Using SQL for Efficient Generation and
Querying of Provenance Information

Boris Glavic!, Renée J. Miller?, and Gustavo Alonso?®
! Tllinois Institute of Technology
bglavic@iit.edu
2 University of Toronto
miller@cs.toronto.edu
ETH Zurich
alonso@inf.ethz.ch

Abstract. In applications such as data warehousing or data exchange,
the ability to efficiently generate and query provenance information is
crucial to understand the origin of data. In this chapter, we review some
of the main contributions of Perm, a DBMS that generates different types
of provenance information for complex SQL queries (including nested and
correlated subqueries and aggregation). The two key ideas behind Perm
are representing data and its provenance together in a single relation and
relying on query rewrites to generate this representation. Through this,
Perm supports fully integrated, on-demand provenance generation and
querying using SQL. Since Perm rewrites a query requesting provenance
into a regular SQL query and generates easily optimizable SQL code,
its performance greatly benefits from the query optimization techniques
provided by the underlying DBMS.

1 Introduction

Peter Buneman was one of the first to recognize the importance of data prove-
nance. With co-authors Khanna and Tan, he introduced two seminal models
of Why- and Where-provenance [7]. Provenance, information about the cre-
ation process or the origin of data, can be used to debug queries and clean
data in data warehouses, to understand and correct complex data integration
transformations, for auditing, and to understand the value of data in curated
databases. Provenance generation has also been used as a supporting technol-
ogy for exchanging updates between heterogeneous databases [21], to provide
access control based on the origin of data [31], and in modeling uncertainty in
databases [35].

While provenance has many applications, these applications often place very
high requirements on a provenance management system to be useful in practice.
In this chapter, we overview the contributions of the Perm provenance manage-
ment system [17]. Perm was designed as a scalable system for the generation
and querying of provenance information over relational data. To understand the
requirements for such a system, we begin with an example and then consider the
foundations in provenance research on which Perm builds.

Purchase
month desc |amount creditc|import

pi| Jan [starbucks 12 4059 1
w e p2| Jan |[grandson| 3100 1234 1
ws| 2 [Waltraud| 65 p3| Jan rent 7000 1235 1
u 3 Joo 19 psa| Feb rent 7000 1235 1
3 ps| Feb | tvshop | 399 9999 2
ps| Feb |starbucks 5 9999 2
Creditcard
tmport
cr| 4059 | VISA 1| 4000 —

id|employee|company| date |
41| 1| Daniel VISA [10.06.2000
i2[2| Petra AE _ |06.06.2000

cz2| 3066 |MASTER| 2 2000
c3| 1234 VISA 2 3000
ca| 1235 VISA 3 (10000
cs| 9999 AE 3 400

Fig. 1. Example Database

Ezample 1 (Running Example). The example database shown in Figure 1 stores
credit card information: customers, their credit cards, purchases made with
credit cards (Purchase), and from which external database (recorded in the
company attribute) a batch of purchase tuples was imported, when and by whom
(Imports). For convenience, we show an identifier for each tuple in the instance
(e.g., p2). The query ¢ shown in Figure 2 returns the months during which cus-
tomers with at least two credit cards exceeded their credit limit on some card.
To understand from which inputs of ¢ the result tuple t2 (Joe,Feb) is derived,
a user needs access to the data provenance of the query and the ability to query
this information. For example, a user may be interested in knowing if some of
these over-drafts are caused by suspiciously low credit card limits. This question
can be answered by running a query over the provenance of ¢ to retrieve tuples in
the result of ¢ that depend on credit card tuples with low limit values (i.e., these
credit card tuples belong to the data provenance of the tuples to be returned).
Alternatively, if the user realizes that some names are spelled incorrectly in the
query result, she needs to understand where the name attribute values in the
query result have been copied from to trace this error. This requires access to
a different type of provenance that tracks the copying of information instead of
which inputs caused a tuple to appear in the query result.

1.1 Requirements for Provenance Systems

The example and discussion above motivates four requirements for relational
provenance systems. (Requirement 1) Support different types of provenance
with sound semantics. Information from different provenance types is often
needed to best understand the data and how it has been transformed. We would
consider a provenance type to have sound semantics, if it provably captures our
intuitive understanding of provenance. For example, the provenance of a query

SELECT DISTINCT name, month

FROM
(SELECT month, creditc, SUM(amount) AS total
FROM purchase p
GROUP BY month, creditc) AS monthly,
customer c, Query Result
creditcard cc
WHERE p.cc = cc.number t1|Waltraud| Jan
AND cc.owner = c.id tg‘ Joe Feb

AND total > cc.limit

AND c.id IN (SELECT cc2.owner
FROM creditcard cc2
GROUP BY cc2.id
HAVING count (*) > 1)

Fig. 2. Example Query

result should be sufficient to derive this result through the query. (Require-
ment 2) Support provenance generation for SQL including complex features
such as nested subqueries and aggregation. The example query is relatively sim-
ple in comparison with queries used in data warehouse applications. A system
must support a large subset of SQL to be useful in practice. (Requirement 3)
Support complex queries over provenance information. Provenance is difficult to
interpret without the ability to extract parts of interest. For instance, even iden-
tifying for which tuples the provenance is interesting requires query support to
be feasible for large databases. Generally, users will want to use queries to specify
the characteristics of what provenance they want to see. Many interesting ques-
tions that can be answered using provenance data require the use of advanced
SQL-like features such as aggregation over the provenance. For example, Which
over-drafts are based on a large number of small purchases (high count, but low
average amount)? (Requirement 4) Support efficient generation and querying
of provenance for large database instances. Provenance can easily outgrow the
size of the database for complex queries. Unless a user explicitly requests all the
provenance, the system should efficiently generate only provenance that satisfies
the user’s request (by combining provenance generation with a user’s query over
the provenance). In our example, if a user is only interested in over-drafts due to
low credit limits (a query on provenance), then the system should not generate
provenance for all over-drafts.

1.2 State of the Art

The tremendous amount of work on relational provenance brings us close, but
not all the way, to achieve these requirements. We present the state-of-the-art
along these four dimensions and discuss how Perm has contributed to each.

(1) Support for different types of provenance. The largest body of work
on relational provenance is on semantics. We have a rich literature on different
semantics, along with a rich literature comparing these semantics and analyzing
when they are useful [10]. Data provenance, which represents dependencies be-
tween a query’s output and input data, has been categorized based on the type
of dependency that is modeled. Why-provenance, intuitively, models which input
tuples are used to create an output tuple, though there are different ways to for-
malize this notion. Types of Why-provenance are the original Why-provenance
as pioneered by Buneman et al. [7], Lineage proposed by Cui et al. [12], and PI-
CS (Perm Influence contribution semantics) the original provenance semantics
supported by Perm [16]. Where-provenance models where values in an output tu-
ple are copied from. Types of Where-provenance include the Where-provenance
introduced by Buneman et al. [7] and the C-CS semantics (Copy contribution
semantics) of Perm [16]. How-provenance augments Why-provenance with infor-
mation about how input tuples are used to create an output tuple. Provenance
polynomials [22,24] and later versions of the Trio [35] provenance model can
be classified as How-provenance. Provenance polynomials are the most general
form of annotation in the framework of Green et al. [22] that defines the positive
relational algebra for relations annotated with elements from a semiring (called
K-relations). Thus, provenance polynomials generalize all provenance semantics
that can be modeled as semirings such as the original Why-provenance and the
Trio-model [23]. Foster et al. [14] use the semiring model to annotate unordered
XML data and compute provenance for XQuery. Through an XML encoding of
annotated relations and XQuery encoding of relational algebra this approach
provides a type of attribute granularity Where-provenance. The semiring model
has been extended for aggregation [4] and several extensions for set difference
have been proposed [3,20, 15]. Recently, Kostylev et al. [29] studied data an-
notated with more than one type of annotation within this framework. Several
other data provenance types have been presented in the literature that do not
fall directly under these categories. For example, causality-based provenance [30,
9], types inspired by program analysis [1, 8], and transformation provenance [19)
(which operators of a query contribute to a result). Most provenance systems
implement one type of provenance. DBNotes [11,5, 33] is an annotation manage-
ment system that uses Where-provenance [7] to propagate annotations. Trio [35]
is a database system with support for uncertainty and provenance. Boolean for-
mulas over tuple variables are used as provenance. Lineage was implemented in
the WHIPS data-warehouse prototype [12]. The update-exchange system Or-
chestra [21] uses provenance polynomials to record the provenance of updates
exchanged between peers. In principle, Orchestra also supports Why-provenance
and the model of Trio, because these provenance types can be extracted from
provenance polynomials. Green provides a provenance hierarchy showing how
this extraction can be achieved [23].

