that the last output tuple in the output stream O is t (With the same T value,
since TID assignment is same for replays). Condition 3 plays the same role for operators with windowing.
It requires that replaying the provenance does only produce windows that are produced by the original
evaluation of q. The interested reader can verify that conditions 2 and 3 are necessary on the following
example:

αsum(a),C (2,1)(� [T1,5], [T2,5], [T3,5], [T4,5]�)

=� [T5,10], [T6,10], [T7,10]�

Based on Def. 2 we define the PEO of q, a stream that contains original output tuples of q and their
provenance.

Definition 3 (Provenance Enhanced Output Stream (PEO)) For a query q over inputs I and an output
stream O of q, the PEO P(q,I,O) is a stream with schema [O,P : Set(I)] defined as:

P(q,I,O) = [H(O),P(op,I,H(O))] || P(q,I,T (O))

Example 3 For instance, consider the PAS P(6,{5}) for the output of the b-sort operator according to
its input shown in Figure 4(b) (provenance sets are shown to the right of the tuples). Each output tuple
t of the b-sort is annotated with a singleton set containing the corresponding tuple from the input of

14

the b-sort, e.g., tuple 8:1 is derived from tuple 7:4. Now consider the PAS for the output of the last
aggregation in the query according to the input of the b-sort (P(8,{5})). Each output tuple is computed
using information from a window containing two input tuples with one tuple overlap between the individual
provenance sets. This is a typical pattern for annotated outputs of operators using sliding windows. For
example, tuple 10:2 is derived from a window containing tuples 7:5 and 7:6, and tuple 10:3 is derived
from a window containing tuples 7:6 and 7:3.

4.4 Operators and Networks with Annotation Propagation

We now discuss how to translate a query network q into a network that generates the PAS for a subset
of the streams in q by replacing operators in the network with operators that annotate their outputs with
provenance information. For this, we introduce two new types of provenance annotating operators for
each operator in our algebra:

Provenance Generator (PG): The provenance generator version PG(o) of an operator o computes the
PAS for all output streams of the operator according to its input streams. The purpose of a PG is to
generate a PAS for an operator from input streams without annotations. For each output stream S of the
operator o the provenance generator PG(o) creates P(S, input(o)) where input(o) are the input streams of
operator o.

Provenance Propagator (PP): This type of operator generates the PASs for its outputs from PASs
of its inputs. For simplicity, let us explain the concept for an operator o with a single output O and a
single input PAS P(S,I). The PP version of o will output P(O,I), i.e., the output will be annotated with
provenance sets of O according to I . Intuitively, a PP generates annotated output streams by modifying
the annotations of its input streams according to the provenance behavior of the operator.

In the definition of the PG and PP operators we use N to refer to all attributes of a tuple except for T ID
and P.

Definition 4 (PG and PP) The PG and PP stream algebra operators are defined as presented in Figure5
and Figure6 respectively.

We briefly explain two operators and their PG and PP semantics here: For selection, the PG provenance
of a tuple t is the tuple itself, shown as {H(I)}, in PP mode the provenance of the selected tuple,H(P).P.
For aggregation, the provenance of t is the set of all tuples in the window that generated t (in PG),
respectively the union of their provenance (in PP).

Networks with Annotation Propagation: Through capturing provenance generation with two operator
types, one for initial provenance generation (PG) and one for provenance propagation (PP), we have
provided the necessary means to generate provenance for a complete (or parts of a) query network by
deciding which operators are replaced by their annotating versions. That is, we can compute any valid
PAS for that network. To create a PAS P(O,I) for a network q we replace operators in the network
with annotating operators using the TransformNetwork algorithm shown as Algorithm 1. Given a query
network q, an stream O and a set of streams I , the algorithms modifies q so that it generates P(O,I).
First we prepare the network to deal with operators that read from both streams in and not in I . These
operators are problematic, because they have to process both streams with and without provenance
annotations and, thus, are neither PG nor PP operators. Our solution is to wrap each stream S in I

that is connected to such an operator in a PG projection on all attributes in the schema of S. This

15

Provenance Generators

σ
PG
c (I) =

{
[new,H(I).N ,{H(I)}] || σPG

c (T (I)) if H(I) |= c

σPG
c (T (I)) else

π
PG
A (I) = [new,H(I).A,{H(I)}] || πPG

A (T (I))

α
PG
agg,ω (I) = pa(ω(I))

pa(I) = [new,agg1(a1,H(I)), . . . ,aggn(an,H(I)),Set(H(I))] || pa(T (I)

./PG
c, jω (I, I′) = p j(H(jω(I, I′))) |→ p j(T (jω(I, I′)))

p j(jw) = p jl([� H(jw.w1)�, jw.w2]) |→ p j([T (jw.w1), jw.w2])

p jl(jw) =


[new,H(jw.w1).N ,H(jw.w2).N ,

{H(jw.w1),H(jw.w2)}] || p jl([jw.w1,T (jw.w2)]) if [H(jw.w1),H(jw.w2)] |= c

p jl([jw.w1,T (jw.w2)]) else

Figure 5: Provenance Generator Operator Types

Provenance Propagators

σ
PP
c (P) =

{
[new,H(P).N ,H(P).P] || σPP

c (T (P)) if H(P).N |= c

σPP
c (T (P)) else

π
PP
A (I) = [new,H(I).A,H(I).P] || πPP

A (T (I))

α
PP
agg,ω (I) = pa(ω(I))

pa(I) = [new,agg1(a1,H(I)), . . . ,aggn(an,H(I)),
⋃

i∈H(I) i.P] || pa(T (I))

./PP
c, jω (I, I′) = p j(H(jω(I, I′))) |→ p j(T (jω(I, I′)))

p j(jw) = p jl([� H(jw.w1)�, jw.w2]) |→ p j([T (jw.w1), jw.w2])

p jl(jw) =


[new,H(jw.w1).N ,H(jw.w2).N ,

H(jw.w1).P ∪H(jw.w2).P] || p jl([jw.w1,T (jw.w2)]) if [H(jw.w1),H(jw.w2)] |= c

p jl([jw.w1,T (jw.w2)]) else

Figure 6: Provenance Propagator Operator Types

projection does not change the results of the network, but guarantees that we can use solely PG and
PP operators to generate a PAS 1. Afterwards, the algorithm iterates through all operators in the query
network and replaces each operator that reads solely from streams in I with its PG version, and all
remaining operators on paths between streams in I and O are replaced with their PP versions.

A side effect of the incremental one-operator-at-a-time provenance generation approach we use to mod-
ify a query network to generate a PAS P(O,I) is that each PP operator in the modified network generates
one or more PAS according to the subset of I its connected to. That means, additional PAS are gen-
erated for free by our approach. In our terminology we refer to PP operators as p-sinks (i.e., we can

1Adding additional operator types to the algebra that deal with a mix of annotated and non-annotated streams does not pose a
significant challenge. However, for simplicity we refrain from using this approach.

16

Algorithm 1 TransformNetwork Algorithm

1: procedure TRANSFORMNETWORK(q,O,I)
2: mixed← /0
3: for all o ∈ q do . Find operators with mixed usage
4: if ∃S,S′ ∈ input(o) : S ∈I ∧S′ 6∈I then
5: mixed← mixed∪ input(o)
6: end if
7: end for
8: for all S ∈ (mixed∩I) do . Add projection wrappers
9: S←Πschema(S)(S)

10: end for
11: for all o ∈ q do . Replace operators
12: if ∃S ∈I : HASPATH(S,o)∧HASPATH(o,O) then
13: if ∃S′ ∈ input(o) : S′ ∈I then
14: o← PG(o)
15: else
16: o← PP(o)
17: end if
18: end if
19: end for
20: end procedure

(a) Query Network with Full Propagation

Soutσ

PP

α

PP

σ

PP

ρ

PP

∪
PPα

PP

σ

PG

S1

α

PP

σ

PG

S2

(b) Annotation Propagation for Parts of the Network

Soutσα

PP

σ

PP

ρ

PG

∪
ασS1

ασS2

Figure 7: Annotating Query Networks

consume provenance from the output of such an operator) and PG operators as p-hooks (i.e., the in-
puts of these operator are the reference points for provenance generated by the annotating network).
In the following, we use P(q) (called provenance generating network or PNG) to denote a network that
generates the PAS for all output streams of network q according to all input streams of q.

Example 4 Two provenance generating versions of the example network are shown in Figure 7 (the op-
erator parameters are omitted to simplify the representation). Figure 7(a) shows P(q), i.e., the annotating
version of q that generates the PAS P(q,Sout ,{S1,S2}) for output stream Sout according to the input streams
(S1 and S2). The left-most filter operators in the network are only attached to input streams and, thus,
are replaced by their PG versions. All other operators in the network are replaced by PP operators. The
query network shown on in Figure 7(b) generates the PAS P(q,8,{5}). Recall that a possible computa-

17

tion with data for this network is shown in Figure 4(b). The output stream of the right-most aggregation
is annotated with provenance sets containing tuples of the b-sort operator’s input stream.

