
DataSense: Display Agnostic Data Documentation
Poonam Kumari, Michael Brachmann,

Oliver Kennedy

University at Buffalo, SUNY

{poonamku,mrb24,okennedy}@buffalo.edu

Su Feng, Boris Glavic

Illinois Inst. of Technology

{sfeng14@hawk,bglavic@}.iit.edu

Producing and consuming documentation is an essential step when

creating and analyzing data. Good documentation helps a consumer

of data to understand the context of the data and its schema, includ-

ing (i) semantics (e.g., the currency of an account balance), (ii) data

collection techniques (e.g., which assay was used to measure blood

iron), (iii) limitations or caveats (e.g., that missing values are due to

sensor failure), and (iv) assumptions made (e.g., missing geographi-

cal locations were inferred through geocoding). Misunderstanding

the context of a dataset can lead to statistical errors and mistakes

with potentially serious, life-threatening consequences. In short,

good data documentation is critical. Unfortunately, extensive docu-

mentation can overwhelm users, making it hard to find elements in

the documentation that are relevant for the task at hand. We need

a better way to interact with documentation than the current state

of the art: dozens or even hundreds of pages of word documents.

Modern code development environments (IDEs) present a com-

pelling solution for code: (i) Syntax highlighting presents a high-

level overview of the document structure, helping users to survey

it; and (ii) Mouseover detail views help users to learn about the

specifics of functions, types, classes, etc. We argue that a similar par-

adigm is needed for datasets, a paradigmwe term display-agnostic
data documentation (DAD). In this paper, we outline how DAD

can facilitate both discovery and lookup of context-relevant data

documentation by inlining them directly and interactively into the

data display. This documentation can often be derived from the data

or by analyzing provenance. Indeed, many such techniques already

exist, ranging from fully automated data documentation techniques

like data profiling, provenance summarization, to user-provided

prose annotations. For example:

Outliers: Highlighting outliers in a dataset can help users to find

errors or interesting data points. Additional textual documentation

can be used to explain them.

Missing Values: Under SQL’s NULL Semantics, aggregates silently

ignore null values. Highlighting data derived from null values can

reveal data errors like failed CAST operations that might invali-

date analyses based on the data, or unreliable aggregated results

computed mostly from NULL values.

Cell Provenance: Spreadsheet expression cells (e.g., ’=$A22+$B22’)
can help users to interpret the role of the cell, for example when

the cell’s column name is uninformative. Similar information for

database query results (e.g., AVERAGE(ST_Distance(trip.start,
trip.end))). i.e., schema-level provenance, can be just as helpful.

Annotations: Semistructured documentation is used in program-

ming languages like Python (__doc__ or PEP484) and Java (Javadoc),
and leveraged by IDEs for mouse-over contextual documentation.

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The DataSense abstraction layer
Unlike IDEs where users interact with code only through a text

editor, a dataset may be displayed and accessed through many

modalities: as a table, in a graph, on a map, by writing queries, and

more. The need to support multiple modalities poses a challenge

for inline documentation, as each new form of data documentation

needs to be individually adapted for each display modality. A DAD

system needs to separate logic for generating data documentation

and displaying data with the documentation inlined. Creating a

standard interface between these components makes it possible to

implement a documentation generator once, and have it work with

a range of display modalities. This leads us to four central goals:

Process Agnostic: A DAD should make minimal assumptions

about documentation generation processes, and should support a

variety of metadata (e.g., free-form prose, structured properties,

provenance, and more).

Declarative: A DAD should generate documentation agnostic to

the modality in which it will be displayed. For example, declarative

roles (e.g., highlight, detail) can help avoid explicit formatting rules.

Context Sensitive: A DAD should dynamically adapt documenta-

tion to what is relevant for a user to avoid overwhelming them.

Unobtrusive: A DAD should (i) facilitate discovery of relevant doc-

umentation without impeding the user’s normal data interactions,

while also (ii) making context-relevant documentation accessible.

Automatic tracking: A DAD should ensure that associations be-

tween data and documentation are preserved when data is trans-

formed, e.g., during data wrangling. This saves the user from having

to manually generate documentation for derived data.

Figure 1 show one approach to DAD that we call DataSense: An

abstraction layer that links documentation modules that generate
contextual documentation, and relational data display managers
that render (e.g., as a table, plot, or map) the data and its docu-

mentation. DataSense is being implemented as part of the Vizier

workflow-notebook system (https://vizierdb.info), with existing

support for user- and heuristically-generated prose annotations

and profiling metadata, and with support for provenance metadata

available soon.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://vizierdb.info