Perm’s Contribution To the best of our knowledge, Perm is the first
system to support a representative set of provenance semantics including the
relational adaptation of the Where-provenance [10] as defined by Buneman et

al. [7], provenance polynomials [22], and new types of Why, Where, and How (de-
fined further throughout this chapter) that include a new form of transformation
provenance [19]. In contrast to Orchestra, generation of these provenance types is
supported natively instead of deriving them from a more expressive provenance
model. This enables us to use type-specific optimizations during provenance gen-
eration for more efficient execution. Perm also supports propagating user-defined
annotations based on Why semantics.

(2) Support for provenance generation for complex SQL. DBNotes sup-
ports the SQL equivalent of unions of conjunctive queries (set-semantics) [11,
5]. WHIPS computes Lineage for ASPJ (aggregate-select-project-join queries)
and set operations (union, intersection and set difference) [12]. Lineage was de-
fined for set-semantics, but extensions for bag-semantics were discussed by the
authors. Trio supports ASPJ queries with set operations though the released pro-
totype has stricter limitations (e.g., single aggregation in a query) [35]. Orchestra
supports union of SPJ queries and is the only approach to support recursion [21].
However, the semiring model used by Orchestra has also been extended for aggre-
gation [4]. In contrast to the Lineage and Perm Why-provenance models, which
only record provenance for each result tuple of an aggregation, this extension of
the semirings model attaches provenance to each aggregated value. This has the
advantage of enabling deletion propagation, but results in increased provenance
size and a more complex provenance model.

Perm’s Contribution Like WHIPS, Perm supports ASPJ queries and set
operations. Perm is the first provenance system to support nested and correlated
subqueries.

(3) Support for complex queries over provenance information. Most
systems do not represent provenance relationally. To query provenance, they
provide special query languages over their provenance data model. The query
language of DBNotes, pSQL [11, 5], provides some support for querying annota-
tions (provenance) which is equivalent to being able to pose SPJ queries with
unions on the provenance. Orchestra supports Pro@QL [25], a query language for
the graph representation of provenance polynomials for relations derived though
schema mappings. ProQL queries return a subgraph of the input based on path
expressions used in the query and optionally evaluate the provenance polynomial
of a tuple in a certain semiring, i.e., change the type of annotations attached
to tuples.* The language does not support aggregation directly. However, some
types of aggregation can be simulated using semiring evaluations. TriQL [34], the
query language of Trio, has a conditional language construct that evaluates to
true if tuples from two specified relations are connected by lineage. WHIPS [12]
does not introduce a new query language for provenance. SQL queries can be
used to query provenance generated by the system. However, the system rep-
resents provenance as a list of relations which makes querying this information
more complicated. WHIPS does not associate data with its provenance.

4 This feature can be used to derive other provenance types from the polynomials.

Perm’s Contribution Perm uses a relational representation for provenance
that models the connection between a query result tuple and its provenance.
Hence, Perm supports full SQL for querying data associated with provenance.

(4) Support for large databases. In DBNotes [5] provenance annotations for
relations in a database are materialized. DBNotes generates provenance during
the execution of a pSQL query. Such a query is translated into a single SQL
query over a relational encoding of annotated relations. This allows the system
to rely on a DBMS to optimize the execution. However, the SQL query results
have to be post-processed to transform them into DBNotes’s data model which
introduces a potential performance bottleneck. A query in Orchestra’s query lan-
guage ProQL [25] is implemented by running several queries over a materialized
relational encoding of a provenance graph. Orchestra produces provenance dur-
ing update-exchange. Update-exchange and provenance generation is expressed
in datalog extended with skolem functions and implemented in a Java middle-
ware which evaluates the datalog rules over a relational DBMS. Even though
some care is taked to avoid shipping data between Java and the DBMS, using
several SQL queries to implement a single ProQL query and full materialization
of provenance information limits the scalability of the approach. Trio [2] gen-
erates provenance eagerly during query execution. The system materializes the
results of each query and creates a separate relation to store its provenance as
a mapping between input and output tuple identifiers. Trio is implemented as
a Python middleware and a set of PostgreSQL UDFs (user-defined functions).
WHIPS [12] implements provenance generation as stored procedures that split a
query g into subexpressions and execute one or more SQL queries to retrieve the
Lineage of each segment. This separation into multiple queries limits the space
of possible optimizations that the underlying DBMS can apply.

Perm’s Contribution Provenance generation in Perm is on-demand, mean-
ing that Perm supports simple SQL language extensions (SQL-PLE) to let a
user specify when (and what) provenance to compute. In Perm, a query over
provenance information would usually include a subquery that generates the
provenance. Thus, provenance generation and querying are entangled within a
single SQL-PLE query that is rewritten by the system into a single SQL query.
This approach allows us to take full advantage of the optimizer of the underlying
DBMS. For SQL queries without nesting, our experience shows that the opti-
mizer can (and does) significantly improve the performance of provenance queries
by, e.g., pushing selections over provenance data into the provenance generation.
For nested subqueries, we present a set of novel un-nesting and de-correlation
optimizations tailored for provenance generation.

In summary, given the maturity of data provenance models, with Perm we
sought to build upon the state-of-the-art in provenance systems to provide a com-
plete relational provenance management system that supports efficient querying
and generation of provenance. Our approach focuses on robust SQL support (in-
cluding correlated subqueries) and full support for querying provenance using
SQL. Approaches that generate and store the complete provenance of a query
during execution incur large storage costs and runtime overheads, and, thus

Semantics Category Granularity

PI-CS Data (Why) Tuple

C-CS Data (Where) Tuple
Transformation Provenance Transformation Algebra Operator
Where Data (Where) Attribute Value

Polynomials Data (How) Tuple

Fig. 3. Supported Provenance Types

may not be applicable to large databases and/or complex queries. We call such
approaches ezhaustive to distinguish them from approaches that only generate
provenance on-demand. The main innovation of Perm is to represent a query’s
result and provenance in a single relation which is generated on-demand by
rewriting the original query into a query producing this representation. In the
remainder of this chapter, we overview how this simple idea enabled the de-
velopment of a robust relational provenance system that achieves the advances
towards all four requirements we have presented.

We give an end-to-end overview of our approach in Section 2. Afterwards, we
present three of the provenance types supported by Perm in detail and discuss
how they were implemented within the system (Sections 3 to 5). For each prove-
nance type, we present the formal definition, the algebraic (and SQL) rewrites
used to generate its relational representation, and present some of the optimiza-
tions that can be applied in a provenance system like Perm.

2 The Perm Approach

We now present an overview of the Perm system focusing on its relational prove-
nance representation (Section 2.1), query rewrite techniques (Section 2.2), and
SQL language extensions (Section 2.3). Perm represents provenance information
as relations generated and queried on-demand using standard SQL queries. If
the users requests one of the provenance types supported by Perm for a query
q using the SQL-PLE language extension, the system transforms ¢ into an SQL
query that returns the provenance of ¢ in addition to the regular results of q.
Perm supports the provenance types shown in Figure 3. The initial version sup-
porting PI-CS provenance (Perm Influence contribution semantics, a form of
Why-provenance) for ASPJ queries and set operations was introduced by Glavic
and Alonso [17] and later extended for nested and correlated subqueries [18].
Transformation provenance, provenance that models which operators of a query
influence a query results, was introduced in TRAMP [19], an extension of Perm
for debugging data exchange scenarios. In this chapter, we also present Copy
contribution semantics, a Where-provenance type supported by Perm, and sev-
eral optimizations for PI-CS [16]. To demonstrate the flexibility of our approach
we have also implemented the original Where-provenance [7] and provenance
polynomials [22] in Perm. As mentioned in the introduction, provenance polyno-

SELECT
PROVENANCE *
FROM ... -~
User

JDBC = = =
I
v Parser & Execution
Analyzer = Engine
[= | Query
i E sults
§ Query
Tree

v

Guery Perm
Module

Rewritten
Query Tree

«

Fig. 4. Perm Architecture

mials generalize several other provenance semantics. We will discuss how PI-CS
relates to this model in Section 3.6.

Perm is implemented as a modified PostgreSQL engine, extending its SQL
dialect with provenance features. Provenance generation in Perm is light-weight
and lazy: no provenance is generated unless explicitly requested. Thus, if the
provenance features of Perm are not used, the system behaves like a normal
Postgres server - clients will observe no overhead in runtime 5 or storage space.
Figure 4 shows the architecture of the system. The parser and analyzer module of
PostgreSQL (extended to recognize SQL-PLE) parse incoming SQL queries and
transform them into an internal tree representation. The output of the analyzer
module is passed to the Perm rewrite module. This module implements the
query rewrite rules as transformations on query trees. The rewritten query tree
produced by the Perm module is handed over to the original Postgres optimizer.
From the optimizer’s point of view the input it retrieves is a regular SQL query.