5 Provenance Propagation by Query Rewrite

We give a short overview of how the Query Rewrite approach is implemented in Ariadne. We followed the
approach used in the Perm project [14] to compute database provenance. Let S1 and S2 be input streams
of operators and Sout denote an operator output stream. Given a PAS P(q,O,I) for a query network q, we
have to transform q into a network that computes the PAS P(O,I) using solely the standard operators
of the DSMS. Since annotations are not part of the original data and query model, we have to fix a
representation of annotations using regular data streams. Here, we use the same representation as
used by the p-join and expand operators. We extend each data tuple t with additional attributes to be
able to pair it with tuples from its provenance. For an input stream I, let P(I) denote a stream following this
representation that pairs every tuple t from I with itself. In a first step, we wrap every stream S∈I with an
projection that duplicates the attributes of S, i.e. S ∈I : S→ P(S) = ΠP(S)(S). Afterwards, we recursively
apply the rewrite rules shown as graph patterns in Figure 8 2 to all operators on paths between streams
in I and O. Each of these rewrite rules transforms an operator into a new subnetwork that behaves like
the PP-version of this operator, except that it produces a regular data stream encoding of an annotated
stream instead of an annotated stream.

Figure 9 shows an example network with two aggregation operators and the rewritten variant of this
network. The aggregations are rewritten by joining their outputs with PAS for their inputs. Note that this
rewrite is only possible for certain types of window operators where we can express a join condition that
guarantees that each tuple from a window only joins with the aggregated output produced for this window.
For instance, for a value-based window function V (c,s,a), we add two additional aggregation functions
to compute the minimum and maximum values in attribute a for the window. These values are used in
the join condition as follows: min(a)≥ a∧a≤ max(a).

6 Implementation

6.1 Overview

We now present the implementation of the approach developed above in our prototype system Ariadne.
While annotating networks give us the means to correctly describe the generation of provenance anno-
tated streams for a given query network, several problems had to be overcome in the implementation to
achieve efficient computation and retrieval of provenance.

We choose to implement the annotating operators introduced in the last section using Reduced-Eager
Operator Instrumentation, because this approach can be applied to all types of query networks and is
expected to result in a lower overhead than pure eager approaches. For operator instrumentation, we
extend each operator’s implementation by introducing two new operational modes that implement the PG
and PP versions of that operator. A query network q is set up for provenance computation by setting the

2Note that we abuse the PAS notation to also denote the PAS representation as a data stream.

18

Sin ⇡Sin P(Sin)

Sin

Sin Sout P(Sin,I) P(Sout,I)⇡⇡

�Sin Sout P(Sin,I) P(Sout,I)�

[
S1

S2

Sout

P(Sin,I)

[
P(Sin,I)

P(Sout,I)

./

S1

S2

Sout

P(Sin,I)

P(Sin,I)

P(Sout,I)./

⇢Sin Sout P(Sin,I) P(Sout,I)⇢

↵Sin Sout

P(Sout,I)./P(Sin,I)

↵Sin Sout

Figure 8: Query Rewrite Rules

operational modes as presented in Section 4.4, thus providing the flexibility to (re-)configure provenance
computation for parts of the network.

We implement Reduced-Eager by letting the annotating operators generate provenance as sets of tuple
identifiers (TID-Set) instead of sets of complete input tuples. To be able to restore the input tuples that

19

correspond to the tuple identifiers in the provenance for retrieval, we (1) temporarily preserve the input
tuples of p-hooks and (2) introduce two new operators called expand and p-join. The expand operator
turns a tuple annotated with a TID-Set representing its provenance into duplicates of this tuple each
paired with a single TID. The output tuples are regular data tuples and, thus, can be further processed
using the standard operators of the system. The second operator, p-join, restores complete input tuples
for provenance retrieval by joining a PAS with preserved input tuples from one of its p-hooks. For a tuple
t annotated with a TID-Set, p-join retrieves the preserved input tuples that correspond to the TIDs in the
TID-Set and outputs each combination of t with one of the retrieved input tuples. We store input tuples
as long as they may be required for provenance retrieval using a Borealis feature called Connection
Points [24]. Our current approach uses time-based purging of input tuples (standard purging strategy
of connection points). This solution is sufficient for most use-cases, but can be replaced with more
elaborate strategies in the future. Our variant of the Reduced-Eager approach provides both efficiency
and flexibility for provenance operations. Using TID-Sets avoids the cost of propagating full tuples and
enables further optimizations which we present in Section 7. Using the original data model to represent
provenance information by duplicating the data tuples is simpler and more general than an extended data
model and enables the user to express complex queries over the relationship between data and its prov-
enance. Developing specialized operators that evaluate queries directly over the TID-Set representation
of provenance is an interesting avenue for future work.

6.2 Internal Representation and Serialization of Provenance

We now discuss how Ariadne represents provenance internally and how it serializes and passes prove-
nance information between operators. Borealis uses queues to pass fixed-length tuples as uninterpreted
chunks of memory between operators in a query network. The physical layout of a tuple is shown in Fig-
ure 10(a). A tuple consists of a fixed length header (H bytes) storing information such as TID (T bytes)
and arrival time, and a payload which stores the raw byte data of the tuple’s attribute values (P bytes with
P depending on the tuple’s schema). No schema information is stored in the tuple itself. The schema of
the stream the tuple belongs to is needed to interpret the payload information.

Example 5 The execution of part of the running example network (from the b-sort to the right-most
aggregation) is shown on the top of Figure 11(a). For each tuple, the header is highlighted in light green
and the payload in dark green. The size of an element in a tuple shown in the figure represents the
number of bytes occupied by this element. Note that the sizes assumed here do not correspond one to

� SoutSin ↵ ↵

./⇡

� SoutSin ↵ ↵

� ./ P(Sout,{Sin})

Figure 9: Query Rewrite Example

20

(a) Tuple Layout

Field n

Tuple Header:
H bytes

Payload:
P bytes

TID Field 1

Tuple:
TS = P + H bytes

T bytes

(b) Provenance Tuple Layout (First)

Tuple Header:
T bytes

Provenance Payload:
(P + H - T)/ T tuple identifiers

#TIDS TID1 TID2 TIDn-1

(c) Provenance Tuple Layout (Intermediate)

Provenance Payload:
(P + H)/ T tuple identifiers

TIDn TIDn+1 TIDn+2 TID2n-1

Figure 10: Physical Tuple Layout

one to the sizes used in the actual implementation, but were chosen for presentational purposes. For
instance, the size of a tuple header used by Borealis is larger than shown in the figure.

We considered three alternatives to pass the variable-size TID-Sets between annotating operators: (1)
Modify the queuing mechanism to deal with variable-length tuples, (2) propagate TID-Sets through chan-
nels other than Borealis queues, or (3) split large TID-Sets into fixed-length chunks which are then
streamed over standard Borealis queues. We chose the third approach, because it is less intrusive than
changing all code that depends on fixed-length or introducing a new information passing mechanism.
Furthermore, we benefit from several optimizations in the engine that rely on tuples of fixed-size.

We serialize the provenance (TID-Set) for a tuple t into a list of tuples that are emitted directly after t.
Each of these tuples stores multiple TIDs from the set. Figures 10(b) and 10(c) show the physical layout
of such tuples. The first tuple (Figure 10(b) in the serialization of a TID-Set has a small header (same
size as a TID) that stores the number of TIDs in the set. This header is used by down-stream operators
to determine how many provenance tuples have to be dequeued. Given that the size of a TID in Borealis
is 8 bytes3, we are saving around an order of magnitude of space (and number of tuples propagated)
compared to using full tuples even for streams with a very small tuple payload. The actual savings

3To be precise, the size the C++ compiler allocates for the signed long data type.

21

(a) Normal Query Network

σ αρ
...7:1 2 1 84.6
...7:2 3 1 85.3
...7:3 4 1 93.6
...7:4 1 2 98.6
...7:5 2 2 104.3
...7:6 3 2 105.3
...7:7 4 2 106.3