2.1 Provenance Representation

Perm represents the provenance of a query ¢ as a single relation that contains
both the original query results of ¢ and its provenance. Provenance information
is attached to a query result tuple by extending the tuple with additional at-
tributes that are used to store provenance information. Regular result tuples are
duplicated if necessary to represent the complete provenance.

Data Provenance: PI-CS and C-CS, the two data provenance semantics de-
veloped for Perm, represent provenance as so-called witness lists. A witness-list
for a query is a list of input tuples that were used together to derive an output
tuple; one from each input relation of the query (leaves of the algebra tree) or
the special value L which indicates that no tuple from the relation at this leaf of

5 Except for an additional traversal of the query tree to search for SQL-PLE constructs.

the tree contributed to the output tuple. The relational representation of PI-CS
and C-CS appends all attributes from the relations accessed by the query to the
query’s result schema. The additional attributes in the provenance representa-
tion are used to extend a result tuple with all tuples from one of its witness
lists. Thus, tuples with more than one witness list in their provenance are du-
plicated and each duplicate is paired with the relational encoding of one witness
list. To distinguish between regular result attributes and provenance attributes,
the later are identified by a prefix and the name of the relation they are derived
from (adding a distinguishing identifier for relations that are accessed more than
once by the query). The special value L used in witness lists is modeled as NULL
values in the representation.

Transformation Provenance: Transformation provenance models which parts
of a query (that is, which operator) contributed to an output tuple. Provenance is
represented as a single attribute of either type text or XML that stores the SQL
string of the query (or an XML representation thereof) with the transformation
provenance modeled as tags (<NOT>. . .</NOT>) that surround parts of the query
that did not contribute to a result tuple. We introduced the XML representation
to enable query access to transformation provenance (using the XSLT support
of PostgreSQL).

Ezample 2 (Provenance Representation). Consider the query shown in Figure 5
evaluated over the example database and its PI-CS and transformation prove-
nance. The provenance attribute names for PI-CS are given in a separate table
to simplify the exposition. Tuple t5 in the result of the query was derived by
joining tuple uy with tuples co and c3. Thus, the PI-CS provenance of tuple ¢
consists of two witness lists < usg, c3, L> and < us, c3, L >. These are represented
as two tuples in the relational representation by duplicating ¢, and pairing each
duplicate with the tuples from one of the witness lists. Tuple ¢; is derived from
the left input of the union without any influence from its right input. Therefore,
the right input is enclosed in a NOT tag in the transformation provenance of ¢;.

The provenance representation used in Perm has several advantages. (1)
Provenance is represented as a standard relation, that can be stored as a view or
queried using SQL. Even more important, the system can often avoid generating
provenance that will be filtered out in later stages of a query using the DBMS
optimizer (see Section 2.2). (2) Representing data provenance as complete tuples
and directly associating a query’s regular result data with its provenance allows
a user to understand how they relate to each other and enables queries that
make use of this information.

However, these advantages come at the price of verbosity and in some cases
loosing the ability to run queries over the regular results. The verbosity is usu-
ally unproblematic, because the user can run queries over this information to
extract parts of interest and instruct the system to only use certain attributes
as provenance instead of complete input tuples. The duplication of regular re-
sult tuples is necessary to be able to pair them with their complete provenance,
but it may restrict the execution of normal queries over this relation (i.e., re-
sult tuple multiplicities may be different from the multiplicities of the original

Query Result

(SELECT name name
FROM customer c¢ JOIN creditcard cc t1 Gert
ON (c.ssn = cc.owner)) to Waltraud
UNION t3 Joe
(SELECT employee FROM imports); ta Daniel
ts Petra
PI-CS Provenance
customer creditcard imports
t1| Gert 1 Gert [34]4059| VISA 1| 4000
to|Waltraud| 2 |Waltraud|65[3066 MASTER| 2 | 2000
to|Waltraud| 2 |Waltraud|65(1234| VISA 213000
ts Joe 3 Joe 19({1235| VISA |3 {10000
ts Joe 3 Joe 19({9999 AE 3| 400
t4| Daniel 1 |Daniel| VISA|10.06.2000
ts| Petra 2 | Petra | AE |06.06.2000
Attribute Names Transformation Provenance
trans_prov
by proveusiomer-name SELECT c.name
ig ppricv‘:crrccddiiﬁiﬁ;ﬁz‘:ﬂi‘;‘:fy FROM customer c¢ JOIN creditcard cc
pe prov-creditcard_owner ON c.ssn = cc.owner
pr_proverstnendiime | 6| Gert | pyroy
15’190 gi‘;‘\’]:‘]:g‘;:ﬁ;‘;ﬁ)‘j’;ﬁ <NOT>SELECT imports.employee
P11 prov-imports.added FROM imports</NOT>

Fig. 5. Provenance Representation

query). However, the original result multiplicities can be reconstructed from the
provenance and input multiplicities if needed.

2.2 On-Demand Provenance Generation Using Query Rewrites

The research underlying Perm has demonstrated that SQL is powerful enough to
express the computation of provenance for a large subset of queries expressible in
SQL. The approach supports aggregations, set operations, nested or correlated
subqueries, and user-defined functions. We do not support non-deterministic
functions that return different results for the same input in the scope of one
query. For example, a random number generator is a non-deterministic function.

Requesting the provenance of a query g through the system’s SQL exten-
sions (see Section 2.3) instructs Perm to rewrite ¢ into a standard SQL query
that returns one type of provenance for ¢ using the provenance representation
introduced in Section 2.1. The query rewrites for each provenance type were de-
veloped following the process shown in Figure 6. (1) We state a provenance type’s
semantics as a declarative definition and define a relational representation. This
approach was chosen because correctness criteria one would intuitively expect to
hold for provenance are easily stated declaratively. For instance, for data prove-

10

@ @

. @
Alegebraic | canonical = | SQL

Declarative | derive
Definition Rewrites translation Rewrites
. T
defvlne proven
to generate
Relational i
Representation

Fig. 6. SQL Rewrite Development Process

nance, the provenance of a tuple ¢ from the result of a query ¢ should contain suf-
ficient information to produce the tuple ¢. (2) From the declarative definition we
derive algebraic rewrites which transform a query into a provenance-generating
query and prove their correctness. (3) A canonical translation is applied to trans-
late the algebraic rewrites into SQL rewrites.

The seamless integration of provenance generation as an SQL language fea-
ture has many advantages. We can provide full SQL query support for prove-
nance information (Requirement 3). The rewrite rules are unaware of how the
provenance attributes of their input were produced. Thus, they can be used
to propagate provenance information that was created manually or by another
provenance management system. A query over provenance data is implemented
as a regular SQL query with a subquery that implements the provenance gen-
eration. Thus, we fully utilize the DBMS optimizer to speed up provenance
computation by, e.g., pushing selections and projections applied by a query into
the provenance generation (Requirement 4). Since optimizing provenance gen-
eration is still in its infancy, this is a feasible approach for efficient provenance
generation and querying (e.g., we can efficiently compute the PI-CS provenance
of the TCP-H benchmark queries for a 1GB TCP-H instance [16)).

2.3 SQL Language Extension

The provenance language extension (SQL-PLE) of Perm enriches SQL with ad-
ditional keywords to request provenance, control how far to trace provenance,
and to inform the system about existing provenance information. The keyword
PROVENANCE is employed in the SELECT clause of a query ¢ to instruct Perm to
compute the provenance of q. An optional ON CONTRIBUTION modifier is used to
choose the provenance type that is produced (PI-CS is the default). For example,
the query below returns the PI-CS provenance of the query from Figure 2.

SELECT PROVENANCE DISTINCT name, month
FROM (SELECT month, creditc, SUM(amount) AS total

Note that all original SQL features provided by PostgreSQL are not affected
by the language extension, and even more important, they can be used in com-
bination with provenance computation. Given the provenance representation of
Perm this enables complex queries that filter provenance based on properties
of the input tuples in the provenance, the results of the query, or both. This
type of query functionality generalizes what has been called backward (track the

11

provenance of an output) and forward (which outputs have a certain input in
their provenance) provenance queries in related work [6, 27, 26].

Ezample 3 (Querying Provenance). Assume the user expected the running ex-
ample query to return less credit over-drafts. Her assumption is that some over-
drafts are caused by credit card limits which have been recorded too low. The
user runs the following query to determine which over-drafts are caused by (have
tuples in their provenance with) suspiciously low credit card limits (say $500):

SELECT =
FROM (SELECT PROVENANCE DISTINCT name, month

HAVING count (*) > 1)) AS orig
WHERE prov_creditcard_limit < 500;

The default behavior is to generate the provenance of a complete query by tracing
which tuples in a query’s output are affected by which tuples in the query’s input.
Perm also supports limiting the provenance generation to parts of a query to
trace the effect of intermediate query results instead of the input relations. The
keyword BASERELATION is appended to an item in the FROM clause to limit how far
back the provenance is traced.

Ezample 4 (Limit Provenance Generation). Retrieving the full provenance of
the running example query may return a large number of tuples, because each
aggregated monthly amount (subquery monthly) can depend on a large number
of individual purchases. Questions like the one from Example 3 can be answered
without information about the influence of each individual purchase tuple. The
user can mark the subquery monthly with the BASERELATION keyword to only
investigate the effect of the aggregated monthly amounts.

SELECT PROVENANCE DISTINCT name, month

FROM (SELECT month, creditc, SUM(amount) AS total
FROM purchase p
GROUP BY month, creditc) BASERELATION AS monthly,

Perm can handle existing provenance information that was not produced by the
system itself as long as (1) it is stored in additional attributes of tuples following
the representation used by Perm and (2) the system is made aware of which
attributes store provenance information (by appending the keyword PROVENANCE
followed by a list of attribute names to the FROM-clause item).

Ezample 5 (Eaxternal Provenance). The imports relation from the running ex-
ample stores from which data sources each purchase tuple is imported. This is
a type of provenance information for the purchase relation. Joining the imports
relation with the purchase relation and using the PROVENANCE keyword in the
FROM clause, the user makes Perm aware of the existence of the additional prove-
nance data. The system will treat this provenance in the same way as provenance
generated by the system itself. The modified example query is shown below.

12

SELECT PROVENANCE DISTINCT name, month
FROM (SELECT month, creditc, SUM(amount) AS total
FROM (SELECT *
FROM purchase, imports
WHERE id = import
) PROVENANCE (employee, company, added) AS p
GROUP BY month, creditc) AS monthly,

3 Perm Influence Contribution Semantics (PI-CS)

This and the following sections discuss the provenance types supported by Perm
in more depth. Recall that we follow the process shown in Figure 6 to develop
provenance semantics that are implemented as SQL query rewrites. The PI-
CS provenance semantics was developed based on Lineage [12]. Lineage defines
provenance for single operators declaratively. This definition is extended for
queries with more than one operator by assuming transitivity. Lineage represents
the provenance of a tuple ¢ from the result of a query ¢ as a list of relations; each
element in the list is a subset of one input relation of the query. PI-CS also uses
a declarative per-operator definition and transitivity, but represents provenance
as witness-lists, defines a relational representation (see Section 2.1), and extends
the declarative definition of the semantics with additional constraints to handle
outer-joins, set difference, and nested subqueries correctly. For the proofs of the
theorems we present in this section see Glavic [16].

3.1 Background and Notation

Before discussing the details of PI-CS, we present the relational algebra variant
used in Perm and introduce notational conventions. The algebra (shown in Fig-
ure 7) is an extended relational algebra that operates on bags (multi-sets). We
use t" to denote that tuple ¢ has the multiplicity n (number of duplicates) with
the convention that a tuple with multiplicity smaller than one is not present
in a relation. Let ¢ be a query. We use [[¢]] (and sometimes Q) to denote the
result of evaluating ¢ and Q to denote its schema (the same notation is used for
relations). The projection of a tuple ¢ on a list A of attributes (or expressions)
is denoted as t.A. Projection (II) projects its input on a list of expressions over
attributes, constants, functions and renaming (represented by a — b). Selection
(o), joins (4,74, ...), and set operations are defined as usual. Duplicate elim-
ination () returns the input relation with all tuple multiplicities set to one.
Aggregation («) groups its input on a list G of grouping expressions and com-
putes the aggregation functions from list agg for each group. Here B; denotes
the list of input attributes for aggregation function agg;. Each result tuple of an
aggregation contains the grouping expression values and the aggregation func-
tion results (res;) for one group. The value null is represented as ¢ and we write
null(q) for a tuple of null-values with schema Q. Due to space limitations we do

13

[HTa@ ={t" |n=" > m} [oc(@l) ={t" | t" € @At = C}

umMEeEQAU. A=t

(@G agq ()] ={(t.G, res1, ... resm)" [" € QA ey TO% aggi(Ilp;(06=1.c(9))}

[[q1 o g2)]] ={(t1 » t2)" "™ | 1" € Q1 At2" € Q2 A (t1 » t2) E C}
[lar e go]] ={(t1 >)" ™ [61" € Q1 At € Q2}
U{(t1 » null(g2))" | t1" € Q1 A (Bt2 € Q2 : (t1 > t2) F O)}
[Ugll={t"™ [t" e Qi At™ € Q2} [l Nga]] = {™ ™™™ | " € Qi At™ € Qa}

[=)l = """ [t" € QuAt™ € Q2} [[6(g)]] ={t" [¢" € Q}

Fig. 7. Algebra

not include the algebra for nested subqueries [18], but instead present an exam-
ple. The SQL query SELECT * FROM R WHERE R.a IN (SELECT b FROM S) can be
written as o, N Hb(S)(R)- We use < eq,...,e, > to denote a list with elements
e1 to e, and l; » [y to denote the concatenation of lists [; and [5.

3.2 Declarative Definition

We start by stating the properties of PI-CS as a declarative definition and define
a relational representation for this provenance type. The declarative definition
allows us to directly state the properties we expect to hold for PI-CS. The PI-CS
provenance for a result tuple of a query ¢ is a subset of the multiset of potential
witness lists for q - a set with all possible combinations of input tuples from the
query and the special value 1. Recall from Section 2.1 that 1 denotes that no
tuple from a specified relation participates in a witness list.

Definition 1 (Potential Witness Lists). For a query g with inputs qi, ..., qn
the bag W(q) of potential witness lists for q is defined as:

W(q):{< t1,...,tn >m1><‘..><mn‘ \ t;nL EQZ\/(tz =1 /\m,:l)}
i€{l,n}
We use wli] to denote the it" component (tuple) of a witness list w. A witness list

w’ subsumes a witness list w (w < w') iff w can be derived from w' by replacing
some tuples with L: (Vi : w[i] = w'[i] Vw[i] =L) A (Fi: w'[i] L Awli] =1).

The declarative definition for PI-CS defines the provenance of a tuple ¢ from
the result of a single algebra operator op as a subset of W(op) that fulfills the
following four conditions. (1) Evaluating op over the provenance of ¢ returns ¢.6
This guarantees that the provenance of ¢ is sufficient to produce t. (2) Each
witness list w in the provenance contributes to the result, that is, evaluating
the operator over w returns a non-empty result. (3) Subsumed witness lists are
excluded from the provenance. This condition is necessary to produce precise

5 Glavic [16] defines a semantics for query evaluation over sets of witness lists.

14

provenance for outer-joins and set union. (4) The provenance is the maximal
multi-set with these properties, meaning that no witness lists that contribute to
t are left out. The provenance of a query is defined by recursively applying the
per-operator definition to each operator of the query.

Definition 2 (Declarative Definition of PI-CS). Let op be an algebra op-
erator with inputs qi,...,q, and t a tuple in the result of op (t* € [[op]]). A
multi-set P C W(op) is the PI-CS provenance PI(op,t) of t iff:

[lop(P)]] = {t"} (1)

Vw € P : [[op(w)]] # 0 (2)

—Jw,w € P:w < w' (3)
LIPS P WP E (1), (2),3) (1)

The PI-CS provenance PI(q,t) of a tuple t from the result of a query q is
defined by transitivity over PI(op,t) for each operator op in q.

For simplicity, we left out additional conditions applied in the definition to
handle nested subqueries and adapted the definition slightly (without changing
its semantics) [16]. We define the relational representation of the PI-CS prove-
nance for a query ¢ which combines each tuple ¢ in @ with all witness lists in
PI(q,t).

Definition 3 (Relational Representation). The relational representation QF!
for the PI-CS provenance of a query q is defined as:

QP ={(tw w1 » ... wn))™ [€ Q Aw™ € PI(q,t)}

Wil {wm if wli] £1
null(g;) else

3.3 A Compositional Semantics

The declarative definition does not provide a direct way to compute provenance
except for the brute force method of evaluating the conditions of the definition
for each provenance candidate (subset of W(q)). A more algorithmic approach
is needed to simplify the development and correctness proofs for the algebraic
rewrites. We derive compositional rules that define the provenance of an algebra
operator based on the provenance of its inputs and prove that these rules are
equivalent to the declarative definition of PI-CS.