...8:1 1 2 98.6

...8:2 2 2 104.3

...8:3 2 1 84.6

...8:4 3 1 85.3

...8:5 3 2 105.3

...8:6 4 1 93.6

...8:7 4 2 106.3

...9:1 1 2 98.6

...9:2 2 2 104.3

...9:3 3 2 105.3

...9:4 1 4 93.6

...9:5 2 4 106.3

...10:1 1

...10:2 1

...10:3 2

...10:4 2

5 6 7 8

(b) Provenance-enabled Query Network

σ
PP

α
PP

ρ
PG

...9:1 1 2 98.6

...9:2 2 2 104.3

...9:3 3 2 105.3

...9:4 1 4 93.6

...9:5 2 4 106.3

5

6

7 8
...8:1 1 2 98.6

...8:2 2 2 104.3

...8:3 2 1 84.6

...8:4 3 1 85.3

...8:5 3 2 105.3

...8:6 4 1 93.6

...8:7 4 2 106.3

#1 7:4

#1 7:5

#1 7:1

#1 7:2

#1 7:6

#1 7:3

#1 7:4

#1 7:5

#1 7:6

#1 7:3

2#1 7:7

...10:1 1

...10:2 1

...10:3 2

...10:4 2

#2 7:4 7:5

#2 7:5 7:6

#2 7:3 7:6

#2 7:3 7:7

4#1 7:7

...7:1 2 1 84.6

...7:2 3 1 85.3

...7:3 4 1 93.6

...7:4 1 2 98.6

...7:5 2 2 104.3

...7:6 3 2 105.3

...7:7 4 2 106.3

(c) Provenance-enabled Query Network with Retrieval

σ
PP

α
PP

ρ
PG

...9:1 1 2 98.6

...9:2 2 2 104.3

...9:3 3 2 105.3

...9:4 1 4 93.6

...9:5 2 4 106.3

5

6

7 8
...8:1 1 2 98.6

...8:2 2 2 104.3

...8:3 2 1 84.6

...8:4 3 1 85.3

...8:5 3 2 105.3

...8:6 4 1 93.6

...8:7 4 2 106.3

#1 7:4

#1 7:5

#1 7:1

#1 7:2

#1 7:6

#1 7:3

#1 7:4

#1 7:5

#1 7:6

#1 7:3

2#1 7:7

...10:1 1

...10:2 1

...10:3 2

...10:4 2

#2 7:4 7:5

#2 7:5 7:6

#2 7:3 7:6

#2 7:3 7:7

4#1 7:7

�

...7:1 2 1 84.6

...7:2 3 1 85.3

...7:3 4 1 93.6

...7:4 1 2 98.6

...7:5 2 2 104.3

...7:6 3 2 105.3

...7:7 4 2 106.3

...10:1 1 7:4

...10:1 1 7:5

...10:2 1 7:6

...10:2 1 7:5

...10:3 2 7:3

...10:3 2 7:6

...10:4 2 7:7

...10:4 2 7:3

1 2 98.6
2 2 104.3
2 2 104.3
3 2 105.3
4 1 93.6
3 2 105.3
4 1 93.6
4 2 106.3

...10:3 2 7:3 4 1 93.6

...10:4 2 7:3 4 1 93.6

σ

Figure 11: Example for Provenance Computation

depend on the number and type of payload data fields of the stream and the underlying architecture:
Recall that H is the size of a standard Borealis tuple header, T the size of a TID value, and P the size of
the payload data for tuples in a queue. Thus, the size T S of a complete tuple in the queue would be P+H.
To serialize a TID-Set, we can store bT S/Tc TIDs in a tuple of size T S with exception of the first tuple in
the serialization which stores b(T S−T)/Tc TIDs and the provenance header. Despite these savings, the
TID-Set representation can still cause significant overhead due to the large amount of provenance certain
operations (e.g. aggregations on large windows) can create. We investigate compression methods to
further reduce this overhead in Section 7.

22

6.3 Provenance Annotating Operator Modes

As outlined in the beginning of this section, we extend the existing Borealis operators with new operational
modes to realize the provenance generating (PG) and provenance propagating (PP) operators introduced
in Section 4.4. Operators in both PG- and PP-mode need to be able to serialize a provenance set as
outlined in Section 6.2. An operator in PG-mode has to buffer TIDs from its input stream and use these
TIDs to generate provenance sets for its output. PP-mode requires the ability to de-serialize and/or buffer
provenance sets from the operators input and to merge provenance sets.

We factored out the common functionality such as buffering, serialization and de-serialization, and merg-
ing of TID-Sets to limit the changes to the original operator implementations. This common part, which
we refer to as provenance wrapper, provides the following functionalities:

• Encapsulate reading from input queues: The provenance wrapper encapsulates access to the de-
queue method of Borealis tuple queues. This method is used by operators to read tuples from
their input queues. The original implementation of this method removes a tuple from the beginning
of a queue and returns it to the caller. If the input queue is a PAS then the provenance wrapper
also dequeues all provenance tuples following the data tuple that was read, deserializes the TID-
Set stored in these provenance tuples if necessary, and buffers the TID-Set for output provenance
generation. From the operators point of view, the wrapped method behaves in the same way as the
regular tuple queue dequeue method.

• Encapsulate writing to output queues: The enqueue method of a tuple queue is used by operators
to append their outputs to the end of a tuple queue. In addition to sending a data tuple, the
provenance wrapper constructs the tuple’s provenance from the currently buffered input provenance
and serializes it over the output queue. Afterwards, obsolete input provenance information is dis-
carded from the buffer.

Whenever the Borealis framework signals to an operator the arrival of new tuples in one of its input
queues (Borealis uses a push model), the operator retrieves these tuples by calling the provenance
wrapper’s dequeue() method. This causes the wrapper to update its buffer by adding the provenance
of newly arrived data tuple(s) (or their TIDs if the operator runs in PG-mode). Afterwards, the operator
performs its regular computations on the data tuples, which may produce output data tuples. These
tuples are pushed towards the output queue using the wrapper’s enqueue() method which appends the
output data and combined buffered provenance information to the output queue. Using the provenance
wrapper, the annotating versions of most operators can be implemented in a few lines of code. An
exception is aggregation that requires some additional bookkeeping to record the relationship between
windows and input tuples.

Example 6 Consider the provenance computation for the annotating network from Figure 7(b) shown
in Figure 11(b). Recall that this network generates P(q,8,{5}). Provenance headers are highlighted in
brown and TIDs in a provenance tuple are highlighted in red. For instance, each data tuple in the output
of the b-sort is followed by a provenance tuple storing the single TID (#1) in the provenance of the data
tuple (compare Figure 4(b)). The aggregation operator uses the provenance wrapper to merge the TID-
Sets from all tuples in a window and output them as the TID-Set for the result tuple produced for this
window. For instance, the tuple 10:1 is generated from a window containing tuples 9:1 and 9:2. The
merged TID-Set for these tuples ({7:4 ,7:5}) is appended to the output tuple queue after data tuple 10:1.

23

Note that in this example we assumed that the tuples in stream 8 are large enough to store four TIDs (or
three TIDs and a provenance header) In reality, we can store many more TIDs in a single tuple.

6.4 Input Storage and Retrieval

As mentioned before, we apply a Reduced-Eager approach which requires preservation of input tuples at
p-hooks to be able to reconstruct fully-fledged provenance from TID-Sets for retrieval. We use a Borealis
feature called Connection Point for input tuple storage and introduce two new operators (expand and
p-join) for transforming TID-Sets into a queryable format.

Input Storage at P-hooks: Connection points (CP) were introduced by Ryvkina et al. [24] as a support-
ing technology for revision processing in Borealis. A connection point acts as temporary storage for the
tuples that pass though the queue the CP is attached to. CPs support different strategies for removing
old tuples from storage. For example, one strategy is to preserve tuples for a given time interval. We
use CPs to store and look-up input tuples from p-hooks. For a query network q instrumented to com-
pute a PAS P(O,I) we add a connection point to each stream in I , i.e., the streams that are inputs of
provenance generators (p-hooks). This guarantees that we have the necessary information available to
restore complete input tuples from the TIDs in a TID-Set. Exploring more sophisticated (and distributed)
storage technologies is an interesting avenue for future work.

Expand: An expand operator ε(S) transforms each input tuple t of PAS S followed by its serialized TID-
Set into duplicates of t with a single TID from the set attached to each duplicate (stored in an additional
attribute called tid). A provenance wrapper is used to read all provenance tuples for an input tuple. The
output of an expand can, for example, be joined with input streams attached to p-hooks to combine tuples
with full tuples from their provenance.

P-join: In addition we developed a new operator called p-join. A p-join n(S,CP) joins a TID-carrying
stream S with a connection point CP and, thus, outputs tuples extended with complete input tuples from
their provenance. The output of such a join is used to represent provenance as regular tuples to a user
and can be queried using the operators of the DSMS. P-joins provide a more efficient way to combine
tuples with tuples from their provenance than expand plus a regular join, because (1) a p-join can use
a fast hash-based TID look-up from a CP to determine which tuples to join with an input tuple based
on their TID-Set instead of using a regular join with an input stream and (2) it avoids the materialization
of one intermediate queue (the output of the expand operator). However, p-join requires the CP and
p-join to be one the same node. Thus, expand may be useful if the query network is split over several
processing nodes.

Example 7 The running example network with retrieval is shown in Figure 11(c). Recall that this network
was instrumented to generated P(q,8,{5}). Hence, a CP (the cylinder) is used to preserve tuples of
stream 5 for provenance retrieval. The PAS generated by the aggregation operator is used as the input
for a p-join with the single CP in the network. For example, consider tuple 10:1 from stream 8. The
TID-Set for this tuple contains two TIDs 7:4 and 7:5 stored in one provenance tuple. After reading tuple
10:1, the p-join operator reads and de-serializes the provenance tuple using a provenance wrapper.
For each TID in the set the corresponding input tuple t is retrieved from the connection point and the
concatenation of tuples 10:1 and t is outputted. The stream produced by the p-join can then be shown
to a user or be used as input for further processing. Assume the user expected the system to output less
alarms and suspects that the threshold for overheating should be raised. To test this assumption she can

24

int

flags #elements in provenance compressed size delta size

long int long int int
OPTIONAL OPTIONAL

Figure 12: Provenance Tuple Header

investigate which alarms (output tuples) have temperature readings (input tuples) in their provenance that
are slightly above the threshold (e.g., below 100 degree). This query can be implemented by applying a
filter (avg t < 100∧ count l > 1) on the output of the p-join as shown in Figure 11(c). The representation
returned by the p-join operator is expressive enough to be used in complex queries that access both data
and its provenance. For instance, the user may proceed by limiting the investigation to alarms that were
caused by at least n slightly overheated sensors using an aggregation and filter on top of the example
query.

6.5 Implementing Query Rewrite

As mention in Section 3.4, we also implemented eager propagation through query rewrite to be able to
compare the performance of this technique with our approach. In Section 5 we gave a brief overview
of the rewrite approach. The major difference to Perm is that a separate rewrite rule for aggregation is
needed for each type of windowing operator. An example of a rewritten network is shown in Section 8.1,
Figure 16(b).