Definition 4 (Compositional Semantics for PI-CS). Figure 8 shows a
compositional definition of PI-CS. Here L (q) denotes a witness list for q with
L wvalues only.

Note that we omitted the rules for right and full outer-join and for nested
subqueries [16]. The following theorem states the equivalence between the declar-
ative definition and the compositional rules.

15

PI(R,t) = {<t>"[t" € R}

Pl(oc(q1),t) = PI(q1,1)

PI(ITa(q1),t) = {w" | w" € PI(q,u) Au.A =t}
Pl(ag,agq(qr),t) = {w" | w™ € PI(q1,u) Nu.G =t.G} U{<L>| Q1 =0A|G|=0}
PI(qg1 Xc q2,t) = {(w1 » w2)"*™ | w} € PI(q1,t.Q1) Aw3* € PI(q2,t.Q2)}

wwl (g2)" | w" € PI t. if t

Pl e {PI q: NCq;J)‘ =) elsebéc

PI(q1Uqa,t) = {(wwL (g2))" | w" € PI(qr,)} U{(L (q1) » w)" | w" € PI(go,)}

{(
Pl(ql Mgz,) {(w1 P w2)n><m | w" € Pl(qh)/\w;n EPI(QQ,t)}
PI(q1 — q2,t) = {(w »L (q2))" | w" € PI(q,t)}

Fig. 8. Compositional Semantics of PI-CS

Theorem 1 (Equivalence with Declarative Semantics). The declarative
and compositional definitions of PI-CS are equivalent.

Ezample 6. Consider the query from Figure 5 expressed in relational algebra as
q = ILame(customer DXgsn—owner creditcard)UIlempioyee (imports). Recall from
Example 2 that the PI-CS provenance of tuple t5 is {< ug, o, 1>, < ug, c3, L>}.

3.4 Algebraic Rewrites

Based on the compositional semantics we developed algebraic rewrite rules that
generate the relational representation of PI-CS by propagating provenance tuples
through the rewritten query. These rewrite rules are defined for single algebra op-
erators and are applied recursively to rewrite a query. Each rule modifies both
the structure of the algebra expression and an auxiliary data structure called
the provenance attribute list. The provenance attribute list is the schema for the
relational representation of a witness list (attributes storing provenance informa-
tion). Using single operator rules allows us to support user created provenance
information as long as it uses the same provenance representation as Perm and
to limit provenance generation to parts of a query (see Example 4).

Definition 5 (Algebraic Rewrite Rules for PI-CS). Let q be a query. The
algebraic rewrite rules for PI-CS shown in Figure 7 transform q into a query
q" that returns the relational representation of the PI-CS provenance for q.
P(q") denotes the list of provenance attributes for query qt, P(R) is the list
of provenance attribute names for relation R, and =, is an equality comparison
operator that considers null values to be equal.

Consider the rewrite rules for join (R6) and aggregation (R4) as an example
of how these rules work. The rewrite rule for join rewrites the left and right
input of the join and applies a projection to the result to achieve the correct

16

Structural Rewrite

g=R: q" = Irr-pr)(R) (R1)
g=oc(q): q" =oc(a’) (R2)
¢=1alq): " =y pee(a) (R3)
q = QG,age(q1) : gt = HG,agg,P(qﬂ(aG,agg(ql) Ne=.x HG—»X,P(q1+)(q1+)) (R4)
q=0(q): ¢ =q (R5)

g=q1>Xc q2: q" =1q, g ety (@ >o g) (R6)

q¢=q ™0 g2 q" =1q, q; per) (@ 0 g™) (R7)

g=qaUaq: ¢ =(a" xnull(P(g")) U (g, p+) (e x null(P(a"))) (R8)

g=qanNg: ¢ =g, pur(0(qr Ng2) ¥Q,=.x g, x p@+(@") (R9)
Qs =.v g, v pn+)(@21))

a=q—q: q" =Ig, pet (@ — a2) XQi=.x g, x P+ (@") (R10)
x null(P(g21)))

Provenance Attribute List Rewrite

Pla™) if g =oc(q) | Ta(q1) | @G ,age(q1) | 6(qr)
P(¢") = { P(R) ifg=R
Pl ™) » Pge™) else

Fig.9. PI-CS Algebraic Rewrite Rules

17

QB QB*

SELECT A \ SELECT 4, P(q")
FROM ¢1 ... ¢n FROM 17 ... g™
WHERE C WHERE C';

Fig.10. SQL Query Block Rewrite

ordering between regular result attributes and provenance attributes. The list of
provenance attributes for a rewritten join is the concatenation of the provenance
attribute lists of its input. The rewrite rule for aggregation joins the original
aggregation with the rewritten input on the group-by attributes. As can be seen
in Figure 8, the provenance of an output tuple ¢ from an aggregation contains the
witness lists for all tuples from the input that have the same group-by attribute
values as t, as precisely these tuples were used to compute t. The provenance
attribute list for an aggregation is the provenance attribute list of its input. We
refer the interested reader to Glavic [16] for detailed descriptions of the these
rewrites. We presented a generic rewrite strategy [18] (called the Gen strategy)
applicable for all types of nested subqueries by generating W(q) for the nested
subquery using a cross product and filtering out tuples that do not belong to
the provenance using additional nested subqueries and correlation. The following
theorem states the correctness of the rewrite rules for PI-CS.

Theorem 2 (Rewrite Rules Correctness). Given a query q, the query q*
derived after Definition 5 generates the PI-CS provenance of ¢: QT = Q!

3.5 SQL Rewrites

In a final step, the algebraic rewrites are translated into SQL rewrites. First,
we define a canonical translation between SQL queries and relational algebra
expressions. We then classify types of SQL query blocks based on the algebra
operators used in their translation. Finally, we develop an SQL rewrite rule
for each of these block types. A block is translated into a relational algebra
expression ¢, rewritten into expression ¢*, and then ¢* is translated back into
SQL. The SQL rewrite rule is then inferred from the original and rewritten SQL

query.

Ezample 7 (SQL Rewrite Rules for PI-CS). Consider an SPJ (select-project-
join) query block without aggregations as shown on the left of Figure 10. Such
a query block is translated into an algebra expression ¢ that is a list of joins
followed by a selection and a projection. Applying the algebraic rewrites, then
pulling and merging projections, we derive a rewritten expression ¢ which can
be translated back into a single query block (shown as QB in Figure 10).

18

3.6 Relationship with Provenance Polynomials

Recall from the introduction that the provenance polynomials introduced by
Green et al. [22] generalize several other provenance semantics for positive rela-
tional algebra (USPJ queries). A natural question to ask is how PI-CS is related
to this model. In contrast to Why-provenance [7], the PI-CS provenance of a
tuple can not be derived from its provenance polynomial. The reason is that the
structure of a witness list depends on the structure of the algebra expression
q and this structure is not encoded in a provenance polynomial. However, the
provenance polynomial of a tuple can be derived from its PI-CS provenance.
Note that a polynomial can be written as a sum of products (called monomials).
We transform the PI-CS provenance of a tuple ¢ into a provenance polynomial
by turning each witness list into a monomial and summing up the monomials
for all witness lists of .

Theorem 3 (Derive Provenance Polynomials from PI-CS). Let N[X](q, t)
denote the provenance polynomial for a tuple t in the result of a query q derived
using the algebra with annotation propagation from Green et al. [22]. There ex-
ists a surjective function h from bags of witness lists to provenance polynomials
so that for every positive relational algebra expression q and tuple t € Q the
following holds:

h(PI(,t)) = NIX](q, 1)

There exists no function b’ such that h'(N[X](q,t)) = PI(q,t) for every such q
and t.

Proof. We construct such a function by deriving a monomial from a witness list
w by multiplying all tuples from w (ignoring L values) and summing up the
monomials for all witness lists of a tuple. The equivalence of h(PI(g,t)) to N[X]
can be proven by induction over the structure of an algebra expression.

h(PI(g,t) = I[I wl

wm™ePI(q,t) \i€{l,n}Awli]#L
The non-existence of A’ is disproven by contradiction (see [19] for a similar proof).

Ezxample 8. Reconsider the query g from Example 6. The result tuple to was
derived by joining the customer tuple us with the credit card tuples co and cs.
Thus, the PI-CS provenance of o is {< ug, ca, 1>, < ug, ¢z, L>}. The result of
h(PI(q,t)) is ug X ca + ug X c3, the provenance polynomial for ts.

As mentioned before, the extension of provenance polynomials for aggrega-
tion stores provenance for individual aggregated values. The provenance attached
to an attribute value by this model encapsulates both the influence of input
tuples and the computation of the aggregation function result. Thus, it is not
surprising that this type of provenance can not be derived from the PI-CS prove-
nance. Similarly, some extensions of semiring provenance for set difference are

19

more informative than PI-CS with regard to this operation [15,3, 15]. Whereas
PI-CS only considers the left input of a set difference to contribute to the result,
m-semirings [15] capture the positive influence of the right input in cases such
asq=R—(S-T).7

3.7 Optimizations

The rewrites implemented in Perm use several optimizations to speed up the
execution of provenance queries. For queries without nested subqueries a stan-
dard DBMS optimizer will carry out most of the possible optimizations for us,
e.g., by pushing down selections over provenance data into the provenance gen-
eration. For nested subqueries, the Gen strategy (see Section 3.4) leads to very
complex nested subqueries that are hard to de-correlate and un-nest. Such un-
nesting is necessary to avoid cross-products in the outer query. Therefore, most
of the optimizations for PI-CS target this type of query. Glavic and Alonso [18]
presented two simple un-nesting strategies to optimize provenance computation
for specific types of nested subqueries. The current version of Perm [16] ex-
tends this approach and applies a wide range of un-nesting and de-correlation
techniques inspired by approaches for optimizing regular nested queries. For in-
stance, we de-correlate correlated aggregation subqueries by using group-by and
joins, and inject the outer-query block into a nested subquery to de-correlate
universally quantified subqueries (ALL) with inequality predicates [28,13,32].
New de-correlation strategies can be applied in provenance computation that
are not applicable to regular queries. For instance, under certain circumstances
a correlated existentially quantified subquery (EXISTS) can be rewritten into a
join without the need to eliminate duplicates as would be required for regular
queries. Rewrite strategies are chosen heuristically, because at the level we ap-
ply the query rewrites we do not have access to cost estimates. We always prefer
un-nesting and de-correlation techniques to other types of rewrites. This is a rea-
sonable heuristic for provenance computation because avoiding the Gen strategy
is almost always beneficial. Experimental results indicate that this heuristic can
drastically improve performance [16].

3.8 Query Rewrite Example

We now demonstrate how Perm computes the provenance of the running exam-
ple query (Figure 2) as specified in Example 4. Recall that the user decided to
limit provenance generation to not trace into subquery monthly. The result of
the SQL rewrites applied by Perm for this query is shown in Figure 11. The
SELECT clause contains additional attributes to store the relational provenance
representation. For simple relation accesses (customer and creditcard relations
in the FROM clause of the outer query) these attributes are just renamed versions

7 In this example, a tuple ¢ from relation T can contribute to a result tuple, because
it may cause a tuple s from S to not appear in the result of (S — 7T') which in turn
causes a tuple r from R to be in the result of q.

20

Provenance Attributes

for Nested Subquery

Provenance Attributes
for "monthly" Subquery

Provenance Attributes
for "customer"

SELECT

c.name,
monthly .month,
cc .number,
monthly.total,
~ provsub.prov_creditcard_number ,
provsub.prov_creditcard_company,
provsub.prov_creditcard_owner,

[, provsub.prov_creditcard_limit,

Unnested IN-Subquery
+ Provenance
Computation

~ monthly.month AS prov_monthly_month,
monthly.cc AS prov_monthly_cc,
monthly.total AS prov_monthly_total,
c.ssn AS prov_customer_ssn,

c.name AS prov_customer_name,

c.age AS prov_customer_age,

””” cc.number AS prov_creditcard_1_number,

cc.company AS prov_creditcard_1_company,
cc.owner AS prov_creditcard_1_owner,
cc.limit AS prov_creditcard_1_limit

(SELECT p.month, p.cc, sum(p.amount) AS total

FROM purchase p

GROUP BY p.month, p.cc) monthly,

customer c,

creditcard cc,

(SELECT
agg.owner,
rewsub.prov_creditcard_number,
rewsub.prov_creditcard_company,
rewsub.prov_creditcard_owner,
rewsub.prov_creditcard_limit

FROM (SELECT cc2.owner ——=----

'
FROM creditcard cc2 ! Original Aggregation
GROUP BY cc2.owner <—— used by the Nested
i

HAVING count (*) > 1) agg ! Subgquery
LEFT JOIN
(SELECT

cc2.owner,

cc2.number AS prov_creditcard_number,
P H Provenance

cc2.company AS prov_creditcard_company, o | Computation for the
cc2.owner AS prov_creditcard_owner, | Aggregation's Input

cc2.limit AS prov_creditcard_limit
FROM creditcard cc2) rewsub !
ON agg.owner IS NOT DISTINCT FROM rewsub.owner
) provsub

monthly.cc = cc.number
AND cc.owner = c.ssn

AND c.ssn = provsub.owner 1 Former IN-condition

Fig. 11. Rewritten SQL query

of the attributes of these relations (e.g., c.ssn AS prov_customer_ssn). The same
applies for the monthly subquery, because the user has instructed Perm to limit
provenance generation to the results of this subquery using the BASERELATION
keyword. Recall that the original query used an IN-subquery in the WHERE clause.
This subquery was un-nested by turning it into a FROM clause subquery that
implements both the selection condition containing the subquery and the prove-
nance computation for this subquery. The IN condition has been translated into
a simple selection condition (see Figure 11). The provenance computation for
this subquery is realized by applying the rewrite rule for aggregation (joining
the original aggregation with its rewritten input).

21

S

R U Q
a| b| c| a
ri|l 81 up| 1l tl
T2 5 52 u 5 tg

Fig. 12. C-CS Example

4 Copy Contribution Semantics (C-CS)

Copy contribution semantics (C-CS) is a restriction of PI-CS to input tuples that
are copied (partially) to a result tuple. This is similar to Where-provenance [7,
5] except that we track copying at tuple granularity instead of attribute value
granularity. Perm supports four variants of this provenance semantics based on
the distinction of whether to consider equality conditions as an implicit form
of copying values and the distinction between partially and completely copied
tuples. We limit the discussion to the variant that takes partial and implicit copy-
ing into account. For the other variants and correctness theorems see Glavic [16].
Intuitively, it is apparent that the set of input tuples that have been copied to
a tuple t is a subset of the tuples that contributed to ¢. Thus, it is reasonable
to derive C-CS from PI-CS by filtering out tuples from the PI-CS witness lists
that have not been copied to the output.

Ezample 9 (PI-CS vs. C-CS). Counsider the query ¢ = IT,(R X< S) U U eval-
uated over the database instance shown in Figure 12. The PI-CS provenance of
result tuple ¢ is {< r1,892, 1>,<1, 1 ,u; >}. The a attribute value of ¢; has
been copied from the a attribute of tuple r; and the c attribute of tuple u;. Tuple
so was joined with tuple r; to produce t1, but did not contribute any values to
the result. Therefore, the C-CS provenance of ¢ is {< 7, L, L> <1, 1 u; >}.

We use data structures called copy-maps to determine which tuples from a
PI-CS witness list should be removed to form the corresponding witness list for
C-CS. This data structures model from which attributes each result attribute
of a query is copied. Formally, a copy-map is a function that maps an algebra
expression ¢, one attribute a from one of its input relations, a result tuple ¢, and
one witness list w in PI(g,t) to the set of result attributes to which a is copied
with respect to ¢t and w. Copy-maps are defined recursively for all operators
of the algebra in a similar fashion as the compositional semantics for PI-CS.
Reconsider tuple t; from Example 9 as an example of why it is necessary to
include a witness list as an input parameter for copy maps. The two witness lists
in PI(g,t1) exhibit different copy behavior. According to the first witness list,
the result attribute a is copied from the a attribute of tuple r;. According to
the second witness list, the result attribute a is copied from tuple u;.

Definition 6 (C-CS and Copy-Map). The C-CS provenance C(q,t) of a
tuple t from the result of a query q is a multiset of witness lists defined as

22

CM(R,a,w,t) ={a}

CM(oc(q1),a,w,t) =CM(q1,a, w,t)U
{z|Jy:(z=y)eCArtE(r=y) ANy € CM(q,a,w,t)}

CMITa(qr),a,w,t) ={z | (x € CM(q1,a,w,y) Nx € ANy.A=1t)}
U{z|(b—-2z)c ANbECM(q,a,w,y) Ny A=1)}
U{z | if (C) then (z) else (e) € ANz € CM(q1,a,w,y)
Ny A=tAnyEC)}
U{z | if (C) then (e) else (x) € ANz € CM(q1,a,w,y)
Ny A=tNyEC)}

CM(q1 X q2,a,w,t) =CM(q1,a,w[q1],t.Q1) UCM(qz, a, w[gz], t.Qz2)

U{z|Jy:(z=y) eCAwE(z=y)
A (y € CM(qr,a,w[q1],t.Q1) Vy € CM(gz, a, w[ge], t.Q2))}

Fig. 13. Copy-Map Definition

follows (the copy-map CM(q,a,w,t) is defined in Figure 13).
Clg,t) ={w" |w" € PI(q,t)}

ol = wli] ifJa € Q; : CM(q,a,w,t) #0
win = 1L else

We use w(qi1] to denote the part of a witness list corresponding to subquery qi.