7 Optimizations

By its very definition, fine-grained provenance potentially references a significantly larger set of data
than the result generated by normal query processing. This additional data can cause significant cost
in computation and storage, as observed in many database or workflow provenance systems. Providing
provenance for data stream systems further aggravates this problem, mainly for two reasons:

1. Typical DSMS workloads rely heavily on aggregation to reduce downstream workload, reducing
many input tuples to few output tuples. When requesting provenance for such aggregation queries,
these savings are partially negated, as all input tuples from a window are part of the provenance
for the output tuple produced for this window.

2. Stream processing systems treat data as transient, computing results on the fly, and discard data
as soon as possible to keep up with high input data rates. Thus, also the provenance generation
has to be performed on the fly, possibly wasting significant resources if this provenance is never
requested.

We address these problems by developing concise representations of provenance (to reduce the over-
head of provenance generation and number of queue operations to transfer provenance) as well as en-
abling on-demand provenance computation and retrieval using lazy approaches (to avoid unnecessary
provenance generation).

25

(a) Query Network

TID a
1 : 1 2
1 : 2 3
1 : 3 4
1 : 4 5
1 : 5 10
1 : 6 1
1 : 7 2

TID a
2 : 1 2 {1 : 1}
2 : 2 3 {1 : 2}
2 : 3 4 {1 : 3}
2 : 4 5 {1 : 4}
2 : 5 1 {1 : 6}
2 : 6 2 {1 : 7}

TID sum a
3 : 1 14 {1 : 1, 1 : 2, 1 : 3, 1 : 4}
3 : 2 13 {1 : 2, 1 : 3, 1 : 4, 1 : 6}
3 : 3 12 {1 : 3, 1 : 4, 1 : 6, 1 : 7}

PG
σa<7

PP
αsum(a),#(4,1)

-

(b) Compressed Provenance

Technique Data Provenance Physical Representation

No compression 3:1(14) {1,2,3,4} S 4 1 2 3 4 ...

3:2(13) {2,3,4,6} S 4 2 3 4 6 ...

3:3(12) {3,4,6,7} S 4 3 4 6 7 ...

Interval 3:1(14) {[1,4]} I 1 1 4 ...

3:2(13) {[2,4], [6,6]} I 2 2 4 6 6 ...

3:3(12) {[3,4], [6,7]} I 2 3 4 6 7 ...

Delta 3:1(14) 0:{1,2,3,4} D 4 0 1 ...2 3 4

3:2(13) 3:{6} D 1 3 ...6

3:3(12) 2:{6,7} D 2 2 6 7 ...

Covering Interval 3:1(14) [1,4] 3:1 14... 1 4

3:2(13) [2,6] 3:2 13... 2 6

3:3(12) [3,7] 3:3 12... 3 7

Figure 13: Compression Techniques Example

7.1 Provenance Compression

We now study a number of methods for efficient TID-Set compression, ranging from generic data com-
pression to methods which exploit data model and operator characteristics. An important consideration
is the balance between the cost needed to perform compression/decompression operations and the sav-
ings achieved. In particular, choosing compression methods that do not require decompression for most
operators is important to avoid the cost of repeatedly compressing and decompressing provenance at
each operator. As we will see, the proposed compression methods work best under certain workload
characteristics, necessitating an adaptive combination of them to provide effective processing for an
arbitrary and changing workload. Thus, a provenance wrapper may read TID-Sets from its input that
are represented and compressed in different ways. We extended the provenance header structure sent
with the first tuple of a serialized TID-Set to record which compression was applied to the TID-Set. The
structure of this header is shown in Figure 12. A header consists of an int storing flags (e.g., which
compression method is used), the number of elements in the provenance, and two optional parts that
are used by specific compression methods and will be explained later.

Example 8 Figure 13(a) shows an example query network that filters tuples with a-attribute values above
seven, groups the result into windows of four tuples, and computes the sum of attribute a for each
window. Figure 13(b) shows the provenance in the PAS generated by the aggregation operator using

26

different compression techniques. We leave out the stream identifier part of the TIDs to simplify the
representation. For example, the standard TID-Set representation is shown as no compression. Each
provenance tuple has a header storing the value of the flags for this tuple (set to “S” for single TIDs) and
the number of TIDs in the TID-Set.

7.1.1 Interval Encoding

Interval encoding exploits the observation that the provenance of a window consists of the provenance of
the tuples in the window which form contiguous sub-sequences of the input sequence. Instead of storing
each element of a TID-Set individually, this method encodes a TID-Set as a list of intervals spanning
continuous sequences of TID values in the set. An interval can be represented by its start and end
points. Hence, a single interval occupies twice the space of a single TID. For interval encoding the flags
in the provenance header are set to I and the second field of the header is used to store the number
of intervals in the provenance. For example, consider the interval encoding for the example shown in
Figure 13(b). The provenance of tuple 3:1 is represented as a single interval [1,4], because the TID-
Set is a single contiguous sequence of TIDs (1 to 4). Interval encoding does not guarantee a smaller
representation than no compression. For instance, the provenance of tuples 3:2 and 3:3 consists of two
sequences of length two and, thus, requires the same amount of storage with interval encoding and no
compression.

Under interval encoding, operators in PG-mode group contiguous TIDs from the inputs into intervals;
operators in PP-mode try to merge intervals they read from their input. The merging can be efficiently
done using existing well-known interval merging techniques [17]. Interval encoding is most advantageous
for queries involving aggregations over a long sequence of contiguous TIDs. Such a sequence can be
represented as a single interval. In the worst-case there are no contiguous sequences of TIDs in the
input and, thus, each interval stores only a single TID resulting in twice the storage of no compression
(e.g., only projection and filter operators).

7.1.2 Delta Encoding

Delta encoding utilizes the fact that windows with small slide values overlap to a large extent. Therefore,
the TID-Set of a tuple may be encoded more efficiently by representing it as some delta to the TID-Set
of one of its predecessors (by encoding which TIDs at the start of the previous set are left out and which
TIDs are appended to the end). Delta encoding is similar to incremental backup techniques. Repeatedly
we send a tuple with full provenance followed by several tuples with their provenance encoded as a delta
to the last full provenance that was sent. While this approach has a potentially higher space overhead,
we can restore a TID-Set from its delta representation in a single step without the need to apply and
store a long chain of deltas.

Example 9 To illustrate the mechanism and benefits of delta encoding, consider how delta encoding
handles the example from Figure 13(b). The provenance header of a delta compressed tuple contains
an additional field storing the amount of overlap (number of TIDs) between the delta and the last complete
TID-Set that was sent. The TID-Set of the first output tuple of the aggregation is sent without applying
delta encoding (0 overlap). The TID-Set of tuple 10:2 shares three TIDs with the TID-Set of the previous
tuple. It is encoded as a delta storing the overlap (3) and the single additional TID (6). The provenance

27

Parameter Compression
Method

Description

α Interval Minimum factor of size reduction with respect to simple TID-Set representation
β Delta Minimum overlap factor between delta and last full provenance
γ Delta Maximum number of deltas in sequence
δ Delta Minimum size (number of tuples) of a TID-Set
ε LZ77 Minimum size in bytes for compression

Figure 14: Compression Thresholds

of the third tuple has two TIDs overlap with the provenance of tuple 3:1. Thus, the delta representation
of this TID-Set is 2:{6,7}.

Delta encoding requires additional bookkeeping at the enqueue part of a provenance wrapper. We need
to store the last complete TID-Set that was sent and the number of deltas applied to it. Operators in
PP-mode which read from a stream containing delta encoded provenance may need to reconstruct TID-
Sets from the delta representation. For example, an aggregation in PP-mode has to reconstruct the input
TID-Sets to be able to merge the provenance for a window of tuples. For projection we can simply pass
on delta compressed provenance without the need for reconstruction. The same applies for selection
except that selection may filter out a tuple with a complete TID-Set which would leave the deltas following
this TID-Set orphaned. We currently handle this situation by reconstructing the first delta and adapting
the following deltas.

7.1.3 Dictionary Compression

Given their potential size, TID-Sets and also collections of intervals can be compressed using standard
compression techniques. We used LZ77 as it deals with flexible input sizes (not a block-based compres-
sion) and provides a good tradeoff between speed and effectiveness, but other methods are certainly
possible as well. Compression is only activated if the size of a TID-Set or interval collection exceeds a
fixed threshold to avoid paying the price of compression for a small number of values, e.g., if a TID-Set
can be serialized as a single provenance tuple there is no potential gain in compressing the provenance.
If dictionary compression is applied, this is indicated in the flags of the provenance header sent in the first
tuple of the set. In addition the provenance header stores the compressed size of the TID-Sets (see Fig-
ure 12). This type of compression can reduce the load on the queues significantly for large TID-Sets at
the cost of additional processing to compress and decompress the TID-Sets. Since generic compression
methods do not take advantage of the specifics of the data model and operator semantics, it performs
worse for provenance in DSMS than interval or delta encoding. As experiments demonstrate, significant
space savings are possible, but the computational overhead is typically offsetting these savings.

7.1.4 Adaptive Combination of Compression Techniques

We now discuss how to combine the compression techniques presented in this section by using a set
of heuristic rules that determine when to apply which type of compression. Interval encoding, dictionary
compression, and delta encoding can be freely combined. For instance, we could apply delta encoding
to intervals and apply LZ77 compression to the resulting deltas. We use the algorithm CompressProv

28

Algorithm 2 Adaptive Compression Algorithm

1: f ullP← /0 . Static Initialization
2: numDelta← 0
3: tupleSize← |S|

4: procedure COMPRESSPROV(TID-Set P, OutputStream O)
5: numTuples← dtupleSize/BYTESIZE(P)e
6: if f ullP = /0 ∨ numDelta > γ ∨ numTuples < δ

7: ∨ OVERLAP(P, f ullP)< β then . Send full provenance?
8: I← INTERVAL(P)
9: if BYTESIZE(I)/BYTESIZE(P)< α then

10: P← I
11: end if
12: numDelta← 0
13: f ullP← P
14: else . Send delta
15: if ISINTERVAL(f ullP) then
16: P← INTERVAL(P)
17: end if
18: numDelta← numDelta+1
19: P← DELTA(f ullP,P)
20: end if
21: if BYTESIZE(P)> ε then . Apply LZ77 compression?
22: P← LZ77(P)
23: end if
24: O.ENQUEUE(P)
25: end procedure

(Algorithm 2) to decide how to compress an incoming TID-Set. The algorithm uses several threshold
parameters shown in Figure 14. The general approach is to avoid compression if it would not result
in reasonable space savings or would lead to long sequences of deltas. The algorithm buffers the last
complete (non-delta) TID-Set that was sent (fullP) and how many deltas have been sent after sending
the last full TID-Set (numDelta).

For an input TID-Set P we first determine if it should be sent fully or as a delta. The TID-Set P is sent
completely if at least one of the following conditions holds: (1) We need less than threshold δ number of
tuples to serialize P. This condition guarantees that we do not pay the overhead for delta encoding if the
TID-Set is small. For example, if P can be stored in a single tuple, then there is no need to apply delta
compression. (2) Less then threshold γ number of deltas have been sent after sending the last full TID-
Set. This condition limits the number of deltas that depend on a full TID-Set. (3) The overlap between
P and the last full TID-Set is at least of factor β . That is the delta representation of P is significantly
smaller than P. If P is sent completely, then the algorithm determines if compressing it using interval
encoding would save space. If the interval encoded version of P is smaller than the original P by a factor
α, then P is compressed using interval encoding. Afterwards, we update fullP and reset numDelta. If P
is sent as a delta then it is interval encoded only if fullP is also interval encoded. Dictionary compression

29

is considered for both delta encoded and full TID-Sets. If the compressed version of P generated by
the first part of the algorithm occupies more than threshold ε bytes, then P is compressed using LZ77
compression. The final result of this process is then serialized to the output stream O.

7.2 On-Demand Provenance Operations

In this section we introduce two types of optimizations that increase performance by avoiding provenance
generation or reconstruction where possible. Our Reduced-Eager approach for provenance generation
reduces the runtime overhead in comparison with eager at the cost of tuple reconstruction when retrieving
provenance. For use cases where the result of the reconstruction is further processed by the query
network (queries over provenance information) it is possible to partially avoid the cost of reconstruction
by filtering out parts of the provenance that will not be used by the query (as long as we can determine
this upfront). We call this approach Lazy Retrieval. As a possible optimization for low retrieval frequencies
we also introduce a variant of Replay-Lazy.

7.2.1 Lazy Retrieval

Using Reduced-Eager we separate the computation of provenance (TID-Sets) from the generation of a
representation that is useful for retrieval. We therefore have the opportunity to avoid the cost of recon-
struction through a p-join or expand operator if we can determine that parts of the provenance are not
needed to answer a retrieval query. To this end we try to push selections that are applied during retrieval
of provenance through the reconstruction (p-join) based on the algebraic equivalence presented below.
For a p-join between a PAS S and connection point CP, and a selection with condition c the following
holds iff c only accesses attributes from schema(S)4: σc(SnCP)≡ σc(S)nCP

7.2.2 Replay-Lazy

Recall from Section 3.2 that a Replay-Lazy approach computes provenance by replaying parts of the in-
put through a provenance generating network. Replay-Lazy can be advantageous if provenance retrieval
is infrequent, because it almost completely avoids runtime overhead (and significantly reduces latency)
for the original query network. However, unless additional information is kept, the whole input of the
query network has to be replayed through a provenance generating network until the output of interest is
produced. This can be avoided if we determine, during query execution, which parts of the input have to
be replayed. For the deterministic operators of our algebra it can be shown that it is sufficient to replay
all input tuples from the interval spanned by the smallest and largest TID in the provenance of an output
tuple (we refer to this interval as the covering interval of an TID-Set). Replay-Lazy in Ariadne is based
on this observation.

The network is instrumented in the same way as for Reduced-Eager with the exception that we annotate
each output tuple with the minimal interval that covers all TIDs in the tuple’s provenance. Given that
these intervals need constant size, we do not need to use separate tuples for provenance serialization,
but can piggyback the intervals on data tuples, thereby significantly reducing load on tuple queues.

4For conjunctive selection conditions, we can split the condition and push conjuncts that only reference attributes from schema(S)
through the p-join.

30

σ

σ
PG

α
PP

α
CP

σ
CG

S1 Sout

Provenance
Generating

Network

Filter
Provenance and

Fetch Tuples
from Input

Covering
Interval

Generating
Network

⊗

Figure 15: Example for a Replay-Lazy Network

Covering intervals can be generated very efficiently during operator execution. For example, to combine
the covering intervals for an aggregation output we simply have to find the minimum and maximum TID
values in the intervals attached to the tuples in the window.

To generate the provenance from a stream with covering intervals we introduce an new join operator
(c-join). A c-join ⊗(S,CP) between a stream S and a connection point CP processes each tuple t from S
by fetching all tuples included in the covering interval of t from the connection point and outputting these
tuples. For Replay-Lazy these tuples are fed into a copy of the query network that is instrumented for
provenance generation. Similar to Reduced-Eager we can apply selection on data attributes beforehand
to reduce the load on the provenance generating network. The c-join operator sends a control tuple after
sending the last tuple of a covering interval. This control tuple instructs downstream operators to drop
their internal state (e.g., open windows) and flush their buffers (b-sort). This is necessary to produce
correct results and reduce the number of spurious tuples in the output.

For example, the tuples in the covering interval for a tuple t may also belong to the covering intervals of
other tuples. Thus, replaying these tuples may produce other tuples in addition to t. As an example for
why dropping internal operator state after each covering interval is necessary consider an aggregation
with count-based windowing of size 3 and slide 2. Assume the tuples from the covering intervals [1,3] and
[5,7] have been chosen for replay. Replaying these tuples through the aggregation causes the following
windows to be created: < 1,2,3 > and < 3,5,6 > while the original computation generated windows
< 1,2,3 >, < 3,4,5 >, and < 5,6,7 >. Note that we can avoid dropping the operator state if the covering
intervals of consecutive tuples overlap. In this case the c-join does not send the control tuple and sends
tuples for reoccurring TIDs only once. For instance, if the covering intervals in the example above would
have been [1,3] and [3,5], the c-join would output tuples 1 to 5.

Replay-Lazy has the advantage that provenance generation is almost completely separated from normal
query processing. Thus, to scale out, the provenance generating part of the network can be executed on
a different Borealis node keeping the performance impact on normal processing at a minimum.

Example 10 Consider the covering intervals shown in Figure 13(b). The TID-Set for tuple 3:1 is covered
by the interval [1,4]. This covering interval is stored in two additional fields at the end of the data tuple
3:1. For this tuple the covering interval is the same as the interval encoding of the TID-Set. In general,
this is obviously not the case. For example, the covering interval for tuple 3:2 contains TID 5 that is not

31

in the provenance of 3:2 . Figure 15 shows how to instrument the query network from Figure 13(a) for
Replay-Lazy. The operators in the original part of the network are set to produce covering intervals (we
refer to the covering interval version of PG and PP-mode as CG and CP-mode). The output of this part of
the network is then routed through a selection to filter out parts of the provenance according to the user’s
preferences. Afterwards, we use a c-join to fetch all tuples with TIDs that are in the covering interval of
an input tuple from the connection point and route these tuples through a provenance generating copy of
the query network to produce provenance for tuples of interest.

8 Experiments

The goal of our experimental evaluation is to investigate the overhead of provenance management with
Ariadne, compare with competing approaches (Rewrite), and study the benefits of optimizations pro-
posed in Section 7.

8.1 Overview

Following the discussion of approaches in Section 3, we evaluate the following methods for how to
generate provenance: Operator Instrumentation as the expected best option with query Rewrite as the
current state-of-the-art. We do not consider Inversion, since it is only applicable to a very limited class
of query networks and provenance retrieval scenarios. For Operator Instrumentation, we compare the
Reduced-Eager vs. Replay-Lazy options for generating provenance. Lazy Retrieval will be studied as
an optimization for both rewrite and instrumentation. We also evaluate the impact of compression on the
provenance generation (as outlined in Section 7.1)

8.1.1 Query Networks

We use the following query networks in our experiments: The Basic network is modeled after a linear
prefix of our running example (Figure 4(a)). As shown in Figure 16(a), it consists of a selection, followed
by an aggregate using count-based windowing and then another selection. This query covers the most
critical operator for provenance management (aggregation) and is simple enough to study individual cost
drivers. As is turns out, this query is also one of the best (non-trivial) cases for Rewrite (Figure 16(b)). For
convenience, we also show the rewritten (Figure 16(b)), instrumented (Figure 16(c)), and Replay-Lazy
version of this query (Figure 16(d)). In experiments that focus on the cost of provenance generation,
we leave out parts of these networks that implement retrieval (the dashed boxes). The Nested network
(Figure 16(e)) is a variation of the Basic network with additional aggregations. In the experiment using
this network we increase the number of aggregations to exponentially increasing the amount of prove-
nance per result tuple. The Complex, real-life network, which represents the complete running example
introduced in Figure 4a. We use this network to study how the results for the Basic and Nested networks
translate to a larger set of operators and a more complex query graph.