As an example, consider the copy-map definition for projection. For a tuple
t and one of its witness lists w, the value of an attribute a has been copied to a
result attribute z if one of the following holds: (1) z is in the copy map of a for
a tuple from the input of the projection that has been projected on ¢ (first line);
(2) the same applies for an attribute b that has been renamed to x (second line);
or (3) the projection contains an if-then-else expression (CASE in SQL) with x
being the result expression for either the “then” respective “else” branch and
the condition is fulfilled respective not fulfilled (third and fourth line).

4.1 Algebraic Rewrites

We use the fact that C-CS is defined as filtering out parts from PI-CS witness
lists to develop rewrite rules for this provenance type. We first apply modified
versions of the PI-CS rewrite rules to generate a rewritten query ¢©*. These
rules use additional projections expressions, called copy expressions, to itera-
tively build a relational encoding of the copy-map for the query. Afterwards, a
final projection is added to the rewritten query to conditionally replace prove-
nance attribute values with null values based on the copy expression information.
The relational encoding of a copy map is a list of set valued attributes. Each of
these attributes is used to store the result of a copy-map for one input attribute

23

a (CM(q,a,t,w)). Conditional projection expressions (if-then-else in algebra or
CASE in SQL) are used whenever the inclusion of an output attribute into the
copy-map is conditional. The final projection determines for each input relation
if at least one attribute from this relation has been copied to the output (for
the current tuple and witness list) using a disjunction of comparisons between
copy expressions and the empty-set. If this expression evaluates to false, the
provenance attributes for this input relation are replaced with null values.

Definition 7 (C-CS Rewrite Rules). Let B(q) denote the list of all attributes
from the relations accessed by query q. A query q is rewritten into a provenance
generating query q¢ according to C-CS as shown below. Query q€ uses projec-
tion expressions P*(qCF) to filter out tuples from witness lists over a rewritten
version ¢+ of q.
¢© = HQ,P*(qC+)(qC+)
P*(¢“t) = >(: if (C*(a)) then (P(a)) else (¢) — P(a)
a€B(q

CHa) = (C(by) £V ...V C(by) #0) forae Q= (by,...,by)

Each of the adapted PI-CS rewrites adds the copy expressions to the rewritten
query. We present the rule for projection as an example:

q=IHa(q): ¢t = I pgeryom@ (@)

The copy expressions CM(q) for a query q are defined in Figure 14.

4.2 Optimizations

Generating the C-CS provenance of a query ¢ requires the generation of copy-
expressions in addition to generating the PI-CS provenance of q. However, for a
wide range of algebra expressions the query that generates C-CS can be simpli-
fied based on the following observations. Instance Independent Copy Ezpressions:
Often, we can deduce that some conditional clauses used in copy expressions eval-
uate to a constant result independent of the data. For example, this holds for
projections without conditional expressions. We identify and evaluate constant
copy expressions at query compile time to avoid unnecessary computations at
run-time. Omit Rewrite: If the provenance attributes for an input relation are
guaranteed to be €, it is not necessary to compute any provenance for this re-
lation. Thus, we can avoid rewriting a sub-expression if it exclusively accesses
input relations with this property.

Ezample 10 (C-CS Optimizations). Consider the query ¢ = I, (R >, S) eval-
uated over the instance from Figure 12. The single attribute of each result tuple
of ¢ is copied from the a attribute of a tuple from relation R. Therefore, we can
apply the original PI-CS rewrites to relation R and avoid rewriting S at all.

24

CM(R) = » {a} = C(a)

CM(oc(q)) = » (C7(q1,a) UC(a)) = C(a)

a€B(q1)
CM(q1 Xc g2) =a68>(q1)(0*(% a) UC(a)) = C(a) GEBT@)(C*(% a) UC(a)) = C(a)
C*(g,0) = U if ((x = y) A € C(a)) then ({y}) else (0)

z€QA((z=y)eCV (y=r)€C)

CM(aG,ag9(q1)) = ael;(ql)(c(a) NG) = C(a)

CM(Ha(qr)) = X (U C*(a,z) = C(a))
zEA
{z} NC(a) forz € Q1
if (C) then ({y} NC(a)) else (B) for x = if (C) then (y) else (e)
C*(a,z) = ¢ if (C) then (§) else {y}NC(a)) forxz = if (C)then (e) else (y)
if (y € C(a)) then ({z}) else (0) forxz = (y — 2)
] else

Fig. 14. C-CS Copy Expressions

4.3 SQL Rewrites

The translation of the algebraic C-CS rewrite rules into SQL rewrites is anal-
ogous to the translation for PI-CS except for modeling copy expressions and
filtering provenance attributes in the outermost projection. An efficient way to
model the set-valued attributes used in the copy expressions are bit-arrays (na-
tively supported by PostgreSQL). The copy-expressions for all attributes of one
input relation are represented as a single bit-array using n bits (where n is the
number of query result attributes) to represent the result set for each attribute.
UDFs are used to speed up common operations on the bit-array type.®

Ezample 11 (Example SQL Rewrite). The query shown in Figure 15 removes
outlier values (values outside some predefined bound) from a relation R by re-
placing them with a per-id default value from a relation .S. This kind of query
is similar to queries used in data cleaning or fusion. The user can request the C-
CS provenance of this query to understand from where the values in the result
are copied (Figure 15 shows an excerpt of the rewritten query). Consider the
expression that determines the value for the provenance attribute prov_S_c. A
bit-array of length four is constructed to store which of the two result attributes
are copied from which of the two attributes of relation S. The construction con-
sists of an outer bitwise-or and inner conditional construction of bit-arrays. For
example, if the condition R.a < 20 holds, then attribute S.c is copied to the first

8 For a DBMS without support for a bit-array datatype or UDFs, we could simulate
a bit-array as a list of boolean attributes.

25

SELECT PROVENANCE ON CONTRIBUTION (COPY PARTIAL TRANSITIVE)
CASE
WHEN r.a < 20 THEN r.a
ELSE s.c
END AS cleana,
CASE
WHEN r.b < 30 THEN r.b
ELSE s.c
END AS cleanb
FROM r NATURAL JOIN s;

R S Q

cleana cleanb
ri|1]1 (40 s1] 1110 t1 1 10

ro| 2[51[60] s2[2]20] t2[20 | 20

SELECT
CASE
WHEN r.a < 20 THEN r.a
ELSE s.c
END AS cleana,
CASE
WHEN r.b < 30 THEN r.b
ELSE s.c
END AS cleanb,
CASE
WHEN NOT biteq(bitor(
CASE
WHEN NOT (r.a < 20) THEN B’0010°’ ELSE B’0000’
END,
CASE
WHEN NOT (r.b < 30) THEN B’0001’ ELSE B’0000°’
END), B’0000°)
THEN s.c
ELSE NULL
END AS prov_s_c
FROM

r NATURAL JOIN s

Fig. 15. Example C-CS SQL Rewrite

26

result attribute (0010). Similar, if R.b < 30 holds, then S.c is copied to the sec-
ond result tuple (0001). The outer-most CASE construct checks whether at least
one attribute from relation S has been copied to one of the result attributes, i.e.,
if the constructed bit-array is not equal to a sequence of zeros (0000).

5 Transformation Provenance

Transformation provenance models what parts of a transformation contribute
to a result tuple [19]. We represent the transformation provenance of a query ¢
using annotated algebra trees for ¢. For a result tuple ¢ and a witness list w in
PI(q,t), the transformation provenance includes an annotated algebra tree for
q with 1 and 0 annotations on the operators. A 1 indicates this operator on w
influences t, a 0 indicates it does not.

Definition 8 (Annotated Algebra Tree). An annotated algebra tree for a
query q is a pair (T'reey,0) where Tree, = (V,E) is a tree that contains a
node for each algebra operator used in q and 0 : V. — {0,1} is a function that
associates each operator in the tree with an annotation from {0,1}. We define a
preorder on the nodes to give each node an identifier (and to order the children
of binary operators). Let I(op) denote the identifier assigned to node op.