32

(a) Basic

ασ σ

(b) Basic - Rewrite

σ
α

σ

(c) Basic - Instrumentation

α
PP

σ
PG PP

σ �σ

(d) Basic - Replay-lazy

σ
PP

σ
CP

σ σ
PG

α
PP

α
CP

σ
CG

⊗ �

(e) Nested Aggregation

α
PP

σ
PG

α
PP PP

σ

N Aggreations

Figure 16: Experiment Queries

8.1.2 Setup and Methodology

All experiments were run on a system with four Intel Xeon L5520 2.26 Ghz quad-core CPUs, 24GB RAM,
running Ubuntu Linux 10.04 64 bit. Both the client (load generator) and the server are placed on the same
machine. The workloads sent by the clients were generated beforehand. We consider two approaches
for pushing the inputs from the client to the server:

Maximum Load: The client sends its input in very large batches (100K tuples). The server starts pro-
cessing once a batch has fully arrived, i.e., the entire data set is available at once for processing. We
used this setup, because preliminary experiments indicated that the Borealis code that is responsible for
retrieving inputs from the client is a major performance bottleneck and, thus, covered up the overhead

33

introduced by provenance generation. Furthermore, maximum load allows us to identify the worst-case
overhead introduced by provenance operations.

Varying Load: Running the query network with different load to determine the minimum overhead that
always has to be paid. Load variations are achieved by varying batch sizes and delays between batches.

Since the overhead of unused provenance code turned out to be negligible, we used Ariadne also for
experiments without provenance generation. Each experiment was repeated 10 times to minimize the
impact of random effects. We show the standard deviation where possible in the graphs. The following
measures were captured in the experiments:

Completion Time, measuring the time (and thus CPU cost) required to fully process a workload at
maximum load. Completion time is the difference between the arrival timestamp of the first input tuple
and the leaving timestamp of the last output tuple.

Tuple Latency, measuring the delay that each tuple incurs while being processed. Latency is the dif-
ference between the departure time of a tuple and the arrival time of the last tuple that contributed to
it.

Queue Memory, measuring the amount of data accumulated in tuple queues at a point in time (i.e., data
that has been sent by one operator but has not yet been processed by downstream operators).

Provenance Structure Memory, measuring the total additional state of all provenance-enabled opera-
tors. We added a thread for memory measurements that records the sizes of all queues and provenance
structures (number of bytes) every 100 milliseconds.

8.2 Fundamental Tradeoffs

In the first set of experiments, we study the cost of different methods for provenance generation and
retrieval. We use the Basic query network with Maximum Load for all methods (plus no provenance
generation, as a reference point), but do not consider provenance compression yet (i.e., we use Single).
The result for each method is broken down into the time to generate provenance (Generation, by remov-
ing the operators in the dashed box) and the time to reconstruct the generated provenance for retrieval
(Retrieval). These details are not provided for rewrite, because rewrite is eager (there is only one phase).

8.2.1 End to End Cost

Experiment 1 (shown in Figure 17) compares the end-to-end cost when changing the amount of prove-
nance that is being produced per result tuple. This is achieved by changing the window size (WS) of the
aggregation operator from 10 to 100 tuples (while keeping a constant slide SL = 1 and selectivity 25%
for the first selection in the network). Provenance is retrieved for all result tuples. The results demon-
strate that the general overhead of provenance management is moderate for all methods: an order of
magnitude more provenance tuples than data tuples (WS=10) roughly doubles the cost, two orders of
magnitude (WS=100) lead to an increase by a factor 5 to 12. Even for this relatively benign workload,
Rewrite shows much worse scaling than unoptimized Instrumentation with full Retrieval : while roughly
on par for WS=10, it uses twice as much time on WS=100. A significant amount of cost when using
Instrumentation comes from Retrieval: around 40 percent at WS=10, and around 65 percent at WS=100.
This cost is roughly linear to the amount of provenance produced. The overhead of provenance gener-

34

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

N
o
 P

ro
v
e
n
a
n
c
e

In
s
tru

m
e
n
ta

tio
n

R
e
w

rite
R

e
p
la

y
-L

a
z
y

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
e

c
)

Window Size

No Provenance

Instrumentation (Generation)

Instrumentation (Retrieval)

Rewrite

Replay-Lazy (Covering Interval)

Replay-Lazy (Retrieval)

1008060402010

Figure 17: End to End - Varying Amount of Provenance

ation through Instrumentation is between 20 (WS=10) and 113 (WS=100) percent. For Replay-Lazy the
overhead on the original query network (generation of covering intervals) can be further reduced to 3
(WS=10) and 16 (WS=100) percent respectively. The price to pay for this reduction of overhead is the
additional cost of provenance Retrieval, where the cost is very similar to the combination of Instrumen-
tation Generation and Retrieval, as this method is now applied on all covering intervals to compute the
actual provenance.

8.2.2 Nested Aggregates

In this experiment, we investigate the cost of nested aggregations, because for the Nested network the
provenance size grows exponentially with the number of nested aggregations. We start off with the
Basic network (WS=10 and SL=1) and gradually add more aggregation operators with same settings to
this network, creating the Nested network shown in Figure 16(e). The results (Figure 18) indicate that
Rewrite does not scale in the number of aggregations as demonstrated by an increase in overhead in
comparison to instrumentation from 20 (one aggregation) to 3300 percent (two aggregations). At three
aggregations, the execution is no longer possible. The increase of cost for Instrumentation is (slightly)

35

Method Number of Aggregations
1 2 3 4

No Provenance 3.1 3.9 4.8 5.7

Instr.
Generation 3.9 7.4 14.7 48.6
Retrieval 3.0 12.9 103.0 2047.0

Rewrite 7.2 625.0 crash crash

Replay-Lazy
Cov. Inter. 3.1 4.4 5.2 6.3
Retrieval 5.2 14.7 91.1 2224.0

Figure 18: Varying Number of Aggregation Operators: Completion Time in Seconds

sublinear in the provenance size. Most of the overhead can be attributed to retrieval, while provenance
generation increases moderately due to the TID-Set representation. Finally, the overhead of generating
Covering Intervals for Replay-Lazy is around 10 percent over the baseline (NoProvenance), while the
effort spent for replaying shows the same behavior as the total cost of Instrumentation.

8.3 Cost of Provenance Generation

We now further study the cost factors and optimizations for operators and their combinations. We focus
on window-based aggregation, since it is not used in traditional, non-streaming workloads and produces
large amounts of provenance.

8.3.1 Window Size

Since window size determines the amount of provenance per data tuple, it is important for studying the
effectiveness of our compression methods. We use the Basic network, keep SL at 1 and the selectivity
of the selection in front (S) at 25 percent. In addition to the methods shown before, we demonstrate the
impact of provenance compression by enabling the adaptive technique (indicated by the label Optimized
in all following graphs). Furthermore, we will no longer consider the Rewrite method (its drawbacks are
obvious) and Retrieval cost (as it is linear with respect to the provenance size).

Figure 19 shows Completion Time, Queue Memory and Provenance Structure Memory for varying WS
from 50 to 2000. As expected, increasing the window size leads to increasing the cost, but compression
can mitigate this increase significantly: While the Single TID representation sees an increase in com-
pletion cost from 70 % to 530 % overhead when increasing the window size, compression reduces this
overhead to 50 % and 140 %, respectively. Covering Intervals further reduces this overhead to 14%
and 70 %. Normalized on the amount of provenance generated, an increase by a factor of 40 (50 to
2000) leads to cost increase by a factor of 19 for Single, but only to a factor of 9 for Optimized and 8 for
Covering Intervals. The cost savings of compression and covering intervals are even more pronounced
on the queue and memory side, where the overhead introduced by Single is pushed down to a small,
almost constant factor. It should be noted that the high overlap introduced by the small slide and large
windows is detrimental for covering intervals, since a significant amount of interval merging needs to be
performed.