We define transformation provenance based on PI-CS provenance. Intuitively,
each witness list in the PI-CS provenance of a tuple ¢ represents one evaluation of
an algebra expression ¢. For one witness list, each part of the algebra expression
has either contributed to the result of evaluating ¢ on w or not. We represent
the transformation provenance as a set of annotated algebra trees of ¢ with
one member per witness list w. PI-CS provenance is used to decide whether an
operator op in ¢ is annotated with 0 or 1. If evaluating the subtree sub,, under
op on w results in the empty set (subo,(w) = 0), then op has contributed nothing
to the result ¢ and should not be included in the transformation provenance.

Definition 9 (Transformation provenance). The transformation provenance
T(q,t) of a tuple t in the result of a query q is a set of annotated trees defined

o T(q,t) = {(Treeg, 0,) | w € PI(q, 1)}
0. (0p) = {0 i subop(w) =0

1 else

5.1 Algebraic Rewrites

Transformation provenance is defined by evaluating subexpressions of a query
over the PI-CS provenance. However, we have shown that it is possible to gen-
erate the transformation provenance of a query without instantiating its PI-CS
provenance. The rewrite rules for transformation provenance rewrite a query ¢
into a query ¢” adding an additional attribute 7 to its schema that is used

27

T

g=R: q" =Ilg 7(4r)-7(R) T(q) ={R}

g=oc(q): q =g, 7qr)srloca’)) T(d") = {oe(a)} U Q1. T

a=Ha(q): ¢ =H,7ur)y (@) T(@") = {Ia(a)} U QLT
g=qUq: q" :HquT(qT)%T(qlT Ug') T@)={nUgetuQ:T

Fig. 16. Transformation Provenance Rewrite Rules

to store transformation provenance information. Recall that the transformation
provenance of a result tuple ¢ is a set of annotated algebra trees (one tree per
witness list w). The elements of this set represents the same algebra tree with
different annotation functions #,,. Therefore, we can factor out the tree and
store only the annotation functions. Each value of attribute T stores 6,, for one
witness-list w of t (represented as the set of operators that carry a l-annotation).

Each transformation provenance rewrite rule computes a new set of annota-
tions from the annotation sets of the rewritten inputs of the operator. Fig. 16
presents the rewrite rules for some algebra operators (see Glavic [16] for the re-
maining operators). The rewrite rule for a base relation access adds the singleton
annotation set for the operator {I(R)} as the value for attribute T to all result
tuples. A selection is rewritten by applying the unmodified selection and then
adding the identifier of the selection to the annotation set. The rewrite rules for
projection and union work analogously.

5.2 SQL Rewrites and Optimizations

We represent an annotation set as a bit-array in the SQL rewrites, because
its space requirements are low, and the union operation used frequently in the
rewrite rules is efficient (bit-wise disjunction). Similar to C-CS, we can precom-
pute the transformation provenance for a sub-expression if it is independent of
the input and avoid rewriting this sub-expression. To provide a useful transfor-
mation provenance representation to the user the bit-vector representation is
transformed into either SQL text with markup or XML (chosen by using the
keyword TRANSSQL or TRANSXML to trigger provenance computation) by
applying a UDF fgor or fxar in the outermost projection of the rewritten
query.® The SQL representation encloses parts of the original query text with
<NOT> and </NOT> to indicate which parts do not belong to the transforma-
tion provenance. The XML representation is a hierarchical representation of the
query that models each clause as an XML element.

9 UDFs are used to increase performance. In principle, the CASE construct and string
concatenation are sufficient for producing these representations.

28

6 Conclusions

We presented an overview of the Perm approach for integrating efficient on-
demand provenance support in relational databases and discussed its contri-
butions with respect to the requirements for a provenance system outlined in
Section 1. Perm stands out for using a pure relational representation of prove-
nance information which is generated and queried by executing standard SQL
queries, thus, taking full advantage of the DBMS optimizer. We demonstrated
the flexibility of the approach by implementing several provenance types in-
cluding Where-provenance and provenance polynomials. The Perm approach
enables a wide range of optimizations such as using algebraic equivalences to
develop more efficient rewrites (used to optimize nested subqueries for PI-CS),
static analysis of queries to avoid unnecessary generation of provenance infor-
mation (used for C-CS and transformation provenance), and DBMS specific op-
timizations using specialized data types (mainly used for C-CS, transformation
provenance, and the provenance polynomial implementation). Perm provides a
platform for exploring advanced topics such as provenance-aware physical opera-
tors, cost-based optimization for provenance generation, provenance compression
and summarization, and provenance of updates. In addition to these topics, we
plan to extend the approach to support provenance for complete transactions.

References

1. U. Acar, P. Buneman, J. Cheney, J. van den Bussche, N. Kwasnikowska, and
S. Vansummeren. A graph model of data and workflow provenance. In TaPP,
2010.

2. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,
and J. Widom. Trio: A System for Data, Uncertainty, and Lineage. In VLDB,
pages 1151-1154, 2006.

3. Y. Amsterdamer, D. Deutch, and V. Tannen. On the Limitations of Provenance
for Queries with Difference. In TaPP, 2011.

4. Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for Aggregate Queries.
PODS, pages 153-164, 2011.

5. D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. An Annotation Man-
agement System for Relational Databases. VLDB Journal, 14(4):373-396, 2005.

6. R. Bose and J. Frew. Lineage retrieval for scientific data processing: a survey.
ACM Computing Surveys, 37(1):1-28, 2005.

7. P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A Characterization of
Data Provenance. In ICDT, pages 316-330, 2001.

8. J. Cheney. Program Slicing and Data Provenance. IEEE Data Engineering Bul-
letin, 30(4):22-28, 2007.

9. J. Cheney. Causality and the Semantics of Provenance. In DCM, pages 63-74,
2010.

10. J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in Databases: Why, How,
and Where. Foundations and Trends in Databases, 1(4):379-474, 2009.

11. L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: a Post-it System for
Relational Databases based on Provenance. In SIGMOD, pages 942-944, 2005.

29

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

Y. Cui, J. Widom, and J. L. Wiener. Tracing the Lineage of View Data in a
Warehousing Environment. TODS, 25(2):179-227, 2000.

U. Dayal. Of Nests and Trees: A Unified Approach to Processing Queries That
Contain Nested Subqueries, Aggregates, and Quantifiers. In VLDB, pages 197-208,
1987.

J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: Queries and Prove-
nance. In PODS, pages 271280, 2008.

F. Geerts and A. Poggi. On database query languages for K-relations. Journal of
Applied Logic, 8(2):173-185, 2010.

B. Glavic. Perm: Efficient Provenance Support for Relational Databases. PhD
thesis, University of Zurich, 2010.

B. Glavic and G. Alonso. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In ICDE, pages 174185, 2009.

B. Glavic and G. Alonso. Provenance for Nested Subqueries. In EDBT, pages
982-993, 2009.

B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas. TRAMP: Understanding the
Behavior of Schema Mappings through Provenance. In VLDB, pages 1314-1325,
2010.

T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable Differences. In ICDT, pages
212-224, 2009.

T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update Exchange with
Mappings and Provenance. In VLDB, pages 675-686, 2007.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. In PODS,
pages 31-40, 2007.

T.J. Green. Containment of conjunctive queries on annotated relations. Theory of
Computing Systems, 49(2):429-459, 2011.

G. Karvounarakis and T.J. Green. Semiring-Annotated Data: Queries and Prove-
nance. SIGMOD Record, 41(3):5-14, 2012.

G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data provenance. In
SIGMOD, pages 951-962, 2010.

A. Kementsietsidis and M. Wang. On the Efficiency of Provenance Queries. In
ICDE, pages 1223-1226, 2009.

A. Kementsietsidis and M. Wang. Provenance Query Evaluation: What’s so Special
about it? In CIKM, pages 681-690, 2009.

W. Kim. On Optimizing an SQL-like Nested Query. TODS, 7(3):443-469, 1982.
E. V. Kostylev and P. Buneman. Combining dependent annotations for relational
algebra. In ICDT, pages 196207, 2012.

A. Meliou, W. Gatterbauer, K.F. Moore, and D. Suciu. The Complexity of Causal-
ity and Responsibility for Query Answers and non-Answers. PVLDB, 4(1):34-45,
2010.

J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control model. In
PST, pages 137-144. IEEE, 2012.

P. Seshadri, H. Pirahesh, and T.Y.C. Leung. Complex Query Decorrelation. In
ICDE, pages 450-458, 1996.

W.-C. Tan. Containment of Relational Queries with Annotation Propagation. In
DBPL, pages 37-53, 2003.

J. Widom. Trio: A System for Managing Data, Uncertainty, and Lineage. Managing
and Mining Uncertain Data, pages 113-148, 2008.

J. Widom, M. Theobald, and A. Das Sarma. Exploiting Lineage for Confidence
Computation in Uncertain and Probabilistic Databases. In ICDE, pages 1023—
1032, 2008.

30