36

(a) Completion Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

50 100 200 500 1000 2000

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Window Size

No Provenance

Single

Optimized

Covering Interval

(b) Queue Sizes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

50 100 200 500 1000 2000

Su
m

 o
f Q

ue
ue

 S
iz

es
 (K

B)

Window Size

No Provenance

Single

Optimized

Covering Interval

(c) Provenance Structure Memory

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

50 100 200 500 1000 2000

Pr
ov

en
an

ce
 S

tru
ct

ur
e

M
em

or
y

(K
B)

Window Size

No Provenance

Single

Optimized

Covering Interval

Figure 19: Varying Window Size (S = 25%, SL = 1)

37

(a) Completion Time

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 5 10 20 50 70 90 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Window Slide

No Provenance

Single

Optimized

Covering Interval

(b) Queue Sizes

 0

 50

 100

 150

 200

 250

 300

1 2 5 10 20 50 70 90 100

Su
m

 o
f Q

ue
ue

 S
iz

es
 (K

B)

Window Slide

No Provenance

Single

Optimized

Covering Interval

(c) Provenance Structure Memory

 0

 10

 20

 30

 40

 50

 60

1 2 5 10 20 50 70 90 100

Pr
ov

en
an

ce
 S

tru
ct

ur
e

M
em

or
y

(K
B)

Window Slide

No Provenance

Single

Optimized

Covering Interval

Figure 20: Varying Window Overlap (S = 25%, WS = 100)

38

(a) Completion Time

 0

 5

 10

 15

 20

 25

5 10 25 50 75 90 95 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Selectivity (%)

No Provenance

Single

Optimized

Covering Interval

(b) Queue Sizes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 10 25 50 75 90 95 100

Su
m

 o
f Q

ue
ue

 S
iz

es
 (K

B)

Selectivity (%)

No Provenance

Single

Optimized

Covering Interval

Figure 21: Varying Selectivity (WS = 100, SL = 1)

8.3.2 Window Overlap

Reducing the overlap between windows by increasing SL from 1 to 100 (with WS=100) decreases the
overall cost consistently, since far fewer result tuples need to be generated (Figure 20). The logarithmic
fashion of these three graphs can be explained by the fact that for a slide bigger 10, the system is not
stressed anymore and therefore the impact of provenance generation is not noticeable. The memory
consumed by provenance structures for Single and Interval Encoding drops linearly as the number of
open windows decreases for bigger slides. Big slides result in small overlap between open windows.
Hence, they demonstrate the worst-case scenario for the adaptive compression, because maintaining
the complex data structures of these techniques does not pay back anymore. As a result, these methods
perform (slightly) worse than the naive approach (Single).

39

 0

 1

 2

 3

 4

 5

 6

 7

10 25 50 75 100

La
te

nc
y

(m
s)

Batch Size

No Provenance

Single

Optimized

Covering Intervals

Figure 22: Latency Under Varying Network Load

8.3.3 Selectivity

Besides the specific window parameters such as WS oder SL, the workload on window-based aggregates
is also influenced by upstream operators affecting the distribution of TID values. We investigate these
factors by varying the selectivity of the first selection operator in the Basic network between 5 and 100
percent while keeping WS at 100 and SL at 1 (Figure 21).

For NoProvenance, Single as well as Covering Intervals, Completion Time is linear in selectivity, because
the number of generated output tuples also grows linearly and generation is not affected by TID distri-
bution. Interval compression used by Optimized becomes more efficient when increasing selectivity as
more and more contiguous TID ranges are created. We therefore see no further increase in cost after
around 75 percent selectivity. In terms of Queue Memory, the naive approach (Single TIDs) results in
bigger queues for higher selectivity values while other methods reach their maximums at medium selec-
tivity values (between 50% and 75%), where the load level is relatively high but TID contiguities are not
yet sufficiently big. We do not show a graph for Provenance Structure Memory, because this parameter
depends mainly on WS and SL.

8.4 Influence of Network Load on Latency

So far, we have studied the cost of provenance on a network with Maximum Load, giving results on
the overhead for computation and storage, and on worst-case behavior. In reality, a query network is
rarely run at maximum load, and other performance metrics such as Latency play an important role.
We take the Basic network (Generation and Retrieval, WS=100, SL=1, S=25%) and vary the load by
changing the size of the batches being sent from the client between 10 and 100 tuples. Smaller batches
introduced too much noise into the measurement, for larger sizes the slowest method (Single) would not
be able to always process input instantly, thus skewing the latency measurement by additional wait time.
As Figure 22 shows, provenance generation does indeed increase the latency, but this increase is very
moderate and stays at the same ratio over an increasing load. Single results in about 75 % additional
latency, Optimized reduces this overhead to around 60 %, while Covering Intervals are the cheapest with
around 20 % overhead.

40

(a) Completion Time

 0

 20

 40

 60

 80

 100

 120

 140

2 5 10 20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Front Window Size

No Provenance

Single

Optimized

Covering Interval

(b) Provenance Structure Memory

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 5 10 20 40 60 80 100

Pr
ov

en
an

ce
 S

tru
ct

ur
e

M
em

or
y

(K
B)

Front Window Size

No Provenance

Single

Optimized

Covering Interval

Figure 23: Complex Network: Varying Front Window Size

8.5 Complex Query Networks

We now investigate whether our understanding of the cost of individual operators translates to complex
query networks using the Complex query network (see Section 8.1.1). This network consists of multi-
ple paths and includes a broad selection of operators. We vary the amount of provenance created by
the network by varying the window size for the aggregations applied before the union operator (“front”
windows). As Figure 23 shows, the overhead of Reduced-Eager instrumentation without compression
(Single TIDs) is higher than in previous experiments: around 60 percent at WS=2, and around 480 per-
cent at WS=100. Our Optimized method using adaptive compression shows its benefits: while more
expensive for very small WS values (100 percent overhead at WS=2), it becomes more effective once
the workload grows. At WS=100, the overhead is at 380 percent. Covering Intervals is again very ef-
fective at 40 percent overhead, furthermore it is not affected by the increasing amount of provenance.
Memory measurements support these observations, since the additional provenance does not increase
the cost significantly when using compression or covering intervals.

41

8.6 Varying Retrieval Frequency

For many real-world scenarios, provenance is not retrieved on the entire result stream. In this experiment
we therefore study the effect of retrieval frequency (as simple form of partial provenance retrieval) on the
trade-off between Reduced-Eager and Replay-Lazy. Using the Nested Aggregation network with four
aggregations (WS=10 and SL=3) and 2 million input tuples we measure completion time while varying the
rate of retrieval from 0.05 to 100 percent (by inserting an additional selection before reconstruction). The
results shown in Figure 24 (overhead with respect to completion time of No Provenance) demonstrates
that both the eager and Replay-Lazy methods benefit from low retrieval frequencies, but for different
reasons: Reduced-Eager instrumentation just saves the cost of reconstruction, but still performs full
generation. For low retrieval frequencies (less than 1%) the cost of retrieval is insignificant. Thus, the
overall cost for Reduced-Eager is dominated by the cost of provenance generation which is independent
of the retrieval frequency. As a result we observe an approximately constant overhead of Reduced-
Eager for retrieval frequencies below 2%. Computing covering intervals for Replay-Lazy results in a
relative overhead of about 13% over the completion time for No Provenance (which is constant in the
retrieval frequency). Replay-Lazy has to compute only very few replay requests at low retrieval rates, but
in turn pays a higher overhead for higher retrieval rates. If the retrieval frequency is less than 10% then
Replay-Lazy is the better choice for the given workload, e.g., for 0.05% retrieval frequency the relative
overhead for Replay-Lazy is only 35% in contrast to 142% overhead for eager. This experiment confirms
our assumption that significant savings are possible using Replay-Lazy unless provenance is required
for most of the results.

8.7 Summary

Our experiments demonstrate the feasibility of fine-grained provenance in data stream systems and the
benefits of our approach. Operator Instrumentation clearly outperforms Rewrite, since provenance gen-
eration is more efficient. Furthermore, Reduced-Eager allows us to separate generation and retrieval,
enabling on-demand operations and distribution. Replay-Lazy based on covering intervals further re-
duces the overhead on the ”normal” query network and enables us to scale-out. The optimizations
for provenance compression are effective in both small-scale, synthetic as well as large-scale, real-life
workloads.

9 Related Work

Our work is related to previous work on provenance in workflow systems, databases, and stream pro-
cessing systems.

Workflow Systems. Davidson et al. [13] present a survey of provenance in workflow systems. Most
of the approaches for workflow provenance handle tasks in workflows as black-boxes, and therefore,
consider all outputs of a task to depend on all of its inputs. Such a provenance model is not a good match
for the kind of use cases we are considering. More recently, Anand et al. have proposed a new workflow
provenance model that allows explicit declarations of fine-grained data dependencies [7]. Amsterdamer
et al. [5] apply a fine-grained database provenance model to workflows expressed in Pig Latin. In stream
provenance, such declarations are not necessary, as we can directly exploit well-defined semantics of

42

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

0.05 0.10 0.25 0.50 0.75 1 2 5 10 25 50 100

C
o

m
p

le
ti
o

n
 T

im
e

 /
 C

o
m

p
le

ti
o

n
 T

im
e

 w
it
h

o
u

t
P

ro
v
e

n
a

n
c
e

Retrieval Frequency (%)

Instrumentation with Retrieval (Optimized)

Replay-Lazy with Retrieval (Optimized)

Figure 24: Relative Completion Time Overhead for Varying Retrieval Frequency

the streaming operators. Ariadne’s provenance compression techniques are related to previous work
on efficient provenance storage in workflow systems. More specifically, our delta encoding technique is
similar to the sub-sequence compression technique of Anand et al. [7], and can be seen as a special case
of node factorization approach of Chapman et al. [10]. The transient and incremental nature of streaming
settings has led us to use compression for optimizing provenance generation, while previous work uses
it for optimizing space and retrieval. Furthermore, our compression techniques cannot rely on global
knowledge about all provenance in the system, while how we do compression at an operator may affect
the load on its downstream operators (e.g., where a decompression might be needed). Therefore, our
compression techniques have been designed to have small memory requirements, and efficient encoding
and decoding mechanisms.

Database Systems. Several notions of provenance have been developed for databases [11] which are
supported by different systems (e.g., Trio [8], DBNotes [9], and Perm [14]). In our work, we use a simple
notion of provenance that represents the provenance of a tuple as a set of input tuples. This is similar
to the lineage provenance semantics used in relational databases [11]. In principle, our Reduced-Eager
operator instrumentation techniques can be extended to support more informative database provenance
semantics, such as provenance polynomials [16] or graph-based models [3]. However, a major advan-

43

tage of some of these models is that they are invariant under query equivalence (i.e., equivalent queries
have equivalent provenance), or they generalize other data model extensions (e.g., provenance polyno-
mials generalize bag semantics). Another line of related work along this direction tries to reduce the
size of provenance information, again relying on query equivalence in the relational model [6, 22]. Since
languages for streaming queries have different semantics and, thus, different equivalence rules hold
for these languages, it is an open question whether these existing provenance models or minimization
techniques would apply – an interesting problem to look at in the future.

Stream Processing Systems. There is only a handful of related work on provenance management
in stream processing systems. The need for low-overhead provenance collection for scientific stream
processing has been addressed by Vijayakumar [28, 27]. However, this work focuses on coarse-grained
provenance, which is not suitable for our use cases. Wang et al. have proposed a rule-based provenance
model for sensor streams which captures operator states and time intervals that led to the generation
of an output tuple [29, 21]. These rules have to be manually defined for each operation. Furthermore,
it is unclear if they are powerful enough to deal with complex query networks efficiently. More recently,
Huq et al. have proposed to achieve fine-grained stream provenance by augmenting coarse-grained
provenance with timestamp-based data versioning, focusing specifically on query result reproducibility at
reduced provenance metadata storage cost [18]. This work generates provenance using inversion based
on static information about query operators and does not support common streaming operators such as
joins and selections. Finally, the general provenance management solution of Ariadne can also be used
as a supporting technology for other specialized tasks in stream processing systems such as revision
processing [24] and query debugging [4].

10 Conclusions

In this paper, we present a prototype system for generation and retrieval of fine-grained provenance for
data stream processing. We introduce a model for provenance generation of a query network (or parts
thereof) based on annotated streams and two new classes of annotating operators (provenance genera-
tors and provenance propagators). Using our Ariadne prototype, we show how stream provenance can
be implemented in a typical DSMS. Our experimental evaluation demonstrates that fine-grained prov-
enance can be generated efficiently using Reduced-Eager Operator Instrumentation and provenance
compression. Note that although Borealis was used as a proof-of-concept platform, our techniques are
general enough to be easily adapted to other DSMSs as well.

There are many interesting avenues for future work. First, we would like to study provenance retrieval
patterns to exploit additional knowledge for storage decisions and in optimizing computations. Second,
we want to further investigate possible architectures, starting from a distribution of our current system
and the integration of scalable, distributed storage systems. Third, we want to extend our provenance
semantics to model how the order of input tuples and ordering imposed by operators influences the order
and existence of output tuples and enable querying of this information.

44

References

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.H. Hwang, W. Lindner, A.S.
Maskey, A. Rasin, E. Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The Design of the
Borealis Stream Processing Engine. In Proc. of the Conf. on Innovative Data Systems Research
(CIDR), pages 277–289, 2005.

[2] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul,
and S. Zdonik. Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal,
12(2):120–139, 2003.

[3] Umut Acar, Peter Buneman, James Cheney, Jan van den Bussche, Natalia Kwasnikowska, and Stijn
Vansummeren. A graph model of data and workflow provenance. In Proc. of the USENIX Workshop
on the Theory and Practice of Provenance (TaPP), 2010.

[4] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona1, P. Wang, P. Zabback, A. Anan-
thanarayan, A. Kirilov, M. Lu1, A. Raizman, R. Krishnan, R. Schindlauer, T. Grabs, S. Bjeletich,
B. Chandramouli, J. Goldstein, S. Bhat, Ying Li, V. Di Nicola, X. Wang, David Maier, S. Grell,
O. Nano, and I. Santos. Microsoft CEP Server and Online Behavioral Targeting (Demonstration). In
Proc. of the Intl. Conf. on Very Large Data Bases (VLDB), 2009.

[5] Y. Amsterdamer, S.B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen. Putting Lipstick
on Pig: Enabling Database-style Workflow Provenance. Proceedings of the VLDB Endowment,
5(4):346–357, 2011.

[6] Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen. On Provenance Minimization. In Proc. of the
Symposium on Principles of Database Systems (PODS), pages 141–152, 2011.

[7] Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. Efficient Prov-
enance Storage over Nested Data Collections. In Proc. of the Intl. Conf. on Extending Database
Technology (EDBT), pages 993–1006, 2009.

[8] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. ULDBs: Databases with
Uncertainty and Lineage. In Proc. of the 32th Intl. Conf. on Very Large Data Bases (VLDB), pages
953–964, 2006.

[9] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An Annotation
Management System for Relational Databases. VLDB Journal, 14(4):373–396, 2005.

[10] Adriane Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient Provenance Storage. In Proc.
of the ACM Intl. Conf. on Management of Data (SIGMOD), pages 993–1006, 2008.

[11] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases: Why, How, and
Where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[12] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage of View Data in a Ware-
housing Environment. ACM Trans. on Database Systems (TODS), 25(2):179–227, 2000.

[13] Susan B. Davidson, Sarah Cohen-Boulakia, Anat Eyal, Bertram Ludäscher, Timothy McPhillips,
Shawn Bowers, and Juliana Freire. Provenance in Scientific Workflow Systems. IEEE Data Engi-
neering Bulletin, 32(4):44–50, 2007.

45

[14] Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the same Data
Model through Query Rewriting. In Proc. of the IEEE Intl. Conf. on Data Engineering (ICDE), pages
174–185, 2009.

[15] Boris Glavic, Kyumars Sheykh Esmaili, Peter M. Fischer, and Nesime Tatbul. The Case for Fine-
Grained Stream Provenance. In Proc. of the BTW Workshop on Data Streams and Event Processing
(DSEP), pages 58–61, 2011.

[16] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance Semirings. In Proc. of the
Symposium on Principles of Database Systems (PODS), pages 31–40, 2007.

[17] Sun-Yuan Hsieh. The Interval-merging Problem. Information Science, 177(2):519–524, 2007.

[18] M.R. Huq, A. Wombacher, and P.M.G. Apers. Facilitating Fine Grained Data Provenance using
Temporal Data Model. In Proc. of the 7th Intl. Workshop on Data Management for Sensor Networks
(DMSN), pages 8–13, 2010.

[19] Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Val Tannen, Partha Pra-
tim Talukdar, Marie Jacob, and Fernando Pereira. The ORCHESTRA Collaborative Data Sharing
System. ACM SIGMOD Record, 37(2):26–32, 2008.

[20] G. Karvounarakis, Z.G. Ives, and V. Tannen. Querying data provenance. In Proc. of the 37th ACM
Intl. Conf. on Management of Data (SIGMOD), pages 951–962, 2010.

[21] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang. Advances and Challenges for
Scalable Provenance in Stream Processing Systems. In Proc. of the 2nd Intl. Provenance and
Annotation Workshop (IPAW), pages 253–265, 2008.

[22] Dan Olteanu and Jakub Závodný. On Factorisation of Provenance Polynomials. In Proc. of the 3rd
USENIX Workshop on the Theory and Practice of Provenance (TaPP), 2011.

[23] F. Reiss and J.M. Hellerstein. Data triage: An adaptive Architecture for Load Shedding in Tele-
graphCQ. In Proc. of the 25th IEEE Intl. Conf. on Data Engineering (ICDE), pages 155–156, 2005.

[24] E. Ryvkina, A. Maskey, M. Cherniack, and S. Zdonik. Revision Processing in a Stream Processing
Engine: A High-Level Design. In Proc. of the 22th IEEE Intl. Conf. on Data Engineering (ICDE),
pages 141–143, 2006.

[25] U. Srivastava and J. Widom. Flexible Time Management in Data Stream Systems. In Proc. of the
23th Symposium on Principles of Database Systems (PODS), pages 263–274. ACM, 2004.

[26] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load Shedding in a Data
Stream Manager. In Proc. of the 29th Intl. Conf. on Very Large Data Bases (VLDB), pages 309–320,
2003.

[27] Nithya Vijayakumar and Beth Plale. Tracking Stream Provenance in Complex Event Processing
Systems for Workflow-Driven Computing. In Proc. of the 2nd Intl. Workshop on Event-driven Archi-
tecture, Processing, and Systems (EDA-PS), 2007.

[28] N.N. Vijayakumar and B. Plale. Towards Low Overhead Provenance Tracking in Near Real-time
Stream Filtering. In Proc. of the 1th Intl. Provenance and Annotation Workshop (IPAW), pages
46–54, 2006.

46

[29] M. Wang, M. Blount, J. Davis, A. Misra, and D. Sow. A Time-and-Value Centric Provenance Model
and Architecture for Medical Event Streams. In Proc. of the 1st Intl. Workshop on Systems and
Networking Support for Healthcare and Assisted Living Environments (ACM HealthNet), pages 95–
100, 2007.

[30] Allison Woodruff and Michael Stonebraker. Supporting Fine-grained Data Lineage in a Database
Visualization Environment. In Proc. of the 30th Intl. Conf. on Data Engineering (ICDE), pages 91–
102, 1997.

47

